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Motion autonomy for humanoids:
experiments on HRP-2 No. 14

By Eiichi Yoshida*, Jean-Paul Laumond, Claudia Esteves, Oussama Kanoun,
Anthony Mallet, Takeshi Sakaguchi and Kazuhito Yokoi..........................................................................

This paper deals with whole-body motion planning and dynamic control for humanoid from
two aspects: locomotion including manipulation and reaching. In the first part, we address
a problem of simultaneous locomotion and manipulation planning that combines a
geometric and kinematic motion planner with a dynamic humanoid motion generator. The
second part deals with whole-body reaching tasks by using a generalized inverse kinematics
(IK) method to fully exploit the high redundancy of the humanoid robot. Through
experiments using humanoid platform HRP-2 No. 14 installed at LAAS-CNRS, we first
verify the validity of each method. An integrated experiment is then presented that unifies
the both results via visual perception to execute an object-fetching task. Copyright © 2009
John Wiley & Sons, Ltd.
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Introduction

With their high mobility and high redundancy,
humanoid robots are expected to perform complicated
tasks. Their anthropomorphic configuration gives
another advantage that they can easily adapt to machines
or environments designed for humans. Recent progress
in hardware accelerates diverse research in humanoid
robots. Various types of tasks have been performed:
manipulation1,2 or serving tasks.3,4 One of the key
issues to fully exploit the capacity of humanoid robots
is to develop a methodology that enables them to
execute various tasks requiring dynamic and smooth
whole-body motions including collision avoidance and
locomotion, like an object carrying task.

In the field of motion planning, recent advancement
in probabilistic methods has greatly improved the
three-dimensional (3D) motion planning for mechanism
involving complicated geometry and many degrees of
freedom (e.g., Reference [5]). However, most of those
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methods are based on the geometric and kinematic
planning in the configuration space whereas tasks for
humanoid robots are often specified in the workspace
and subject to dynamics including balance keeping.

Concerning control issues of humanoid robots,
powerful controllers have been developed to generate
whole-body dynamic motion in a reactive manner
(e.g., Reference [6]). As for locomotion, stable motion
pattern can be generated efficiently thanks to the
progress in biped walking control theory, mainly based
on zero moment point (ZMP) control (e.g., Reference
[7]). Planning of 3D humanoid motion for tasks in
complex environments has to benefit from these two
domains.

This paper addresses two aspects of humanoid whole-
body motion, simultaneous planning of locomotion and
manipulation and also dynamic reaching. In the first
part of this paper, we propose a two-stage planning
framework based on the geometrical and kinematic
planning technique whose output is validated by
dynamic motion pattern generator. The second part
addresses how to exploit the high redundancy of
humanoid robots when performing reaching or grasping
tasks. The last part of the paper presents an integrated
experiment with the humanoid robot platform HRP-2
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No. 14 to apply the proposed methods to a task in the
real world through visual perception.

Manipulating While
Walking

Humanoid motion planning is becoming a hot topic since
it faces complexity of planning and dynamic control at
the same time. Kuffner et al. proposed various types
of humanoid motion planners,8–10 such as balancing,
footstep planning, and navigation, while displacing
movable obstacles.

Okada et al. addressed the motion planning for
collision-free whole-body posture control11 by dividing
the robot into movable, fixed and free limbs using RRT
planner. Yoshida proposed humanoid motion planning
based on multi-level DOF exploitation.12

In the domain of computer graphics, motion editing
is an active area of research. Gleicher classified various
constraint-based methods that take into account spatial
and temporal constraints, which often correspond to
the problems of inverse kinematics (IK) and filtering,
respectively.13 In the field of graphic animation of digital
actors, recent progress in randomized motion planning
is currently being actively applied.5,14

Two-stage Planning Method

In this section, we summarize the two-stage planning
method, we have proposed in Reference [15] as
illustrated in Figure 1. At the first stage, the motion
planner computes a collision-free walking path for
the lower part of the robot body approximated by a
bounding box, as well as a collision-free path for the
upper body. In the second stage, this output path is
given as inputs to the dynamic pattern generator7 of the
humanoid robot that transforms it into a dynamically
executable motion. The joint angle command for the
whole body is computed by taking account of dynamic
balance based on ZMP. If the generated dynamic motion
induces unpredicted collisions due to deviation from
the geometrically and kinematically planned path, then
the planner goes back to the first stage to “reshape” the
previous path as explained in the next section.

Smooth Motion Reshaping

A collision-free path issued from the first motion
planning stage, will not always result in a collision-free

Figure 1. Two-stage motion planning framework.

trajectory after dynamic pattern generation is performed.
If the variation of the motion is small enough, those
collisions will be with the humanoid’s upper body or
the carried object. In such a case, we can assume that
local reshaping of the trajectory will suffice to avoid
the obstacles without replanning the whole nominal
trajectory.

When a collision is found, a new random collision-free
configuration near the colliding one is first generated,
and then an IK solver is applied to ensure the geometric
constraints of the end-effector. Although collision-
free motions can be generated at that stage, lack of
smoothness in velocity profile might cause instability
or unnecessary oscillation when it is executed by the
humanoid robot. Then we propose a reshaping method
that accounts for the smoothness of the motion when
avoiding the obstacles.

The reshaping procedure is performed in the following
two steps illustrated in Figure 2 by accounting for motion
continuity:15

1. A smooth trajectory to be followed by the end-effector
is specified in the task space and resampled at each
sampling time (5 millisecond) to enforce temporal
constraints (Figure 2(a)–(c)).

2. An IK specified the motion of the end-effector
enforcing geometric constraints (Figure 2(d)).
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Figure 2. (a) A top view of the volume swept by the robot avoiding a box on the table. Collisions occur between the bar and the
box. The reshaping limits are set by identifying the anticipating, colliding and regaining times. (b) Smooth motion is specified in
the task space by interpolating the bar’s configuration at key frames. (c) The bar’s motion is resampled at 5 millisecond to replace

its original motion. (d) New constraints are enforced by using a whole-body IK solver.

Experiments with HRP-2 No. 14

We have conducted experiments of the proposed hu-
manoid motion planner using the simulator OpenHRP16

and the hardware humanoid platform HRP-2 No. 14
installed at LAAS-CNRS. HRP-2 has 30 degrees of
freedom with 1.54 m in height and 58 kg in weight.17 This
robot has two chest joints for pitch and yaw rotation,
which extends the motion capability including lying
down on the floor and standing up. We take an example
of a task carrying a bar in an environment populated
by obstacles. The length, diameter and weight of the
bar is 1.8 m, 2.4 cm, and 0.5 kg, respectively. Figure 3
illustrates a real experiment. After the robot started
walking, it lifted the bar to move it by avoiding the
collision with the box on the table (Figure 3(b)–(d)).
The bar is lowered to the initial height after collision
avoidance (Figure 3(e) and (f)) to reach the goal position.
The dynamic task has successfully been achieved, which
validates the proposed planner.

Task-driven Support
Polygon Reshaping for

Reaching

We address a task-driven motion generation method that
allows a humanoid robot to make whole-body motions

including support polygon reshaping to achieve the
given tasks.18 There are many works in the literature
that have focused on the generation of whole-body
motions for complex mechanisms such as humanoid
robots or digital actors. A popular approach for motion
specification has been, instead of setting explicitly the
value of all degrees of freedom, to only specify the values
of a task to be accomplished by the end-effector. The idea
is to benefit from the redundancy of the mechanism to
choose the solution that best solves the task according
to some constraints. Among these works, generalized IK
algorithms that project tasks with lower priority into the
null space of the Jacobian of the higher priority tasks have
been widely studied (e.g., References [6,19–22]).

Our contribution is to consider the possibility of
reshaping the support polygon by stepping to increase
the accessible space of the end-effectors in the 3D space.
The problem we address can be viewed as a 3D extension
of the 2D problem addressed in Reference [23]. In
Reference [23], the authors propose a strategy for the
control of a pattern generator by monitoring the arm
manipulability. While their model lies in the sagittal
plane, our approach makes use of the whole body motion
in 3D space. Moreover, in spite of our reasoning being
based on IK and simple geometric support polygon
reshaping, our method guarantees that the motion is
dynamically stable. This property is a consequence of
the pattern generator,7 we use to generate the stepping
behavior.
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Figure 3. Experiment of planned bar-carrying task. (a) Initial configuration, (b) starts walking, (c) starts lifting the bar, (d) the
bar passes above the obstacle, (e) lowering the bar after avoiding collision, and (f) going to final position.

Method Overview

The support polygon reshaping integrates two important
components, the generalized IK and dynamic walking
pattern generator. Figure 4 shows an overview of
the method. The task is specified in the workspace
as a desired velocity ẋj with priority j from which
the generalized IK solver computes the whole-body
motion as joint velocities q̇ of the robot. Meanwhile,

several criteria such as manipulability or joint limit are
monitored.

As long as those criteria are satisfied, the computation
of whole-body motion continues until the target of the
task is achieved. If the task cannot be achieved due
to unsatisfied criteria, the support polygon planner is
triggered in order to extend reachable space. A geometric
module determines the direction and position of the
deformation of support polygon so that the incomplete
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Figure 4. Task-driven support polygon reshaping and whole-
body motion generation.

task is fulfilled. The position of a foot is then derived
to generate the motion of center of mass (CoM) ẋCoM

by using a dynamic walking pattern generator.7 Using
this CoM motion, the original task is then redefined
as the whole-body motion including stepping that is
recalculated using the same generalized IK solver.

Let us first overview the generalized IK framework.
Then we will show how the support polygon is reshaped.

Generalized Inverse Kinematics for
Whole-body Motion

Inverse Kinematics for Prioritized Tasks. Let us
consider a task ẋj with priority j in the workspace and
the relationship between the joint angle velocity q̇ is
described using Jacobian matrix, like ẋj = J j q̇. For the
tasks with the first priority, using pseudoinverse J#

1, the
joint angles that achieves the task is given

q̇1 = J#
1ẋ1 + (In − J#

1J1)y1 (1)

where y1, n, and In are an arbitrary vector, the number
of the joints and identity matrix of dimension n,
respectively.

For the task with second priority ẋ2, the joint velocities
q̇2 is calculated as follows:19

q̇2 = q̇1 + Ĵ#
2(ẋ2 − J2q̇1) + (In − J#

1J1)(In − Ĵ#
2Ĵ2)y2

where Ĵ2 ≡ J2(In − J#
1J1) (2)

where y2 is an arbitrary vector of dimension n. It can
be extended to the task of jth (j ≥ 2) priority in the
following formula:20,21

q̇j = q̇j−1 + Ĵ#
j (ẋj − J j q̇j−1) + Njyj (3)

Nj ≡ Nj−1(In − Ĵ#
j Ĵ j), Ĵ j ≡ J j(In − Ĵ#

j−1Ĵ j−1)

Weighted Pseudoinverse. In most cases, it is
preferable for a humanoid robot to use the lighter links to
achieve tasks. For this purpose, we introduce a weighted
pseudoinverse:

J#
W = (JTWJ)−1JTW, W = diag{

√
W1, . . .

√
Wn} (4)

The weight Wi of each joint is given as the ratio of
the mass mi of the link i to the total mass M, namely
mi/M. Moreover, a selection matrix S = diag{S1, . . . Sn}
(Si = 0 or 1) is multiplied to this inverse to select the
activated joints according to the task specification. The
selection matrix is set to In if all the joints are used to
achieve the task.

Using this weighted Jacobian first lighter links are used
then heavier ones. By combining a selection matrix Sl

that forbids using the joints approaching the limit of
the movable range, the heuristics of whole-body motion
workspace extension22 can be implemented in a simpler
way.

Monitoring Task Execution Criteria. While the
motion is being computed by the generalized IK, several
properties are monitored.

One of the important measures is the manipulability24

defined as

w ≡
√

det{JJT} (5)

This measure is continuously tracked during the motion
generation as well as others such as joint angle limits or
end-effector errors from the target. If it becomes below
a certain value, it means that it is difficult to achieve the
task.

Joint limit constraints can be taken into account by
introducing another selection diagonal matrix Sl whose
ith component become zero if the corresponding joint
reaches a limit angle.

As shown in Figure 4, when one or more monitored
measures go out of the admissible range to prevent the
task from being achieved, the support polygon reshaping
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is launched to extend the accessible space as detailed in
the next subsection.

Support Polygon Reshaping

Figure 5 shows the proposed support polygon reshaping
scheme. This simple algorithm allows the humanoid
robot to make a step motion, keeping a large margin of
accessible area for the task by facing the upper body to
the target direction.

Then the CoM motion ẋCoM is computed from the new
foot position by the walking pattern generator based on
the preview control of ZMP.7 The basic idea is to calculate
the CoM motion by anticipating the desired future ZMP
positions derived from the footsteps.

Finally the original task is redefined as another
problem of whole-body task using this newly generated
CoM motion with an additional task of CoM, which is
represented by CoM Jacobian.25 The same generalized
IK solver framework is used to incorporate the motion
required for the task and the stepping motion in the
whole-body level.

Figure 5. Support polygon reshaping method.

Experimental Results

In the following experiment, the humanoid robot is
required to reach a position with the left hand. Four tasks
are given with the following priority (i) foot placement,
(ii) CoM position, (iii) hand reaching task, and (iv) gaze
direction in the order of higher priority. For all the tasks
the weighted Jacobian (4) is utilized for IK. As for the
selection matrix S, all the degrees of freedom are used,
namely setting S to In, for all the tasks. The reaching
task is defined by the target positions without specifying
orientation of the hand.

The monitored criteria here during the motion are the
manipulability of the arm and the error between the ref-
erence end-effector position and the one calculated by the
IK solver. The robot tries to reach the target first with the
CoM position at the center of the initial support polygon.
If those values go below a certain threshold, the support
polygon reshaping process is activated. Here the thresh-
olds of manipulability and end-effector error are empir-
ically set to 1.5 × 10−4 and 4.0 × 10−5 m, respectively.

Figure 6 shows the snapshots of a reaching task
including reshaping. The manipulability measure for
this task is given in Figure 7 to compare to the
motion without reshaping. Without reshaping, the arm
would approach a singular configuration where the
manipulability becomes lower than the threshold at
2.6 second. The computation keeping the same support
polygon is then discarded. The reshaping starts at this
moment to recalculate the overall whole-body motion
including stepping. We can see the manipulability
regains higher value at the final position.

In Figure 8, the time development of x and y positions
of ZMP measured from the ankle force sensors are
plotted for the sideways reaching motion. The dotted
and solid lines are the planned and measured trajectories,
respectively. The shaded areas in those graphs depict the

Figure 6. Experimentation on HRP-2. Putting weight on the right foot in (b), the robot goes through a posture that is not statically
stable (c) to finish stepping in (c). The final goal of the end effector is achieved at (e). Notice that the robot makes a whole-body

motion including reaching task, stepping and keeping the gaze.

............................................................................................
Copyright © 2009 John Wiley & Sons, Ltd. 516 Comp. Anim. Virtual Worlds 2009; 20: 511–522

DOI: 10.1002/cav



MOTION AUTONOMY FOR HUMANOIDS...........................................................................................

Figure 7. Without support polygon reshaping, the manipula-
bility measure decreases below the threshold. Although it also
decreases with reshaping, the manipulability increases in the

course of stepping motion.

transition of support polygon area projected on x- and
y-axis. As we can see, the planned trajectories of ZMP
always stay inside the support polygon. Note that the
final ZMP position in x direction goes out of the initial
support polygon: this means the reaching task could not
have been performed without stepping.

Motion in Real World:
Integrating With Perception

The presented motion planning methods are currently
integrated with perception, principally vision, to make
actions in the real world. This integration allows the robot
to execute such commands as “go to the yellow table” and
“take the orange ball.”

Object Recognition and
Localization

The HRP-2 robot is equipped with two pairs of firewire
digital color cameras, configured as two independent
stereo-vision camera pairs. We here utilize standard state
of the art components to implement a simple function of
object recognition and localization.

For the detection, the model of the objects to be
detected are previously learned using two dimensional
histogram in the {Hue, Saturation} color space by
taking a sample image with a color space. The object
detection is performed by back projecting the object
histogram onto a video image. The back projection
image is obtained by replacing each pixel value
by the corresponding value in the model histogram
(Figure 9). We use a method called Continuously Adaptive
Mean SHIFT (CAMSHIFT) algorithm26 to locate the
object center and orientation in the back projection
image.

A stereo-vision algorithm by pixel correlation is
applied on the stereo image pairs, and produces a
dense 3D image of the current scene. Even though pixel

Figure 9. Object detection. Left image shows the HSV image
and right image is the back projection of the table color model
in the source image. Rectangle is the result of the execution of

the CAMSHIFT algorithm on the back projection image.

Figure 8. Evolution of the ZMP coordinates during the motion. The shaded area expresses the transition of the projection of
support polygon in x-axis (left) et in y-axis (right).
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correlation is known to give poor results in indoor
environments, the objects to localize are sufficiently
textured so that precise enough 3D points can be obtained
in the vicinity of the objects.

Coupling the Motion Planner with
Perception

The motion planners presented in previous sections
are integrated with the vision system so that the robot
can execute a task composed of navigation and object
grasping.

For navigation, we apply the same type of two-
stage motion planner for navigation planning presented
in the second section. At the first stage, a collision-
free smooth locomotion path is calculated for the
approximated bounding box. It is desirable for the
robot to walk forward in order to look at the object
and to take it. This preference can be modeled as
a nonholonomic constraint, and we can benefit from
well-developed planning method of a smooth path
for car-like robot.27 Then the path is transformed into
dynamic humanoid locomotion at the second stage by
applying the dynamic walking patter generator. This
navigation planner allows the humanoid robot to go
in front of the visually located colored table several
meters away by avoiding known obstacles as shown in
Figure 10.

The whole-body motion generator presented in the
third section is used for the grasping task. Given the
object location from the vision system, the whole-body
motion generator computes automatically a reaching
motion, including stepping depending on the detected
object location.

Experiments

We have conducted experiments to validate the
integrated system. The humanoid robot is given a task
to take a colored ball and put it at another place. The task
is decomposed into several generic action commands,
such as detection and localization of a learned object,
locomotion to a location, and hand reaching to a position
in 3D, with other simple tasks like turning on the spot
and gripper opening and closing.

A simple supervision system that can invoke the
actions with scripts is utilized to manage the robot
behavior easily. Each action can report failures (e.g.,
failure in grasping an object). It is thus possible to
implement error recovery strategies by analyzing the

Figure 10. A planned smooth walking trajectory to a target
position.

reports of the actions. In the following experiment, each
action is associated with a vocal command to allow the
user to give a sequence of commands to the robot in an
interactive manner.

Figure 11 shows snapshots of experiments. Since the
ball is too far away to be detected with camera at
the initial position, the humanoid robot first localizes the
green box on which the balls are placed (Figure 11a). The
robot walks with a smooth trajectory in front of the box
(Figure 11b) and localizes precisely the colored ball to
grasp (Figure 11c). Then the whole-body reaching motion
is executed to grasp the ball (Figure 11d). After turning,
the robot is told to detect a colored table and walks
toward it always with a smooth trajectory (Figure 11e).
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Figure 11. Ball-fetching task using visual perception and motion planner. (a) Localization of the box, (b) walking to the box,
(c) detection and localization of the ball, (d) whole-body reaching for grasping, (e) locomotion to another location, and (f) putting

the ball on the detected table.

Finally it puts the ball on the table again with whole-body
motion (Figure 11f).

This experiment was conducted more than 10 times
in an exposition in front of the public using vocal
interaction by a human operator. Since the location
of the robots and objects are different at every
demonstration, it happened that the robot failed to
grasp with unexpected disturbances or localization

errors. However, the task could be executed again
successfully thanks to the generality of the action
commands, by just repeating the same action command.
As a result, all the demos were successful including
those retries. This validates the reliability of the
proposed motion planner, the integrated perception
system and also the robustness of task execution
framework.
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Conclusions

The goal of this paper is to present our work in
progress on the motion autonomy in humanoid robotics.
Even though Robotics and Computer Animation follow
different goals with respect to their respective application
fields, we believe that the research in both areas should
benefit from a synergetic point of view.

The synergy possibly comes from a common objective
aiming at better understanding the computational issues
of human motions. The questions addressed in this paper
(How to combine manipulation and locomotion tasks?
How to enlarge the scope of redundant system based
methods?) are generic questions challenging for both
servicing robotics and game industry.

Another potential synergy concerns the physical
interaction. We believe Robotics can contribute to
Computer Animation domain with our feedback from
the real-world experiments. Such contributions include
planning dynamically plausible motion for digital
actors and also the physical interaction with virtual
environment, which can be applied to interactive game
or animations.
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