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Abstract

This document consists of the collection of handouts for a two-

week summer workshop entitled 'Geometry and the Imagination', led

by John Conway, Peter Doyle, Jane Gilman and Bill Thurston at the

Geometry Center in Minneapolis, June 17-28, 1991. The workshop

was based on a course `Geometry and the Imagination' which we had

taught twice before at Princeton.

1 Preface

This document consists of the collection of handouts for a two-week summer

workshop entitled 'Geometry and the Imagination', led by John Conway, Pe-

ter Doyle, Jane Gilman and Bill Thurston at the Geometry Center in Min-

neapolis, June 17-28, 1991. The workshop was based on a course `Geometry

and the Imagination' which we had taught twice before at Princeton.

The handouts do not give a uniform treatment of the topics covered in the

workshop: some ideas were treated almost entirely in class by lecture and

discussion, and other ideas which are fairly extensively documented were

only lightly treated in class. The motivation for the handouts was mainly to

supplement the class, not to document it.

The primary outside reading was `The Shape of Space', by Je� Weeks.

Some of the topics discussed in the course which are omitted or only lightly

covered in the handouts are developed well in that book: in particular, the
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concepts of extrinsic versus intrinsic topology and geometry, and two and

three dimensional manifolds. Our approach to curvature is only partly doc-

umented in the handouts. Activities with scissors, cabbage, kale, 
ashlights,

polydrons, sewing, and polyhedra were really live rather than written.

The mix of students|high school students, college undergraduates, high

school teachers and college teachers|was unusual, and the mode of running

a class with the four of us teaching was also unusual. The mixture of peo-

ple helped create the tremendous 
ow of energy and enthusiasm during the

workshop.

Besides the four teachers and the o�cial students, there were many

people who put a lot in to help organize or operate the course, including

Jennifer Alsted, Phil Carlson, Anthony Iano-Fletcher, Maria Iano-Fletcher,

Kathy Gilder, Harvey Keynes, Al Marden, Delle Maxwell, Je� Ondich, Tony

Phillips, John Sullivan, Margaret Thurston, Angie Vail, Stan Wagon.
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2 Philosophy

Welcome to Geometry and the Imagination!
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This course aims to convey the richness, diversity, connectedness, depth

and pleasure of mathematics. The title is taken from the classic book by

Hilbert and Cohn-Vossen, \Geometry and the Imagination'. Geometry is

taken in a broad sense, as used by mathematicians, to include such �elds

as topology and di�erential geometry as well as more classical geometry.

Imagination, an essential part of mathematics, means not only the facility

which is imaginative, but also the facilitywhich calls to mind and manipulates

mental images. One aim of the course is to develop the imagination.

While the mathematical content of the course will be high, we will try

to make it as independent of prior background as possible. Calculus, for

example, is not a prerequisite.

We will emphasize the process of thinking about mathematics. Assign-

ments will involve thinking and writing, not just grinding through formulas.

There will be a strong emphasis on projects and discussions rather than lec-

tures. All students are expected to get involved in discussions, within class

and without. A Geometry Room on the �fth 
oor will be reserved for stu-

dents in the course. The room will accrete mathematical models, materials

for building models, references related to geometry, questions, responses and

(most important) people. There will be computer workstations in or near

the geometry room. You are encouraged to spend your afternoons on the

�fth 
oor.

The spirit of mathematics is not captured by spending 3 hours solving

20 look-alike homework problems. Mathematics is thinking, comparing, an-

alyzing, inventing, and understanding. The main point is not quantity or

speed|the main point is quality of thought. The goal is to reach a more

complete and a better understanding. We will use materials such as mirrors,

Polydrons, scissors and tissue paper not because we think this is easier than

solving algebraic equations and di�erential equations, but because we think

that this is the way to bring thinking and reasoning to the course.

We are very enthusiastic about this course, and we have many plans to

facilitate your taking charge and learning. While you won't need a heavy

formal background for the course, you do need a commitment of time and

energy.
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3 Organization

3.1 People

We are experimenting with a diverse group of participants in this course:

high school students, high school teachers, college students, college teachers,

and others.

Topics in mathematics often have many levels of meaning, and we hope

and expect that despite|no, because of|the diversity, there will be a lot

for everyone (including we the sta�) to get from the course. As you think

about something, you come to understand it from di�erent angles, and on

successively deeper levels.

We want to encourage interactions between all the participants in the

course. It can be quite interesting for people with sophisticated backgrounds

and with elementary backgrounds to discuss a topic with each other, and the

communication can have a high value in both directions.

3.2 Scheduled meetings

The o�cially scheduled morning sessions, which run from 9:00 to 12:30 with

a half-hour break in the middle, form the core of the course. During these

sessions, various kinds of activities will take place. There will be some more-

or-less traditional presentations, but the main emphasis will be on encourag-

ing you to discover things for yourself. Thus the class will frequently break

into small groups of about 5{7 people for discussions of various topics.

3.3 Discussion groups

We want to enable everyone to be engaged in discussions while at the same

time preserving the unity of the course. From time to time, we will break

into discussion groups of 5{7 people.

Every member of each group is expected to take part in the discussion

and to make sure that everyone is involved: that everyone is being heard,

everyone is listening, that the discussion is not dominated by one or two

people, that everyone understands what is going on, and that the group

sticks to the subject and really digs in.
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Each group will have a reporter. The reporters will rotate so that ev-

eryone will serve as reporter during the next two weeks. The main role of

the reporters during group discussions is to listen, rather than speak. The

reporters should make sure they understand and write down the key points

and ideas from the discussion, and be prepared to summarize and explain

them to the whole class.

After a suitable time, we will ask for reports to the entire class. These

will not be formal reports. Rather, we will hold a summary discussion among

the reporters and teachers, with occasional contributions from others.

3.4 Texts

The required texts for the course are: Weeks, The Shape of Space and Cox-

eter, Introduction to Geometry. There are available at the University Book-

store.

Coxeter's book will mainly be used as a reference book for the course,

but it is also a book that should be useful to you in the future.

Here is a list of reading assignments from The Shape of Space by Weeks.

As Weeks suggests it is important to \: : : read slowly and give things plenty

of time to digest", as much as is possible in a condensed course of this type.

� Monday, June 17: Chapters 1 and 2.

� Tuesday, June 18: Chapter 3.

� Wednesday, June 19: Chapter 4.

� Thursday, June 20: Chapter 5, pages 67-77, and Chapter 6, 85-90.

� Friday, June 21 { Sunday, June 23: Chapters 7 & 8.

� Monday, June 24: Chapters 9 and 10.

� Tuesday, June 25: Chapter 11 and 12.

� Wednesday, June 26: Chapter 13.

� Thursday, June 27: Chapter 16.
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In addition, there is a long list of recommended reading. The geometry

room has a small collection of additional books, which you may read there.

There are several copies of some books which we highly recommend such

as Flatland by Abbott and What is Mathematics by Courant and Robbins.

There are single copies of other books.

3.5 Other materials

We will be doing a lot of constructions during class. Beginning this Tuesday

(June 18th), you should bring with you to class each time: scissors, tape,

ruler, compass, sharp pencils, plain white paper. It would be a capital idea

to bring extras to rent to your classmates.

3.6 Journals

Each participant should keep a journal for the course. While assignments

given at class meetings go in the journal, the journal is for much more: for

independent questions, ideas, and projects. The journal is not for class notes,

but for work outside of class. The style of the journal will vary from person

to person. Some will �nd it useful to write short summaries of what went

on in class. Any questions suggested by the class work should be in the

journal. The questions can be either speculative questions or more technical

questions. You may also want to write about the nature of the class meetings

and group discussions: what works for you and what doesn't work, etc.

You are encouraged to cooperate with each other in working on anything

in the course, but what you put in your journal should be you. If it is

something that has emerged from work with other people, write down who

you have worked with. Ideas that come from other people should be given

proper attribution. If you have referred to sources other than the texts for

the course, cite them.

Exposition is important. If you are presenting the solution to a problem,

explain what the problem is. If you are giving an argument, explain what

the point is before you launch into it. What you should aim for is something

that could communicate to a friend or a colleague a coherent idea of what

you have been thinking and doing in the course.

Your journal should be kept on loose leaf paper. Journals will be collected

every few days and read and commented upon by the instructors. If they
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are on loose leaf paper, you can hand in those parts which have not yet been

read, and continue to work on further entries. Pages should be numbered

consecutively and except when otherwise instructed, you should hand in only

those pages which have not previously been read. Write your name on each

page, and, in the upper right hand corner of the �rst page you hand in each

time, list the pages you have handed in (e.g. [7,12] on page 7 will indicate

that you have handed in 6 pages numbered seven to twelve).

Mainly, the journal is for you. In addition, the journals are an important

tool by which we keep in touch with you and what you are thinking about.

Our experience is that it is really fun and enjoyable when someone lets us

into their head. No matter what your status in this course, keep a journal.

Journals will be collected and read as follows:

� Wed. June 19th

� Friday June 21st

� Tuesday, June 25th

� Thursday June 26th

Your entire journal should be handed in on Friday June 27th with your �nal

project. We will return �nal journals by mail.

3.7 Constructions

Geometry lends itself to constructions and models, and we will expect every-

one to be engaged in model-making. There will be minor constructions that

may take only half an hour and that everyone does, but we will also expect

larger constructions that may take longer.

3.8 Final project

We will not have a �nal exam for the course, but in its place, you will

undertake a major project. The major project may be a paper investigating

more deeply some topic we touch on lightly in class. Alternatively, it might be

based on a major model project, or it might be a computer-based project. To

give you some ideas, a list of possible projects will be circulated. However,
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you are also encouraged to come up with your own ideas for projects. If

possible, your project should have some visual component, for we will display

all of the projects at the end of the course at the Geometry Fair. The project

will be due on the morning of Friday June 28th. The fair will be in the

afternoon.

3.9 Geometry room/area

The �fth 
oor houses the Geometry Room. We hope that it will actually spill

out into the hallways and corridors and thus become the geometry area. Thus

the �fth 
oor will serve as a work and play room for this course. This is where

you can �nd mathematical toys, games, models, displays and construction

materials. Copies of handouts and books and other written materials of

interest to students in the course will be kept here as well. It should also

serve as a place to go if you want to talk to other students in the course, or

to one of the teachers. Our current plan is to have this area open from 1:30

to 4:00 PM Monday through Friday, beginning right away. There will be a

tour of the area at the end of Monday's morning session.

4 Bicycle tracks

Here is a passage from a Sherlock Holmes story, The Adventure of the Priory

School (by Arthur Conan Doyle):

`This track, as you perceive, was made by a rider who was going from the

direction of the school.'

`Or towards it?'

`No, no, my dear Watson. The more deeply sunk impression is, of course,

the hind wheel, upon which the weight rests. You perceive several places

where it has passed across and obliterated the more shallow mark of the

front one. It was undoubtedly heading away from the school.'

1. Discuss the passage above.

2. Visualize, discuss, and sketch what bicycle tracks look like.

3. When we present actual bicycle tracks, determine the direction of mo-

tion.
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4. What else can you tell about the bike from the tracks?

5 Polyhedra

A polyhedron is the three-dimensional version of a polygon: it is a chunk of

space with 
at walls. In other words, it is a three-dimensional �gure made

by gluing polygons together. The word is Greek in origin, meaning many-

seated. The plural is polyhedra. The polygonal sides of a polyhedron are

called its faces.

5.1 Discussion

Collect some triangles, either the snap-together plastic polydrons or paper

triangles. Try gluing them together in various ways to form polyhedra.

1. Fasten three triangles together at a vertex. Complete the �gure by

adding one more triangle. Notice how there are three triangles at every

vertex. This �gure is called a tetrahedron because it has four faces (see

the table of Greek number pre�xes.)

2. Fasten triangles together so there are four at every vertex. How many

faces does it have? From the table of pre�xes below, deduce its name.

3. Do the same, with �ve at each vertex.

4. What happens when you fasten triangles six per vertex?

5. What happens when you fasten triangles seven per vertex?

1 mono 2 di 3 tri 4 tetra 5 penta

6 hexa 7 hepta 8 octa 9 ennia 10 deca

11 hendeca 12 dodeca 13 triskaideca 14 tetrakaideca 15 pentakaideca

16 hexakaideca 17 heptakaideca 18 octakaideca 19 enniakaideca 20 icosa

Table 1: The �rst 20 Greek number pre�xes
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5.2 Homework

A regular polygon is a polygon with all its edges equal and all angles equal.

A regular polyhedron is one whose faces are regular polygons, all congruent,

and having the same number of polygons at each vertex.

For homework, construct models of all possible regular polyhedra, by

trying what happens when you fasten together regular polygons with 3, 4, 5,

6, 7, etc sides so the same number come together at each vertex.

Make a table listing the number of faces, vertices, and edges of each.

What should they be called?

6 Knots

A mathematical knot is a knotted loop. For example, you might take an

extension cord from a drawer and plug one end into the other: this makes a

mathematical knot.

It might or might not be possible to unknot it without unplugging the

cord. A knot which can be unknotted is called an unknot.

Two knots are considered equivalent if it is possible to rearrange one to

the form of the other, without cutting the loop and without allowing it to

pass through itself. The reason for using loops of string in the mathematical

de�nition is that knots in a length of string can always be undone by pulling

the ends through, so any two lengths of string are equivalent in this sense.

If you drop a knotted loop of string on a table, it crosses over itself in a

certain number of places. Possibly, there are ways to rearrange it with fewer

crossings|the minimum possible number of crossings is the crossing number

of the knot.

6.1 Discussion

Make drawings and use short lengths of string to investigate simple knots:

1. Are there any knots with one or two crossings? Why?

2. How many inequivalent knots are there with three crossings?

3. How many knots are there with four crossings?
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Figure 1: This is drawing of a knot has 7 crossings. Is it possible to rearrange

it to have fewer crossings?
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4. How many knots can you �nd with �ve crossings?

5. How many knots can you �nd with six crossings?

7 Maps

A map in the plane is a collection of vertices and edges (possibly curved)

joining the vertices such that if you cut along the edges the plane falls apart

into polygons. These polygons are called the faces. A map on the sphere or

any other surface is de�ned similarly. Two maps are considered to be the

same if you can get from one to the other by a continouous motion of the

whole plane. Thus the two maps in �gure 2 are considered to be the same.

A map on the sphere can be represented by a map in the plane by remov-

ing a point from the sphere and then stretching the rest of the sphere out to

cover the plane. (Imagine popping a balloon and stretching the rubber out

onto on the plane, making sure to stretch the material near the puncture all

the way out to in�nity.)

Depending on which point you remove from the sphere, you can get di�er-

ent maps in the plane. For instance, �gure 3 shows three ways of representing

the map depicting the edges and vertices of the cube in the plane; these three

di�erent pictures arise according to whether the point you remove lies in the

middle of a face, lies on an edge, or coincides with one of the vertices of the

cube.

7.1 Euler numbers

For the regular polyhedra, the Euler number V � E + F takes on the value

2, where V is the number of vertices, E is the number of edges, and F is the

number of faces.

The Euler number (pronounced `oiler number') is also called the Euler

characteristic, and it is commonly denoted by the Greek letter � (pronounced

`kai', to rhyme with `sky'):

� = V � E + F:
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Figure 2: These two maps are considered the same (topologically equivalent),

because it is possible to continuously move one to obtain the other.
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(c)

(b)
(a)

Figure 3: These three diagrams are maps of the cube, stretched out in the

plane. In (a), a point has been removed from a face in order to stretch it

out. In (b), a vertex has been removed. In (c), a point has been removed

from an edge.
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7.2 Discussion

This exercise is designed to investigate the extent to which it is true that the

Euler number of a polyhedron is always equal to 2. We also want you to gain

some experience with representing polyhedra in the plane using maps, and

with drawing dual maps.

We will be distributing examples of di�erent polyhedra.

1. For as many of the polyhedra as you can, determine the values of V ,

E, F , and the Euler number �.

2. When you are counting the vertices and so forth, see if you can think of

more than one way to count them, so that you can check your answers.

Can you make use of symmetry to simplify counting?

3. The number � is frequently very small compared with V , E, and F ,

Can you think of ways to �nd the value of � without having to compute

V , E, and F , by `cancelling out' vertices or faces with edges? This gives

another way to check your work.

The dual of a map is a map you get by putting a vertex in the each face,

connecting the neighboring faces by new edges which cross the old edges, and

removing all the old vertices and edges. To the extent feasible, draw a map

in the plane of the polyhedron, draw (in a di�erent color) the dual map, and

draw a net for the polyhedron as well.

8 Notation for some knots

It is a hard mathematical question to completely codify all possible knots.

Given two knots, it is hard to tell whether they are the same. It is harder

still to tell for sure that they are di�erent.

Many simple knots can be arranged in a certain form, as illustrated below,

which is described by a string of positive integers along with a sign.

9 Knots diagrams and maps

A knot diagram gives a map on the plane, where there are four edges coming

together at each vertex. Actually, it is better to think of the diagram as
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3

2 2

5

3 2

Figure 4: Here are drawings of some examples of knots that Conway `names'

by a string of positive integers. The drawings use the convention that when

one strand crosses under another strand, it is broken. Notice that as you run

along the knot, the strand alternates going over and under at its crossings.

Knots with this property are called alternating knots. Can you �nd any

examples of knots with more than one name of this type?
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4-1 (figure eight)3-1 (trefoil)

5-25-1

6-1
6-2

6-3

Figure 5: Here are the knots with up to six crossings. The names follow an

old system, used widely in knot tables, where the kth knot with n crossings

is called n � k. Mirror images are not included: some of these knots are

equivalent to their mirror images, and some are not. Can you tell which are

which?
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a map on the sphere, with a polygon on the outside. It sometimes helps

in recognizing when diagrams are topologically identical to label the regions

with how many edges they have.

10 Unicursal curves and knot diagrams

A unicursal curve in the plane is a curve that you get when you put down

your pencil, and draw until you get back to the starting point. As you draw,

your pencil mark can intersect itself, but you're not supposed to have any

triple intersections. You could say that you pencil is allowed to pass over

an point of the plane at most twice. This property of not having any triple

intersections is generic: If you scribble the curve with your eyes closed (and

somehow magically manage to make the curve �nish o� exactly where it

began), the curve won't have any triple intersections.

A unicursal curve di�ers from the curves shown in knot diagrams in that

there is no sense of the curve's crossing over or under itself at an intersec-

tion. You can convert a unicursal curve into a knot diagram by indicating

(probably with the aid of an eraser), which strand crosses over and which

strand crosses under at each of the intersections.

A unicursal curve with 5 intersections can be converted into a knot dia-

gram in 2

5

ways, because each intersection can be converted into a crossing in

two ways. These 32 diagrams will not represent 32 di�erent knots, however.

10.1 Assignment

1. Draw the 32 knot diagrams that arise from the unicursal curve underly-

ing the diagram of knot 5-2 shown in the previous section, and identify

the knots that these diagrams represent.

2. Show that any unicursal curve can be converted into a diagram of the

unknot.

3. Show that any unicursal curve can be converted into the diagram of

an alternating knot in precisely two ways. These two diagrams may

or may knot represent di�erent knots. Give an example where the two

knots are the same, and another where the two knots are di�erent.
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Hilbert Klein Poincare

gas water electricity

Figure 6: This is no good because we don't want the lines to intersect.

4. Show that any unicursal curve gives a map of the plane whose regions

can be colored black and white in such a way that adjacent regions

have di�erent colors. In how many ways can this coloring be done?

Give examples.

11 Gas, water, electricity

The diagram below shows three houses, each connected up to three utilities.

Show that it isn't possible to rearrange the connections so that they don't

intersect each other. Could you do it if the earth were a not a sphere but

some other surface?

12 Topology

Topology is the theory of shapes which are allowed to stretch, compress, 
ex

and bend, but without tearing or gluing. For example, a square is topologi-
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cally equivalent to a circle, since a square can be continously deformed into

a circle. As another example, a doughnut and a co�ee cup with a handle for

are topologically equivalent, since a doughnut can be reshaped into a co�ee

cup without tearing or gluing.

12.1 Letters

As a starting exercise in topology, let's look at the letters of the alphabet.

We think of the letters as �gures made from lines and curves, without fancy

doodads such as serifs.

Question. Which of the capital letters are topologically the same, and

which are topologically di�erent? How many topologically di�erent capital

letters are there?

13 Surfaces

A surface, or 2-manifold, is a shape any small enough neighborhood of which

is topologically equivalent to a neighborhood of a point in the plane. For

instance, a the surface of a cube is a surface topologically equivalent to the

surface of a sphere. On the other hand, if we put an extra wall inside a cube

dividing it into two rooms, we no longer have a surface, because there are

points at which three sheets come together. No small neighborhood of those

points is topologically equivalent to a small neighborhood in the plane.

Recall that you get a torus by identifying the sides of a rectangle as in

Figure 2.10 of SS (The Shape of Space). If you identify the sides slightly

di�erently, as in Figure 4.3, you get a surface called a Klein bottle, shown in

Figure 4.9.

13.1 Discussion

1. Take some strips and join the opposite ends of each strip together as

follows: with no twists; with one twist (half-turn)|this is called a

M�obius strip; with two twists; with three twists.

2. Imagine that you are a two-dimensional being who lives in one of these

four surfaces. To what extent can you tell exactly which one it is?
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Figure 7: Here are some pictures of surfaces. The pictures are intended to

indicate things like doughnuts and pretzels rather than 
at strips of paper.

Can you identify these surfaces, topologically? Which ones are topologically

the same intrinsically, and which extrinsically?
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3. Now cut each of the above along the midline of the original strip. De-

scribe what you get. Can you explain why?

4. What is the Euler number of a disk? A M�obius strip? A torus with

a circular hole cut from it? A Klein bottle? A Klein bottle with a

circular hole cut from it?

5. What is the maximum number of points in the plane such that you

can draw non-intersecting segments joining each pair of points? What

about on a sphere? On a torus?

14 How to knit a M�obius Band

Start with a di�erent color from the one you want to make the band in. Call

this the spare color. With the spare color and normal knitting needles cast

on 90 stitches.

Change to your main color yarn. Knit your row of 90 stitches onto a

circular needle. Your work now lies on about 2/3 of the needle. One end

of the work is near the tip of the needle and has the yarn attached. This

is the working end. Bend the working end around to the other end of your

work, and begin to knit those stitches onto the working end, but do not slip

them o� the other end of the needle as you normally would. When you have

knitted all 90 stitches in this way, the needle loops the work twice.

Carry on knitting in the same direction, slipping stitches o� the needle

when you knit them, as normal. The needle will remain looped around the

work twice. Knit �ve `rows' (that is 5� 90 stitches) in this way.

Cast o�. You now have a Mobius band with a row of your spare color

running around the middle. Cut out and remove the spare colored yarn.

You will be left with one loose stitch in your main color which needs to be

secured.

(Expanded by Maria Iano-Fletcher from an original recipe by Miles Reid.)

15 Geometry on the sphere

We want to explore some aspects of geometry on the surface of the sphere.

This is an interesting subject in itself, and it will come in handy later on
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Figure 8: A Mobius band.

when we discuss Descartes's angle-defect formula.

15.1 Discussion

Great circles on the sphere are the analogs of straight lines in the plane.

Such curves are often called geodesics. A spherical triangle is a region of the

sphere bounded by three arcs of geodesics.

1. Do any two distinct points on the sphere determine a unique geodesic?

Do two distinct geodesics intersect in at most one point?

2. Do any three `non-collinear' points on the sphere determine a unique

triangle? Does the sum of the angles of a spherical triangle always

equal �? Well, no. What values can the sum of the angles take on?

The area of a spherical triangle is the amount by which the sum of its

angles exceeds the sum of the angles (�) of a Euclidean triangle. In fact, for

any spherical polygon, the sum of its angles minus the sum of the angles of

a Euclidean polygon with the same number of sides is equal to its area.
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A proof of the area formula can be found in Chapter 9 of Weeks, The

Shape of Space.

16 Course projects

We expect everyone to do a project for the course. On the last day of the

course, Friday, June 28th, we will hold a Geometry Fair, where projects will

be exhibited. Parents and any other interested people are invited.

Here are some ideas, to get you started thinking about possible projects.

Be creative|don't feel limited by these ideas.

� Write a computer program that allows the user to select one of the 17

planar symmetry groups, start doodling, and see the pattern replicate,

as in Escher's drawings.

� Write a similar program for drawing tilings of the hyperbolic plane,

using one or two of the possible hyperbolic symmetry groups.

� Make sets of tiles which exhibit various kinds of symmetry and which

tile the plane in various symmetrical patterns.

� Write a computer program that replicates three-dimensional objects

according to a three-dimensional pattern, as in the tetrahedron, octa-

hedron, and icosahedron.

� Construct kaleidoscopes for tetrahedral, octahedral and icosahedral

symmetry.

� Construct a four-mirror kaleidoscope, giving a three-dimensional pat-

tern of repeating symmetry.

� The Archimidean solids are solids whose faces are regular polygons (but

not necessarily all the same) such that every vertex is symmetric with

every other vertex. Make models of the the Archimedean solids

� Write a computer program for visualizing four-dimensional space.

� Make stick models of the regular four-dimensional solids.
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� Make models of three-dimensional cross-sections of regular four-dimensional

solids.

� Design and implement three-dimensional tetris.

� Make models of the regular star polyhedra (Kepler-Poinsot polyhe-

dron).

� Knit a Klein bottle, or a projective plane.

� Make some hyperbolic cloth.

� Sew topological surfaces and maps.

� In�nite Euclidean polyhedra.

� Hyperbolic polyhedra.

� Make a (possibly computational) orrery.

� Design and make a sundial.

� Astrolabe (Like a primitive sextant).

� Calendars: perpetual, lunar, eclipse.

� Cubic surface with 27 lines.

� Spherical Trigonometry or Geometry: Explore spherical trigonometry

or geometry. What is the analog on the sphere of a circle in the plane?

Does every spherical triangle have a unique inscribed and circumscribed

circle? Answer these and other similar questions.

� Hyperbolic Trigonometry or Geometry: Explore hyperbolic trigonome-

try or geometry. What is the analog in the hyperbolic plane of a circle

in the Euclidean plane? Does every hyperbolic triangle have a unique

inscribed and circumscribed circle? Answer these and other similar

questions.

� Make a convincing model showing how a torus can be �lled with circular

circles in four di�erent ways.
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� Turning the sphere inside out.

� Stereographic lamp.

� Flexible polyhedra.

� Models of ruled surfaces.

� Models of the projective plane.

� Puzzles and models illustrating extrinsic topology.

� Folding ellipsoids, hyperboloids, and other �gures.

� Optical models: elliptical mirrors, etc.

� Mechanical devices for angle trisection, etc.

� Panoramic polyhedron (similar to an astronomical globe) made from

faces which are photographs.

17 The angle defect of a polyhedron

The angle defect at a vertex of a polygon is de�ned to be 2� minus the sum

of the angles at the corners of the faces at that vertex. For instance, at any

vertex of a cube there are three angles of �=2, so the angle defect is �=2.

You can visualize the angle defect by cutting along an edge at that vertex,

and then 
attening out a neighborhood of the vertex into the plane. A little

gap will form where the slit is: the angle by which it opens up is the angle

defect.

The total angle defect of the polyhedron is gotten by adding up the angle

defects at all the vertices of the polyhedron. For a cube, the total angle

defect is 8� �=2 = 4�.

17.1 Discussion

1. What is the angle sum for a polygon (in the plane) with n sides?

2. Determine the total angle defect for each of the 5 regular polyhedra,

and for the polyhedra handed out.
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18 Descartes's Formula.

The angle defect at a vertex of a polygon was de�ned to be the amount by

which the sum of the angles at the corners of the faces at that vertex falls

short of 2� and the total angle defect of the polyhedron was de�ned to be

what one got when one added up the angle defects at all the vertices of the

polyhedron. We call the total defect T . Descartes discovered that there is a

connection between the total defect, T , and the Euler Number E � V � F .

Namely,

T = 2�(V �E + F ): (1)

Here are two proofs. They both use the fact that the sum of the angles of a

polygon with n sides is (n� 2)�.

18.1 First proof

Think of 2�(V �E + F ) as putting +2� at each vertex, �2� on each edge,

and +2� on each face.

We will try to cancel out the terms as much as possible, by grouping

within polygons.

For each edge, there is �2� to allocate. An edge has a polygon on each

side: put �� on one side, and �� on the other.

For each vertex, there is +2� to allocate: we will do it according to the

angles of polygons at that vertex. If the angle of a polygon at the vertex is

a, allocate a of the 2� to that polygon. This leaves something at the vertex:

the angle defect.

In each polygon, we now have a total of the sum of its angles minus n�

(where n is the number of sides) plus 2�. Since the sum of the angles of any

polygon is (n� 2)�, this is 0. Therefore,

2�(V �E + F ) = T:
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18.2 Second proof

We begin to compute:

T =

X

Vertices

the angle defect at the vertex:

=

X

Vertices

(2��the sum of the angles at the corners of those faces that meet at the vertex):

= 2�V�

X

Vertices

(the sum of the angles at the corners of those faces that meet at the vertex):

= 2�V �

X

Faces

the sum of the interior angles of the face:

= 2�V �

X

Faces

(n

f

� 2)�:

Here n

f

denotes the number of edges on the face f .

T = 2�V �

X

Faces

n

f

� +

X

Each face

2�:

Thus

T = 2�V � (

X

Faces

the number of edges on the face � �) + 2�F:

If we sum the number of edges on each face over all of the faces, we will have

counted each edge twice. Thus

T = 2�V � 2E� + 2�F:

Whence,

T = 2�(V �E + F ):

18.3 Discussion

Listen to both proofs given in class.

1. Discuss both proofs with the aim of understanding them.
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2. Draw a sketch of the �rst proof in the blank space above.

3. Discuss the di�erences between the two proofs. Can you describe the

ways in which they are di�erent? Which of you feel the �rst is easier

to understand? Which of you feel the second is easier to understand?

Which is more pleasing? Which is more conceptual?

19 Exercises in imagining

How do you imagine geometric �gures in your head? Most people talk about

their three-dimensional imagination as `visualization', but that isn't exactly

right. A visual image is a kind of picture, and it is really two-dimensional.

The image you form in your head is more conceptual than a picture|you

locate things in more of a three-dimensional model than in a picture. In

fact, it is quite hard to go from a mental image to a two-dimensional visual

picture. Children struggle long and hard to learn to draw because of the

real conceptual di�culty of translating three-dimensional mental images into

two-dimensional images.

Three-dimensional mental images are connected with your visual sense,

but they are also connected with your sense of place and motion. In forming

an image, it often helps to imagine moving around it, or tracing it out with

your hands. The size of an image is important. Imagine a little half-inch

sugarcube in your hand, a two-foot cubical box, and a ten-foot cubical room

that you're inside. Logically, the three cubes have the same information, but

people often �nd it easier to manipulate the larger image that they can move

around in.

Geometric imagery is not just something that you are either born with

or you are not. Like any other skill, it develops with practice.

Below are some images to practice with. Some are two-dimensional, some

are three-dimensional. Some are easy, some are hard, but not necessarily in

numerical order. Find another person to work with in going through these

images. Evoke the images by talking about them, not by drawing them.

It will probably help to close your eyes, although sometimes gestures and

drawings in the air will help. Skip around to try to �nd exercises that are

the right level for you.

When you have gone through these images and are hungry for more, make
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some up yourself.

1. Picture your �rst name, and read o� the letters backwards. If you can't

see your whole name at once, do it by groups of three letters. Try the

same for your partner's name, and for a few other words. Make sure

to do it by sight, not by sound.

2. Cut o� each corner of a square, as far as the midpoints of the edges.

What shape is left over? How can you re-assemble the four corners to

make another square?

3. Mark the sides of an equilateral triangle into thirds. Cut o� each corner

of the triangle, as far as the marks. What do you get?

4. Take two squares. Place the second square centered over the �rst square

but at a forty-�ve degree angle. What is the intersection of the two

squares?

5. Mark the sides of a square into thirds, and cut o� each of its corners

back to the marks. What does it look like?

6. How many edges does a cube have?

7. Take a wire frame which forms the edges of a cube. Trace out a closed

path which goes exactly once through each corner.

8. Take a 3 � 4 rectangular array of dots in the plane, and connect the

dots vertically and horizontally. How many squares are enclosed?

9. Find a closed path along the edges of the diagram above which visits

each vertex exactly once? Can you do it for a 3� 3 array of dots?

10. How many di�erent colors are required to color the faces of a cube so

that no two adjacent faces have the same color?

11. A tetrahedron is a pyramid with a triangular base. How many faces

does it have? How many edges? How many vertices?

12. Rest a tetrahedron on its base, and cut it halfway up. What shape is

the smaller piece? What shapes are the faces of the larger pieces?
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13. Rest a tetrahedron so that it is balanced on one edge, and slice it

horizontally halfway between its lowest edge and its highest edge. What

shape is the slice?

14. Cut o� the corners of an equilateral triangle as far as the midpoints of

its edges. What is left over?

15. Cut o� the corners of a tetrahedron as far as the midpoints of the edges.

What shape is left over?

16. You see the silhouette of a cube, viewed from the corner. What does

it look like?

17. How many colors are required to color the faces of an octahedron so

that faces which share an edge have di�erent colors?

18. Imagine a wire is shaped to go up one inch, right one inch, back one

inch, up one inch, right one inch, back one inch, : : : . What does it look

like, viewed from di�erent perspectives?

19. The game of tetris has pieces whose shapes are all the possible ways

that four squares can be glued together along edges. Left-handed and

right-handed forms are distinguished. What are the shapes, and how

many are there?

20. Someone is designing a three-dimensional tetris, and wants to use all

possible shapes formed by gluing four cubes together. What are the

shapes, and how many are there?

21. An octahedron is the shape formed by gluing together equilateral tri-

angles four to a vertex. Balance it on a corner, and slice it halfway up.

What shape is the slice?

22. Rest an octahedron on a face, so that another face is on top. Slice it

halfway up. What shape is the slice?

23. Take a 3� 3� 3 array of dots in space, and connect them by edges up-

and-down, left-and-right, and forward-and-back. Can you �nd a closed

path which visits every dot but one exactly once? Every dot?
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24. Do the same for a 4 � 4 � 4 array of dots, �nding a closed path that

visits every dot exactly once.

25. What three-dimensional solid has circular pro�le viewed from above,

a square pro�le viewed from the front, and a triangular pro�le viewed

from the side? Do these three pro�les determine the three-dimensional

shape?

26. Find a path through edges of the dodecahedron which visits each vertex

exactly once.

20 Curvature of surfaces

If you take a 
at piece of paper and bend it gently, it bends in only one

direction at a time. At any point on the paper, you can �nd at least one

direction through which there is a straight line on the surface. You can bend

it into a cylinder, or into a cone, but you can never bend it without crumpling

or distorting to the get a portion of the surface of a sphere.

If you take the skin of a sphere, it cannot be 
attened out into the plane

without distortion or crumpling. This phenomenon is familiar from orange

peels or apple peels. Not even a small area of the skin of a sphere can be


attened out without some distortion, although the distortion is very small

for a small piece of the sphere. That's why rectangular maps of small areas

of the earth work pretty well, but maps of larger areas are forced to have

considerable distortion.

The physical descriptions of what happens as you bend various surfaces

without distortion do not have to do with the topological properties of the

surfaces. Rather, they have to do with the intrinsic geometry of the surfaces.

The intrinsic geometry has to do with geometric properties which can be

detected by measurements along the surface, without considering the space

around it.

There is a mathematical way to explain the intrinsic geometric property

of a surface that tells when one surface can or cannot be bent into another.

The mathematical concept is called the Gaussian curvature of a surface, or

often simply the curvature of a surface. This kind of curvature is not to

be confused with the curvature of a curve. The curvature of a curve is an
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extrinsic geometric property, telling how it is bent in the plane, or bent in

space. Gaussian curvature is an intrinsic geometric property: it stays the

same no matter how a surface is bent, as long as it is not distorted, neither

stretched or compressed.

To get a �rst qualitative idea of how curvature works, here are some

examples.

A surface which bulges out in all directions, such as the surface of a

sphere, is positively curved. A rough test for positive curvature is that if you

take any point on the surface, there is some plane touching the surface at

that point so that the surface lies all on one side except at that point. No

matter how you (gently) bend the surface, that property remains.

A 
at piece of paper, or the surface of a cylinder or cone, has 0 curvature.

A saddle-shaped surface has negative curvature: every plane through a

point on the saddle actually cuts the saddle surface in two or more pieces.

Question. What surfaces can you think of that have positive, zero, or

negative curvature.

Gaussian curvature is a numerical quantity associated to an area of a

surface, very closely related to angle defect. Recall that the angle defect of

a polyhedron at a vertex is the angle by which a small neighborhood of a

vertex opens up, when it is slit along one of the edges going into the vertex.

The total Gaussian curvature of a region on a surface is the angle by

which its boundary opens up, when laid out in the plane. To actually measure

Gaussian curvature of a region bounded by a curve, you can cut out a narrow

strip on the surface in neighborhood of the bounding curve. You also need to

cut open the curve, so it will be free to 
atten out. Apply it to a 
at surface,

being careful to distort it as little as possible. If the surface is positively

curved in the region inside the curve, when you 
atten it out, the curve will

open up. The angle between the tangents to the curve at the two sides of

the cut is the total Gaussian curvature. This is like angle defect: in fact,

the total curvature of a region of a polyhedron containing exactly one vertex

is the angle defect at that vertex. You must pay attention pay attention

not just to the angle between the ends of the strip, but how the strip curled

around, keeping in mind that the standard for zero curvature is a strip which

comes back and meets itself. Pay attention to �'s and 2�'s.

If the total curvature inside the region is negative, the strip will curl

around further than necessary to close. The curvature is negative, and is

measured by the angle by which the curve overshoots.
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Figure 9: This diagram illustrates how to measure the total Gaussian cur-

vature of a patch by cutting out a strip which bounds the patch, and laying

it out on a 
at surface. The angle by which the strip `opens up' is the total

Gaussian curvature. You must pay attention not just to the angle between

the lines on the paper, but how it got there, keeping in mind that the stan-

dard for zero curvature is a strip which comes back and meets itself. Pay

attention to �'s and 2�'s.
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A less destructive way to measure total Gaussian curvature of a region is

to apply narrow strips of paper to the surface, e.g., masking tape. They can

be then be removed and 
attened out in the plane to measure the curvature.

Question. Measure the total Gaussian curvature of

1. a cabbage leaf.

2. a kale leaf

3. a piece of banana peel

4. a piece of potato skin

If you take two adjacent regions, is the total curvature in the whole equal to

the sum of the total curvature in the parts? Why?

The angle defect of a convex polyhedron at one of its vertices can be

measured by rolling the polyhedron in a circle around its vertex. Mark one

of the edges, and rest it on a sheet of paper. Mark the line on which it contacts

the paper. Now roll the polyhedron, keeping the vertex in contact with the

paper. When the given edge �rst touches the paper again, draw another line.

The angle between the two lines (in the area where the polyhedron did not

touch) is the angle defect. In fact, the area where the polyhedron did touch

the paper can be rolled up to form a paper model of a neighborhood of the

vertex in question.

A polyhedron can also be rolled in a more general way. Mark some closed

path on the surface of the polyhedron, avoiding vertices. Lay the polyhedron

on a sheet of paper so that part of the curve is in contact. Mark the position

of one of the edges in contact with the paper. now roll the polyhedron,

along the curve, until the original face is in contact again, and mark the new

position of the same edge. What is the angle between the original position

of the line, and the new position of the line?

21 Gaussian curvature

21.1 Discussion

1. What is the curvature inside the region on a sphere exterior to a tiny

circle?

34



2. On a polyhedron, what is the curvature inside a region containing a

single vertex? two vertices? all but one vertex? all the vertices?

22 The celestial image of a polyhedron

We want now to discuss the celestial image of a polyhedron, and use it to

get yet another proof of Descartes's angle-defect formula.

22.1 Discussion

1. What pattern is traced out on the celestial sphere when you move a


ashlight around on the surface of a cube, keeping its tail as 
at as

possible on the surface? What is the celestial pattern for a dodecahe-

dron?

2. On a convex polyhedron, the celestial image of a region containing a

solitary vertex v where three faces meet is a triangle. Show that the

three angles of this celestial triangle are the supplements of the angles

of the three faces that meet at v.

3. Show that the area of this celestial triangle is the angle defect at v.

4. Show that the total angle defect of a convex polyhedron is 4�.

23 Clocks and curvature

The total curvature of any surface topologically equivalent to the sphere is

4�. This can be seen very simply from the de�nition of the curvature of a

region in terms of the angle of rotation when the surface is rolled around on

the plane; the only problem is the perennial one of keeping proper track of

multiples of � when measuring the angle of rotation. Since are trying to show

that the total curvature is a speci�c multiple of �, this problem is crucial. So

to begin with let's think carefully about how to reckon these angles correctly
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23.1 Clocks

Suppose we have a number of clocks on the wall. These clocks are good

mathematician's clocks, with a 0 up at the top where the 12 usually is. (If

you think about it, 0 o'clock makes a lot more sense than 12 o'clock: With

the 12 o'clock system, a half hour into the new millennium on 1 Jan 2001,

the time will be 12:30 AM, the 12 being some kind of hold-over from the

departed millennium.)

Let the clocks be labelled A, B, C, : : : . To start o�, we set all the clocks

to 0 o'clock. (little hand on the 0; big hand on the 0), Now we set clock

B ahead half an hour so that it now the time it tells is 0:30 (little hand on

the 0 (as they say); big hand on the 6). What angle does its big hand make

with that of clock A? Or rather, through what angle has its big hand moved

relative to that of clock A? The angle is �. If instead of degrees or radians,

we measure our angles in revs (short for revolutions), then the angle is 1=2

rev. We could also say that the angle is 1=2 hour: as far as the big hand of

a clock is concerned, an hour is the same as a rev.

Now take clock C and set it to 1:00. Relative to the big hand of clock

A, the big hand of C has moved through an angle of 2�, or 1 rev, or 1 hour.

Relative to the big hand of B, the big hand of C has moved through an angle

of �, or 1=2 rev. Relative to the big hand of C, the big hand of A has moved

through an angle of �2�, or �1 rev, and the big hand of B has moved ��,

or �1 rev.

23.2 Curvature

Now let's describe how to �nd the curvature inside a disk-like region R on

a surface S, i.e. a region topologically equivalent to a disk. What we do is

cut a small circular band running around the boundary of the region, cut

the band open to form a thin strip, lay the thin strip 
at on the plane, and

measure the angle between the lines at the two end of the strip. In order to

keep the �'s straight, let us go through this process very slowly and carefully.

To begin with, let's designate the two ends of the strip as the left end

and the right end in such a way that traversing the strip from the left end to

the right end corresponds to circling clockwise around the region. We begin

by �xing the left-hand end of the strip to the wall so that the straight edge

of the cut at the left end of the strip|the cut that we made to convert the
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band into a strip|runs straight up and down, parallel to the big hand of

clock A, and so that the strip runs o� toward the right. Now we move from

left to right along the strip, i.e. clockwise around the boundary of the region,

�xing the strip so that it lies as 
at as possible, until we come to the right

end of the strip. Then we look at the cut bounding the right-hand end of

the strip, and see how far it has turned relative to the left-hand end of the

strip. Since we were so careful in laying out the left-hand end of the strip,

our task in reckoning the angle of the right-hand end of the strip amounts to

deciding what time you get if you think of the right-hand end of the strip as

the big hand of a clock. The curvature inside the region will correspond to

the amount by which the time told by the right-hand end of the strip falls

short of 1:00.

For instance, say the region R is a tiny disk in the Euclidean plane. When

we cut a strip from its boundary and lay it out as described above, the time

told by its right hand end will be precisely 1:00, so the curvature of R will

be exactly 0. If R is a tiny disk on the sphere, then when the strip is laid

out the time told will be just shy of 1:00, say 0:59, and the curvature of the

region will be

1

60

rev, or

�

30

.

When the region R is the lower hemisphere of a round sphere, the strip

you get will be laid out in a straight line, and the time told by the right-

hand end will be 0:00, so the total curvature will be 1 rev, i.e. 2�. The total

curvature of the upper hemisphere is 2� as well, so that the total curvature

of the sphere is 4�.

Another way to see that the total curvature of the sphere is 4� is to take

as the region R the outside of a small circle on the sphere. When we lay out

a strip following the prescription above, being sure to traverse the boundary

of the region R in the clockwise sense as viewed from the point of view of

the region R, we see that the time told by the right hand end of the strip is

very nearly �1 o'clock! The precise time will be just shy of this, say �1:59,

and the total curvature of the region will then be 1

59

60

revs. Taking the limit,

the total curvature of the sphere is 2 revs, or 4�.

But this last argument will work equally well on any surface topologically

equivalent to a sphere, so any such surface has total curvature 4�.
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23.3 Where's the beef?

This proof that the total curvature of a topological sphere is 4� gives the

de�nite feeling of being some sort of trick. How can we get away without

doing any work at all? And why doesn't the argument work equally well on

a torus, which as we know should have total curvature 0? What gives?

What gives is the lemma that states that if you take a disklike region R

and divide it into two disklike subregionsR

1

andR

2

, then the curvature inside

R when measured by laying out its boundary is the sum of the curvatures

inside R

1

and R

2

measured in this way. This lemma might seem like a

tautology. Why should there be anything to prove here? How could it

fail to be the case that the curvature inside the whole is the sum of the

curvatures inside the parts? The answer is, it could fail to be the case by

virtue of our having given a faulty de�nition. When we de�ne the curvature

inside a region, we have to make sure that the quantity we're de�ning has

the additivity property, or the de�nition is no good. Simply calling some

quantity the curvature inside the region will not make it have this additivity

property. For instance, what if we had de�ned the curvature inside a region

to be 4�, no matter what the region? More to the point, what if in the

de�nition of the curvature inside a region we had forgotten the proviso that

the region R be disklike? Think about it.

24 Photographic polyhedron

As you stand in one place and look around, up, and down, there is a sphere's

worth of directions you can look. One way to record what you see would be

to construct a big sphere, with the image painted on the inside surface. To

see the world as viewed from the one place, you would stand on a platform

in the center of the sphere and look around. We will call this sphere the

visual sphere. You can imagine a sphere, like a planetarium, with projectors

projecting a seamless image. The imagemight be created by a robotic camera

device, with video cameras pointing in enough directions to cover everything.

Question. What is the geometric relation of objects in space to their

images on the visual sphere?

1. Show that the image of a line is an arc of a great circle. If the line is

in�nitely long, how long (in degrees) is the arc of the circle?
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2. Describe the image of several parallel lines.

3. What is the image of a plane?

Unfortunately, you can't order spherical prints from most photographic

shops. Instead, you have to settle for 
at prints. Geometrically, you can

understand the relation of a 
at print to the `ideal' print on a spherical surface

by constructing a plane tangent to the sphere at a point corresponding to the

center of the photograph. You can project the surface of the sphere outward

to the plane, by following straight lines from the center of the sphere to the

surface of the sphere, and then outward to the plane. From this, you can see

that given size objects on the visual sphere do not always come out the same

size on a 
at print. The further they are from the center of the photograph,

the larger they are on the print.

Suppose we stand in one place, and take several photographs that overlap,

so as to construct a panorama. If the camera is adjusted in exactly the same

way for the various photographs, and the prints are made in exactly the same

way, the photographs can be thought of as coming from rectangles tangent to

a copy of the visual sphere, of some size. The exact radius of this sphere, the

photograph sphere depends on the focal length of the camera lens, the size of

prints, etc., but it should be the same sphere for all the di�erent prints.

If we try to just overlap them on a table and glue them together, the

images will not match up quite right: objects on the edge of a print are

larger than objects in the middle of a print, so they can never be exactly

aligned.

Instead, we should try to �nd the line where two prints would intersect if

they were arranged to be tangent to the sphere. This line is equidistant from

the centers of the two prints. You can �nd it by approximately aligning the

two prints on a 
at surface, draw the line between the centers of the prints,

and constructing the perpendicular bisector. Cut along this line on one of

the prints. Now �nd the corresponding line on the other print. These two

lines should match pretty closely. This process can be repeated: now that

the two prints have a better match, the line segment between their centers

can be constructed more accurately, and the perpendicular bisector works

better.

If you perform this operation for a whole collection of photographs, you

can tape them together to form a polyhedron. The polyhedron should be
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circumscribed about a certain size sphere. It can give an excellent impression

of a wide-angle view of the scene. If the photographs cover the full sphere,

you can assemble them so that the prints are face-outwards. This makes a

globe, analogous to a star globe. As you turn it around, you see the scene in

di�erent directions. If the photographs cover a fair bit less than a full sphere,

you can assemble them face inwards. This gives a better wide-angle view.

One way to do this is just to take enough photographs that you cover a

certain area of the visual sphere, match them up, cut them out, and tape

them together. The polyhedron you get in this way will probably not be very

regular.

By choosing carefully the directions in which you take photographs, you

could make the photographic polyhedron have a regular, symmetric struc-

ture. Using an ordinary lens, a photograph is not wide enough to �ll the face

of any of the 5 regular polyhedra.

An Archimedean polyhedron is a polyhedron such that every face is a

regular polygon (but not necessarily all the same), and every vertex is sym-

metric with every other vertex. For instance, the soccer ball polyhedron, or

truncated icosahedron, is Archimedean.

Question. Show that every Archimedean polyhedron is inscribed in a

sphere.

The dual Archimedean polyhedra are polyhedra which are dual to Archi-

medean polyhedra.

Question.

� Show that each of the dual Archimedean polyhedra can be circum-

scribed about a sphere.

� Which polyhedra will work well to make a photographic polyhedron?

25 Mirrors

25.1 Discussion

1. How do you hold two mirrors so as to get an integral number of images

of yourself? Discuss the handedness of the images.

2. Set up two mirrors so as to make perfect kaleidoscopic patterns. How

can you use them to make a snow
ake?
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3. Fold and cut hearts out of paper. Then make paper dolls. Then honest

snow
akes.

4. Set up three or more mirrors so as to make perfect kaleidoscopic pat-

terns. Fold and cut such patterns out of paper.

5. Why does a mirror reverse right and left rather than up and down?

26 More paper-cutting patterns

Experiment with the constructions below. Put the best examples into your

journal, along with comments that describe and explain what is going on. Be

careful to make your examples large enough to illustrate clearly the symme-

tries that are present. Also make sure that your cuts are interesting enough

so that extra symmetries do not creep in. Concentrate on creating a collec-

tion of examples that will get across clearly what is going on, and include

enough written commentary to make a connected narrative.

1. Conical patterns. Many rotationally-symmetric designs, like the twin

blades of a food processor, cannot be made by folding and cutting.

However, they can be formed by wrapping paper into a conical shape.

Fold a sheet of paper in half, and then unfold. Cut along the fold to

the center of the paper. Now wrap the paper into a conical shape, so

that the cut edge lines up with the uncut half of the fold. Continue

wrapping, so that the two cut edges line up and the original sheet of

paper wraps two full turns around a cone. Now cut out any pattern you

like from the cone. Unwrap and lay it out 
at. The resulting pattern

should have two-fold rotational symmetry.

Try other examples of this technique, and also try experimenting with

rolling the paper more than twice around a cone.

2. Cylindrical patterns. Similarly, it is possible to make repeating

designs on strips. If you roll a strip of paper into a cylindrical shape,

cut it, and unroll it, you should get a repeating pattern on the edge.

Try it.
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3. M�obius patterns. A M�obius band is formed by taking a strip of

paper, and joining one end to the other with a twist so that the left

edge of the strip continues to the right.

Make or round up a strip of paper which is long compared to its width

(perhaps made from ribbon, computer paper, adding-machine rolls, or

formed by joining several shorter strips together end-to-end). Coil it

around several times around in a M�obius band pattern. Cut out a

pattern along the edge of the M�obius band, and unroll.

4. Other patterns. Can you come up with any other creative ideas for

forming symmetrical patterns?

27 Summary

In the past week we have discussed a number of di�erent topics, many of

which seemed to be unrelated. When we began last week, we said that we

would jump around from topic to topic during the �rst few days so that you

would become familiar with a number of di�erent ideas and examples. What

we want to do today is to show you that there really is a method to our

madness and that there is a connection between these seemingly diverse bits

of mathematica and that the connection is one of the most deep and beautiful

ones in mathematics. Virtually any property (visual or otherwise) that one

naively chooses as a way to describe (and quantify) a surface is related in a

simple way to any other property one naively chooses and duly quanti�es.

Here is a list of some of the things we touched upon last week.

� The Euler Number

� Flashlights

� Proofs of the angular defect formula

� Maps on surfaces

� Area of a spherical triangle

� Cabbage

� Curvature
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� The Gauss map

� Handle, holes, surfaces

� Kale

� Orientability

28 The Euler Number

If we have a polyhedron, we can compute its Euler number, � = V �E +F .

In fact, we computed Euler numbers ad delectam. Why did we do this?

One reason is that they are is easy to compute. But that is not obviously

a compelling reason for doing anything in mathematics. The real reason is

that it is an invariant of the surface (it does not depend upon what map

one puts on the surface) and because it is connected to a whole array of

other properties a surface might have that one might notice while trying to

describe it.

28.1 Descartes's Formula

One easy example of this is Descartes' formula. If one looks at a polyhedral

surface and makes a naive attempt to describe it visually, one might try to

describe how pointy the surface is. A more sophisticated way to describe

how pointy a surface is at a vertex is to compute the angular defect at the

vertex, that is

2� � ( the sum of the angles of the faces meeting at the vertex ):

When we investigated how pointy a polyhedron was, summing over all of the

vertices to obtain the total angular defect T , we discovered that there was a

direct connection between pointyness and Euler Number:

T = 2�(V �E + F ):
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28.2 The Gauss Map (Flashlights)

Although projecting Conway's image onto the celestial sphere was fun, again

it was not in and of itself a mathematically valuable exercise. The point was

to get a feel for the Gauss map. The Gauss map is used to project a surface

onto the celestial sphere. For a polyhedron, we saw that, if one traced a

path that remained on a 
at face, the Gauss image of that path was really a

point. We saw that if we traced a path that went around a vertex, the Gauss

image was a spherical polygon. If three edges met at the given vertex, the

Gauss image traced out a spherical triangle whose interior could be thought

of as the image of that vertex. Moreover, the angles of the triangle were

the supplements of the vertex angles. Using the formula for the area of a

spherical triangle, namely

( the sum of the angles )� �;

if the vertex angles were �; �; and 
, the area of the Gauss image of a path

around the vertex would be

f(� � �) + (� � �) + (� � 
)g � � = 2� � (� + � + 
):

The right hand side of this formula is just the angular defect at the vertex.

Thus if we add up the areas of the images of path about all of the vertices,

we obtain the total defect T of the original surface. Since no other parts of

the image contribute to the area, we have shown that

the area of the Gauss image = T:

Exploiting the earlier connection, we can also say

the area of the Gauss image = 2�(V � E + F ):

This is known as the Gauss-Bonnet formula.

28.3 Curvature (Kale and cabbage)

Again, cutting up kale and cabbage was fun and the tape of Thurston and

Conway sticking potato peel to the chalkboard will become a classic, but

there was a serious mathematical purpose behind it. If one looks at a surface
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and wants to try to describe it visually, one might want to describe it by

telling how curly it is. While the surface of a cylinder, for example, does

not look visually as though it curves and bends very much, the surface of a

trumpet does. Peeling a surface, that is, removing a thin strip from around a

portion of the surface and then seeing how much the angle between the ends of

the strip opens up (or closes around) as it is laid 
at quanti�es the curviness

of the portion of the surface surrounded by the strip. Mathematically, this

is called the integrated curvature of that portion of the surface.

When we sum over portions that amount to the whole surface, we get the

total Gaussian curvature of the surface.

28.3.1 Curvature for Polyhedra

Lets apply these ideas to a polyhedron. In particular, we might consider a

strip of polyhedron peel that just goes around one vertex of a polyhedron.

Then we would �nd that the path opens up by an angle equal to the defect

at that vertex, and so for such a path

the total curvature enclosed

= the defect at the enclosed vertex

= the area of the Gauss image :

For a path that goes around several vertices the curvature is the sum of the

defects of all the surrounded vertices. Thus for a polyhedron,

K = Total Gaussian Curvature = T:

28.3.2 Curvature on surfaces

To pass from a polyhedral surface to a smooth surface and to de�ne curvature

with mathematical precision, one needs to use integration in the de�nition

for K. But the conceptual idea is still the same. Any curved surface can

be approximated by a polyhedral one with lots and lots of vertices. The

curvature of the surface within a path (a smooth piece of peel) is then very

nearly equal to the sum of the defects at all the encircled vertices. By a

technical limiting argument that involves integrals to give a precise meaning

to curvature, K, we �nd that for any surface

K = Total Gaussian Curvature = T:
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28.4 Discussion

� There are many other connections between these four concepts. Can

you suggest any more? (This is also a discussion question for the gang

of four.)

� The number of handles on a surface is another visual characteristic.

How does this relate to the total curvature?

29 Symmetry and orbifolds

Given a symmetric pattern, what happens when you identify equivalent

points? It gives an object with interesting topological and geometrical prop-

erties, called an orbifold.

The �rst instance of this is an object with bilateral symmetry, such as a

(stylized) heart. Children learn to cut out a heart by folding a sheet of paper

in half, and cutting out half of the pattern. When you identify equivalent

points, you get half a heart.

A second instance is the paper doll pattern. Here, there are two di�erent

fold lines. You make paper dolls by folding a strip of paper zig-zag, and then

cutting out half a person. The half-person is enough to reconstruct the whole

pattern. The quotient orbifold is a half-person, with two mirror lines.

A wave pattern is the next example. This pattern repeats horizontally,

with no re
ections or rotations. The wave pattern can be rolled up into

a cylinder. It can be constructed by rolling up a strip of paper around a

cylinder, and cutting a single wave, through several layers, with a sharp

knife. When it is unrolled, the bottom part will be like the waves.

When a pattern repeats both horizontally and vertically, but without

re
ections or rotations, the quotient orbifold is a torus. You can think of

it by �rst rolling up the pattern in one direction, matching up equivalent

points, to get a long cylinder. The cylinder has a pattern which still repeats

vertically. Now coil the cylinder in the other direction to match up equivalent

points on the cylinder. This gives a torus.

46



mirror

Figure 10: A heart is obtained by folding a sheet of paper in half, and cutting

out half a heart. The half-heart is the orbifold for the pattern. A heart can

also be recreated from a half-heart by holding it up to a mirror.

47



Figure 11: A string of paper dolls

Figure 12: This wave pattern repeats horizontally, with no re
ections or

rotations. The quotient orbifold is a cylinder.

29.1 Discussion

Using the notation we have discussed, try to �gure out the description of

the various pieces of fabric we have handed out. That is, locate the mirror

strings, gyration points, cone points, etc. Find the orders of the gyration

points and the cone points.

30 Names for features of symmetrical pat-

terns

We begin by introducing names for certain features that may occur in sym-

metrical patterns. To each such feature of the pattern, there is a correspond-

ing feature of the quotient orbifold, which we will discuss later.

48



Figure 13: This pattern has quotient orbifold a torus. It repeats both hor-

izontally and vertically, but without any re
ections or rotations. It can be

rolled up horizontally to form a cylinder, and then vertically (with a twist)

to form a torus.
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Figure 14: The quotient orbifold is a rectangle, with four mirrors around it.
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Figure 15: The quotient orbifold is an annulus, with two mirrors, one on each

boundary.
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Figure 16: The quotient orbifold is a Moebius band, with a single mirror on

its single boundary.
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Figure 17: The quotient orbifold is a 60

�

, 30

�

, 90

�

triangle, with three mirrors

from sides.
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Figure 18: This pattern has rotational symmetry about various points, but

no re
ections. The rotations are of order 6, 3 and 2. The quotient orbifold

is a triangular pillow, with three cone points.
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30.1 Mirrors and mirror strings

A mirror is a line about which the pattern has mirror symmetry. Mirrors are

perhaps the easiest features to pick out by eye.

At a crossing point, where two or more mirrors cross, the pattern will

necessarily also have rotational symmetry. An n-way crossing point is one

where precisely n mirrors meet. At an n-way crossing point, adjacent mirrors

meet at an angle of �=n. (Beware: at a 2-way crossing point, where two

mirrors meet at right angles, there will be 4 slices of pie coming together.)

We obtain a mirror string by starting somewhere on a mirror and walking

along the mirror to the next crossing point, turning as far right as we can

so as to walk along another mirror, walking to the next crossing point on it,

and so on. (See �gure 19.)

Suppose that you walk along a mirror string until you �rst reach a point

exactly like the one you started from. If the crossings you turned at were

(say) a 6-way, then a 3-way, and then a 2-way crossing, then the mirror string

would be of type �632, etc. As a special case, the notation � denotes a mirror

that meets no others.

For example, look at a standard brick wall. There are horizontal mirrors

that each bisect a whole row of bricks, and vertical mirrors that pass through

bricks and cement alternately. The crossing points, all 2-way, are of two

kinds: one at the center of a brick, one between bricks. The mirror strings

have four corners, and you might expect that their type would be �2222.

However, the correct type is �22. The reason is that after going only half

way round, we come to a point exactly like our starting point.

30.2 Mirror boundaries

In the quotient orbifold, a mirror string of type �abc becomes a boundary

wall, along which there are corners of angles �=a; �=b; �=c. We call this a

mirror boundary of type �abc. For example, a mirror boundary with no

corners at all has type �. The quotient orbifold of a brick wall has a mirror

boundary with just two right-angled corners, type �22.
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Figure 19: The quotient billiard orbifold.
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30.3 Gyration points

Any point around which a pattern has rotational symmetry is called a rota-

tion point. Crossing points are rotation points, but there may also be others.

A rotation point that doesNOT lie on a mirror is called a gyration point.

A gyration point has order n if the smallest angle of any rotation about it is

2�=n.

For example, on our brick wall there is an order 2 gyration point in the

middle of the rectangle outlined by any mirror string.

30.4 Cone points

In the quotient orbifold, a gyration point of order n becomes a cone point

with cone angle 2�=n.

31 Names for symmetry groups and orbifolds

A symmetry group is the collection of all symmetry operations of a pattern.

We give the same names to symmetry groups as to the corresponding quotient

orbifolds.

We regard every orbifold as obtained from a sphere by adding cone-points,

mirror boundaries, handles, and cross-caps. The major part of the notation

enumerates the orders of the distinct cone points, and then the types of all

the di�erent mirror boundaries. An initial black spot � indicates the addition

of a handle; a �nal circle � the addition of a cross cap.

For example, our brick wall gives 2 � 22, corresponding to its gyration

point of order 2, and its mirror string with two 2-way corners.

Here are the types of some of the patterns shown in section 31:

Figure 14: �; Figure 15: �2222; Figure 16: ��; Figure 17: ��. Figure 18:

�632. Figure 19: 632.

Appart from the spots and circles, these can be read directly from the

pictures: The important thing to remember is that if two things are equiv-

alent by a symmetry, then you only record one of them. A dodecahedron is

very like a sphere. The orbifold corresponding to its symmetry group is a

spherical triangle having angles �=5; �=3; �=2; so its symmetry group is �532.
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You, the topologically spherical reader, approximately have symmetry

group �, because the quotient orbifold of a sphere by a single re
ection is a

hemisphere whose mirror boundary has no corners.

32 Stereographic Projection

We let G be a sphere in Euclidean three space. We want to obtain a picture

of the sphere on a 
at piece of paper or a plane. Whenever one projects

a higher dimensional object onto a lower dimensional object, some type of

distortion must occur. There are a number of di�erent ways to project and

each projection preserves some things and distorts others. Later we will

explain why we choose stereographic projection, but �rst we describe it.

32.1 Description

We shall map the sphere G onto the plane containing its equator. Connect a

typical point P on the surface of the sphere to the north pole N by a straight

line in three space. This line will intersect the equatorial plane at some point

P

0

. We call P

0

the projection of P .

Using this recipe every point of the sphere except the North pole projects

to some point on the equatorial plane. Since we want to include the North

pole in our picture, we add an extra point 1, called the point at in�nity,

to the equatorial plane and we view1 as the image of N under stereographic

projection.

32.2 Discussion

� Take G to be the unit sphere, f(x; y; z)jx

2

+ y

2

+ z

2

= 1g so that xy

plane is the equatorial plane. The typical point P on the sphere has

coordinates (X;Y; Z). The typical point P

0

in the equatorial plane,

whose coordinates are (x; y; 0), will be called (x; y).

1. Show that the South pole is mapped into the origin under stereo-

graphic projection.

2. Show that under stereographic projection the equator is mapped

onto the unit circle, that is the circle x

2

+ y

2

= 1.
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3. Show that under stereographic projection the lower hemisphere

is mapped into the interior of this circle, that is the disk D =

f(x; y)jx

2

+ y

2

< 1g.

4. Show that under stereographic projection the upper hemisphere is

mapped into the exterior of this circle, that is into f(x; y)jx

2

+y

2

>

1g.

For this to be true where do we have to think of 1 as lying:

interior to D or exterior to it?

5. What projects on to the x-axis?

What projects onto the x� axis [1? Call the set of points that

project onto x� axis [1 the prime meridian.

6. The prime meridian divides the sphere into two hemispheres, the

front hemisphere and the back hemisphere. What is the image of

the back hemisphere under stereographic projection? The front

hemisphere?

7. Under stereographic projection what is the image of a great circle

passing through the north pole? Of any circle (not necessarily a

great circle) passing through the north pole?

8. Under stereographic projection, what projects onto the y-axis?

onto any vertical line, not necessarily the y axis?

32.3 What's good about stereographic projection?

Stereographic projection preserves circles and angles. That is, the image of

a circle on the sphere is a circle in the plane and the angle between two lines

on the sphere is the same as the angle between their images in the plane. A

projection that preserves angles is called a conformal projection.

We will outline two proofs of the fact that stereographic projection pre-

serves circles, one algebraic and one geometric. They appear below.

Before you do either proof, you may want to clarify in your own mind

what a circle on the surface of a sphere is. A circle lying on the sphere is the

intersection of a plane in three space with the sphere. This can be described

algebraically. For example, the sphere of radius 1 with center at the origin

is given by

G = f(X;Y; Z)jX

2

+ Y

2

+ Z

2

= 1g: (2)
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An arbitrary plane in three-space is given by

AX +BY +CZ +D = 0 (3)

for some arbitrary choice of the constants A,B, C, and D. Thus a circle on

the unit sphere is any set of points whose coordinates simultaneously satisfy

equations 2 and 3.

32.3.1 The algebraic proof

The fact that the points P , P

0

and N all lie on one line can be expressed by

the fact that

(X;Y; Z � 1) = t(x; y;�1) (4)

for some non-zero real number t. (Here P = (X;Y; Z); N = (0; 0; 1); and P

0

=

(x; y; 0).)

The idea of the proof is that one can use equations 2 and 4 to write X

as a function of t and x, Y as a function of t and y, and Z as a function of

t and to simplify equation 3 to an equation in x and y. Since the equation

in x and y so obtained is clearly the equation of a circle in the xy plane, the

projection of the intersection of 2 and 3 is a circle.

To be more precise:

Equation 4 says that X = tx; Y = ty; and 1� Z = t. Set Q =

1+Z

1�Z

and

verify that

Z =

Q� 1

Q+ 1

; 1 +Q =

2

t

; and Q = x

2

+ y

2

:

If P lies on the plane,

AX +BY +CZ +D = 0:

Thus

Atx+Bty +C

Q� 1

Q+ 1

+D = 0:

Or

2Ax

Q+ 1

+

2By

Q+ 1

+ C

Q� 1

Q+ 1

+D = 0:

Whence,

2Ax+ 2By +C(Q� 1) +D(Q+ 1) = 0:
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Or

(C +D)Q+ 2Ax+ 2By +D �C = 0:

Recalling that Q = x

2

+ y

2

, we see

(C +D)(x

2

+ y

2

) + 2Ax+ 2By +D � C = 0 (5)

Since the coe�cients of the x

2

and the y

2

terms are the same, this is the

equation of a circle in the plane.

32.3.2 The geometric proofs

The geometric proofs sketched below use the following principle:

It doesn't really make much di�erence if instead of projecting onto the

equatorial plane, we project onto another horizontal plane (not through N),

for example the plane that touches the sphere at the South pole, S. Just what

di�erence does this make?

� Angles: To see that stereographic projection preserves angles at P ,

we project onto the horizontal plane H through P . Then by symmetry

the tangent planes tN and tP at N and P make the same angle � with

NP , as also does H, by properties of parallelism (see �gure # 1 at the

end of this handout).

So tP and H are images of each other in the (\mirror") plane M

through P and perpendicular to NP .

For a point Q on the sphere near P , the line NQ is nearly parallel

to NP , so that for points near P , stereographic projection is approxi-

mately the re
ection in M .

� Circles: To see that stereographic projection takes circles to circles,

�rst note that any circle C is where some cone touches the sphere, say

the cone of tangent lines to the sphere from a point V .

Now project onto the horizontal plane H through V .

In �gure # 2 which NEED NOT be a vertical plane, the four angles

� are equal, for the same reasons as before, so that V P

0

= V P . The

image of C is therefore the horizontal circle of the same radius centered

at V .
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� Inversion: Another proof uses the fact that stereographic projection

may be regarded as a particular case of inversion in three dimensions.

You might like to prove that inversion preserves angles and circularity

in two dimensions. The inverse of a point P in the circle of radius R

centered at O is the unique point P

0

on the ray OP for whichOP:OP

0

=

R

2

.

33 The orbifold shop

The Orbifold Shop has gone into the business of installing orbifold parts.

They o�er a special promotional deal: a free coupon for $2.00 worth of parts,

installation included, to anyone acquiring a new orbifold.

There are only a few kinds of features for two-dimensional orbifolds, but

they can be used in interesting combinations.

� Handle: $2:00.

� Mirror: $1:00.

� Cross-cap: $1:00.

� Order n cone point: $1:00� (n� 1)=n.

� Order n corner re
ector: :50 � (n � 1)=n. Prerequisite: at least one

mirror. Must specify in mirror and position in mirror to be installed.

With the $2:00 coupon, for example, you could order an orbifold with

four order 2 cone points, costing $:50 each. Or, you could order an order

3 cone point costing $:66 : : :, a mirror costing $1:00, and an order 3 corner

re
ector costing $:33 : : :.

Theorem. If you exactly spend your coupon at the Orbifold Shop, you

will have a quotient orbifold coming from a symmetrically repeating pattern

in the Euclidean plane with a bounded fundamental domain. There are

exactly 17 di�erent ways to do this, and corresponding to the 17 di�erent

symmetrically repeating patterns with bounded fundamental domain in the

Euclidean plane.

Question. What combinations of parts can you �nd that cost exactly

$2:00?
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Figure 20: This is the pattern obtained when you buy four order 2 cone

points for $:50 each.
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Figure 21: This is the pattern obtained by buying an order 3 cone point, a

mirror, and an order 3 corner re
ector.
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34 The Euler characteristic of an orbifold

Suppose we have a symmetric pattern in the plane. We can make a symmetric

map by subdividing the quotient orbifold into polygons, and then `unrolling

it' or `unfolding it' to get a map in the plane.

If we look at a large area A in the plane, made up from N copies of

a fundamental domain, then each face in the map on the quotient orbifold

contributes N faces to the region. An edge which is not on a mirror also

contributes approximately N copies | approximately, because when it is on

the boundary of A, we don't quite know how to match it with a fundametnal

region.

In general, if an edge or point has order k symmetry which which preserves

it, it contributes approximately N=k copies of itself to A, since each time it

occurs, as long as it is not on the boundary of A, it is counted in k copies of

the fundamental domain.

Thus,

� If an edge is on a mirror, it contributes only approximately N=2 copies.

� If a vertex is not on a mirror and not on a cone point, it contributes

approximately N vertices to A.

� If a vertex is on a cone point of order m it contributes approximately

N=m vertices.

� If a vertex is on a mirror but not on a corner re
ector, it contributes

approximately N=2.

� If a vertex is on an order m corner re
ector, it contributes approxi-

mately N=2m

Question. Can you justify the use of `approximately' in the list above?

Take the areaA

R

to be the union of all vertices, edges, and faces that intersect

a disk of radius R in the plane, along with all edges of any face that intersects

and all vertices of any edge that intersects. Can you show that the ratio of

the true number to the estimated number is arbitrarily close to 1, for R high

enough?
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De�nition. The orbifold Euler characteristic is V �E + F , where each

vertex and edge is given weight 1=k, where k is the order of symmetry which

preserves it.

It is important to keep in mind the distinction between the topological

Euler characteristic and the orbifold Euler characteristic. For instance, con-

sider the billiard table orbifold, which is just a rectangle. In the orbifold

Euler characteristic, the four corners each count 1=4, the four edges count

�1=2, and the face counts 1, for a total of 0. In contrast, the topological

Euler characteristic is 4� 4 + 1 = 1.

Theorem. The quotient orbifold of for any symmetry pattern in the

Euclidean plane which has a bounded fundamental region has orbifold Euler

number 0.

Sketch of proof: take a large area in the plane that is topologically a

disk. Its Euler characteristic is 1. This is approximately equal to N times

the orbifold Euler characteristic, for some large N , so the orbifold Euler

characteristic must be 0.

How do the people at The Orbifold Shop �gure its prices? The cost is

based on the orbifold Euler characteristic: it costs $1:00 to lower the orbifold

Euler characteristic by 1. When they install a fancy new part, they calculate

the di�erence between the new part and the part that was traded in.

For instance, to install a cone point, they remove an ordinary point. An

ordinary point counts 1, while an order k cone point counts 1=k, so the

di�erence is (k � 1)=k.

To install a handle, they arrange a map on the original orbifold so that it

has a square face. They remove the square, and identify opposite edges of it.

This identi�es all four vertices to a single vertex. The net e�ect is to remove

1 face, remove 2 edges (since 4 are reduced to 2), and to remove 3 vertices.

The e�ect on the orbifold Euler characteristic is to subtract 1 � 2 + 3 = 2,

so the cost is $2:00.

Question. Check the validity of the costs charged by The Orbifold Shop

for the other parts of an orbifold.

To complete the connection between orbifold Euler characteristic and

symmetry patterns, we would have to verify that each of the possible con-

�gurations of parts with orbifold Euler characteristic 0 actually does come

from a symmetry pattern in the plane. This can be done in a straightforward

way by explicit constructions. It is illuminating to see a few representative
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examples, but it is not very illuminating to see the entire exercise unless you

go through it yourself.

35 Positive and negative Euler characteristic

A symmetry pattern on the sphere always gives rise to a quotient orbifold

with positive Euler characteristic. In fact, if the order of symmetry is k,

then the Euler characteristic of the quotient orbifold is 2=k, since the Euler

characteristic of the sphere is 2.

However, the converse is not true. Not every collection of parts costing

less than $2:00 can be put together to make a viable pattern for symmetry

on the sphere. Fortunately, the experts at The Orbifold Shop know the four

bad con�gurations which are too skimpy to be viable:

� A single cone point, with no other part, is bad.

� Two cone points, with no other parts, is a bad con�guration unless

they have the same order.

� A mirror with a single corner re
ector, and no other parts, is bad.

� A mirror with only two corner re
ectors, and no other parts, is bad

unless they have the same order.

All other con�gurations are good. If they form an orbifold with positive

orbifold Euler characteristic, they come from a pattern of symmetry on the

sphere.

The situation for negative orbifold Euler characteristic is straightforward,

but we will not prove it:

Theorem. Every orbifold with negative orbifold Euler characteristic

comes from a pattern of symmetry in the hyperbolic plane with bounded

fundamental domain. Every pattern of symmetry in the hyperbolic plane

with compact fundamental domain gives rise to a quotient orbifold with

negative orbifold Euler characteristic.

Since you can spend as much as you want, there are an in�nite number

of these.
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36 Hyperbolic Geometry

When we tried to make a closed polyhedron by snapping together seven

equilateral triangles so that there were seven at every vertex, we were unable

to do so. Those who persisted and continued to snap together seven triangles

at each vertex, actually constructed an approximate model of the hyperbolic

plane. It is this bumpy sheet with angular excesses all over the place that

you might think of when you try to visualize the hyperbolic plane. Since we

know that angular excess corresponds to negative curvature, we see that the

hyperbolic plane is a negatively curved space.

Hyperbolic geometry is also known as Non-Euclidean geometry. The

latter name re
ects the fact that it was originally discovered by mathemati-

cians seeking a geometry which failed to satisfy Euclid's parallel postulate.

(The parallel postulate states that through any point not on a given line

there is precisely one line that does not intersect the given line.) While we

will outline the details of Non-Euclidean geometry and prove that it fails to

satisfy the parallel postulate, our main emphasis will be on the feel of the

hyperbolic plane and hyperbolic 3-space.

36.1 De�ning the hyperbolic plane

There are a number of di�erent models for the hyperbolic plane. They are,

of course, all equivalent. As with any instance when there are several ways to

describe something, each description has both advantages and disadvantages.

We will describe two models, the upper half-plane model, which we denote

by U and the unit disc model, which we initially denote by D.

It will generally be clear from the context which model we are using.

Although we �rst present the upper half-plane model and prove most of the

fundamental facts there, we will generally after that use the unit disc.

36.1.1 The Upper Half-Plane

Remember that the image of the back hemisphere under stereographic pro-

jection is the set of all points in the xy plane whose y is positive. This is the

upper half-plane. The prime meridian projects onto the line y = 0 to which

we have added the point at in�nity. We think of the image of the prime

meridian as the boundary of the upper half-plane. The line y = 0 could be
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Figure 22: Some h-lines in the upper half-plane.

referred to as the x axis. We will also refer to it as the real axis, R. To de�ne

a geometry in U we need to de�ne what is meant by a straight line through

two points. Given two points z

1

and z

2

in U , one can construct many circles

passing through both of them since three points determine a circle. However,

there is a unique circle passing through z

1

and z

2

that is perpendicular to

R. We call this circle the straight line passing through z

1

and z

2

. When we

want to emphasize that we are talking about the hyperbolic line through two

points rather than the Euclidean line, we refer to it as an h-line.

You will notice that if z

1

and z

2

lie on a vertical line, then there is no Eu-

clidean circle through both that is perpendicular to the boundary. However,

recall that a circle on the sphere that passes through the north pole projects

onto a what at �rst glance looks like a line, but is upon re
ection can be

viewed as a circle (it passes through in�nity where it closes up.). We shall

also view this line as a circle.

Thus an h-line is either a circle perpendicular to the real axis or a vertical

line (see �gure 22). (The latter is also automatically perpendicular to the

real axis.)

(As a homework exercise you can remind yourself that any circle that

intersects the real axis at right angles has its center on the real axis.)
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Figure 23: Several h-lines through p that are disjoint from L.

We note that two Euclidean circles are either disjoint, intersect in a point,

or intersect in two points. Two circles whose centers are on the real axis that

intersect in two points have one point of intersection above the real axis and

one below. Thus they have only one point of intersection in the upper half-

plane. Similarly, a circle with center on the real axis and a vertical line can

have at most one point of intersection in the upper half-plane. Thus any two

h-lines are either disjoint or intersect in a point. We have now proved that

this system of lines and points satsi�es two of the axioms for a geometry.

36.2 Discussion

� What does a hyperbolic mirror look like?

� What does a hyperbolic mirror string look like?

� What is the maximum number of mirrors in a Euclidean mirror string?

� What is the maximum number of mirrors in a hyperbolic mirror string?

We turn to the parallel axiom. Again let L be any h-line. For the sake of

simplicity assume that L is not a vertical h-line. Let p be any point not on
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L. We can construct a whole family of Euclidean circles whose centers are

on the real axis which pass through p and which do not intersect L. Figure

23 illustrates several such h-lines. For homework, you can work out either

one example or a detailed proof.

36.3 Distance

We have emphasized that one of the main distinctions between geometry

and topology is that distance is intrinsic to geometry. Thus it behooves us

to de�ne a distance in the hyperbolic plane. Again, our emphasis should not

be on computing distance, but on having a feel for hyperbolic distance. The

important fact to remember is:

� Line segments that appear to be of very di�erent lengths

to our Euclidean eyes may be of the same length when we

wear hyperbolic glasses and vice-versa.

37 Distance recipe

Here is a technical de�nition of how to compute distance.

Begin with any two points. If L is the h-line on which they lie, let L

0

be the line on the back hemisphere that projects onto L. Rotate the sphere

so that one of the end points of L

0

moves to the north pole, N . L

0

rotates

into a new line L

00

passing through N . The projection of L

00

is now a vertcal

line, K. The points a and b have been lifted to L

0

rotated to L

00

and then

projected onto K. They are now called a

0

and b

0

. We can take the ratio of

the heights of a

0

and b

0

. This is almost a distance. However, distance should

be symmetric. The ratio of the heights depends upon which point we name

�rst. Therefore, we take the absolute value of the natural log of the ratio of

the heights to be the distance between a and b.

37.1 Examples of distances

Consider the two pairs of points

� A = (0; 4) and B = (0; 8).

� C = (0; 8) and D = (0; 16).
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Figure 24: Some h-lines in D

To our Euclidean eyes it appears to us that C and D are twice as far apart

as A and B. When we put on our hyperbolic glasses, we realize that the

distance between A and B is exactly the same as the distance between C

and D.

37.2 The Unit Disc Model

Let D be the unit disc in the plane. D = f(x; y)jx

2

+y

2

< 1g. We saw earlier

that D is the image of the lower half sphere under stereographic projection.

This is another model for the hyperbolic plane. We will easily locate the

h-lines once we see how this is related to the upper half-plane.

37.3 Passing from one model to another

Take the sphere. Rotate it so that the back hemisphere goes into the bottom

hemisphere. Project the bottom hemisphere onto the unit disc. This proce-

dure identi�es the upper half plane (the image of the back hemisphere) with

the unit disc (the image of the bottom hemisphere). An h-line in the upper

half plane corresponds to a circle on the back hemisphere which is perpendic-
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Figure 25: Some hyperbolic cloth: A tiling of the hyperbolic plane by trian-

gles with angles �=2; �=3; and �=7

ular to the prime meridian. Such a circle rotates into a circle on the bottom

hemisphere that is perpendicular to the equator, and then projects to a cir-

cle in the plane that intersects the boundary of the unit disc at right angles.

When we project onto the unit disc, we no longer have to worry about h-lines

through in�nity. Things look much more symmetric. However, we still have

one weird type of h-line: a Euclidean straight line passing through the center

of the disc. (See �gure 24.)

Once we have a hyperbolic geometry, many new things are possible.

� We can classify patterns on hyperbolic cloth. We can look for hyper-

bolic mirrors, hyperbolic gyration points, etc. and analyze hyperbolic

cloth just as we analyzed Euclidean cloth.

� We can form a �237 orbifold.

Enclosed is a picture of the tiling of the hyperbolic plane by triangles

whose angles are �=2, �=3 and �=7. (See �gure 25.) The important thing
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to realize about this picture is that ALL the trianglular tiles are congruent.

That is, even though the triangles near the boundary of D appear to be much

smaller than those in the center, their sides all have the same lengths. To

see this you just have to look through your hyperbolic glasses.

38 A �eld guide to the orbifolds

The number 17 is just right for the number of types of symmetry patterns

in the Euclidean plane: neither too large nor too small. It's large enough

to make learning to recognize them a challenge, but not so large that this is

an impossible task. It is by no means necessary to learn to distinguish the

17 types of patterns quickly, but if you learn to do it, it will give you a real

feeling of accomplishment, and it is a great way to amaze and overawe your

friends, at least if they're a bunch of nerds and geeks.

In this section, we will give some hints about how to learn to classify

the patterns. However, we want to emphasize that this is a tricky business,

and the only way to learn it is by hard work. As usual, when you analyze a

pattern, you should look �rst for the mirror strings. The information in this

section is meant as a way that you can learn to become more familiar with

the 17 types of patterns, in a way that will help you to distinguish between

them more quickly, and perhaps in some cases to be able to classify some

of the more complicated patterns without seeing clearly and precisely what

the quotient is. This kind of super�cial knowledge is no substitute for a real

visceral understanding of what the quotient orbifold is, and in every case you

should go on and try to understand why the pattern is what you say it is

while your friends are busy admiring your cleverness.

This information presented in this section has been gleaned from a cryptic

manuscript discovered among the personal papers of John Conway after his

death. For each of the 17 types of patterns, the manuscript shows a small

piece of the pattern, the notation for the quotient orbifold, and Conway's

idiosyncratic pidgin-Greek name for the corresponding pattern. These names

are far from standard, and while they are unlikely ever to enter common use,

we have found from our own experience that they are not wholly useless as

a method for recognizing the patterns.

We will begin by discussing Conway's names for the orbifolds. A re-

production of Conway's manuscript appears at the end of the section. You
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should refer to the reproduction as you try to understand the basis for the

names.

38.1 Conway's names

Each of Conway's 17 names consists of two parts, a pre�x and a descriptor.

38.1.1 The pre�x

The pre�x tells the number of directions from which you can view the pattern

without noticing any di�erence. The possibilities for the pre�x are: hexa-;

tetra-; tri-; di-; mono-.

For example, if you are looking at a standard brick wall, it will look

essentially the same whether you stand on your feet or on your head. This

will be true even if the courses of bricks in the wall do not run parallel to the

ground, as they invariably do. Thus you can recognize right away that the

brick-wall pattern is di-something-or-other In fact, it is dirhombic.

Another way to think about this is that if you could manage to turn the

brick wall upside down, you wouldn't notice the di�erence. Again, this would

be true even if you kept your head tilted to one side. More to the point, try

looking at a dirhombic pattern drawn on a sheet of paper. Place the paper at

an arbitrary angle, note what the pattern looks like in the large, and rotate

the pattern around until it looks in the large like it did to begin with. When

this happens, you will have turned the paper through half a rev. No matter

how the pattern is tilted originally, there is always one and only one other

direction from which it appear the same in the large.

This `in the large' business means that you are not supposed to notice if,

after twisting the paper around, the pattern appears to have been shifted by

a translation. You don't have to go grubbing around looking for some pesky

little point about which to rotate the pattern. Just take the wide, relaxed

view.

38.1.2 The descriptor

The descriptor represents an attempt on Conway's part to unite patterns

that seem more like each other than they do like the other patterns. The

possibilities for the descriptor are: scopic; tropic; gyro; glide; rhombic.
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The scopic patterns are those that emerge from kaleidoscopes: �632 =

hexascopic; �442 = tetrascopic; �333 = triscopic; �2222 = discopic; �� =

monoscopic;

Their �-less counterparts are the tropic patterns (from the Greek for

`turn'): 632 = hexatropic; 442 = tetratropic; 333 = tritropic; 2222 = ditropic;

� = monotropic.

With the scopic patterns, it's all done with mirrors, while with the tropic

patterns, it's all done with gyration points. The two exceptions are: �� =

monoscopic; � =monotropic. There is evidence that Conway did not consider

these to be exceptions, on the grounds that `with the scopics it's all done with

mirrors and translations, while with the tropics, it's all done with turnings

and translations'.

The gyro patterns contain both mirrors and gyration points: 4 � 2 =

tetragyro; 3 � 3 = trigyro; 22� = digyro.

Since both tropic and gyro patterns involve gyration points, there is a

real possibility of confusing the names. Strangely, it is the tropic patterns

that are the more closely connected to gyration points. In practice, it seems

to be easy enough to draw this distinction correctly, probably because the

tropics correspond closely to the scopics, and `tropic' rhymes with `scopic'.

Conway's view appears to have been that a gyration point, which is a point

of rotational symmetry that doesNOT lie on a mirror, becomes ever so

much more of a gyration point when there are mirrors around that it might

have been tempted to lie on, and that therefore patterns that contain both

gyration points and mirrors are more gyro than patterns with gyration points

but no mirrors.

The glide patterns involve glide-re
ections: 22� = diglide; �� =monoglide.

The glide patterns are the hardest to recognize. The quotient orbifold of

the diglide pattern is a projective plane with two cone points; the quotient

of the monoglide patterns is a Klein bottle. When you run up against one

of these patterns, you just have to sweat it out. One trick is that when you

meet something that has glide-re
ections but not much else, then you decide

that it must be either a diglide or a monoglide, and you can distinguish

between them by deciding whether it's a di- or a mono- pattern, which is a

distinction that is relatively easy to make. Another clue to help distinguish

these two cases is that a diglide pattern has glides in two di�erent directions,

while a monoglide has glides in only one direction. Yet another clue is that

in a monoglide you can often spot two disjoint M�obius strips within the
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quotient orbifold, corresponding to the fact that the quotient orbifold for

a monoglide pattern is a Klein bottle, which can be pieced together from

two M�obius strips. These two disjoint M�obius strips arise from the action of

glide-re
ections along parallel but inequivalent axes.

The rhombic patterns often give a feeling of rhombosity: 2�22 = dirhom-

bic; �� = monorhombic.

An ordinary brick wall is dirhombic; it can be made monorhombic by

breaking the gyrational symmetry. The quotient of a monorhombic pattern

is a M�obius strip. Like the two glide quotients, it is non-orientable, but it is

much easier to identify because of the presence of the mirrors.

38.2 How to learn to recognize the patterns

As you will see, Conway's manuscript shows only a small portion of each

of the patterns. A very worthwhile way of becoming acquainted with the

patterns is to draw larger portions of the patterns, and then go through and

analyze each one, to see why it has the stated notation and name. You may

wish to make 
ashcards to practice with. When you use these 
ashcards,

you should make sure that you can not only remember the correct notation

and name, but also that you can analyze the pattern quickly, locating the

distinguishing features. This is important because the patterns you will see

in the real world won't be precisely these ones.

Another hint is to keep your eyes open for symmetrical patterns in the

world around you. When you see a pattern, copy it onto a 
ashcard, even if

you cannot analyze it immediately. When you have determined the correct

analysis, write it on the back and add it to your deck.

38.3 The manuscript

What follows is an exact reproduction of Conway's manuscript. In addition

to the 17 types of repeating patterns, Conway's manuscript also gives tables

of the 7 types of frieze patterns, and of the 14 types of symmetrical patterns

on the sphere. These parts of the manuscript appear to be mainly gibberish.

We reproduce these tables here in the hope that they may someday come to

the attention of a scholar who will be able to make sense of them.
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