Examen Parcial núm. 3 – Álgebra Lineal I (28 de marzo, 2003)

- 1. Sean V y W dos espacios vectoriales sobre un campo F.
 - (a) Define: $T: V \to W$ es una transformación lineal.
 - (b) Define: $B \subset V$ es una base de V.
 - (c) Demuestra: si $B \subset V$ es una base finita con n elementos, $B = \{e_1, \ldots, e_n\}$, y w_1, \ldots, w_n son n elementos arbitrarios de W, entonces existe una única tranformación lineal $T: V \to W$ tal que $T(e_i) = w_i, i = 1, \ldots, n$.
- 2. Sea V un espacio vectorial sobre un campo F.
 - (a) Define: V es de dimensión finita.
 - (b) Demuestra: si V es un espacio vectorial de dimensión finita y $T:V\to V$ es una transformación lineal, entonces T es inyectiva si y solo si es suprayectiva.
 - (c) Opcional (solo si te alcanza el tiempo): dar un ejemplo que muestra que el inciso anterior es falso si no suponemos que V tiene dimensión finita.
- 3. (a) Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una tranformación lineal cuya matriz, respecto a la base canónica $\{(1,0),(0,1)\}$, es

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right).$$

Encontrar la matriz de T con respecto a la base $\{(1,0),(1,1)\}.$

(b) Opcional (solo si te alcanza el tiempo): encontrar la matriz de T^{2003} (T compuesta con su misma 2003 veces) con respecto a la base canónica de \mathbb{R}^2 .