Tarea num. 6 – soluciones

1. (a) Demuestra que el conjunto de números primos es infinito.

 \triangleright Construimos, a partir de una lista finita de primos $p_1, p_2, p_3, \ldots, p_n$, un primo nuevo. Sea $N = (p_1p_2p_3\ldots p_n)+1$. Sea p el mínimo divisor positivo de N. Entonces p es primo, porque si $d|p, d>1 \Longrightarrow d|N \Longrightarrow d=p$ (porque p es el mínimo divisor de N, por su definición). Pero este p es un primo nuevo ya que ninguno de los primos viejos divide a N.

(b) El ejercicio de la página 30 de las notas.

ightharpoonup Empezando de $p_1=2$, tenemos $p_2=2+1=3$, $p_3=2\cdot 3+1=7$, $p_4=2\cdot 3\cdot 5+1=31$, $22\cdot 3\cdot 5\cdot 31+1=931=7\cdot 7\cdot 19 \Longrightarrow p_5=7$, $2\cdot 3\cdot 5\cdot 7\cdot 31+1=6511=17\cdot 383\Longrightarrow p_6=17$.

(c) (Opcional) Demostrar que hay infinidad de primos de la forma 4k + 3.

ightharpoonup Construimos, a partir de una lista finita de primos $p_1, p_2, p_3, \ldots, p_n$ de la forma 4k+3, un nuevo tal primo. Sea $N=4(p_1p_2p_3\ldots p_n)+3$. Notamos que el producto de enteros de la forma 4k+1 es un entero de la misma forma. Así que si escribimos a N como producto de primos, no pueden ser todos de la forma 4k+1; así que existe un primo p de la forma 4k+3 que divide a N. Este p debe ser nuevo ya que ninguno de los primos viejos divide a N.

2. (a) Sea $N = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, donde p_1, p_2, \dots, p_k son primos distintos y $\alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{N}$. Encuentra el número de divisores positivos de N. (Ejercicio de la pág. 32 de las notas.)

ightharpoonup Según el teorema fundamental de aritmética, si $n|N,\,n>1$, entonces n es un producto de primos que dividen a N, así que $n=p_1^{\beta_1}p_2^{\beta_2}\dots p_k^{\beta_k}$, donde $0\leq \beta_1\leq \alpha_1,\dots,0\leq \beta_k\leq \alpha_k$. El número de los divisores positivos de N es entonces $(\alpha_1+1)(\alpha_2+1)\cdots(\alpha_n+1)$.

(b) ¿Cuántos divisores positivos tiene 1000?

 $> 1000 = 2^3 \cdot 5^3 \Longrightarrow 1000$ tiene $4 \cdot 4 = 16$ divisores positivos.

3. Sea p un primo. Demuestra que para todo $a \in \mathbb{Z}$, $a^p \equiv a \mod p$.

 $ightharpoonup ext{Si } a \equiv 0 \Longrightarrow a^p \equiv 0^p \equiv 0 \equiv a \text{ (todas son congruencias mod } p).$ Si $[a] \neq 0$, consideramos los primeros p múltiplos de a: $0, a, 2a, 3a, \ldots, (p-1)a$. Ningun par de ellos es congruente, ya que $ka \equiv la \Longrightarrow k-l \equiv 0$, pero $0 \leq k-l \leq p-1 \Longrightarrow k-l = 0 \Longrightarrow k=l$. Así que las clases de congruencia de estos p números son todas las clases de congruencia mod p. Así que si tomamos el producto de estos números (excepto 0), obtenemos $1 \cdot 2 \cdot 3 \cdots (p-1) \equiv a(2a)(3a) \cdots [(p-1)a] \equiv 1 \cdot 2 \cdot 3 \cdots (p-1)a^{p-1}$. Ahora los números $1, 2, 3, \ldots, p-1$ son invertibles mod p, así que tambien (p-1)! lo es, así que la última congruencia implica $a^{p-1} \equiv 1$. Esta última multiplicamos por a y obtenemos $a^p \equiv a$.

Notas: 1. Este resultado se llama "el pequeño teorema de Fermat". Fue demostrado en el siglo 18 y forma la base para una aplicaciones reciente de la teoría de números a la criptología (codoficacion de información).

- 2. El conves
ro de este resultado no es cierto: hay numeros $n \in \mathbb{Z}$, n > 1, que satisface
n $a^n \equiv a \mod n$, $\forall a \in \mathbb{Z}$, pero sin embargo no son primos.
- 4. Sean a, b dos enteros, b > 0.
 - (a) Demuestra que existen $q, r \in \mathbb{Z}$ tal que a = bq + r, $0 \le r < b$. ¿Son únicos estos q, r?

ightharpoonup Sea q la parte entera de a/b. Entonces $a/b=q+\alpha$, donde $0\leq \alpha<1$. Entonces $a=bq+b\alpha$. Toma $r=b\alpha$. Entonces $0\leq \alpha<1\Longrightarrow 0\leq r< b$. Unicidad: si $bq_1+r_1=bq_2+r_2\Longrightarrow b(q_1-q_2)=(r_2-r_1)$. Pero $|r_2-r_1|< b$ y es un múltiplo de b, así que $r_2-r_1=0$. Tenemos entonces $b(q_1-q_2)=0$. Como $b\neq 0\Longrightarrow q_1-q_2=0$.

(b) Demuestra que si a = bq + r, $0 \le r < b \Longrightarrow (a, b) = (b, r)$.

ightharpoonup Sea d=(a,b) . Entonces $d|a,d|b\Longrightarrow d|(a-bq)=r\Longrightarrow d\le (b,r)=d'$. Por otro lado d'=(b,r) satiface $d'|b,d'|r\Longrightarrow d'|bq+r=a\Longrightarrow d'\le (a,b)=d$. Así que d=d'.

- (c) Encuentra (1804, 328).
 - ⊳ Aplicando el algoritmo de Euclides:

$$1804 = 328 \cdot 5 + 164,$$

$$328 = 164 \cdot 2$$

$$\implies (1804, 328) = (328, 164) = 164.$$

1

 \triangleleft

(d) (Opcional) Escribe 2003 en base 7.

 \triangleright Dividiendo sucesivamente por 7 (guardando al lado los residuos), $2003 = 7 \cdot 286 + 1$, $286 = 7 \cdot 40 + 6$, $40 = 7 \cdot 5 + 5$, obtenemos: $2003 = 5 \cdot 7^3 + 5 \cdot 7^2 + 6 \cdot 7 + 1$, así que 2003 se escribe en base 7 como 5561. \triangleleft

(e) Demuestra que existen $x, y \in \mathbb{Z}$ tal que (a, b) = ax + yb.

 \triangleleft

(f) Encuentra x, y del último inciso para a = 1804, b = 328.

$$\triangleright$$
 Del inciso c): $(1804, 328) = 164 = 1804 - 5 \cdot 328 \Longrightarrow x = 1, y = -5.$

(g) Concluye que si (a, n) = 1, n > 1, entonces $[a] \in \mathbb{Z}_n$ tiene inversa multiplicativa.

 $ightharpoonup ext{Si } (a,n)=1$ entonces, según el inciso anterior, existen $x,y\in\mathbb{Z}$ tal que 1=ax+ny, lo cual implica $ax-1\in n\mathbb{Z} \Longrightarrow ax\equiv 1\mod n$. En otras palabras, $[x]=[a]^{-1}$.

(h) Concluye que \mathbb{Z}_p es un campo si p es un primo.

 \triangleright Ya sabemos que \mathbb{Z}_p es un anillo (demostrado en clase). Falta ver que todo elemento de \mathbb{Z}_p distinto de [0] tiene inversa multiplicativa. Si $[a] \in \mathbb{Z}_p$, $[a] \neq [0] \Longrightarrow p \not\mid a$ (p no divide a a) \Longrightarrow (a,p) = 1 (ya que el único divisor de p que es mayor que 1 es p mismo) \Longrightarrow [a] es invertible en \mathbb{Z}_p , por el inciso anterior.

(i) Encontrar todas las inversas multiplicativas en \mathbb{Z}_{31} .

 \triangleright Denotamos las clases no nulas por [1], [2], ..., [30]. Claramente, [1] y [30] = -[1] son sus propias inversas. Las demas 28 clases se parten en 14 parejas, cada clase con su inversa: [2][16] = [3][21] = [4][8] = [5][25] = [6][26] = [7][9] = [10][28] = [11][17] = [12][13] = [14][20] = [15][29] = [18][19] = [22][24] = [1]. Aquí estan los detalles de algunos de los cálculos.

detailes de aigunos de los calculos.
$$\frac{1}{2} \equiv \frac{32}{2} = 16$$

$$\frac{1}{3} \equiv -\frac{30}{3} \equiv -10 \equiv 21,$$

$$\frac{1}{4} \equiv \frac{32}{4} = 8,$$

$$\frac{1}{5} \equiv -\frac{30}{5} = -6 \equiv 25,$$

$$\frac{1}{6} \equiv -5 \equiv 26,$$

$$\frac{1}{7} \equiv \frac{35-3}{7} \equiv 5 - \frac{3}{7} \Longrightarrow \frac{4}{7} \equiv 5 \Longrightarrow \frac{1}{7} \equiv \frac{5}{4} \equiv 5 \cdot 8 = 40 \equiv 9.$$