Exámen parcial núm. 1a

7 oct, 2005

Hay que resolver el primer problema y 2 de los otros 3. Solo se va a considerar tus problemas con la mejor calificación.

Problema 1 (30 pts)

Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ una función y $\mathbf{x} \in \mathbb{R}^n$.

- (a) (3 pts) Define: f es diferenciable en \mathbf{x} .
- (b) (3 pts) Define: la derivada direccional de f en \mathbf{x} en la dirección de un $\mathbf{v} \in \mathbb{R}^n$.
- (c) (12 pts) Demuestra: si f es diferenciable en \mathbf{x} entonces la derivada direccional de f en \mathbf{x} existe en todas las direcciones $\mathbf{v} \in \mathbb{R}^n$.
- (d) (12 pts) Demuestra: si f es una transformación lineal entonces f es diferenciable en \mathbf{x} y encuentra una fórmula para la derivada de f en \mathbf{x} .

Problema 2 (35 pts)

Sea $f: \mathbb{R}^2 \to \mathbb{R}$ la función dada por

$$f(x,y) = \frac{e^{x-y}}{\sqrt{1 + (x-y)^2}},$$

y sean $\mathbf{x} = (1, 2), \mathbf{v} = (1, -1)$. Calcula

- (a) (9 pts) las derivadas parciales de f en \mathbf{x} ;
- (b) (9 pts) la derivada de f en \mathbf{x} ;
- (c) (9 pts) el gradiente de f en \mathbf{x} ;
- (d) (8 pts) la derivada direccional de f en \mathbf{x} en la dirección de \mathbf{v} .

Problema 3 (35 pts)

La temperatura de un punto en \mathbb{R}^2 está dada por una función $T: \mathbb{R}^2 \to \mathbb{R}$,

$$T(x,y) = 100\cos\frac{\pi}{2}[(x-1)^2 + y^2].$$

- (a) (9 pts) Dibuja en el plano x, y la curva isotérmica (=curva de nivel de T) que pasa por el punto (0,0).
- (b) (9 pts) Encuentra los puntos críticos de T (los puntos donde el gradiente de T se anula).
- (c) (9 pts) Encuentra los puntos más frios del plano (puntos mínimos de T), y la temperatura en estos puntos.
- (d) (8 pts) Estás en el punto (1,1) y decides caminar en la dirección de enfriamiento más rápido posible. Encuentra esta dirección.

Problema 4 (35 pts)

Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función con derivadas parciales continuas de segundo orden y sea $F: \mathbb{R}^2 \to \mathbb{R}$ la función dada por $F(r,\theta) = f(x,y)$, donde $x = r\cos\theta$, $y = r\sin\theta$. Expresa el laplaciano $\Delta f = f_{xx} + f_{yy}$ en (x,y) = (1,2) en términos de las derivadas parciales de F.

Sugerencia: la función $S: \mathbb{R}^2 \to \mathbb{R}^2$, $S(r,\theta) = (x,y)$ es invertible en un abierto alrededor de (x,y) = (1,2). Expresa la matríz Jacobiana de la inversa de S en términos de la matríz Jacobiana de S (o sea $r_x, r_y, \theta_x, \theta_y$ en términos de $x_r, x_\theta, y_r, y_\theta$). Con esto puedes demostrar que $r_{xx} + r_{yy} = \theta_{xx} + \theta_{yy} = 0$, $r_x^2 + r_y^2 = 1$, $\theta_x^2 + \theta_y^2 = 1/r^2$ y $r_x\theta_x + r_y\theta_y = 0$.

1