Exámen Final

12 jun, 2006

Duración: 3 horas.

Resolver 4 de los siguientes 7 problemas.

- 1. Sea A un subconjunto de \mathbb{R}^n y $f:A\to\mathbb{R}$ una función.
 - a) Define: f es uniformamente contínua.
 - b) Demuestra: si $A = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$ y $f: A \to \mathbb{R}$ es contínua entonces f es uniformamente contínua.
- 2. Sea $B = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 \le 1\}$ (la bola unitaria en \mathbb{R}^3 .) Calcula el momento de inercia de B con respecto a una línea tangente a la frontera de B (por ejemplo, la línea paralela al eje de x que pasa por el punto (0, 0, 1)).

Nota: el momento de inercia de un subconjunto medible $B \subset \mathbb{R}^3$, con respecto a una línea $l \subset \mathbb{R}^3$, se define como la integral sobre B del cuadrado de la distancia a l.

- 3. Definimos una forma lineal L en $\mathbb{R}^2 \setminus \{0\}$ por $L = [(x^2 y^2)dx + 2xydy]/(x^2 + y^2)^2$.
 - a) Decide si L es cerrada.
 - b) Decide si L es exacta.
 - c) Calcula la integral de línea de L a lo largo del arco de la elipse $x^2 + 7y^2 = 1$ que empieza en (1,0) y termina en (-1,0) y recorre la elipse en el sentido contrario a las manecillas del reloj.
- 4. Encontrar el volumen del conjunto $E \subset \mathbb{R}^3$ dado por

$$E = \{(x, y, z) \in \mathbb{R}^3 | (x - 1)^2 + 2(y - 2)^2 + 3(z - 3)^2 \le 1\}.$$

- 5. Cierto o falso: existe en \mathbb{R}^3 una forma cuadrática α con la siguiente propiedad: para todo conjunto compacto medible $K \subset \mathbb{R}^3$ cuya frontera es una superficie regular $\Sigma \subset \mathbb{R}^3$ (con la orientación estandar), el volumen de K está dado por la integral de α sobre Σ .
- 6. Cierto o falso: existe en \mathbb{R}^3 una forma cuadrática α con la siguiente propiedad: para todo superficie regular orientada $\Sigma \subset \mathbb{R}^3$ el área de Σ está dado por el valor absoluto de la integral de α sobre Σ .
- 7. Calcular la integral de la forma cuadrática ydzdx + zdydx (definida en \mathbb{R}^3) sobre el "hemisfério norte" de la esfera unitaria en \mathbb{R}^3 (el conjunto de los puntos $(x, y, z) \in \mathbb{R}^3$ tal que $x^2 + y^2 + z^2 = 1$ y z > 0) con su orientación estandar.