Chapter 7

Identifying second degree equations

7.1 The eigenvalue method

In this section we apply eigenvalue methods to determine the geometrical nature of the second degree equation

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0, \tag{7.1}
\end{equation*}
$$

where not all of a, h, b are zero.
Let $A=\left[\begin{array}{ll}a & h \\ h & b\end{array}\right]$ be the matrix of the quadratic form $a x^{2}+2 h x y+b y^{2}$. We saw in section 6.1, equation 6.2 that A has real eigenvalues λ_{1} and λ_{2}, given by

$$
\lambda_{1}=\frac{a+b-\sqrt{(a-b)^{2}+4 h^{2}}}{2}, \lambda_{2}=\frac{a+b+\sqrt{(a-b)^{2}+4 h^{2}}}{2} .
$$

We show that it is always possible to rotate the x, y axes to x_{1}, x_{2} axes whose positive directions are determined by eigenvectors X_{1} and X_{2} corresponding to λ_{1} and λ_{2} in such a way that relative to the x_{1}, y_{1} axes, equation 7.1 takes the form

$$
\begin{equation*}
a^{\prime} x^{2}+b^{\prime} y^{2}+2 g^{\prime} x+2 f^{\prime} y+c=0 . \tag{7.2}
\end{equation*}
$$

Then by completing the square and suitably translating the x_{1}, y_{1} axes, to new x_{2}, y_{2} axes, equation 7.2 can be reduced to one of several standard forms, each of which is easy to sketch. We need some preliminary definitions.

DEFINITION 7.1.1 (Orthogonal matrix) An $n \times n$ real matrix P is called orthogonal if

$$
P^{t} P=I_{n} .
$$

It follows that if P is orthogonal, then $\operatorname{det} P= \pm 1$. For

$$
\operatorname{det}\left(P^{t} P\right)=\operatorname{det} P^{t} \operatorname{det} P=(\operatorname{det} P)^{2},
$$

so $(\operatorname{det} P)^{2}=\operatorname{det} I_{n}=1$. Hence $\operatorname{det} P= \pm 1$.
If P is an orthogonal matrix with $\operatorname{det} P=1$, then P is called a proper orthogonal matrix.
THEOREM 7.1.1 If P is a 2×2 orthogonal matrix with $\operatorname{det} P=1$, then

$$
P=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

for some θ.
REMARK 7.1.1 Hence, by the discusssion at the beginning of Chapter 6 , if P is a proper orthogonal matrix, the coordinate transformation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=P\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]
$$

represents a rotation of the axes, with new x_{1} and y_{1} axes given by the repective columns of P.

Proof. Suppose that $P^{t} P=I_{2}$, where $\Delta=\operatorname{det} P=1$. Let

$$
P=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
$$

Then the equation

$$
P^{t}=P^{-1}=\frac{1}{\Delta} \operatorname{adj} P
$$

gives

$$
\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]=\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Hence $a=d, b=-c$ and so

$$
P=\left[\begin{array}{rr}
a & -c \\
c & a
\end{array}\right],
$$

where $a^{2}+c^{2}=1$. But then the point (a, c) lies on the unit circle, so $a=\cos \theta$ and $c=\sin \theta$, where θ is uniquely determined up to multiples of 2π.

DEFINITION 7.1.2 (Dot product). If $X=\left[\begin{array}{l}a \\ b\end{array}\right]$ and $Y=\left[\begin{array}{l}c \\ d\end{array}\right]$, then $X \cdot Y$, the dot product of X and Y, is defined by

$$
X \cdot Y=a c+b d
$$

The dot product has the following properties:
(i) $X \cdot(Y+Z)=X \cdot Y+X \cdot Z$;
(ii) $X \cdot Y=Y \cdot X$;
(iii) $(t X) \cdot Y=t(X \cdot Y)$;
(iv) $X \cdot X=a^{2}+b^{2}$ if $X=\left[\begin{array}{c}a \\ b\end{array}\right]$;
(v) $X \cdot Y=X^{t} Y$.

The length of X is defined by

$$
\|X\|=\sqrt{a^{2}+b^{2}}=(X \cdot X)^{1 / 2} .
$$

We see that $\|X\|$ is the distance between the origin $O=(0,0)$ and the point (a, b).

THEOREM 7.1.2 (Geometrical interpretation of the dot product)
Let $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ be points, each distinct from the origin $O=(0,0)$. Then if $X=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$ and $Y=\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]$, we have

$$
X \cdot Y=O A \cdot O B \cos \theta
$$

where θ is the angle between the rays $O A$ and $O B$.
Proof. By the cosine law applied to triangle $O A B$, we have

$$
\begin{equation*}
A B^{2}=O A^{2}+O B^{2}-2 O A \cdot O B \cos \theta . \tag{7.3}
\end{equation*}
$$

Now $A B^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}, O A^{2}=x_{1}^{2}+y_{1}^{2}, O B^{2}=x_{2}^{2}+y_{2}^{2}$.
Substituting in equation 7.3 then gives

$$
\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=\left(x_{1}^{2}+y_{1}^{2}\right)+\left(x_{2}^{2}+y_{2}^{2}\right)-2 O A \cdot O B \cos \theta
$$

which simplifies to give

$$
O A \cdot O B \cos \theta=x_{1} x_{2}+y_{1} y_{2}=X \cdot Y .
$$

It follows from theorem 7.1.2 that if $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ are points distinct from $O=(0,0)$ and $X=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$ and $Y=\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]$, then $X \cdot Y=0$ means that the rays $O A$ and $O B$ are perpendicular. This is the reason for the following definition:

DEFINITION 7.1.3 (Orthogonal vectors) Vectors X and Y are called orthogonal if

$$
X \cdot Y=0 .
$$

There is also a connection with orthogonal matrices:
THEOREM 7.1.3 Let P be a 2×2 real matrix. Then P is an orthogonal matrix if and only if the columns of P are orthogonal and have unit length.

Proof. P is orthogonal if and only if $P^{t} P=I_{2}$. Now if $P=\left[X_{1} \mid X_{2}\right]$, the matrix $P^{t} P$ is an important matrix called the Gram matrix of the column vectors X_{1} and X_{2}. It is easy to prove that

$$
P^{t} P=\left[X_{i} \cdot X_{j}\right]=\left[\begin{array}{ll}
X_{1} \cdot X_{1} & X_{1} \cdot X_{2} \\
X_{2} \cdot X_{1} & X_{2} \cdot X_{2}
\end{array}\right]
$$

Hence the equation $P^{t} P=I_{2}$ is equivalent to

$$
\left[\begin{array}{ll}
X_{1} \cdot X_{1} & X_{1} \cdot X_{2} \\
X_{2} \cdot X_{1} & X_{2} \cdot X_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right],
$$

or, equating corresponding elements of both sides:

$$
X_{1} \cdot X_{1}=1, X_{1} \cdot X_{2}=0, X_{2} \cdot X_{2}=1
$$

which says that the columns of P are orthogonal and of unit length.
The next theorem describes a fundamental property of real symmetric matrices and the proof generalizes to symmetric matrices of any size.

THEOREM 7.1.4 If X_{1} and X_{2} are eigenvectors corresponding to distinct eigenvalues λ_{1} and λ_{2} of a real symmetric matrix A, then X_{1} and X_{2} are orthogonal vectors.

Proof. Suppose

$$
\begin{equation*}
A X_{1}=\lambda_{1} X_{1}, A X_{2}=\lambda_{2} X_{2}, \tag{7.4}
\end{equation*}
$$

where X_{1} and X_{2} are non-zero column vectors, $A^{t}=A$ and $\lambda_{1} \neq \lambda_{2}$.
We have to prove that $X_{1}^{t} X_{2}=0$. From equation 7.4,

$$
\begin{equation*}
X_{2}^{t} A X_{1}=\lambda_{1} X_{2}^{t} X_{1} \tag{7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{1}^{t} A X_{2}=\lambda_{2} X_{1}^{t} X_{2} \tag{7.6}
\end{equation*}
$$

From equation 7.5, taking transposes,

$$
\left(X_{2}^{t} A X_{1}\right)^{t}=\left(\lambda_{1} X_{2}^{t} X_{1}\right)^{t}
$$

so

$$
X_{1}^{t} A^{t} X_{2}=\lambda_{1} X_{1}^{t} X_{2} .
$$

Hence

$$
\begin{equation*}
X_{1}^{t} A X_{2}=\lambda_{1} X_{1}^{t} X_{2} . \tag{7.7}
\end{equation*}
$$

Finally, subtracting equation 7.6 from equation 7.7 , we have

$$
\left(\lambda_{1}-\lambda_{2}\right) X_{1}^{t} X_{2}=0
$$

and hence, since $\lambda_{1} \neq \lambda_{2}$,

$$
X_{1}^{t} X_{2}=0
$$

THEOREM 7.1.5 Let A be a real 2×2 symmetric matrix with distinct eigenvalues λ_{1} and λ_{2}. Then a proper orthogonal 2×2 matrix P exists such that

$$
P^{t} A P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right) .
$$

Also the rotation of axes

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=P\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]
$$

"diagonalizes" the quadratic form corresponding to A :

$$
X^{t} A X=\lambda_{1} x_{1}^{2}+\lambda_{2} y_{1}^{2}
$$

Proof. Let X_{1} and X_{2} be eigenvectors corresponding to λ_{1} and λ_{2}. Then by theorem 7.1.4, X_{1} and X_{2} are orthogonal. By dividing X_{1} and X_{2} by their lengths (i.e. normalizing X_{1} and X_{2}) if necessary, we can assume that X_{1} and X_{2} have unit length. Then by theorem 7.1.1, $P=\left[X_{1} \mid X_{2}\right]$ is an orthogonal matrix. By replacing X_{1} by $-X_{1}$, if necessary, we can assume that $\operatorname{det} P=1$. Then by theorem 6.2.1, we have

$$
P^{t} A P=P^{-1} A P=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] .
$$

Also under the rotation $X=P Y$,

$$
\begin{aligned}
X^{t} A X & =(P Y)^{t} A(P Y)=Y^{t}\left(P^{t} A P\right) Y=Y^{t} \operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right) Y \\
& =\lambda_{1} x_{1}^{2}+\lambda_{2} y_{1}^{2} .
\end{aligned}
$$

EXAMPLE 7.1.1 Let A be the symmetric matrix

$$
A=\left[\begin{array}{rr}
12 & -6 \\
-6 & 7
\end{array}\right] .
$$

Find a proper orthogonal matrix P such that $P^{t} A P$ is diagonal.
Solution. The characteristic equation of A is $\lambda^{2}-19 \lambda+48=0$, or

$$
(\lambda-16)(\lambda-3)=0 .
$$

Hence A has distinct eigenvalues $\lambda_{1}=16$ and $\lambda_{2}=3$. We find corresponding eigenvectors

$$
X_{1}=\left[\begin{array}{r}
-3 \\
2
\end{array}\right] \text { and } X_{2}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

Now $\left\|X_{1}\right\|=\left\|X_{2}\right\|=\sqrt{13}$. So we take

$$
X_{1}=\frac{1}{\sqrt{13}}\left[\begin{array}{r}
-3 \\
2
\end{array}\right] \text { and } X_{2}=\frac{1}{\sqrt{13}}\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

Then if $P=\left[X_{1} \mid X_{2}\right]$, the proof of theorem 7.1.5 shows that

$$
P^{t} A P=\left[\begin{array}{rr}
16 & 0 \\
0 & 3
\end{array}\right] .
$$

However $\operatorname{det} P=-1$, so replacing X_{1} by $-X_{1}$ will give $\operatorname{det} P=1$.

Figure 7.1: $12 x^{2}-12 x y+7 y^{2}+60 x-38 y+31=0$.

REMARK 7.1.2 (A shortcut) Once we have determined one eigenvector $X_{1}=\left[\begin{array}{l}a \\ b\end{array}\right]$, the other can be taken to be $\left[\begin{array}{c}-b \\ a\end{array}\right]$, as these these vectors are always orthogonal. Also $P=\left[X_{1} \mid X_{2}\right]$ will have $\operatorname{det} P=a^{2}+b^{2}>0$.

We now apply the above ideas to determine the geometric nature of second degree equations in x and y.

EXAMPLE 7.1.2 Sketch the curve determined by the equation

$$
12 x^{2}-12 x y+7 y^{2}+60 x-38 y+31=0 .
$$

Solution. With P taken to be the proper orthogonal matrix defined in the previous example by

$$
P=\left[\begin{array}{rr}
3 / \sqrt{13} & 2 / \sqrt{13} \\
-2 / \sqrt{13} & 3 / \sqrt{13}
\end{array}\right],
$$

then as theorem 7.1.1 predicts, P is a rotation matrix and the transformation

$$
X=\left[\begin{array}{l}
x \\
y
\end{array}\right]=P Y=P\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]
$$

or more explicitly

$$
\begin{equation*}
x=\frac{3 x_{1}+2 y_{1}}{\sqrt{13}}, y=\frac{-2 x_{1}+3 y_{1}}{\sqrt{13}} \tag{7.8}
\end{equation*}
$$

will rotate the x, y axes to positions given by the respective columns of P. (More generally, we can always arrange for the x_{1} axis to point either into the first or fourth quadrant.)

Now $A=\left[\begin{array}{rr}12 & -6 \\ -6 & 7\end{array}\right]$ is the matrix of the quadratic form

$$
12 x^{2}-12 x y+7 y^{2},
$$

so we have, by Theorem 7.1.5

$$
12 x^{2}-12 x y+7 y^{2}=16 x_{1}^{2}+3 y_{1}^{2} .
$$

Then under the rotation $X=P Y$, our original quadratic equation becomes

$$
16 x_{1}^{2}+3 y_{1}^{2}+\frac{60}{\sqrt{13}}\left(3 x_{1}+2 y_{1}\right)-\frac{38}{\sqrt{13}}\left(-2 x_{1}+3 y_{1}\right)+31=0
$$

or

$$
16 x_{1}^{2}+3 y_{1}^{2}+\frac{256}{\sqrt{13}} x_{1}+\frac{6}{\sqrt{13}} y_{1}+31=0 .
$$

Now complete the square in x_{1} and y_{1} :

$$
\begin{align*}
& 16\left(x_{1}^{2}+\frac{16}{\sqrt{13}} x_{1}\right)+3\left(y_{1}^{2}+\frac{2}{\sqrt{13}} y_{1}\right)+31=0 \\
& 16\left(x_{1}+\frac{8}{\sqrt{13}}\right)^{2}+3\left(y_{1}+\frac{1}{\sqrt{13}}\right)^{2}=16\left(\frac{8}{\sqrt{13}}\right)^{2}+3\left(\frac{1}{\sqrt{13}}\right)^{2}-31 \\
&=48 . \tag{7.9}
\end{align*}
$$

Then if we perform a translation of axes to the new origin $\left(x_{1}, y_{1}\right)=$ $\left(-\frac{8}{\sqrt{13}},-\frac{1}{\sqrt{13}}\right)$:

$$
x_{2}=x_{1}+\frac{8}{\sqrt{13}}, y_{2}=y_{1}+\frac{1}{\sqrt{13}},
$$

equation 7.9 reduces to

$$
16 x_{2}^{2}+3 y_{2}^{2}=48,
$$

or

$$
\frac{x_{2}^{2}}{3}+\frac{y_{2}^{2}}{16}=1
$$

Figure 7.2: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,0<b<a$: an ellipse.

This equation is now in one of the standard forms listed below as Figure 7.2 and is that of a whose centre is at $\left(x_{2}, y_{2}\right)=(0,0)$ and whose axes of symmetry lie along the x_{2}, y_{2} axes. In terms of the original x, y coordinates, we find that the centre is $(x, y)=(-2,1)$. Also $Y=P^{t} X$, so equations 7.8 can be solved to give

$$
x_{1}=\frac{3 x_{1}-2 y_{1}}{\sqrt{13}}, y_{1}=\frac{2 x_{1}+3 y_{1}}{\sqrt{13}} .
$$

Hence the y_{2}-axis is given by

$$
\begin{aligned}
0=x_{2} & =x_{1}+\frac{8}{\sqrt{13}} \\
& =\frac{3 x-2 y}{\sqrt{13}}+\frac{8}{\sqrt{13}},
\end{aligned}
$$

or $3 x-2 y+8=0$. Similarly the x_{2} axis is given by $2 x+3 y+1=0$.
This ellipse is sketched in Figure 7.1.
Figures 7.2, 7.3, 7.4 and 7.5 are a collection of standard second degree equations: Figure 7.2 is an ellipse; Figures 7.3 are hyperbolas (in both these examples, the asymptotes are the lines $y= \pm \frac{b}{a} x$); Figures 7.4 and 7.5 represent parabolas.

EXAMPLE 7.1.3 Sketch $y^{2}-4 x-10 y-7=0$.

Figure 7.3: (i) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 ; \quad$ (ii) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1,0<b, 0<a$.

Figure 7.4: (i) $y^{2}=4 a x, a>0$;

(ii) $y^{2}=4 a x, a<0$.

Figure 7.5: (iii) $x^{2}=4 a y, a>0 ; ~(i v) ~ x^{2}=4 a y, a<0$.

Solution. Complete the square:

$$
\begin{aligned}
y^{2}-10 y+25-4 x-32 & =0 \\
(y-5)^{2}=4 x+32 & =4(x+8)
\end{aligned}
$$

or $y_{1}^{2}=4 x_{1}$, under the translation of axes $x_{1}=x+8, y_{1}=y-5$. Hence we get a parabola with vertex at the new origin $\left(x_{1}, y_{1}\right)=(0,0)$, i.e. $(x, y)=$ $(-8,5)$.

The parabola is sketched in Figure 7.6.
EXAMPLE 7.1.4 Sketch the curve $x^{2}-4 x y+4 y^{2}+5 y-9=0$.
Solution. We have $x^{2}-4 x y+4 y^{2}=X^{t} A X$, where

$$
A=\left[\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right]
$$

The characteristic equation of A is $\lambda^{2}-5 \lambda=0$, so A has distinct eigenvalues $\lambda_{1}=5$ and $\lambda_{2}=0$. We find corresponding unit length eigenvectors

$$
X_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}
1 \\
-2
\end{array}\right], X_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

Then $P=\left[X_{1} \mid X_{2}\right]$ is a proper orthogonal matrix and under the rotation of axes $X=P Y$, or

$$
\begin{aligned}
& x=\frac{x_{1}+2 y_{1}}{\sqrt{5}} \\
& y=\frac{-2 x_{1}+y_{1}}{\sqrt{5}}
\end{aligned}
$$

Figure 7.6: $y^{2}-4 x-10 y-7=0$.
we have

$$
x^{2}-4 x y+4 y^{2}=\lambda_{1} x_{1}^{2}+\lambda_{2} y_{1}^{2}=5 x_{1}^{2} .
$$

The original quadratic equation becomes

$$
\begin{aligned}
& 5 x_{1}^{2}+\frac{\sqrt{5}}{\sqrt{5}}\left(-2 x_{1}+y_{1}\right)-9=0 \\
& 5\left(x_{1}^{2}-\frac{2}{\sqrt{5}} x_{1}\right)+\sqrt{5} y_{1}-9=0 \\
& 5\left(x_{1}-\frac{1}{\sqrt{5}}\right)^{2}=10-\sqrt{5} y_{1}=\sqrt{5}\left(y_{1}-2 \sqrt{5}\right)
\end{aligned}
$$

or $5 x_{2}^{2}=-\frac{1}{\sqrt{5}} y_{2}$, where the x_{1}, y_{1} axes have been translated to x_{2}, y_{2} axes using the transformation

$$
x_{2}=x_{1}-\frac{1}{\sqrt{5}}, \quad y_{2}=y_{1}-2 \sqrt{5}
$$

Hence the vertex of the parabola is at $\left(x_{2}, y_{2}\right)=(0,0)$, i.e. $\left(x_{1}, y_{1}\right)=$ $\left(\frac{1}{\sqrt{5}}, 2 \sqrt{5}\right)$, or $(x, y)=\left(\frac{21}{5}, \frac{8}{5}\right)$. The axis of symmetry of the parabola is the line $x_{2}=0$, i.e. $x_{1}=1 / \sqrt{5}$. Using the rotation equations in the form

$$
x_{1}=\frac{x-2 y}{\sqrt{5}}
$$

Figure 7.7: $x^{2}-4 x y+4 y^{2}+5 y-9=0$.

$$
y_{1}=\frac{2 x+y}{\sqrt{5}}
$$

we have

$$
\frac{x-2 y}{\sqrt{5}}=\frac{1}{\sqrt{5}}, \quad \text { or } \quad x-2 y=1 .
$$

The parabola is sketched in Figure 7.7.

7.2 A classification algorithm

There are several possible degenerate cases that can arise from the general second degree equation. For example $x^{2}+y^{2}=0$ represents the point $(0,0)$; $x^{2}+y^{2}=-1$ defines the empty set, as does $x^{2}=-1$ or $y^{2}=-1 ; x^{2}=0$ defines the line $x=0 ;(x+y)^{2}=0$ defines the line $x+y=0 ; x^{2}-y^{2}=0$ defines the lines $x-y=0, x+y=0 ; x^{2}=1$ defines the parallel lines $x= \pm 1 ;(x+y)^{2}=1$ likewise defines two parallel lines $x+y= \pm 1$.

We state without proof a complete classification ${ }^{1}$ of the various cases

[^0]that can possibly arise for the general second degree equation
\[

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 . \tag{7.10}
\end{equation*}
$$

\]

It turns out to be more convenient to first perform a suitable translation of axes, before rotating the axes. Let

$$
\Delta=\left|\begin{array}{ccc}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|, \quad C=a b-h^{2}, A=b c-f^{2}, B=c a-g^{2} .
$$

If $C \neq 0$, let

$$
\alpha=\frac{-\left|\begin{array}{cc}
g & h \tag{7.11}\\
f & b
\end{array}\right|}{C}, \quad \beta=\frac{-\left|\begin{array}{ll}
a & g \\
h & f
\end{array}\right|}{C} .
$$

CASE 1. $\Delta=0$.
(1.1) $C \neq 0$. Translate axes to the new origin (α, β), where α and β are given by equations 7.11:

$$
x=x_{1}+\alpha, \quad y=y_{1}+\beta .
$$

Then equation 7.10 reduces to

$$
a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}=0 .
$$

(a) $C>0$: Single point $(x, y)=(\alpha, \beta)$.
(b) $C<0$: Two non-parallel lines intersecting in $(x, y)=(\alpha, \beta)$. The lines are

$$
\begin{array}{ll}
\frac{y-\beta}{x-\alpha}= & \frac{-h \pm \sqrt{-C}}{b} \quad \text { if } b \neq 0, \\
x=\alpha \quad & \text { and } \quad \frac{y-\beta}{x-\alpha}=-\frac{a}{2 h}, \quad \text { if } b=0 .
\end{array}
$$

(1.2) $C=0$.
(a) $h=0$.
(i) $a=g=0$.
(A) $A>0$: Empty set.
(B) $A=0$: Single line $y=-f / b$.
(C) $A<0$: Two parallel lines

$$
y=\frac{-f \pm \sqrt{-A}}{b}
$$

(ii) $b=f=0$.
(A) $B>0$: Empty set.
(B) $B=0$: Single line $x=-g / a$.
(C) $B<0$: Two parallel lines

$$
x=\frac{-g \pm \sqrt{-B}}{a}
$$

(b) $h \neq 0$.
(i) $B>0$: Empty set.
(ii) $B=0$: Single line $a x+h y=-g$.
(iii) $B<0$: Two parallel lines

$$
a x+h y=-g \pm \sqrt{-B} .
$$

CASE 2. $\Delta \neq 0$.
(2.1) $C \neq 0$. Translate axes to the new origin (α, β), where α and β are given by equations 7.11:

$$
x=x_{1}+\alpha, \quad y=y_{1}+\beta .
$$

Equation 7.10 becomes

$$
\begin{equation*}
a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}=-\frac{\Delta}{C} . \tag{7.12}
\end{equation*}
$$

CASE 2.1(i) $h=0$. Equation 7.12 becomes $a x_{1}^{2}+b y_{1}^{2}=\frac{-\Delta}{C}$.
(a) $C<0$: Hyperbola.
(b) $C>0$ and $a \Delta>0$: Empty set.
(c) $C>0$ and $a \Delta<0$.
(i) $a=b$: Circle, centre (α, β), radius $\sqrt{\frac{g^{2}+f^{2}-a c}{a}}$.
(ii) $a \neq b$: Ellipse.

CASE 2.1(ii) $h \neq 0$.
Rotate the $\left(x_{1}, y_{1}\right)$ axes with the new positive x_{2}-axis in the direction of

$$
[(b-a+R) / 2,-h],
$$

where $R=\sqrt{(a-b)^{2}+4 h^{2}}$.
Then equation 7.12 becomes

$$
\begin{equation*}
\lambda_{1} x_{2}^{2}+\lambda_{2} y_{2}^{2}=-\frac{\Delta}{C} . \tag{7.13}
\end{equation*}
$$

where

$$
\lambda_{1}=(a+b-R) / 2, \lambda_{2}=(a+b+R) / 2,
$$

Here $\lambda_{1} \lambda_{2}=C$.
(a) $C<0$: Hyperbola.

Here $\lambda_{2}>0>\lambda_{1}$ and equation 7.13 becomes

$$
\frac{x_{2}^{2}}{u^{2}}-\frac{y_{2}^{2}}{v^{2}}=\frac{-\Delta}{|\Delta|},
$$

where

$$
u=\sqrt{\frac{|\Delta|}{C \lambda_{1}}}, v=\sqrt{\frac{|\Delta|}{-C \lambda_{2}}} .
$$

(b) $C>0$ and $a \Delta>0$: Empty set.
(c) $C>0$ and $a \Delta<0$: Ellipse.

Here $\lambda_{1}, \lambda_{2}, a, b$ have the same sign and $\lambda_{1} \neq \lambda_{2}$ and equation 7.13 becomes

$$
\frac{x_{2}^{2}}{u^{2}}+\frac{y_{2}^{2}}{v^{2}}=1
$$

where

$$
u=\sqrt{\frac{\Delta}{-C \lambda_{1}}}, v=\sqrt{\frac{\Delta}{-C \lambda_{2}}} .
$$

(2.1) $C=0$.
(a) $h=0$.
(i) $a=0$: Then $b \neq 0$ and $g \neq 0$. Parabola with vertex

$$
\left(\frac{-A}{2 g b},-\frac{f}{b}\right) .
$$

Translate axes to $\left(x_{1}, y_{1}\right)$ axes:

$$
y_{1}^{2}=-\frac{2 g}{b} x_{1} .
$$

(ii) $b=0$: Then $a \neq 0$ and $f \neq 0$. Parabola with vertex

$$
\left(-\frac{g}{a}, \frac{-B}{2 f a}\right) .
$$

Translate axes to $\left(x_{1}, y_{1}\right)$ axes:

$$
x_{1}^{2}=-\frac{2 f}{a} y_{1} .
$$

(b) $h \neq 0$: Parabola. Let

$$
k=\frac{g a+b f}{a+b} .
$$

The vertex of the parabola is

$$
\left(\frac{\left(2 a k f-h k^{2}-h a c\right)}{d}, \frac{a\left(k^{2}+a c-2 k g\right)}{d}\right) .
$$

Now translate to the vertex as the new origin, then rotate to $\left(x_{2}, y_{2}\right)$ axes with the positive x_{2}-axis along $[s a,-s h]$, where $s=\operatorname{sign}(a)$.
(The positive x_{2}-axis points into the first or fourth quadrant.) Then the parabola has equation

$$
x_{2}^{2}=\frac{-2 s t}{\sqrt{a^{2}+h^{2}}} y_{2},
$$

where $t=(a f-g h) /(a+b)$.
REMARK 7.2.1 If $\Delta=0$, it is not necessary to rotate the axes. Instead it is always possible to translate the axes suitably so that the coefficients of the terms of the first degree vanish.

EXAMPLE 7.2.1 Identify the curve

$$
\begin{equation*}
2 x^{2}+x y-y^{2}+6 y-8=0 . \tag{7.14}
\end{equation*}
$$

Solution. Here

$$
\Delta=\left|\begin{array}{rrr}
2 & \frac{1}{2} & 0 \\
\frac{1}{2} & -1 & 3 \\
0 & 3 & -8
\end{array}\right|=0 .
$$

Let $x=x_{1}+\alpha, y=y_{1}+\beta$ and substitute in equation 7.14 to get

$$
\begin{equation*}
2\left(x_{1}+\alpha\right)^{2}+\left(x_{1}+\alpha\right)\left(y_{1}+\beta\right)-\left(y_{1}+\beta\right)^{2}+4\left(y_{1}+\beta\right)-8=0 . \tag{7.15}
\end{equation*}
$$

Then equating the coefficients of x_{1} and y_{1} to 0 gives

$$
\begin{array}{r}
4 \alpha+\beta=0 \\
\alpha+2 \beta+4=0,
\end{array}
$$

which has the unique solution $\alpha=-\frac{2}{3}, \beta=\frac{8}{3}$. Then equation 7.15 simplifies to

$$
2 x_{1}^{2}+x_{1} y_{1}-y_{1}^{2}=0=\left(2 x_{1}-y_{1}\right)\left(x_{1}+y_{1}\right),
$$

so relative to the x_{1}, y_{1} coordinates, equation 7.14 describes two lines: $2 x_{1}-$ $y_{1}=0$ or $x_{1}+y_{1}=0$. In terms of the original x, y coordinates, these lines become $2\left(x+\frac{2}{3}\right)-\left(y-\frac{8}{3}\right)=0$ and $\left(x+\frac{2}{3}\right)+\left(y-\frac{8}{3}\right)=0$, i.e. $2 x-y+4=0$ and $x+y-2=0$, which intersect in the point

$$
(x, y)=(\alpha, \beta)=\left(-\frac{2}{3}, \frac{8}{3}\right) .
$$

EXAMPLE 7.2.2 Identify the curve

$$
\begin{equation*}
x^{2}+2 x y+y^{2}++2 x+2 y+1=0 . \tag{7.16}
\end{equation*}
$$

Solution. Here

$$
\Delta=\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right|=0
$$

Let $x=x_{1}+\alpha, y=y_{1}+\beta$ and substitute in equation 7.16 to get

$$
\begin{equation*}
\left(x_{1}+\alpha\right)^{2}+2\left(x_{1}+\alpha\right)\left(y_{1}+\beta\right)+\left(y_{1}+\beta\right)^{2}+2\left(x_{1}+\alpha\right)+2\left(y_{1}+\beta\right)+1=0 . \tag{7.17}
\end{equation*}
$$

Then equating the coefficients of x_{1} and y_{1} to 0 gives the same equation

$$
2 \alpha+2 \beta+2=0 .
$$

Take $\alpha=0, \beta=-1$. Then equation 7.17 simplifies to

$$
x_{1}^{2}+2 x_{1} y_{1}+y_{1}^{2}=0=\left(x_{1}+y_{1}\right)^{2},
$$

and in terms of x, y coordinates, equation 7.16 becomes

$$
(x+y+1)^{2}=0, \text { or } x+y+1=0 .
$$

7.3 PROBLEMS

1. Sketch the curves
(i) $x^{2}-8 x+8 y+8=0$;
(ii) $y^{2}-12 x+2 y+25=0$.
2. Sketch the hyperbola

$$
4 x y-3 y^{2}=8
$$

and find the equations of the asymptotes.
[Answer: $y=0$ and $y=\frac{4}{3} x$.]
3. Sketch the ellipse

$$
8 x^{2}-4 x y+5 y^{2}=36
$$

and find the equations of the axes of symmetry.
[Answer: $y=2 x$ and $x=-2 y$.]
4. Sketch the conics defined by the following equations. Find the centre when the conic is an ellipse or hyperbola, asymptotes if an hyperbola, the vertex and axis of symmetry if a parabola:
(i) $4 x^{2}-9 y^{2}-24 x-36 y-36=0$;
(ii) $5 x^{2}-4 x y+8 y^{2}+4 \sqrt{5} x-16 \sqrt{5} y+4=0$;
(iii) $4 x^{2}+y^{2}-4 x y-10 y-19=0$;
(iv) $77 x^{2}+78 x y-27 y^{2}+70 x-30 y+29=0$.
[Answers: (i) hyperbola, centre (3, -2), asymptotes $2 x-3 y-12=$ $0,2 x+3 y=0$;
(ii) ellipse, centre $(0, \sqrt{5})$;
(iii) parabola, vertex $\left(-\frac{7}{5},-\frac{9}{5}\right)$, axis of symmetry $2 x-y+1=0$;
(iv) hyperbola, centre $\left(-\frac{1}{10}, \frac{7}{10}\right)$, asymptotes $7 x+9 y+7=0$ and $11 x-3 y-1=0$.]
5. Identify the lines determined by the equations:
(i) $2 x^{2}+y^{2}+3 x y-5 x-4 y+3=0$;
(ii) $9 x^{2}+y^{2}-6 x y+6 x-2 y+1=0$;
(iii) $x^{2}+4 x y+4 y^{2}-x-2 y-2=0$.
[Answers: (i) $2 x+y-3=0$ and $x+y-1=0$; (ii) $3 x-y+1=0$; (iii) $x+2 y+1=0$ and $x+2 y-2=0$.]

[^0]: ${ }^{1}$ This classification forms the basis of a computer program which was used to produce the diagrams in this chapter. I am grateful to Peter Adams for his programming assistance.

