Tarea núm. 4

Para el jueves 18 feb 2010

Algunas definiciones y resultados vistos en clase:

- **Definición**. Sean $a, b, n \in \mathbb{Z}$, n > 1. Se dice que b es un recíproco de a módulo n si $ab \equiv 1 \mod n$.
- **Teorema** (visto en clase pero no demostrado todavía). Un entero a tiene recíproco módulo n si y solo si a y n son primos relativos.
- Teorema. Todo entero > 1 es un producto de primos.
- Teorema. Existe una infinidad de números primos.

Demostración (de Euclides): si p_1, p_2, \ldots, p_k son primos entonces todo factor primo p de $N := p_1 p_2 \cdots p_k + 1$ es distinto de p_1, p_2, \ldots, p_k . Para ver esto, basta ver que $N \equiv 0 \mod p$, mientras $N \equiv 1 \mod$ cualquera de los p_i .

Problemas

- 1. Sea $n \in \mathbb{Z}$, n > 1. Sean $A, B \subset \mathbb{Z}$ dos clases de congruencia módulo n y sean $a \in A$, $b \in B$. Demuestra que las siguientes condiciones son equivalentes: (a) $A \cap B \neq \emptyset$; (b) A = B; (c) $a \equiv b \mod n$.
 - Nota: basta demostrar que $a \Longrightarrow b, b \Longrightarrow c, y c \Longrightarrow a$ (o cualquier otro ciclo de implicaciones).
- 2. Sea $n \in \mathbb{Z}$, n > 1. Demuestra que $[0], [1], \ldots, [n-1]$ es una lista completa, sin repeticiones, de todas las clases de congruencia módulo n. Concluye que \mathbb{Z}_n (el conjunto de las clases de congruencia módulo n, ver las definiciones en la tarea pasada) tiene n elementos.
- 3. Sea $n \in \mathbb{Z}$, n > 1. Sean $a, b \in \mathbb{Z}$ tal que b es un recíproco de a módulo n. Demuestra:
 - a) a es un recíproco de b módulo n.
 - b) Para todo $b' \in \mathbb{Z}$ tal que $b' \equiv b \mod n$, tambien b' es un recíproco de $a \mod n$.
 - c) Si b' es un recíproco de $a \mod n$ entonces $b' \equiv b \mod n$.
 - d) Concluye de los incisos anteriores que el recíproco de una clase de congruencia modulo n es un concepto bien definido, y en caso que existe tal recíproco, es único.
 - e) Usando la tabla de multiplicación módulo 12, decide cuales de las clases de congruencia módulo 12 tienen recíproco, y encuentra su recíproco.
- 4. a) Demuestra: existe una infinidad de primos de la forma 4k + 3.
 - Sugerencia: se puede adaptar a este caso la demostración de Euclides (vista en clase) para la infinitud de los primos. Demuestra que si p_1, p_2, \ldots, p_k es una lista de primos, cada uno de ellos $\equiv 3 \mod 4$, entonces todo factor primo de $N := 4p_1p_2\cdots p_k 1$ es distinto de p_1, p_2, \ldots, p_k , y que alguno de estos factores primos de N debe ser $\equiv 3 \mod 4$. Para el último, demuestra que el producto de números $\equiv 1 \mod 4$ es del mismo tipo.
 - b) Usa esta deomstración para producir 4 primos de la forma 4k + 3, empezando con el primo $p_1 = 3$.
 - c) (Opcional). Reto: demuestra que existe una infinidad de primos de la forma 4k + 1.
 - Sugerencia: dada una lista p_1, p_2, \ldots, p_k de primos de la forma 4k+1, define $P=p_1p_2\cdots p_k$ y considera el número $N:=4P^2+1$. Ahora viene la parte dificil: demostrar que todo primo p que divide a $4P^2+1$ es de la forma 4k+1. Empezamos: $p|4P^2+1$ implica $4P^2+1\equiv 0 \mod p$, o $Q^2\equiv -1 \mod p$, donde Q=2P. Ahora elevamos ambos lados a la potencia (p-1)/2 y obtenemos $Q^{p-1}\equiv (-1)^{(p-1)/2}$ mpd p. Más tarde en el curso aprendemos que si un primo p no divide a un entero Q entonces $Q^{p-1}\equiv 1 \mod p$ (el "pequeño teorema de Fermat"). Así que (p-1)/2 es par y p es de la forma 4k+1.

Nota: estos son dos casos muy particulares de un teorema (nada fácil, demostrado por Dirichlet en 1837) que afirma que si a y b son dos enteros positivos que son primos relativos, entonces existen una infinidad de primos de la forma ak + b.