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Chapter 1

Introduction.

1-1 Lagrangian Dynamics.

Let M be a boundaryless n-dimensional complete riemannian manifold.
An (autonomous) Lagrangian on M is a smooth function L : TM → R

satisfying the following conditions:

(a) Convexity: The Hessian
∂2L

∂vi∂vj
(x, v), calculated in linear co-

ordinates on the fiber TxM , is uniformly positive definite for all
(x, v) ∈ TM , i.e. there is A > 0 such that

w · Lvv(x, v) · w ≥ A |w|2 for all (x, v) ∈ TM and w ∈ TxM .

(b) Superlinearity:

lim
|v|→+∞

L(x, v)

|v| = +∞, uniformly on x ∈M,

equivalently, for all A ∈ R there is B ∈ R such that

L(x, v) ≥ A |v| −B for all (x, v) ∈ TM.

7



8 1. introduction.

(c) Boundedness1: For all r ≥ 0,

ℓ(r) = sup
(x,v)∈TM,

|v|≤r

L(x, v) < +∞. (1.1)

g(r) = sup
|w|=1

|(x,v)|≤r

w · Lvv(x, v) · w < +∞. (1.2)

The Euler-Lagrange equation associated to a lagrangian L is (in
local coordinates)

d

dt

∂L

∂v

(
x, ẋ) =

∂L

∂x
(x, ẋ). (E-L)

The condition (c) implies that the Euler-Lagrange equation (E-L) defines
a complete flow ϕt on TM (proposition 1-3.2), called the Euler-Lagrange
flow, by setting ϕt(x0, v0) =

(
xv(t), ẋv(t)

)
, where xv : R → M is the

solution of (E-L) with xv(0) = x0 and ẋv(0) = v0.

We shall be interested on coverings p : N → M of a compact man-
ifold M and the lifted Lagrangian L = L ◦ dp : TN → R of a convex
superlinear lagrangian L on M . The lagrangian L then satisfies (a)–(c)
and its flow ψt is the lift of ϕt.

Observe that when we add a closed 1-form ω to the lagrangian L,
the new lagrangian L + ω also satisfies the hypothesis (a)-(c) and has
the same Euler-Lagrange equation as L. This can also be seen using the
variational interpretation of the Euler-Lagrange equation (see 1-2.3).

1The Boundedness condition (c) is equivalent to the condition that the associ-
ated hamiltonian H is convex and superlinear, see remark 1-4.2. This condition is
immediate when the manifold M is compact.

8



1-2. the euler-lagrange equation. 9

1-2 The Euler-Lagrange equation.

The action of a differential curve γ : [0, T ]→M is defined by

AL(γ) =

∫ T

0
L(γ(t), γ̇(t)) dt

One of the main problems of the calculus of variations is to find and
to study the curves that minimize the action. Denote by Ck(q1, q2;T )
the set of Ck-differentiable curves γ : [0, T ] → M such that γ(0) = q1
and γ(T ) = q2.

1-2.1 Proposition. If a curve x(t) in the space Ck(q1, q2;T ) is a critical
point of the action functional on Ck(q1, q2;T ), then x satisfies the Euler-
Lagrange equation

d

dt
Lv(x(t), ẋ(t)) = Lx(x(t), ẋ(t)) (E-L)

in local coordinates. Consequently, this equation does not depend on the
coordinate system.

Proof: Choose a coordinate system (x1, . . . , xn) about x(t). Let h(t)
a differentiable curve such that h(0) = h(T ) = 0. Then for every ε,
sufficiently small the curve yε = x+ εh is on Ck(q1, q2;T ) and contained
in the coordinate system. Define

g(ε) = AL(yε)

9



10 1. introduction.

Then g has a minimum in zero and

lim
ε→0

g(ε) − g(0)
ε

= lim
ε→0

∫ T

0

L(x+ εh, ẋ+ εḣ)− L(x, ẋ)

ε
dt

=

∫ T

0
lim
ε→0

εLxh+ εLvḣ+ o(ε)

ε
dt

=

∫ T

0
Lxh+ Lvḣ dt

=

∫ T

0
(Lx − d

dtLv)h dt+ Lv h
∣∣T
0

=

∫ T

0
(Lx − d

dtLv)h dt.

Hence

0 =

∫ T

0

[
Lx(x(t), ẋ(t))− d

dt
Lv(x(t), ẋ(t))

]
h dt,

for any function h ∈ Ck(0, 0;T ). This implies that x(t) satisfies the
Euler Lagrange equation (E-L).

The Euler Lagrange equation is a second order differential equation
on M , but the convexity hypothesis (Lvv invertible) implies that this
equation can also be seen as a first order differential equation on TM :

ẋ = v,

v̇ = (Lvv)
−1(Lx − Lvxv).

The associated vector field X on TM is called the lagrangian vector
field and its flow ϕt the lagrangian flow. Observe that X is of the form

X(x, v) = (v, ·).

1-2.2 Remark. It is possible to do the same thing in the space CT (p, q),
the set of absolutely continuous curves γ : [0, T ]→M such that γ(0) = p
and γ(T ) = q. A priori minimizers do not have to be differentiable and
there are examples where they are not, see Ball & Mizel [4]. However

10



1-2. the euler-lagrange equation. 11

when the lagrangian flow is complete (cf. proposition 1-3.2), every ab-
solutely continuous minimizers is C2 and satisfies the Euler-Lagrange
equation. See Mather [46].

1-2.3 Remark. If we add a closed 1-form ω to the lagrangian L, the
lagrangian L + ω also satisfies the hypothesis (a)-(c). Moreover, the
action functional AL+ω on a neighbourbood of a curve γ ∈ Ck(x1, x2, T )
satisfies

AL+ω(η) = AL(η) +

∮

γ
ω,

because the curve η is homologous to γ. Therefore, the critical points
for AL+ω and for AL are the same. This implies that the Euler-Lagrange
equations for L and L + ω are the same. But since the values of AL+ω

and AL are different, minimizers of these two actions may be different.

11



12 1. introduction.

1-3 The Energy function.

The energy function of the lagrangian L is E : TM → R, defined by

E(x, v) =
∂L

∂v
(x, v) · v − L(x, v). (1.3)

Observe that if x(t) is a solution of the Euler-Lagrange equation (E-L),
then

d
dt E(x, ẋ) =

(
d
dtLv − Lx

)
· ẋ = 0.

Hence E : TM → R is an integral (i.e. invariant function2) for the
lagrangian flow ϕt and its level sets, called energy levels are invariant
under ϕt. Moreover, the convexity implies that

d
ds E(x, sv)|s=1 = v · Lvv(x, v) · v > 0.

Thus
min
v∈TxM

E(x, v) = E(x, 0) = −L(x, 0).

Write
e0 := max

x∈M
E(x, 0) = −min

x∈M
L(x, 0) > −∞, (1.4)

by the superlinearity e0 > −∞, then

e0 = min { k ∈ R | π : E−1{k} →M is surjective }. (1.5)

By the uniform convexity, and the boundedness condition,

A := inf
(x,v)∈TM

|w|=1

w · Lvv(x, v) · w > 0,

and then using (1.1) and (1.2),

E(x, v) = E(x, 0) +

∫ |v|

0

d
ds E

(
x, s v|v|

)
ds

≥ −ℓ(0) + 1
2 A |v|2. (1.6)

2The energy is invariant only for autonomous (i.e. time-independent) lagrangians.

12



1-3. the energy function. 13

Similarly, using (1.2),

E(x, v) ≤ e0 + g(|v|) |v|. (1.7)

Hence

1-3.1 Remark.
If k ∈ R and K ⊆M is compact, then E−1{k} ∩ TKM is compact.

1-3.2 Proposition. The Euler-Lagrange flow is complete.

Proof: Suppose that ]α, β[ is the maximal interval of definition of t 7→
ϕt(v), and −∞ < α or β < +∞. Let k = E(v). Since E(ϕt(v)) ≡ k,
by (1.6), there is a > 0 such that 0 ≤ |ϕt(v)| ≤ a for α ≤ t ≤ β. Since
ϕt(v) is of the form (γ(t), γ̇(t)), then ϕt(v) remains in the interior of the
compact set

Q :=
{

(y,w) ∈ TM
∣∣ d(y, x) ≤ a

[
|β − α|+ 1

]
, |w| ≤ a+ 1

}
,

where x = π(v). The Euler-Lagrange vector field is uniformly Lipschitz
on Q. Then by the theory of ordinary differential equations, we can
extend the interval of definition ]α, β[ of t 7→ ϕt(v).

13



14 1. introduction.

1-4 Hamiltonian Systems.

Let T ∗M be the cotangent bundle of M . Define the Liouville’s 1-form
Θ on T ∗M as

Θp(ξ) = p (dπ ξ) for ξ ∈ Tp(T ∗M),

where π : T ∗M →M is the projection. The canonical symplectic form
on T ∗M is defined as ω = dΘ.

A local chart x = (x1, . . . , xn) of M induces a local chart (x,p) =
(x1, . . . , xn; p1, . . . , pn) of T ∗M writing p ∈ T ∗M as p = Σi pi dxi. In
these coordinates the forms Θ and ω are written

Θ = p · dx =
∑
i
pi dxi ,

ω = dp ∧ dx =
∑
i
dpi ∧ dxi .

A hamiltonian is a smooth function H : T ∗M → R. The hamiltonian
vector field XH associated to H is defined by

ω(XH , · ) = dH. (1.8)

In local charts, the hamiltonian vector field defines the differential equa-
tion

ẋ = Hp ,

ṗ = − Hx ,
(1.9)

where Hx and Hp are the partial derivatives of H with respect to x and
p. Let ψt be the hamiltonian flow. Observe that it preserves H, because

d
dtH = Hx ẋ+Hp ṗ = 0.

Moreover, it preserves the symplectic form ω, because3

d
dt(ψ

∗
t ω) = LXH

ω = d iXH
ω + iXH

ω = d(dH) + iXH
(0) = 0.

3LX is the Lie derivative, defined on forms η by LXη = diXη + iXdη, where
iXη = η(X, ·) is the contraction by X. The Lie derivative satisfies LXη = d

dt
ψ∗

t η|t=0,
where ψt is the flow of X.

14



1-4. hamiltonian systems. 15

We shall be specially interested in hamiltonians obtained by the
Fenchel transform of a lagrangian:

H(x, p) = max
v∈TxM

p v − L(x, v).

Observe that H = E ◦L−1, where E is the energy function (1.3) and
L(x, v) = (x,Lv(x, v)) is the Legendre transform of L. Moreover

1-4.1 Proposition. The Legendre transform L : TM → T ∗M ,
L(x, v) = (x,Lv(x, v)) is a conjugacy between the lagrangian flow and
the hamiltonian flow.

Proof: By corollary D.2, the convexity and superlinearity hypothesis
imply that L = L∗∗ = H∗. So if p = Lv(x, v) then v = Hp(x, p). With
this notation:

H(x, p) = v · Lv(x, v)− L(x, v) = E ◦ L−1

= p ·Hp(x, p)− L(x,Hp(x, p)).

Thus Hx = −Lx, and the Euler-Lagrange equation

ẋ = d
dt x = v = Hp ,

ṗ = d
dt Lv = Lx = −Hx ,

is the same as the hamiltonian equations.

1-4.2 Remark. Using that L∗ = H and H∗ = L, from proposition D.2
in the appendix we obtain that the boundedness condition is equivalent
to

(c) Boundedness: H = L∗ is convex and superlinear.

We say that an energy level H−1(k) is regular, if k is a regular value
of H, i.e. dH(x, p) 6= 0 whenever H(x, p) = k.

15



16 1. introduction.

1-4.3 Proposition. Two hamiltonian flows restricted to a same regular
energy level are reparametrizations of each other.

Proof: Suppose that H,G : T ∗M → R are two hamiltonians with
H−1(k) = G−1(ℓ) and k, ℓ are regular values for H and G respectively.
Then, if H(x, p) = k,

ker d(x,p)H = T(x,p)H
−1(k) = T(x,p)H

−1(k) = ker d(x,p)G.

Thus there exists λ(x, p) > 0 such that d(x,p)H = λ(x, p) d(x,p)G. Equa-
tion (1.8) implies that XH = λ(x, p)XG when H(x, p) = k.

We shall need the following estimate on the norm of the partial
derivative Lv(x, v).

1-4.4 Lemma. There is a function f : [0,∞[→ R+ such that
‖Lv(x, v)‖ ≤ f(|v|) for all (x, v) ∈ TM .

Proof: The convexity condition implies that the maximum in

H(x, p) = max
w∈TxM

p · w − L(x,w)

is attained at w = v0 with p = Lv(x, v0). Since H(x,Lv(x, v)) = E(x, v),

Lv(x, v) · w ≤ E(x, v) + L(x,w), ∀v,w ∈ TxM, ∀x ∈M.

Applying this inequality to −w, we get that

Lv(x, v) · w ≥ −E(x, v)− L(x,−w).

Thus using (1.6), (1.7) and (1.1), for |v| ≤ r, we have

‖Lv(x, v)‖ ≤ |E(x, v)| + max{ |L(x, v)|, |L(x,−v)| }
≤ max{|ℓ(0)| + 1

2Ar
2, e0 + g(r)r}+ |ℓ(r)| =: f(r).

16



1-5. examples. 17

1-5 Examples.

We give here some basic examples of lagrangians.

Riemannian Lagrangians:

Given a riemannian metric g = 〈·, ·〉x on TM , the riemannian la-
grangian on M is given by the kinetic energy

L(x, v) = 1
2 ‖v‖

2
x . (1.10)

Its Euler-Lagrange equation (E-L) is the equation of the geodesics of g:

D
dt ẋ ≡ 0, (1.11)

and its Euler-Lagrange flow is the geodesic flow. Its corresponding
hamiltonian is

H(x, p) = 1
2 ‖p‖

2
x .

Analogous to the riemannian lagrangian is the Finsler lagrangian,
given also by formula (1.10), but where ‖·‖x is a Finsler metric, i.e. ‖·‖x
is a (non necessarily symmetric4) norm on TxM which varies smoothly
on x ∈M . The Euler-Lagrange flow of a Finsler lagrangian is called the
geodesic flow of the Finsler metric ‖·‖x.

Mechanic Lagrangians:

The mechanic lagrangian, also called natural lagrangian, is given
by the kinetic energy minus the potential energy U : M → R,

L(x, v) = 1
2 ‖v‖

2
x − U(x). (1.12)

Its Euler-Lagrange equation is

D
dt ẋ = −∇U(x),

4i.e. ‖λv‖x = λ ‖v‖x only for λ ≥ 0

17



18 1. introduction.

where D
dt is the covariant derivative and ∇U is the gradient of U with

respect to the riemannian metric g, i.e.

dxU(v) = 〈∇U(x), v〉x for all (x, v) ∈ TM.

Its energy function and its hamiltonian are given by the kinetic energy
plus potential energy:

E(x, v) = 1
2 ‖v‖

2
x + U(x),

H(x, p) = 1
2 ‖p‖

2
x + U(x).

Symmetric Lagrangians.

The symmetric lagrangians is a class of lagrangian systems which
includes the riemannian and mechanic lagrangians. These are the la-
grangians which satisfy

L(x, v) = L(x,−v) for all (x, v) ∈ TM. (1.13)

Their Euler-Lagrange flow is reversible in the sense that ϕ−t(v) =
−ϕt(−v).

Magnetic Lagrangians.

If one adds a closed 1-form ω to a lagrangian, L(x, v) = L(x, v) +
ωx(v), the Euler-Lagrange flow does not change. This can be seen by
first observing that the solutions of the Euler-Lagrange equation are
the critical points of the action functional on curves on C(x, y, T ) (with
fixed time interval and fixed endpoints). Since ω is closed, the action
functional of L and L on C(x, y, T ) differ by a constant and hence they
have the same critical points.

But adding a non-closed 1-form to a lagrangian does change the
Euler-Lagrange flow. We call a magnetic lagrangian a lagrangian of the
form

L(x, v) = 1
2 ‖v‖x + ηx(v) − U(x), (1.14)

18



1-5. examples. 19

where ‖·‖x is a riemannian metric, η is a 1-form on M with dη 6= 0, and
U : M → R a smooth function. If Y : TM → TM is the bundle map
such that

dη(u, v) = 〈Y (u), v〉

then the Euler-Lagrange equation of (1.14) is

D
dt ẋ = Yx(ẋ)−∇U(x). (1.15)

This models the motion of a particle with unit mass and unit charge
under the effect of a magnetic field with Lorentz force Y and potential
energy U(x). The energy functional is the same as that of the mechanical
lagrangian but its hamiltonian changes because of the change in the
Legendre transform:

E(x, v) = 1
2 ‖v‖

2
x + U(x),

H(x, p) = 1
2 ‖p−A(x)‖2x + U(x),

where A : M → TM is the vector field given by ηx(v) = 〈A(x), v〉x.

Twisted geodesic flows.

The twisted geodesic flows correspond to the motion of a particle
under the effect of a magnetic field with no potential energy. This can be
modeled as the Euler-Lagrange flow of a lagrangian of the form L(x, v) =
1
2 ‖v‖

2
x+ηx(v), where dη 6≡ 0. But the Euler-Lagrange equations depend

only on the riemannian metric and dη. A generalization of these flows
can be made using a non-zero 2-form Ω instead of dη and not requiring
Ω to be exact. This is better presented in the hamiltonian setting.

Fix a riemannian metric 〈 , 〉 and a 2-form Ω on M . Let K : TTM →
TM be the connection map Kξ = ∇ẋv, where ξ = d

dt

(
x(t), v(t)

)
. Let

π : TM → M be the canonical projection. Let ω0 be the symplectic
form in TM obtained by pulling back the canonical symplectic form via
the Legendre transform associated to the riemannian metric, i.e.

ω0(ξ, ζ) = 〈dπ ξ , Kζ〉 − 〈dπ ζ , Kξ〉 .

19



20 1. introduction.

The coordinates TθTM ∋ ξ ←→ (dπ ξ,Kξ) ∈ Tπ(θ)M ⊕ Tπ(θ)M =
H(θ)⊕V (θ) are the standard way of writing the horizontal and vertical
components of a vector ξ ∈ TθTM for a riemannian manifold M (see
Klingenberg [31]).

Define a new symplectic form ωΩ on TM by

ωΩ = ω0 + π∗Ω .

This is called a twisted symplectic structure on TM . Let H : TM → R

be the hamiltonian
H(x, v) = 1

2 ‖v‖
2
x .

Consider the hamiltonian vector field XF corresponding to (H,ωΩ), i.e.

ωΩ

(
XΩ(θ), ·

)
= dH . (1.16)

Define Y : TM → TM as the bundle map such that

Ωx(u, v) = 〈Y (u), v〉x . (1.17)

The hamiltonian vector field XΩ(θ) ∈ TθTM is given by XΩ(θ) =
(θ, Y (θ)) ∈ H(θ)⊕ V (θ). Hence the hamiltonian equation is

D
dt ẋ = Yx(ẋ),

recovering equation (1.15) with U ≡ 0, but where Ω doesn’t need to be
exact.

IfH1(M,R) = 0, both approaches coincide, and any twisted geodesic
flow is the lagrangian flow of a magnetic lagrangian of the form L(x, v) =
1
2 ‖v‖

2
x + ηx(v), with dη = Ω. For example if N is a compact manifold

Ω is a 2-form in N and M is the abelian cover or the universal cover
of N ; if Ω is not exact, then the corresponding twisted geodesic flow is
a lagrangian flow on M but not on N (where it is locally a lagrangian
flow). This lagrangian flow on M is actually the lift of the twisted
geodesic flow on N .

20



1-5. examples. 21

Embedding flows:

There is a way to embed the flow of any bounded vector field on a
lagrangian system. Given a smooth bounded vector field F : M → TM ,
let

L(x, v) = 1
2 ‖v − F (x)‖2x . (1.18)

Since F (x) is bounded, then the lagrangian L is convex, superlinear and
satisfies the boundedness condition. The lagrangian L on a fiber TxM
is minimized at (x, F (x)), hence the integral curves of the vector field,
ẋ = F (x), are solutions to the Euler-Lagrange equation.
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Chapter 2

Mañé’s critical value.

2-1 The action potential and the critical value.

We shall be interested on action minimizing curves with free time in-
terval. Unless otherwise stated, all the curves will be assumed to be
absolutely continuous. For x, y ∈M , let

C(x, y) = { γ : [0, T ]→M |T > 0, γ(0) = x, γ(T ) = y }.

For k ∈ R define the action potential Φk : M ×M → R ∪ {−∞}, by

Φk(x, y) = inf
γ∈C(x,y)

AL+k(γ).

Observe that if there exists a closed curve γ on N with negative L+ k
action, then Φk(x, y) = −∞ for all x, y ∈ N , by going round γ many
times.

Define the critical level c = c(L) as

c(L) = sup{ k ∈ R | ∃ closed curve γ with AL+k(γ) < 0 }.

Observe that the function k 7→ Φk(x, y) is increasing. The superlinearity
implies that L is bounded below. Hence there is k ∈ R such that

23



24 2. mañé’s critical value.

L+ k ≥ 0. Thus c(L) < +∞. Since k 7→ AL+k(γ) is increasing for any
γ, we have that

c(L) = inf{ k ∈ R |AL+k(γ) ≥ 0 ∀ closed curve γ }.

2-1.1 Proposition.

1. (a) For k < c(L), Φk(x, y) = −∞ for all x, y ∈M .
(b) For k ≥ c(L), Φk(x, y) ∈ R for all x, y ∈M .

2. For k ≥ c(L), Φk(x, z) ≤ Φk(x, y) + Φk(y, z), ∀ x, y, z ∈M .

3. Φk(x, x) = 0, ∀ x ∈M .

4. Φk(x, y) + Φk(y, x) ≥ 0 ∀ x, y ∈M .
For k > c(L), Φk(x, y) + Φk(y, x) > 0 if x 6= y.

5. For k ≥ c(L) the action potential Φk is Lipschitz.

2-1.2 Remark. The action potential Φk is not symmetric in general,
but items 2, 3, 4 imply that

dk(x, y) = Φk(x, y) + Φk(y, x)

is a metric for k > c(L) and a pseudo-metric for k = c(L) [i.e. perhaps
dc(x, y) = 0 for some x 6= y and c = c(L)].

Proof:

2. We first prove 2 for all k ∈ R. Since Φk(x, y) ∈ R ∪ {−∞}, the
inequality in item 2 makes sense for all k ∈ R. If γ ∈ C(x, y),
η ∈ C(y, z), then γ ∗ η ∈ C(x, z) and hence

Φk(x, z) ≤ AL+k(γ ∗ η) ≤ AL+k(γ) +AL+k(η).

Taking the infima on γ ∈ C(x, y) and η ∈ C(y, z), we obtain 2.

24



2-1. the action potential and the critical value. 25

1. (a) If γ is a closed curve with AL+k(γ) < 0 and γ(0) = z, then

Φk(z, z) ≤ lim
N→∞

AL+k(γ ∗
N· · · ∗ γ) = lim

N
N AL+k(γ) = −∞.

For x, y ∈M , item 2 implies that

Φk(x, y) ≤ Φk(x, z) + Φk(z, z) + Φk(z, y) = −∞.

Since the function k 7→ Φk(x, y) is increasing, then item 1(a) fol-
lows.

(b) Conversely, if Φk(x, y) = −∞ for some k ∈ R and x, y ∈ M ,
then

Φk(x, x) ≤ Φk(x, y) + Φk(y, x) = −∞.
Thus there is γ ∈ C(x, x) with AL+k(γ) < 0. Then k ≤ c(L). Ob-
serve that the set { k ∈ R |AL+k(γ) < 0 for some closed curve γ }
is open. Hence Φk(x, y) = −∞ actually implies that k < c(L).
This proves item 1(b).

3. Let k ∈ R by the boundedness condition there exists Q > 0 be
such that

|L(x, v) + k| ≤ Q for |v| ≤ 2. (2.1)

Now let γ : [0, ε] → M be a differentiable curve with |γ̇| ≡ 1 and
γ(0) = x. Then

Φk(x, x) ≤ Φk(x, γ(ε)) + Φk(γ(ε), x)

≤ AL+k

(
γ|[0,ε]

)
+AL+k

(
γ(t− ε)|[0,ε]

)

≤ 2Qε.

Letting ε→ 0 we get that Φk(x, x) ≤ 0. But the definition of c(L)
and the monotonicity of k 7→ Φk(x, x) imply that Φk(x, x) ≥ 0 for
all k ≥ c(L).

5. Let k ≥ c(L). Given x1, x2 ∈M we have that

Φk(x1, x2) ≤ AL+k(γ) ≤ Q dM (x1, x2),

25



26 2. mañé’s critical value.

where γ : [0, d(x1, x2)] → N is a unit speed minimizing geodesic
joining x1 to x2 and Q > 0 is from (2.1). If y1, y2 ∈ M , then the
triangle inequality implies that

Φk(x1, y1)− Φk(x2, y2) ≤ Φk(x1, x2) + Φk(y2, y1)

≤ Q [dM (x1, x2) + dM (y1, y2)].

Changing the roles of (x1, y1) and (x2, y2) we get item 5.

4. The first part of item 4 follows from items 2 and 3. Now suppose
that k > c(L), x 6= y and dk(x, y) = 0. Let γn : [0, Tn] → M ,
γn ∈ C(x, y) be such that Φk(x, y) = limnAL+k(γn). We claim
that Tn is bounded below.

Indeed, suppose that limn Tn = 0. Let A > 0, from the superlin-
earity there is B > 0 such that L(x, v) ≥ A |v|−B, ∀ (x, v) ∈ TM .
Then

Φk(x, y) = lim
n

∫ TN

0
L(γn, γ̇n) + k

≥ lim
n

A
∫
|γ̇|+ (k −B)Tn

= A dM (x, y)

Letting A→ +∞ we get that Φk(x, y) = +∞ which is false.

Now let ηn : [0, Sn] → M , ηn ∈ C(y, x) with limnAL+k(ηn) =
Φk(y, x). Choose 0 < T < lim infn Tn and 0 < S < lim infn Sn.
Then for c = c(L) < k,

Φc(x, x) ≤ lim
n
AL+c(γn ∗ ηn)

≤ lim
n
AL+k(γn) + (c− k)T +AL+k(ηn) + (c− k)S

≤ lim
n

Φk(x, y) + Φk(y, x) + (c− k)(T + S)

≤ (c− k)(T + S) < 0,

which contradicts item 3.
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2-2. continuity of the critical value. 27

2-2 Continuity of the critical value.

2-2.1 Lemma. The function C∞(M,R) ∋ ψ 7→ c(L+ ψ) is continuous
in the topology induced by the supremum norm.

Proof: Suppose that ψn → ψ and let cn := c(L+ψn) and c := c(L+ψ).
We will prove that cn → c.

Fix ε > 0. Since c − ε < c, by the definition of critical value there
exists a closed curve γ : [0, T ] → M such that AL+ψ+c−ε(γ) < 0, hence
for all n sufficiently large

AL+ψn+c−ε(γ) < 0.

Therefore for n sufficiently large c− ε < cn, and thus c− ε ≤ lim infn cn.
Since ε was arbitrary we have that c ≤ lim infn cn.

We show now that lim supn cn ≤ c. Suppose that c < lim supn cn.
Take ε such that

c < c+ ε < lim supn cn. (2.2)

Since ψn → ψ, there exists n0 such that for all n ≥ n0,

−ε ≤ ψ − ψn ≤ ε. (2.3)

By (2.2), there exists m ≥ n0 such that

c < c+ ε < cm.

By the definition of critical value there exists a closed curve γ : [0, T ]→
M such that

AL+ψm+c+ε(γ) < 0,

and hence using (2.3) we have

AL+ψ+c(γ) ≤ AL+ψm+c+ε(γ) < 0,

which yields a contradiction to the definition of the critical value c.

This proof also shows that L 7→ c(L) is continuous if we endow the
set of lagrangians L with the topology induced by the supremum norm
on compact subsets of TM .
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28 2. mañé’s critical value.

2-3 Holonomic measures.

Let C0
ℓ be the set of continuous functions f : TM → R having linear

growth, i.e.

‖f‖ℓ := sup
(x,v)∈TM

|f(x, v)|
1 + ‖v‖ < +∞.

Let Mℓ be the set of Borel probabilities µ on TM such that

∫

TM
‖v‖ dµ < +∞,

endowed with the topology such that limn µn = µ if and only if

lim
n

∫
f dµn =

∫
f dµ (2.4)

for all f ∈ C0
ℓ .

Let (C0
ℓ )

′ the dual of C0
ℓ . Then Mℓ is naturally embedded in (C0

ℓ )
′

and its topology coincides with that induced by the weak* topology on

(C0
ℓ )

′.

We shall see that this topology is metrizable. Let {fn} be a sequence

of functions with compact support on C0
ℓ which is dense on C0

ℓ in the

topology of uniform convergence on compact sets of TM . Define a metric

d(·, ·) on Mℓ by

d(µ1, µ2) =

∣∣∣∣
∫
|v| dµ1 −

∫
|v| dµ2

∣∣∣∣ +
∑

n

1

2n
1

cn

∣∣∣∣
∫
fn dµ1 −

∫
fn dµ2

∣∣∣∣
(2.5)

where cn = sup(x,v) |fn(x, v)|.
2-3.1 Exercises:

1. Construct µ ∈ Mℓ such that
∫
|v|2 dµ = +∞.

2. Show that the first term in (2.5) is necessary.
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2-3. holonomic measures. 29

2-3.2 Proposition.

The metric d(·, ·) induces the weak* topology on Mℓ ⊂ (C0
ℓ )

′.

Proof: We prove that d(·, ·) generates the weak* topology onMℓ. Sup-

pose that ∫
f dµn →

∫
f dµ, ∀f ∈ C0

ℓ .

Given ε > 0, choose M > 0 such that
∑

m≥M
1

2m · 2 < ε, and choose

N > 0 such that
∣∣∣∣
∫
fm dµn −

∫
fm dµ

∣∣∣∣ < ε, for 0 ≤ m ≤M, n ≥ N ;

∣∣∣∣
∫
|v| dµn −

∫
|v| dµ

∣∣∣∣ < ε, for n ≥ N.

Since
‖fn‖∞
cn

= 1, then for n > N we have that

d(µn, µ) ≤ ε+
M∑
m=1

1
2m · ε+

∑
m≥M+1

1
2m · 2 · ‖fm‖

cm
= 3 ε.

Thus d(µn, µ)→ 0.

Now suppose that d(µn, µ)→ 0. Let Km be compact sets such that

Km ⊂ Km+1 and that TM = ∪Km. Then
∫

Km

f dµn −→
∫

Km

f dµ, ∀f ∈ C0
ℓ , ∀m;

∫
|v| dµn −→

∫
|v| dµ.

This implies that

lim
n→∞

∫

TM−Km

|v| dµn =

∫

TM−Km

|v| dµ, ∀m. (2.6)

Given ε > 0, choose m(ε) > 0 such that
∫

TM−Km(ε)

(1 + |v|) dµ < ε

4
,
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30 2. mañé’s critical value.

and N such that

∫

TM−Km(ε)

(1 + |v|) dµn <
ε

2
, ∀n > N.

Fix f ∈ C0
ℓ . Choose N > 0 such that

∣∣∣∣∣

∫

Km(ε)

f dµn −
∫

Km(ε)

f dµ

∣∣∣∣∣ < ε, ∀ n > N.

Then
∫

TM−Km(ε)

|f | dµn ≤ ‖f‖ℓ
∫

TM−Km(ε)

(1+ |v|) dµn ≤ ‖f‖ℓ
ε

2
, ∀ n > N.

Using a similar estimate for µ we obtain that

∣∣∣∣
∫
f dµn −

∫
f dµ

∣∣∣∣ ≤ ε+ ‖f‖ℓ ( ε2 + ε
4).

If γ : [0, T ]→M is a closed absolutely continuous curve, let µγ ∈Mℓ

be defined by ∫
f dµγ =

1

T

∫ T

0
f
(
γ(t), γ̇(t)

)
dt

for all f ∈ C0
ℓ . Observe that µγ ∈Mℓ because if γ is absolutely contin-

uous then
∫
|γ̇(t)| dt < +∞. Let C(M) be the set of such µγ ’s and let

C(M) be its closure in Mℓ. Observe that the set C(M) is convex. We

call C(M) the set of holonomic measures on M .
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2-4. invariance of minimizing measures. 31

2-4 Invariance of minimizing measures.

Given a Borel probability measure µ in TM define its action by

AL(µ) =

∫

TM
L dµ.

Since by the superlinearity the lagrangian L is bounded below, this

action is well defined. Observe that L /∈ C0
ℓ and that AL(µ) = +∞ for

some µ ∈Mℓ (see exercise 2-3.1).

Let M(L) be the set of ϕt-invariant probabilities on TM .

2-4.1 Theorem (Mañé [38], prop. 1.1, 1.3, 1.2).

1. M(L) ⊆ C(M) ⊆Mℓ.

2. If µ ∈ C(M) satisfies

AL(µ) = min{AL(ν) | ν ∈ C(M) },

then µ ∈M(L).

3. If M is compact and a ∈ R, then the set {µ ∈ C(M) |AL(µ) ≤ a }
is compact.

Observe that item 3 implies the existence of a minimizer as in item 2.

The inclusionM(L) ⊆ C(M) follows from Birkhoff’s ergodic theorem

and the fact that C(M) is convex. Taking f = ‖v‖ in equation (2.4) we

see that Mℓ is closed, so that C(M) ⊆Mℓ.

Proof of item 2-4.1.3:

Since C(M) is closed, it is enough to prove that the set

A(a) :=
{
µ ∈Mℓ |AL(µ) ≤ a

}

is compact in Mℓ. First we prove that A(a) is closed. Let k > 0 and

define Lk := min{L, k}. Let

Bk :=
{
µ ∈Mℓ |

∫
Lk dµ ≤ a

}
.
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32 2. mañé’s critical value.

Since Lk ∈ C0
ℓ , then Bk is closed in Mℓ. Since A(a) = ∩k>0Bk, then

A(a) is closed.

In order to prove the compactness, consider a sequence {µn} ⊂ A(a).

Applying the Riesz’ theorem B.1, taking a subsequence we can assume

that there exists a measure µ on the Borel σ-algebra of TM such that

∫
fi dµn −→

∫
fi dµ, (2.7)

for every fi in the sequence used for the definition of d(·, ·). Approxi-

mating the function 1 by the functions fi we see that µ is a probability.

Approximating Lk by functions fi we have that

∫
Lk dµ = lim

n

∫
Lk dµn ≤ lim inf

n

∫
L dµn ≤ a.

Letting k ↑ +∞, by the monotone convergence theorem, we get that

AL(µ) ≤ a. (2.8)

Let B > 0 be such that |v| < L(x, v) +B for all (x, v) ∈ TM . Then

∫
|v| dµ ≤ AL(µ) +B ≤ a+B < +∞. (2.9)

So that µ ∈Mℓ.

We now prove that limn

∫
|v| dµn −→

∫
|v| dµ. Let ε > 0. By

adding a constant we may assume that L > 0. Choose r > 0 such that

L(x, v) > aε−1 |v| for all |v| > r. Then

∫

|v|>r
|v| dµn ≤

ε

a

∫

|v|>r
L dµn ≤

ε

a

∫
L dµn ≤ ε.

Similarly, by (2.8), ∫

|v|>r
|v| dµ ≤ ε.
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2-4. invariance of minimizing measures. 33

From (2.7) we obtain that there is N > 0 such that

∣∣∣∣∣

∫

|v|≤r
|v| dµ−

∫

|v|≤r
|v| dµn

∣∣∣∣∣ < ε, for n > N.

Adding these inequalities we get that

∣∣∣∣
∫
|v| dµn −

∫
|v| dµ

∣∣∣∣ ≤ 3 ε.

The proof of item 2-4.1.2 requires some preliminary results which we

present now. Item 2-4.1.2 is proved at the end of the section.

The following proposition is needed to show that the minimum of

the action in C(M) is the same as the minimum on C(M).

2-4.2 Proposition.

Given µ ∈ C(M), there are µηn ∈ C(M) such that µηn → µ and

lim
n

∫
L dµηn =

∫
L dµ.

2-4.3 Remark. The statement of proposition 2-4.2 is not trivial. It is

easy to see that the function AL : C(M) → R is always lower semicon-

tinuous (see the last argument of the proof of 2-4.2), but in general it

is not continuous. It is possible to give a sequence µγn ∈ C(M) such

that µγn → µ in C(M) but lim infnAL(µγn) > AL(µ) for a quadratic

lagrangian L.

This can be made by calibrating the high speeds in γn so that∫
[|v|>R] |v| dµγn → 0 but a := lim infn

∫
[|v|>R] Ldµγn > 0. Then the

limit measure µ will have support on [|v| ≤ R] and “will not see” the

remnant a of the action.
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34 2. mañé’s critical value.

Proof: Let A > 1 and let γ : [0, T ] → M be a closed absolutely con-

tinuous curve. We reparametrize γ to a curve η : [0, S] → M such that

η̇ = γ̇ when |γ̇| < A and η̇ = γ̇
|γ̇| A when |γ̇| > A. So that |η̇| ≤ A. Write

η(s(t)) = γ(t), w(s) = |η̇(s)| and v(t) = |γ̇(t)|. We want

∫ s(t)

0
w(s) ds =

∫ t

0
v(t) dt,

so that

s′(t) =
v(t)

w(s(t))
=

{
1 when v(t) ≤ A.
v(t)
A when v(t) ≥ A.

Then

S(T ) =

∫

[v(t)≤A]
dt+

∫

[v(t)≥A]

v(t)

A
dt,

S(T )

T
= µγ([|v| ≤ A]) +

∫

[|v|≥A]

|v|
A

dµγ ,

∣∣∣∣
S(T )

T
− 1

∣∣∣∣ ≤
∫

[|v|>A]
dµγ +

∫

[|v|≥A]

|v|
A
dµγ

≤ 2

∫

[|v|>A]
|v| dµγ . (2.10)

Suppose that f : TM → R is µη-integrable. Since ds
dt = v(t)

A when

v(t) > A then

∫

[|γ̇(t(s))|>A]
f(η(s), γ̇(t(s))|γ̇(t(s))|A) ds =

∫

[|γ̇(t)>A]
f
(
γ(t), γ̇(t)|γ̇(t)|A

) |γ̇(t)|
A

dt.
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2-4. invariance of minimizing measures. 35

Then
∫
f dµη =

1

S(T )

∫
f(η(s), η̇(s)) ds

=
1

S(T )

[∫

[|γ̇|≤A]
f(γ(t), γ̇(t)) dt+

∫

[|γ̇(t(s))|>A]
f
(
η(s), γ̇(t(s))|γ̇(t(s))|A

)
ds

]

=
T

S(T )

[∫

[|v|≤A]
f(v) dµγ(v) +

∫

[|v|>A]
f
(
v
|v|A

) |v|
A
dµγ

]

For A > 1 big enough,
∫

[|v|>A]
|v| dµγ < ε < 1

4 . (2.11)

Define

fA(v) :=

{
f(v) if |v| ≤ A,

f
(
v
|v|A

) |v|
A if |v| > A.

Then ∫
f dµη = T

S(T )

∫
fA dµγ . (2.12)

Observe that from (2.10) and (2.11), we have that

∣∣∣ T
S(T ) − 1

∣∣∣ ≤ 4 ε. (2.13)

Then
∣∣∣∣
∫
f dµη −

∫
fA dµγ

∣∣∣∣ ≤
∣∣∣ T
S(T ) − 1

∣∣∣
∫
|fA| dµγ ≤ 4 ε

∫
|fA| dµγ .

(2.14)

If ‖f‖∞ ≤ 1, then
∫
|fA| dµγ ≤

∫

[|v|≤A]
|f | dµγ +

∫

[|v|>A]
|f − fA| dµγ

≤ 1 +

∫

[|v|>A]

|v|
A
dµγ ≤ 1 + ε.
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36 2. mañé’s critical value.

∣∣∣∣
∫
f dµη −

∫
f dµγ

∣∣∣∣ =

∣∣∣∣ T
S(T )

∫
fA dµγ −

∫
f dµγ

∣∣∣∣

≤
∣∣∣ T
S(T ) − 1

∣∣∣
∫
|fA| dµγ +

∫
|f − fA| dµγ

≤ 4 ε (1 + ε) + ε ≤ 6 ε.

Also, using (2.14),
∣∣∣∣
∫
|v| dµη −

∫
|v| dµγ

∣∣∣∣ =
∣∣∣ T
S(T ) − 1

∣∣∣
∫
|v| dµγ ≤ 4 ε

∫
|v| dµγ .

Hence

dMℓ
(µη, µγ) ≤ 6 ε

∫
(|v| + 1) dµγ . (2.15)

Now let µ ∈ C(M). Let

K := 1 +

∫
(|v| + 1) dµ. (2.16)

For R > 0, define

LR(v) :=

{
L(v) if |v| ≤ R.

L
(
v
|v|R

) |v|
R if |v| > R.

Claim: If E(v) > 0 for all |v| ≥ R, then

LR(v) ≤ L(v) for all v ∈ TM.

Proof:

If |v| ≤ R then LR(v) = L(v). Suppose that |v| = R. For s ≥ 1 let

f(s) := L(sv)− LR(sv) = L(sv)− sL(v).

It is enough to prove that f(s) ≥ 0 for all s ≥ 1. We have

f ′(s) = v · Lv(sv)− L(v)

f ′′(s) = v · Lvv(sv) · v > 0.
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We have that f(1) = 0, f ′(1) = E(v) > 0, f ′′(s) > 0 for all s ≥ 1. This

implies that f(s) ≥ 0 for all s ≥ 1.

♦
Given N > 0, choose R = R(N) > 1 such that

E(v) > 0 if |v| ≥ R and

∫

|v|>R
|v| dµ < 1

N . (2.17)

Observe LR(N) has linear growth. Choose µγN
∈ C(M) such that

dMℓ
(µγN

, µ) < 1
N , (2.18)

∫
LR(N) dµγN

≤
∫
LR(N) dµ+ 1

N ,

and
∫

[|v|≤R(N)]
|v| dµγN

≥
∫

[|v|≤R(N)]
|v| dµ− 1

N . (2.19)

Then
∫

(|v| + 1) dµγN
≤ K from (2.16) and (2.18), (2.20)

∫

[|v|>R(N)]
|v| dµγN

< 3
N from (2.17), (2.18) and (2.19). (2.21)

Construct ηN as above for γN and A = R(N). Then from (2.11), (2.15),

(2.20) and (2.21), dMℓ
(µηN

, µγN
) < 18

N K. From (2.18),

dMℓ
(µηN

, µ) < 18
N K + 1

N .

Thus µηN

N−→ µ in C(M). Moreover, from (2.12), (2.13), (2.11) and the

claim,
∫
L dµηN

= TN

S(TN )

∫
LR(N) dµγN

≤ TN

S(TN )

[ ∫
LR(N) dµ+ 1

N

]

≤
(
1 + 12

N

) [ ∫
L dµ+ 1

N

]
.
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38 2. mañé’s critical value.

Hence

lim sup
N

∫
L dµηN

≤
∫
L dµ.

Fix R > 0 such that E > 0 on |v| > R. Then LR has linear growth

and by the claim LR ≤ L. Therefore

lim inf
N

∫
L dµηN

≥ lim
N

∫
LR dµηN

=

∫
LR dµ.

Letting R ↑ +∞, by the dominated convergence theorem we get that

lim inf
N

∫
L dµηN

≥
∫
L dµ.

Given x, y ∈M , define

S(x, y;T ) := inf
γ∈CT (x,y)

AL(γ).

Observe that S(x, y;T ) > −∞ because L is bounded below. If γ ∈
Cac([0, T ],M), define

S+(γ) := AL(γ)− S(γ(0), γ(T );T ).

The absolutely continuous curves γ with S+(γ) = 0 are called Tonelli

minimizers. Observe that a Tonelli minimizer is a solution of (E-L).

Given γ1, γ2 ∈ Cac([0, T ],M), the absolutely continuous distance

d1(γ1, γ2) is defined by

d1(γ1, γ2) := sup
t∈[0,T ]

d
(
γ1(t), γ2(t)

)
+

∫ T

0
dTM

(
[γ1(t), γ̇1(t)], [γ2(t), γ̇2(t)]

)
dt.

2-4.4 Proposition. Given a compact subset K ⊆M and given C, ε > 0

there exist δ > 0 such that if γ : [0, T ]→M is absolutely continuous and

satisfies
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2-4. invariance of minimizing measures. 39

i. 1 ≤ T ≤ C.

ii. AL(γ) ≤ C.

iii. S+(γ) ≤ δ.

Then either γ([0, T ]) ∩K = � or there exists a Tonelli minimizer γ0 :

[0, T ]→M such that d1(γ0, γ) ≤ ε.

Proof: If such δ does not exists then there is a sequence γn ∈
Cac([0, Tn],M) such that γn([0, Tn])∩K 6= �, 1 ≤ Tn ≤ C, S+(γn)→ 0,

AL(γn) ≤ C and d1(γn, η) ≥ ε for any Tonelli minimizer η.

Adding a constant we can assume that L > 0. Let B > 0 be such

that L(x, v) > |v|−B for all (x, v) ∈ TM . Choose s0 ∈ [0, Tn] such that

γn(s0) ∈ K. Then

d(K,γn(t)) ≤ d(γn(s0), γn(t)) ≤
∫

[s0,t]
|γ̇n|

≤
∫

[s0,t]

[
L(γn, γ̇n) +B

]
≤ C +BC.

Let Q := { y ∈M | d(y,K) ≤ C+BC }. Then we have that γn([0, Tn]) ⊆
Q.

We can assume that Tn → T , γn(0) → x ∈ Q and γn(Tn) → y ∈ Q.

Moreover, we can assume that Tn ≡ T , γn(0) ≡ x and γn(T ) ≡ y. By

theorem 3-1.2, the set A(b) =
{
γ ∈ CT (x, y) |AL(γ) ≤ b

}
is compact in

the C0-topology. Then we can assume that there is γ0 ∈ CT (x, y) such

that γn → γ0 in the C0-topology. Since the action functional is lower

semicontinuous, then AL(γ0) ≤ lim infnAL(γn) = S(x, y;T ), because

S+(γn) → 0. Thus γ0 is a Tonelli minimizer. Moreover, we have that

AL(γn)→ AL(γ0). By proposition 3-1.3, γn → γ0 in the d1-topology.

Let

H :=
{
h : TM → R

∣∣ ‖f‖∞ ≤ 1, [h]Lip ≤ 1, h with compact support
}
,
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40 2. mañé’s critical value.

where

[h]Lip = sup
(x,v)6=(y,w)

|h(x, v) − h(y,w)|
dTM

(
(x, v), (y,w)

)

is the smallest Lipschitz constant for h.

2-4.5 Corollary.

Given h ∈ H and C > 0 there exist δ = δ(C, h) > 0 such that if

γ : [0, T ]→M satisfies conditions 2-4.4.i, 2-4.4.ii, 2-4.4.iii then
∣∣∣∣
∮

γ
h−

∮

γ
h ◦ ϕ1

∣∣∣∣ ≤ 5. (2.22)

Proof: Let K = π
(
supp(h) ∪ ϕ−1(supp(h))

)
. Given C > 0 and ε > 0

let δ = δ(C, ε) > 0 and A > 0 be given by proposition 2-4.4 then if

γ : [0, T ] → M satisfies conditions 2-4.4.i, 2-4.4.ii, 2-4.4.iii we have

that either γ([0, T ]) ∩K = �, or we can take γ0 minimizing such that

d1(γ0, γ) ≤ ε.
Observe that if γ([0, T ])∩K = �, then h(γ, γ̇) ≡ 0 and h◦ϕ1(γ, γ̇) ≡

0. This implies (2.22). Suppose then that d1(γ0, γ) ≤ ε.
We have that

∣∣∣∣
∮

γ
h−

∮

γ0

h

∣∣∣∣ ≤ [h]Lip d1(γ, γ0) ≤ 1 · 1 · ε,

where [h]Lip is the smallest Lipschitz constant of h. Let Q(h) :=
ϕ−1(supp(h)), then

∣∣∣∣
∮

γ
h ◦ ϕ1−

∮

γ0

h ◦ ϕ1

∣∣∣∣ ≤ [h]Lip [ϕ1|Q(h)]Lip d1(γ, γ0) ≤ 1 · [ϕ1|Q(h)]Lip · ε.

Since γ0 is a solution of (E-L), we have that
∣∣∣∣
∮

γ0

h−
∮

γ0

h ◦ ϕ1

∣∣∣∣ =

∣∣∣∣
∫ T

0
h
(
γ0(t), γ̇0(t)

)
− h

(
γ0(t+ 1), γ̇0(t+ 1)

)
dt

∣∣∣∣

≤
∫ 1

0
|h(γ0, γ̇0)| dt +

∫ T+1

T
|h(γ0, γ̇0)| dt ≤ 2.
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2-4. invariance of minimizing measures. 41

Hence ∣∣∣∣
∮

γ
h−

∮

γ
h ◦ ϕ1

∣∣∣∣ ≤ ε
(
1 + [ϕ1|Q(h)]Lip

)
+ 2.

Proof of item 2-4.1.2:

Observe that to prove that µ is invariant it is enough to prove that
∫
h dµ =

∫
h d(ϕ∗

1 µ) for all h ∈ H. (2.23)

By proposition 2-4.2, there exists a sequence µγn ∈ C(M) such that

µγn → µ and

lim
n
AL(µγn) = AL(µ) = min

{
AL(ν) | ν ∈ C(M)

}
=: k. (2.24)

Let Tn be a period of the curve γn : R → M . Take an integer N > 0.

By joining a constant curve if necessary, we can assume that every Tn
is a multiple of N and that limn→∞ Tn = +∞. Given C > 0 let

Bn(C) :=
{
j ∈ N | 1 ≤ j ≤ Tn

N , AL(γn,j) ≥ C
}
,

where

γn,j := γn|[jN,(j+1)N ].

By the superlinearity L is bounded below, adding a constant we can

assume that L > 0. Then we can assume that

AL(µγn) =
1

Tn

∫ Tn

0
L(γn, γ̇n) dt ≤ 2 k ∀n.

Hence

2 k Tn ≥
∑

j∈Bn(C)

AL(γn,j) ≥ C#Bn(C).

Thus
#Bn(C)

Tn
≤ 2k

C
. (2.25)
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42 2. mañé’s critical value.

Given δ > 0, let

B′n(δ) :=
{
j ∈ N | 1 ≤ j ≤ Tn

N − 1, S+(γn,j) > δ
}
.

Then

S+(γn) ≥
(Tn/N)−1∑

j=1

S+(γn,j) ≥ δ #B′n(δ).

Moreover,

k ≤ 1

Tn
S(γn(0), γ(Tn);Tn) = AL(µγn)− 1

Tn
S+(γn).

Hence

S+(γn) ≤ Tn
(
AL(µγn)− k

)
.

Therefore
#B′n(δ)
Tn

≤ 1

δ

(
AL(µγn)− k

)
. (2.26)

Now fix h ∈ H. Then

∣∣∣∣
∫
h dµγn −

∫
h d(ϕ∗

1 µγn)

∣∣∣∣ ≤
1

Tn

(Tn/N)−1∑

j=0

∣∣∣∣∣

∮

γn,j

h−
∮

γn,j

h ◦ ϕ1

∣∣∣∣∣ .

Denote B′′n := Bn(C) ∪ B′n(δ). Since sup |h| ≤ 1, then

∣∣∣∣
∫
h dµγn −

∫
h d(ϕ∗

1 µγn)

∣∣∣∣ ≤
1

Tn

∑

j /∈B′′
n

∣∣∣∣∣

∮

γn,j

h−
∮

γn,j

h ◦ ϕ1

∣∣∣∣∣+
1

Tn
2N #B′′n.

Now choose C ≥ N2 and δ = δ(C, h) > 0 from corollary 2-4.5. Using

equations (2.25), (2.26) and corollary 2-4.5 we obtain that

∣∣∣∣
∫
h dµγn −

∫
h d(ϕ∗

1 µγn)

∣∣∣∣ ≤
5

Tn

(
Tn
N
−#B′′n

)
+

1

Tn
2N #B′′n

≤ 5

N
+ 2N

(
2k

C
+

1

δ

(
AL(µγn)− k

))
.
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2-4. invariance of minimizing measures. 43

Now let n→∞. Using equation (2.24) and that C ≥ N2, µγn → µ and

h, h ◦ ϕ1 ∈ C0
ℓ (because they have compact support), we obtain that

∣∣∣∣
∫
h dµ −

∫
h d(ϕ∗

1 µ)

∣∣∣∣ ≤
5

N
+

4k

N
.

Since N is arbitrary, this difference is zero and we get (2.23).
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44 2. mañé’s critical value.

2-5 Ergodic characterization of the critical

value.

Given a Borel probability measure µ in TM define its action by

AL(µ) =

∫

TM
L dµ.

Since by the superlinearity the lagrangian L is bounded below, this

action is well defined.

Let M(L) be the set of ϕt-invariant probabilities on TM .

2-5.1 Theorem (Mañé [35]). If M is compact, then

c(L) = −min{AL(µ) |µ ∈M(L) }.

We will obtain theorem 2-5.1 from theorem 2-5.2 below, which also

applies to the non-compact case. If M is non-compact, theorem 2-5.1

may not hold, as seen in example 5-7.

Recall that if γ : [0, T ]→M is a closed absolutely continuous curve,

the measure µγ ∈Mℓ is defined by

∫
f dµγ =

1

T

∫ T

0
f
(
γ(t), γ̇(t)

)
dt

for all f ∈ C0
ℓ , and that C(M) is the closure of the set of such µγ ’s in

Mℓ.

2-5.2 Theorem.

c(L) = − inf{AL(µ) |µ ∈ C(M) }
= − inf{AL(µ) |µ ∈ C(M) }.

(2.27)

2-5.3 Definition. We say that a holonomic measure µ ∈ C(M) is (glob-

ally) minimizing if AL(µ) = −c(L).
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2-5. ergodic characterization of the critical value. 45

2-5.4 Remarks.

1. Recall that by theorem 2-4.1, if a minimizing measure exists, then

it is invariant under the lagrangian flow.

2. The equality between the two infima in theorem 2-5.2 is non-trivial

and follows from proposition 2-4.2.

3. Theorems 2-5.2 and 2-4.1 imply theorem 2-5.1.

4. If p : N → M is a covering, M is compact and L = L ◦ dp is the

lifted lagrangian, then theorems 2-5.2 and 2-4.1 imply that

c(L) = −min{AL(µ) |µ ∈M(L) ∩ dp∗C(N) }, (2.28)

by noticing that AL(dp∗ ν) = AL(ν) for ν ∈ C(N). Here dp∗C(N) is

the set of probabilities µγ on TM where γ is a curve on M whose

lifts to N are closed. The compactness property on theorem 2-

4.1(3) allows to obtain a minimum on (2.28) instead of the infimum

on (2.27) which may not be attained in the non-compact case.

5. The statement for coverings in equation (2.28) allows to obtain

minimizing measures which don’t appear in the Mather’s theory.

For example if cu is the critical value of the universal cover M̃ of

M and c0 is the critical value of the abelian cover M̂ of M ; the

minimizing measures on a fixed homology class (corresponding to

Mather’s theory) all have action A(µ) ≥ −c0, (see equation (2.31)

and proposition 2-7.3), while the minimizing measures for M̃ have

action cu < c0.

The measures for M̃ correspond to “minimizing in the zero homo-

topy class” while the measures for M̂ are minimizing in the zero

homology class.

The drawback of this approach is that we obtain honest minimizing

invariant measures on TM which may not lift to finite measures

on the covering TN .
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46 2. mañé’s critical value.

Proof of theorem 2-5.2:

If µγ ∈ C(M), then AL+c(L)(µγ) ≥ 0. Hence AL(µγ) ≥ −c(L). Thus

−c(L) ≤ inf{AL(µ) |µ ∈ C(M) } = inf{AL(µ) |µ ∈ C(M) },

where the last equality follows from proposition 2-4.2.

If k < c(L) then there is a closed absolutely continuous curve γ on

M such that AL+k(γ) < 0. Thus µγ ∈ C(M) and

−k > AL(µγ) ≥ inf{AL(µ) |µ ∈ C(M)}.

Now let k ↑ c(L).
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2-6. the aubry-mather theory. 47

2-6 The Aubry-Mather Theory.

Through this section we shall assume that M is compact.

2-6.a Homology of measures.

Observe that since M is compact, any 1-form is in C0
ℓ . By definition,

an holonomic probability µ ∈ C(M) satisfies
∫
TM |v| dµ < +∞ and

∫

TM
df dµ = 0 for all f ∈ C∞(M,R).

Then we can define its homology class as ρ(µ) ∈ H1(M,R) ≈ H1(M,R)∗

by
〈
ρ(µ) , [ω]

〉
=

∫

TM
ω dµ , (2.29)

for any closed 1-form ω on M , where [ω] ∈ H1(M,R) is the coho-

mology class of ω. Here we have used the identification1 H1(M,R) ≈
H1(M,R)∗ and equation (2.29) shows how the homology class ρ(µ) acts

on H1(M,R). Since µ is holonomic, the integral in (2.29) depends only

on the cohomology class of ω. The class ρ(µ) is called the homology of

µ or the rotation of µ by analogy to the twist map theory.

Using a finite basis { [ω1], . . . , [ωk] } for H1(M,R) and the topology

of C(M), we have that

2-6.1 Lemma. The map ρ : C(M)→ H1(M,R) is continuous.

2-6.b The asymptotic cycle.

Given a differentiable flow ϕt on a compact manifold N and a ϕt-

invariant probability µ, the Schwartzman’s [65] asymptotic cycle of an

1In fact, H1(M,R) ≈ hom
`

H1(M,R),R
´

= H1(M,R)∗ by the universal coefficient
theorem. Since M is compact, then H1(M,R) is a finite dimensional vector space and
hence it is naturally isomorphic to its double dual H1(M,R)∗.
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48 2. mañé’s critical value.

invariant probability µ is defined to be the homology class A(µ) ∈
H1(N,R) ≈ H1(N,R)∗ such that

〈
A(µ) , [ω]

〉
=

∫

N
ω(X) dµ ,

for any closed 1-form ω, where [ω] ∈ H1(N,R) is the cohomology class

of ω and X is the vector field of ϕt. This integral depends only on

the cohomology class of ω because the integral of a coboundary by an

invariant measure is zero: in fact, if df is an exact 1-form, then define

F (y) := lim
T→+∞

1

T

∫ T

0
df

(
X(ϕt y)

)
dt = lim

T→+∞

1
T

[
f(ϕt y)− f(y)

]
= 0,

by Birkhoff’s theorem,

∫

N
df(X) dµ =

∫

N
F dµ = 0.

If µ is ergodic and x ∈ N is a generic point 2 for µ, then

〈
A(µ) , [ω]

〉
= lim

T→+∞

1

T

∫ T

0
ω
(
X(ϕt x)

)
dt .

Applying this to a basis {ω1, . . . , ωk} for H1(N,R), we get that

A(µ) = lim
T→+∞

1
T [ γT ∗ δT ] ∈ H1(N,R),

where γT (t) = ϕt(x), t ∈ [0, T ], the curve δT is a unit speed geodesic

from ϕT (x) to x, and the limit is on the finite dimensional vector space

H1(N,R).

In the case of a lagrangian flow, the phase space N = TM is not com-

pact, but it has the same homotopy type as the configuration space M

because M is a deformation retract of TM (contracting TM along the

2i.e. lim
T→+∞

1
T

R T

0
f(ϕt x) dt =

R

f dµ for all f ∈ C0(N,R).
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2-6. the aubry-mather theory. 49

fibers to the zero section M × 0). Moreover, the ergodic components

of an invariant measure of a lagrangian flow are contained in a unique

energy level, which is a compact submanifold of TM by remark 1-3.1.

We see that the homology of an invariant probability and its asymp-

totic cycle coincide under the identification H1(TM,R)
π∗≈ H1(M,R).

2-6.2 Proposition.

π∗
(
A(µ)

)
= ρ(µ) for all µ ∈M(L),

where π∗ : H1(TM,R)→ H1(M,R) is the map induced by the projection

TM
π→M .

Proof: If ω is a closed 1-form on M , then

(π∗ ω)(X(x, v)) = ω
[
dπ

(
X(x, v)

)]
= ωx(v) ,

because the lagrangian vector field X has the form X(x, v) = (v, ∗).
Then

〈
π∗A(µ) , [ω]

〉
=

〈
A(µ) , π∗ [ω]

〉
=

∫

TM
(π∗ ω)(X) dµ

=

∫

TM
ω dµ =

〈
ρ(µ) , [ω]

〉
.

2-6.3 Lemma. The map ρ :M(L)→ H1(M,R) is surjective.

Proof: Let h ∈ H1(M,Z) be an integer homology class. Let η : [0, 1]→
M be a closed curve with homology class h. Let γ be a minimizer of the

action of L among the set of absolutely continuous curves [0, 1] → M

with the same homotopy class as η. Then by remark 1-2.2, γ is a periodic

orbit for the lagrangian flow with period 1. The invariant measure µγ
satisfies ρ(µγ) = h.

The map ρ is affine and M(L) is convex; hence ρ
(
M(L)

)
is con-

vex and, in particular, it contains the convex hull of H1(M,Z). Thus,

H1(M,R) ⊆ ρ
(
M(L)

)
.
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50 2. mañé’s critical value.

2-6.c The alpha and beta functions.

The action functional AL :M(L)→ R is lower semicontinuous3 and the

sets

M(h) := {µ ∈M(L) | ρ(µ) = h }
are closed. Hence we can define the Mather’s beta function β :

H1(M,R)→ R, as

β(h) := min
µ∈M(h)

AL(µ).

We shall prove below that the β-function is convex. The Mather’s

alpha function α = β∗ : H1(M,R) → R is the convex dual of the

β-function:

α([ω]) = max
h∈H1(M,R)

{
〈[ω] , h〉 − β(h)

}

= − min
µ∈M(L)

{
AL(µ)− 〈[ω] , ρ(µ)〉

}
using 2-6.3,

= − min
µ∈M(L)

AL−ω(µ)

= c(L− ω) , by 2-5.1. (2.30)

Observe that since L − ω is also a convex superlinear lagrangian, then

α([ω]) is finite.

2-6.4 Theorem. The α and β functions are convex and superlinear.

Proof: We first prove that β is convex. Let h1, h2 ∈ H1(M,R) and

0 ≤ λ ≤ 1. Let µ1, µ2 ∈ M(L) be such that ρ(µi) = hi and AL(µi) =

β(hi) for i = 1, 2. The probability ν = λµ1 + (1− λ)µ2 satisfies ρ(ν) =

λh1 + (1− λ)h2. Hence

β
(
λh1+(1− λ)h2

)
≤ AL

(
λµ1+(1− λ)µ2

)
= λβ(h1) + (1− λ)β(h2).

By proposition 2-6.3, ρ is surjective, and hence β is finite. By propo-

sition D.1 on the appendix, α is superlinear. By D.1, α and β are

3AL is lower semicontinuous iff lim infn AL(νn) ≥ AL(µ) when νn → µ.
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2-6. the aubry-mather theory. 51

convex. Formula (2.30), implies that α is finite and then by D.1, β is

superlinear.

For h ∈ H1(M,R) and ω ∈ H1(M,R), write

Mh(L) := {µ ∈M(L) | ρ(µ) = h, AL(µ) = β(h) } ,
Mω(L) := {µ ∈M(L) | AL−ω(µ) = −c(L− ω) }.

Since the β-function has a supporting hyperplane at each homology

class h, if ω ∈ ∂β(h), then Mh(L) ⊆ Mω(L). Conversely, since by

corollary D.2 α∗ = β, then Mω(L) ⊆Mh(L) if h ∈ ∂α(ω). Thus

⋃
h∈H1(M,R)

Mh(L) =
⋃

ω∈H1(M,R)

Mω(L).

We call these measures Mather minimizing measures and the set

M :=M0(L) = {µ ∈M(L) |AL(µ) = −c(L) },

the Mather set.

Define the strict critical value as

c0(L) : = min
ω∈H1(M,R)

c(L− ω) = min
ω∈H1(M,R)

α(ω)

= −β(0).
(2.31)

By corollary 3-6.3 the strict critical value is the lowest energy level which

supports Mather minimizing measures and since c0(L) = −β(0), these

minimal energy Mather minimizing measures have trivial homology.

51



52 2. mañé’s critical value.

2-7 Coverings.

We shall deal mainly with compact manifolds M , but there are some

important non-compact cases, for example the coverings of M . Partic-

ularly interesting are the abelian cover M̂ , the universal cover M̃ and

the finite coverings.

The abelian cover M̂ of M is the covering whose fundamental group

is the kernel of the Hurewicz homomorphism π1(M) → H1(M,Z). Its

deck transformation group is H1(M,Z) and H1(M̃ ,Z) = {0}. When

π1(M) is abelian, M̂ = M̃ . A closed curve in M̂ projects to a closed

curve in M with trivial homology.

If M1
p−→ M is a covering, denote by L1 := L ◦ dp : TM1 → R the

lifted lagrangian to TM1.

2-7.1 Lemma. If M1
p−→M is a covering, then c(L1) ≤ c(L).

Proof: The lemma follows form the fact that closed curves on N project

to closed curves on M .

2-7.2 Proposition. If M1 is a finite covering of M2 then c(L1) = c(L2).

Proof: We know that c(L1) ≤ c(L2). Suppose that the strict inequality

holds and let k be such that c(L1) < k < c(L2). Hence there exists

a closed curve γ in M2 with negative (L2 + k)-action. Since M1 is a

finite covering of M2 some iterate of γ lifts to a closed curve in M1 with

negative (L1 + k)-action which contradicts c(L1) < k.

2-7.3 Proposition. [60]

c0(L) = ca(L) = critical value of the abelian cover.

Then we have

cu(L) ≤ ca(L) = c0(L) ≤ c(L− ω) ∀[ω] ∈ H1(M,R),
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where cu is the critical value of the lift of the lagrangian to the universal

cover. When cu(L) < c0(L), the method in equation (2.28) gives some

minimizing measures which are not Mather minimizing. For symmetric

lagrangians c(L) = e0 = c0(L) = cu(L). Mañé [39] gives an example in

which e0 < ca(L) = c0(L) < c(L). G. Paternain and M. Paternain [60]

give an example in which cu(L) < ca(L).

Proof: Let ω be a closed form in M . Since H1(M,R) = {0}, the lift ω̂

of ω to M̂ is exact, then

ca(L) := c(L̂) = c(L̂− ω̂) ≤ c(L− ω).

Hence

ca(L) ≤ min
ω∈H1(M,R)

c(L− ω) = c0(L).

Moreover,

−ca(L) = inf
{
AbL

(µ) |µ ∈ C(M̂)
}

= inf{AbL
(µγ) |µγ ∈ C(M̂ ) } by proposition 2-4.2,

= inf{AL(µγ) |µγ ∈ C(M), ρ(µ) = 0 },
because a closed curve γ on M has homology [γ] = 0 if and only if it

has a closed lift to M̂ . Then

−ca(L) = inf{AL(µ) |µ ∈ C(M), ρ(µ) = 0 }, by 2-4.2 and 2-6.1

≤ min{AL(µ) |µ ∈M(L), ρ(µ) = 0 } becauseM(L) ⊂ C(M)

= −β(0) = c0(L).

The real abelian cover is the covering M̌ of M with h : π(M) →
H1(M,R) is the Hurewicz homomorphism. It is an intermediate covering

M̃ → M̌ → M and the deck transformations of M̂ → M̌ are given by

the torsion4 of H1(M,Z). Hence M̂ → M̌ is a finite cover so that they

have the same critical value ca(L) = c0(L).

4i.e. the elements of finite order Zn1
⊕ · · · ⊕ Znk

⊆ H1(M,Z).
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Chapter 3

Globally minimizing orbits.

3-1 Tonelli’s theorem.

Given x, y ∈M and T > 0, let

CT (x, y) :=
{
γ ∈ Cac([0, T ],M) | γ(0) = x, γ(T ) = y

}
.

We say that γ ∈ CT (x, y) is a Tonelli minimizer if

AL(γ) = min
η∈CT (x,y)

AL(η) .

In this section we shall prove

3-1.1 Tonelli’s Theorem.

For all x, y ∈M and T > 0 there exists a Tonelli minimizer on CT (x, y).

The only difference in the proof of this theorem when M is noncom-

pact is corollary 3-1.8. An independent proof of this corollary is given

in remark 3-1.9.

The idea of Tonelli’s theorem is to prove that the sets

A(c) :=
{
γ ∈ CT (x, y) | AL(γ) ≤ c } (3.1)
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56 3. globally minimizing orbits.

are compact in the C0-topology. Then a Tonelli minimizer will be a

curve in ⋂
c≥α
A(c) 6= � ,

where α = infη∈CT (x,y)AL(η) ≥ inf L > −∞.

An addendum to Tonelli’s theorem due to Mather [46] states that

these sets are compact in the topology of absolutely continuous curves.

Given γ1, γ2 ∈ Cac([0, T ],M) define their absolutely continuous distance

by

d1(γ1, γ2) := sup
t∈[0,T ]

dM
(
γ1(t), γ2(t)

)
+

∫ T

0
dTM

(
[γ1(t), γ̇1(t)], [γ2(t), γ̇2(t)]

)
dt.

3-1.2 Theorem (Mather [46]). For any x, y ∈ M , T > 0, b ∈ R, the

set

A(b) :=
{
γ ∈ CT (x, y) |AL(γ) ≤ b

}

is compact in the C0-topology.

This theorem is proved in 3-1.12. We quote here the following propo-

sition (addendum on page 175 of Mather [46]).

3-1.3 Proposition. (Mather [46])

If N ⊆ M is a compact subset and γ1, γ2, . . . is a sequence in

Cac([a, b], N) which converges C0 to γ and AL(γi) converges to AL(γ),

then γ1, γ2, . . . converges in the d1-topology to γ.

In fact, the set A(b) in proposition 3-1.2 is not compact in the d1-

topology as the following example shows. Since the action functional is

only lower semicontinuous on CT (x, y) a priori it is not possible to ensure

the convergence of the action in a C0-convergent sequence obtained from

theorem 3-1.2. Unless, for example, if the action is converging to the

minimal action (e.g. proposition 2-4.4).
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3-1. tonelli’s theorem. 57

3-1.4 Example. A(b) is not compact in the d1-topology.

Let L = 1
2 |v|2 be the riemannian lagrangian on R

2 with the flat

metric. Let η(t) = (t, 0) and γn(t) = (t, 1
n sin(2πnt)), t ∈ [0, 1]. The

action AL(γn) = 1 + 2π2 is bounded. γn → η in the C0-topology.

The length of γn is bounded below by a polygonal curve join-

ing the maxima and minimums of its second component. Hence

ℓ(γn) ≥ 2n
√

4/n2 + 1/(4n2) > 4. Therefore ℓ(γn) 6→ ℓ(η), and thus

γn 6→ η in the d1-topology. Moreover, since a reparametrization pre-

serves length, there is no reparametrization of the γn’s which converges

in the d1 topology to η.

We shall split the proof of Tonelli’s theorem in several parts:

3-1.5 Definition.

A family F ⊆ C0([a, b],M) is absolutely equicontinuous if ∀ ε > 0

∃ δ > 0 such that

N∑
i=1
|ti − si| < δ =⇒

N∑
i=1

d(xsi
, xti) < ε,

whenever ]s1, t1[, . . . , ]sN , tN [ are disjoint intervals in [a, b].

3-1.6 Remark.

(i) An absolutely equicontinuous family is equicontinuous.

(ii) A uniform limit of absolutely equicontinuous functions is abso-

lutely continuous.

3-1.7 Lemma. For all c ∈ R and T > 0, the family

F(c) :=
{
γ ∈ Cac([0, T ],M) | AL(γ) ≤ c

}

is absolutely equicontinuous.
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58 3. globally minimizing orbits.

Proof: Since by the superlinearity, the lagrangian L is bounded below;

by adding a constant we may assume that L ≥ 0. For a > 0 let

K(a) := inf
{ L(x, v)

|v|
∣∣∣ (x, v) ∈ TM, |v| ≥ a

}
. (3.2)

The superlinearity implies that lima→+∞K(a) = +∞. Given ε > 0 let

a > 0 be such that
c

K(a)
<
ε

2
.

Let 0 ≤ s1 < t1 ≤ · · · ≤ sN < tN ≤ T , J := ∪Ni=1[si, ti] and E :=

J ∩
[
|ẋ| > a

]
, then L(xs, ẋs) ≥ K(a) |ẋs| for s ∈ E. We have that

K(a)
N∑
i=1

d(xs, xt) ≤ K(a)

∫

E
|ẋ|+K(a)

∫

J\E
|ẋ|

≤
∫

E
L(x, ẋ) + a ·K(a) m(J)

≤ c+ a ·K(a) m(J), (because L ≥ 0),

where m is the Lebesgue measure on [0, T ]

N∑
i=1

d(xsi
, xti) ≤

∫
J |ẋs| ≤ c

K(a) + a m(J) ≤ ε
2 + a m(J). (3.3)

This implies the absolute equicontinuity of F(c).

In order to apply the Arzela-Ascoli theorem we need a compact

range, for this we have:

3-1.8 Corollary. For all c ∈ R and T > 0 there is R > 0 such that for

all x, y ∈M ,

A(c) ⊆ Cac
(
[0, T ], B(x,R)

)
,

where B(x,R) := { z ∈M | dM (x, z) ≤ R }.
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3-1. tonelli’s theorem. 59

Proof: Inequality (3.3) forN = 1 and J = [s, t] is d(xs, xt) ≤ ε
2+a |t−s|.

It is enough to take R = ε
2 + aT .

3-1.9 Remark.
Corollary 3-1.8 is the only difference for the proof of Tonelli’s theorem when

M is non-compact. Another proof for corollary 3-1.8 is the following:

Adding a constant we may assume that L ≥ 0. There is B > 0 such that
L(x, v) ≥ |v| −B for all (x, v) ∈ TM . Then for 0 ≤ s ≤ t ≤ T , we have that

d(xs, xt) ≤
∫

t

s

|ẋ| ≤ BT +

∫
t

s

L(x, ẋ) ≤ BT + c.

Recall that

F(c) :=
{
γ ∈ Cac([0, T ],M) | AL(γ) ≤ c

}

3-1.10 Theorem.

If γn ∈ F(c) and γn → γ in the uniform topology, then γ ∈ F(c).

We shall need the following lemma. We may assume that M = R
n,

3-1.11 Lemma. Given K compact, a > 0 and ε > 0, there exists δ > 0

such that if x ∈ K, |x− y| ≤ δ, |v| ≤ a and w ∈ Rn, then

L(y,w) ≥ L(x, v) + Lv(x, v) (w − v)− ε. (3.4)

Proof of theorem 3-1.10:

It is immediate from the definition 3-1.5 that a uniform limit of abso-

lutely equicontinuous curves is absolutely continuous. We may assume

that γn([0, T ]) is contained in a compact neighbourhood K of γ([0, T ]).

By the superlinearity we may assume that L ≥ 0. Let ε > 0 and

E =
[
|γ̇| ≤ a

]
, then by lemma 3-1.11, for n large,

∫

E

[
L(γ̇) + Lv(γ̇)(γ̇n − γ̇)− ε

]
≤

∫

E
L(γ̇n) ≤ c (since L ≥ 0). (3.5)
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Claim:

lim
n

∫

E
Lv(γ̇) (γ̇n − γ̇) = 0.

Letting n→ +∞ on (3.5), we have that
∫

E
L(γ̇)− ε T ≤ c.

Since E ↑ [0, T ] when a→ +∞ and L ≥ 0, then

∫ T

0
L(γ̇) = lim

a→+∞

∫

E
L(γ̇) ≤ c+ ε T.

Now let ε→ 0.

We now prove the claim. We have to prove that

lim
n

∫
ψ żn = 0, (3.6)

where ψ = Lv(γ̇)·1E is bounded, zn = γn−γ and 1E is the characteristic

function of E. Since ‖zn‖∞ → 0, if A = [a, b] is an interval then

lim
n

∫

A
żn = lim

n
zn

∣∣∣
b

a
= 0. (3.7)

Since γ is absolutely continuous, γ̇ ∈ L1. From γ̇ ∈ L1 and inequality

(3.3), given ε > 0 there is δ > 0 such that

m(D) < δ =⇒
∫

D
|żn| < ε, ∀n ∈ N. (3.8)

Equations (3.7) and (3.8) imply that (3.7) holds for any Borel set A,

approximating A by a finite union of intervals. Hence (3.6) holds if ψ is

a simple function
∑

k ak 1Ak
.

Let f be a simple function such that ‖f‖∞ ≤ 2 ‖ψ‖∞ and
∫
|ψ − f | <

ε2. Let B = [|ψ − f | > ε], then m(B) < ε.
∣∣∣∣
∫

(ψ − f) żn

∣∣∣∣ ≤ ε
∫

Bc

|żn|+ 3 ‖ψ‖∞
∫

B
|żn| ≤ h(ε).
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3-1. tonelli’s theorem. 61

By (3.8) one can take h(ε) with limε h(ε) = 0. Then
∣∣∣∣limn

∫
ψ żn

∣∣∣∣ ≤ lim
n

∣∣∣∣
∫
f żn

∣∣∣∣ + lim sup
n

∣∣∣∣
∫

(ψ − f) żn

∣∣∣∣ ≤ 0 + h(ε)
ε−→ 0.

3-1.12. Proof of Tonelli’s theorem:

By lemma 3-1.7, the family A(c) in (3.1) is equicontinuous, and by
corollary 3-1.8, the curves in A(c) have a uniform compact range. By
Arzelá-Ascoli’s theorem and theorem 3-1.10, A(c) is compact. Then

γ ∈
⋂

c≥infCT (x,y)AL

A(c)

is a Tonelli’s minimizer on CT (x, y).

Proof of lemma 3-1.11:

Let

C1 := sup
{
|Lv(x, v)| | x ∈ K, |v| ≤ a

}

C2 := sup
{
L(x, v)− Lv(x, v) · v | x ∈ K, |v| ≤ a

}
.

Let b > 0 be such that

K(b) · r ≥ C2 + C1 r for all r ≥ b,
where K(b) is from (3.2). Then if y ∈M and |w| > b,

L(y,w) ≥ K(b) |w|
≥ C2 + C1 |w|
≥ C2 + Lv(x, v) · w
≥ L(x, v) + Lv(x, v) · (w − v) for |w| ≥ b.

This gives (3.4) when |w| ≥ b. Since L is convex,

L(x,w) ≥ L(x, v) + Lv(x, v) · (w − v) ∀w ∈ R
n.

Then there is δ > 0 such that for |x − y| ≤ δ, |v| ≤ a and |w| ≤ b
inequality (3.4) holds.
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62 3. globally minimizing orbits.

3-2 A priori compactness.

The following lemma, due to Mather [46] for Tonelli minimizers in the

non-autonomous case, will be very useful. In the autonomous case its

proof is very simple.

3-2.1 Lemma.

For C > 0 there exists A = A(C) > 0 such that if x, y ∈M and γ ∈
CT (x, y) is a solution of the Euler-Lagrange equation with AL(γ) ≤ C T ,

then |γ̇(t)| < A for all t ∈ [0, T ].

Proof: By the superlinearity there is D > 0 such that L(x, v) ≥ |v|−D
for all (x, v) ∈ TM . Since AL(γ) ≤ C T , the mean value theorem implies

that there is t0 ∈]0, T [ such that

|γ̇(t0)| ≤ D + C.

The conservation of the energy and the uniform bounds (1.7) and (1.6)

imply that there is A = A(C) > 0 such that |γ̇| ≤ A.

For k ≥ c(L) and x, y ∈M , define

Φk(x, y;T ) := inf
γ∈CT (x,y)

AL+k(γ).

3-2.2 Corollary. Given ε > 0, there are constants A(ε), B(ε), C(ε) > 0

such that if T ≥ ε, d(x, y) < R and k ∈ R, then

(i) Φk(x, y;T ) ≤ [C(ε,R) + k] T .

(ii) If γ ∈ CT (x, y) is a solution of the Euler-Lagrange equation such

that AL+k(γ) ≤ [C(ε,R) + k]T + 1, then |γ̇| ≤ A(ε,R) and

E(γ, γ̇) ≤ B(ε,R).
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Proof: Comparing with the action of a geodesic on CT (x, y), we get (i)

with

C(ε,R) = sup
{
L(v)

∣∣ |v| ≤ d(x,y)
ε ≤ R

ε

}
.

Using (i) and lemma 3-2.1,we obtain A(ε,R). Using A(ε,R) and in-

equality (1.7) we obtain B(ε,R).

3-2.3 Lemma.

There exists A > 0 such that if x, y ∈ M and γ ∈ CT (x, y) is a

solution of the Euler-Lagrange equation with

AL+c(γ) ≤ Φc(x, y) + dM (x, y),

then (a) T > 1
A dM (x, y).

(b) |γ̇(t)| < A for all t ∈ [0, T ].

Proof: Let η : [0, d(x, y)] → M be a minimal geodesic with |η̇| ≡ 1.

Let ℓ(r) be from (1.1) and D = ℓ(1) + c + 2. From the superlinearity

condition there is B > 0 such that

L(x, v) + c > D |v| −B, ∀(x, v) ∈ TM.

Then

[ℓ(1) + c] d(x, y) ≥ AL+c(η) ≥ Φc(x, y) (3.9)

≥ AL+c(γ)− d(x, y) (3.10)

≥
∫ T

0

(
D |γ̇| −B

)
dt − d(x, y)

≥ D d(x, y)−B T − d(x, y).

Hence

T ≥ D−ℓ−c−1
B d(x, y) ≥ 1

B d(x, y).
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From (3.9) and (3.10), we get that

AL(γ) ≤
[
ℓ(1) + c+ 1

]
d(x, y)− c T,

≤
{
B [ ℓ(1) + c+ 1 ]− c

}
T.

Then lemma 3-2.1 completes the proof.
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3-3 Energy of time-free minimizers.

A curve γ ∈ C(x, y) is a global minimizer or time free minimizer for

L+ k if k ≥ c(L) and AL+k(γ) = Φk(x, y).

3-3.1 Proposition. A time-free minimizer for L+k has energy E ≡ k.

We need the following

3-3.2 Lemma. Let : x : [0, T ] → M be an absolutely continuous curve

and k ∈ R. For λ > 0, let xλ(t) := x(λt) and A(λ) := AL+k(xλ). Then

A′(1) =

∫ T

0

[
E(x, ẋ)− k

]
dt.

Proof: Since ẋλ(t) = λ ẋ(λt), then

A(λ) =

∫ T
λ

0

[
L(x(λt), λ ẋ(λt)) + k

]
dt.

Differentiating A(λ) and evaluating at λ = 1, we have that

A′(1) = −T
[
L(x(T ), ẋ(T )) + k

]
+

∫ T

0

[
Lx t ẋ+ Lv (ẋ+ t ẍ)

]
dt.

Integrating by parts the term (Lx ẋ+ Lvẍ) t =
(
d
dtL

)
t, we have that

A′(1) = −T
[
L(x(T ), ẋ(T )) + k

]
+ L t |T0 +

∫ T

0

(
Lv ẋ− L

)
dt

= −T k +

∫ T

0
E(x, ẋ) dt =

∫ T

0

[
E(x, ẋ)− k

]
dt.

Proof of proposition 3-3.1.

Since γ is a solution of the Euler-Lagrange equation its energy

E(γ, γ̇) is constant. Since it minimizes with free time, the derivative

in lemma 3-3.2 must be zero. So that E(γ, γ̇) ≡ k.
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3-3.3 Corollary.

Let x ∈ Cac([0, 1],M) and k > 0. For T > 0, write yT (t) = x( tT ) :

[0, T ]→M and B(T ) = AL+k(yT ). Then

B′(T ) = − 1

T

∫ T

0

[
E(yT , ẏT )− k

]
dt.

Proof: Using λ = T
S on lemma 3-3.2, we have that d

dS = − T
S2

d
dλ . Thus

d
dS

∣∣
S=T
B = − 1

T
d
dλ

∣∣
λ=1
A = − 1

T

∫ T

0

[
E(yT , ẏT )− k

]
dt.
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3-4 The finite-time potential.

Recall that if k ≥ c(L), x, y ∈M and T > 0,

Φk(x, y;T ) := inf
γ∈CT (x,y)

AL+k(γ).

Here we shall prove the following proposition. See also corollary 4-11.8.

3-4.1 Proposition.

1. For k ∈ R, a compact subset R ⊆ M and ε > 0, the function

(x, y, t) 7→ Φk(x, y; t) is Lipschitz on R × R × [ε,+∞[ for any

ε > 0.

2. Φk(x, y;T ) = Φc(x, y;T ) + (k − c)T , for k ≥ c(L), x, y ∈M .

3. limε→0+ Φk(x, y; ε) = +∞, for k ≥ c(L), x 6= y.

4. limT→+∞ Φk(x, y;T ) = +∞, for k > c(L), x, y ∈M.

5. limT→+∞ Φk(x, y;T ) = −∞, for k < c(L), x, y ∈M.

6. When M is compact, the limits in items 4 and 5 are uniform in

(x, y).

Proof: Item 2 follows from the fact that both action potentials satify

an equivalent variational principle. We now compute the limits.

3. Given A > 0, let B > 0 be such that L(x, v) > A |v| −B. Then

Φk(x, y; ε) = inf
γ∈Cε(x,y)

AL+k(γ) ≥ inf
γ

∫ ε

0
A |γ̇| −B + k

≥ Ad(x, y) + (k −B) ε.

Thus, lim infε→0+ Φk(x, y; ε) ≥ Ad(x, y). Now let A→ +∞.

67
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4. Observe that if k > c(L),

lim
T→+∞

Φk(x, y;T ) ≥ lim
T→+∞

[
Φc(x, y) + (k − c)T

]
= +∞.

When M is compact, this limit is uniform because

Φk(x, y;T ) ≥ inf
x,y∈M

Φc(x, y) + (k − c)T.

5. For k < c(L) there exists a closed curve γ ∈ CS(z, z), S > 0,

z ∈M such that AL+c(γ) < 0. Then for T = nS + τ , with S ≤ τ < 2S,

we have that

Φk(x, y;T ) ≤ Φk(x, z;
τ
2 ) + nAL+c(γ) + Φk(z, y;

τ
2 ).

This implies that limT→+∞ Φk(x, y;T ) = −∞. The uniformity of this

limit for (x, y) on compact subsets follows from the Lipschitz condition

of item 1 that we now prove.

Fix ε > 0. We prove now that the function ]ε,+∞[∋ t 7→ Φk(x, y; t)

is uniformly Lipschitz. If T > ε and γ ∈ CT (x, y) is a Tonelli minimizer,

from corollary 3-2.2 and inequality (1.6) there exists D = D(ε,R) > 0

such that |E(γ, γ̇) − k| ≤ D(ε,R) + |k|. Denote h(s) := Φk(x, y; s).

If γs(t) := γ(Ts t), t ∈ [0, s], then h(s) ≤ AL+k(γs) =: B(s). Using

corollary 3-3.3 we have that

f(T ) : = lim sup
δ→0

h(T + δ)− h(T )

δ

≤ B′(T ) =
1

T

∫ T

0

[
k − E(γ, γ̇)

]
dt

≤ D(ε,R) + |k| .

If S, T > ε we have that

Φk(x, y;S) ≤ Φk(x, y;T ) +

∫ S

T
f(t) dt

≤ Φk(x, y;T ) +
[
D(ε,R) + |k|

]
|T − S|.
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Since we can reverse the roles of S and T , this implies the uniform

Lipschitz condition for T 7→ Φk(x, y;T ).

Now we prove the Lipschitz condition on a neighbourhood of y0 for

y 7→ Φk(x0, y;T0). The proof for a neighbourhood of x0 is similar. Since

R is compact, this is enough to show that the function is Lipschitz on

R×R×]ε,+∞[.

Fix 0 < δ < ε
2 small. Let λ ∈ CT (x0, y0) be a Tonelli minimizer.

Observe that λ realizes Φk(x0, y0, T ). Let γ : [0, 1] → M be a length

minimizing geodesic joining y0 to y, with |γ̇| ≡ 1. Let η(s, t), s ∈ [0, 1],

t ∈ [T −δ, T ] be a variation by solutions of (E-L) such that η(s, T −ε) =

λ(T − δ), η(s, T ) = γ(s) and η(0, t) = λ(t). Let

E(s) := AL+k

(
λ|[0,T−δ] ∗ η(s, ·)|[T−δ,T ]

)
.

Then

E ′(s) =
d

ds

∫ T

T−δ
L

(∂η
∂t (s, t)

)
dt =

∫ T

T−δ
Lx

∂η
∂s + Lv

∂2η
∂s ∂t

= Lv
∂η
∂s

∣∣∣
T

T−δ
+

∫ T

T−δ

(
Lx − d

dtLv
) ∂η
∂s

= Lv
(
γ(s), ∂η∂t (s, T )

)
· γ̇(s).

By Weierstrass theorem ??, if δ and d(y, y0) are small enough, the curves

t 7→ η(s, t) are Tonelli minimizers — and thus they realize Φk(y0, y, δ).

Then by corollary 3-2.2, there exists A(δ,R) > 0 such that |∂η∂t (s, T )| <
A(δ,R). By lemma 1-4.4, ‖Lv(x, ∂η∂t (s, T ))‖ ≤ f(A(δ,R)). Thus

Φk(x0, y;T ) ≤ Φk(x0, y0;T ) +

∫ 1

0
E ′(s) ds

≤ Φk(x0, y0;T ) +

∫ 1

0
f(A(δ,R)) |γ̇(s)| ds

= Φk(x0, y0;T ) + f(A(δ,R)) d(y, y0).

The value od δ can be taken locally constant on a neighbourhood of

y0. Changing the roles of y and y0 we obtain that f(A(δ,R)) is a local

Lipschitz constant for y 7→ Φk(x, y;T ), x, y ∈ R.
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3-5 Global Minimizers.

Here we construct curves that realize the action potential.

For k < c(L), Φk ≡ −∞, so there are no minimizers.

3-5.1 Proposition.

If k > c(L) and x, y ∈M , x 6= y, then there is γ ∈ C(x, y) such that

AL+k(γ) = Φk(x, y).

Moreover, the energy of γ is E(γ, γ̇) ≡ k.

Proof: Let f(t) := Φk(x, y; t). By proposition 3-4.1, f(t) is continuous

and f(t)→ +∞ when t→ 0+ or t→ +∞. Hence it attains its minimum

at some T > 0. Moreover, Φk(x, y) = inft>0 Φk(x, y; t) = Φk(x, y;T ).

Now take a Tonelli minimizer γ on CT (x, y). From lemma 3-3.2, the

energy of γ is k.

We now study minimizers at k = c(L). Observe that for c = c(L)

and any absolutely continuous curve γ ∈ C(x, y), we have that

AL+c(γ) ≥ Φc(x, y) ≥ −Φc(y, x). (3.11)

3-5.2 Definition. Set c = c(L).

An absolutely continuous curve γ ∈ C(x, y) is said semistatic if

AL+c(γ) = Φc(x, y).

An absolutely continuous curve γ ∈ C(x, y) is said static if

AL+c(γ) = −Φc(y, x).

These names are justified by the following remark: For mechanic

lagrangians L = 1
2 |v|2x − U(x), static orbits are the fixed points (x0, 0)

of the lagrangian flow where U(x) is maximal; and semistatic orbits lie

in the stable or unstable manifolds of those fixed points.
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By the triangle inequality for Φc the definition of semistatic curve

x : [a, b]→M is equivalent to

AL+c

(
x|[s,t]

)
= Φc

(
x(s), x(t)

)
, ∀ a ≤ s ≤ t ≤ b. (3.12)

Inequality (3.11) implies that static curves are semistatic.

Moreover, a curve γ ∈ C(x, y) is static if

(a) γ is semistatic, and

(b) dc(x, y) = Φc(x, y) + Φc(y, x) = 0.

From proposition 3-3.1 we get

3-5.3 Corollary. Semistatic curves have energy E ≡ c(L).

3-5.4 Definition.

M = ∪
{

supp(µ)
∣∣ µ ∈M(L), AL(µ) = −c(L)

}

Ñ = Σ(L) :=
{
w ∈ TM

∣∣xw : R→M is semistatic
}

A = Σ̂(L) :=
{
w ∈ TM

∣∣xw : R→M is static
}

Σ−(L) :=
{
w ∈ TM

∣∣xw :]−∞, 0]→M is semistatic
}

Σ+(L) :=
{
w ∈ TM

∣∣xw : [0,+∞[→M is semistatic
}

We call M the Mather set, Ñ the Mañé set, P = π(Σ̂(L)) the Peierls

set1 and A = Σ̂(L) the Aubry set.

Using the characterization of minimizing measures 3-6.1 and corol-

lary 3-5.3 we have that2

M⊆ A ⊆ Ñ ⊆ É , (3.13)

whereM is the Mather set, A is the Aubry set, Ñ is the Mañé set and

É is the energy level É = [E ≡ c(L)]. All these inclusions can be made

1The name is justified by proposition 3-7.1.5.
2The typographical relationship was observed by Albert Fathi.
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72 3. globally minimizing orbits.

proper constructing examples of embedded flows as in equation (1.18)

and adding a properly chosen potential φ(x).

Denote by α(v) and ω(v) the α and ω-limits of v under the

Euler-Lagrange flow.

3-5.5 Proposition.

A local static is a global static, i.e. if xv|[a,b] is static then v ∈ Σ̂(L)

(i.e. the whole orbit is static).

Proof: Let η(t) = π ϕt(v) and let γn ∈ CTn(η(b), η(a)) be solutions

of (E-L) with

AL+c(γn) < Φc(η(b), η(a)) + 1
n .

By the a priori bounds 3-2.3 |γ̇n| < A. We can assume that γ̇n(0)→ w.

Let ξ(s) = π ϕs(w). If w 6= η̇(b) then the curve η|[b−ε,b] ∗ ξ|[0,ε] is not C1,

and hence by remark 1-2.2, it can not be a Tonelli minimizer. Thus

Φc(η(b− ε), ξ(ε)) < AL+c(η|[b−ε,b]) +AL+c(ξ|[0,ε]).

Φc(η(a), η(a)) ≤ Φc(η(a), η(b − ε)) + Φc(η(b− ε), ξ(ε)) + Φc(ξ(ε), η(a))

< AL+c(η[a,b−ε]) +AL+c(η|[b−ε,b]) +AL+c(ξ|[0,ε]) + lim inf
n

AL+c(γn|[ε,Tn])

≤ AL+c(η|[a,b]) + lim
n

(
γn|[0,ε] ∗ γn|[ε,Tn]

)

≤ −Φc(η(b), η(a)) + Φc(η(b), η(a)) = 0,

which contradicts proposition 2-1.1(3). Thus w = η̇(b) and similarly

limn γ̇n(Tn) = η̇(a).

If lim supTn < +∞, we can assume that τ = limn Tn > 0 exists. In

this case η is a (semistatic) periodic orbit of period τ + b− a and then

it is static.

72



3-5. global minimizers. 73

Now suppose that limn Tn = +∞. If s > 0, we have that

AL+c(η|[a−s,b+s]) + Φc(η(b + s), η(a− s)) ≤
≤ lim

n

{
AL+c(γn|[Tn−s,Tn]) +AL+c(η) +AL+c(γn|[0,s])

}

+ Φc(η(b+ s), η(a− s))
≤ Φc(η(a), η(b))

+ lim
n

{
AL+c(γn|[0,s]) +AL+c(γn|[s,Tn−s]) +AL+c(γn|[Tn−s,Tn])

}

≤ Φc(η(a), η(b)) + Φc(η(b), η(a)) = 0.

Thus η[a−s,b+s] is static.

3-5.6 Definition. Set c = c(L).

An absolutely continuous curve γ : [0,+∞[→M (resp. η :]−∞, 0]→M)

is a ray if γ|[0,t] (resp. η|[−t,0]) is a Tonelli minimizer for all t > 0; i.e.

AL+c(γ|[0,t]) = Φc(γ(0), γ(t); t) for all t > 0.

Clearly a semi-infinite semistatic curve is a ray. We shall see in

corollary 4-11.9 that rays are semistatic.

3-5.7 Proposition.

If v ∈ Σ is semistatic, then α(v) ⊂ Σ̂(L) and ω(v) ⊂ Σ̂(L). Moreover

α(v) and ω(v) are each contained in a static class.

Proof: We prove only that ω(v) ⊂ Σ̂. Let γ(t) = π ϕt(v). Suppose that

tn → +∞ and γ̇(tn) → w ∈ TM . Let η(t) = π ϕt(w). Since γ and η

are solutions the Euler-Lagrange equation, then γ|[tn−s,tn+s] −→
C1

η|[−s,s].
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74 3. globally minimizing orbits.

Then

AL+c

(
η|[−s,s]

)
+ Φc(η(s), η(−s)) =

= lim
n

{
AL+c(γ|[tn−s,tn+s]) + lim

m
AL+c(γ|[tn+s,tm−s])

}

= lim
n

lim
m

AL+c(γ|[tn−s,tm−s])

= lim
n

lim
m

Φc(γ(tn − s), γ(tm − s))

= Φc(η(−s), η(−s)) = 0.

Thus w ∈ Σ̂(L). Let u ∈ ω(v). We may assume that γ̇(sn) → u with

tn < sn < tn+1. Then

dc(πw, πu) = Φc(πw, πu) + Φc(πu, πw)

= lim
n

AL+c(γ|[tn,sn]) +AL+c(γ|[sn,tn+1])

= lim
n

AL+c(γn|[tn,tn+1]) = Φc(πw, πw) = 0.

Thus w and u are in the same static class.
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3-6 Characterization of minimizing measures.

Recall that minimizing measures µ satisfy AL(µ) = −c(L) and that by

theorem 2-4.1 they are invariant.

3-6.1 Theorem (Mañé [39]).

µ ∈M(L) is a minimizing measure if and only if supp(µ) ⊆ Σ̂(L).

Proof: Since Σ̂ is closed, it is enough to prove the theorem for ergodic

measures. Suppose that µ ∈ M(L) is ergodic and supp(µ) ⊆ Σ(L).

Since µ is finite, by Birkhoff’s theorem there is a set of total µ-measure

A such that if θ ∈ A then lim infT→+∞ dTM (θ, ϕT θ) = 0 and

∫

M
L+ c dµ = lim

T→+∞

1

T

∫ T

0

[
L(ϕt θ) + c

]
dt

≤ lim inf
T→+∞

1
T Φc

(
π(ϕT θ), π(θ)

)
= 0.

Now suppose that µ ∈ M(L) is minimizing. Then
∫
L + c dµ = 0.

Applying corollary 3-6.5 to F = L+ c and X = TM , we get that there

is a set A ⊂ TM of total µ-measure such that if θ ∈ A then there is a

sequence Tn → +∞ such that d(θ, ϕTn θ)→ 0 and

lim
n

∫ Tn

0

[
L(ϕt θ) + c

]
dt = 0.

Then

0 ≤ dc(π θ, πϕ1 θ) = lim
n

[
Φc(π θ, π ϕ1 θ) + Φc(π ϕ1 θ, π ϕTn θ)

]

≤ lim
n

∫ Tn

0

[
L(ϕt θ) + c

]
dt = 0.

This implies that θ is static. Since Σ̂(L) is closed and A is dense in

supp(µ) then supp(µ) ⊆ Σ̂(L).
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76 3. globally minimizing orbits.

It follows from theorem 2-5.1 that

3-6.2 Corollary.

If M is compact then Σ̂(L) 6= �.

Combining theorem 3-6.1 with corollary 3-5.3, we get

3-6.3 Corollary (Dias Carneiro [9]). If µ is a minimizing measure then

it is supported in the energy level E(supp(µ)) = c(L).

3-6.4 Lemma. Let (X,B, ν) be a probability space, f an ergodic mea-

sure preserving map and F : X → R an integrable function. Given

A ∈ B with ν(A) > 0 denote by Â the set of point p ∈ A such that for

all ε > 0 there exists an integer N > 0 such that fN(p) ∈ A and

∣∣∣
N−1∑
j=0

F
(
f j(p)

)
−N

∫
F dν

∣∣∣ < ε .

Then ν(Â) = ν(A).

Proof: Without loss of generality we can assume that
∫
F dν = 0. For

p ∈ X denote

SNF (p) :=
N−1∑
n=0

F
(
fn(p)

)
.

Let

A(ε) :=
{
p ∈ A | ∃N > 0 such that fN(p) ∈ A and |SNF (p)| < ε

}
.

It is enough to prove that ν(A(ε)) = ν(A), because Â =
⋂
nA( 1

n). Let

X̂ be the set of points for which the Birkhoff’s theorem holds for F and

the characteristic functions of A and of A(ε). Take x ∈ A ∩ X̂ and let

N1 < N2 < · · · be the integers for which fNi(x) ∈ A. Define δ(k) by

Nk δ(k) = |SNk
F (x)| .
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Since x ∈ X̂ we have that limk→+∞ δ(k) = 0. Set

ck := SNk
F (x) ,

S :=
{
k ∈ N

∣∣ ∀ℓ > k, |cℓ − ck| ≥ ε
}
,

S(k) :=
{

1 ≤ j ≤ k − 1
∣∣ j ∈ S

}
.

Observe that if j /∈ S(k), then there is an ℓ > j such that |cℓ − cj | ≤ ε,

so that ∣∣SNℓ−Nj
F

(
fNj(x)

)∣∣ = |cℓ − cj | ≤ ε .
Hence

j /∈ S(k) =⇒ fNj(x) ∈ A(ε) .

This implies that

ν
(
A−A(ε)

)
= lim

k→+∞

1

Nk
#

{
0 ≤ j < Nk | f j(x) ∈ A−A(ε)

}

≤ 1

Nk
#S(k) . (3.14)

If S is finite, from inequality (3.14) we get that ν
(
A − A(ε)

)
= 0,

concluding the proof of the lemma.

Assume that S is infinite. This implies that the set { ck | k ∈ S } is

unbounded. Choose an infinite sequence K in S such that for all k ∈ K
we have,

|ck| = max
j∈S(k)

|cj |.

Then, for k ∈ K,

1
2 (2ε) #S(k) ≤ |ck| = δ(k)Nk .

From (3.14), we get that

ν
(
A−A(ε)

)
≤ lim

k∈K

δ(k)

ε
= 0.
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78 3. globally minimizing orbits.

3-6.5 Corollary. If besides the hypothesis of lemma 3-6.4, X is a com-

plete separable metric space, and B is its Borel σ-algebra, then for a.e.

x ∈ X the following property holds: for all ε > 0 there exists N > 0

such that d(fN (x), x) < ε and

∣∣∣∣∣
N−1∑
j=0

F
(
f j(x)

)
−N

∫
F dν

∣∣∣∣∣ < ε

Proof: Given ε > 0 let {Vn(ε)} be a countable basis of neighbourhoods

with diameter < ε and let V̂n be associated to Vn as in lemma 3-6.4. Then

the full measure subset ∩
m
∪
n
V̂n(

1
m) satisfies the required property.
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3-7. the peierls barrier. 79

3-7 The Peierls barrier.

For T > 0 and x, y ∈M define

hT (x, y) = Φc(x, y;T ) := inf
γ∈CT (x,y)

AL+c(γ).

So that the curves which realize hT (x, y) are the Tonelli minimizers on

CT (x, y). Define the Peierls barrier as

h(x, y) := lim inf
T→+∞

hT (x, y).

The difference between the action potential and the Peierls barrier is

that in the Peierls barrier the curves must be defined on large time

intervals. Clearly

h(x, y) ≥ Φc(x, y).

3-7.1 Proposition.

If h : M ×M → R is finite, then

1. h is Lipschitz.

2. ∀ x, y ∈M , h(x, x) ≥ Φc(x, y), in particular h(x, x) ≥ 0, ∀ x ∈M .

3. h(x, z) ≤ h(x, y) + h(y, z), ∀x, y, z ∈M .

4. h(x, y) ≤ Φc(x, p) + h(p, q) + Φc(q, y), ∀ x, y, p, q ∈M .

5. h(x, x) = 0⇐⇒ x ∈ π(Σ̂) = P.

6. If Σ̂ 6= �, h(x, y) ≤ inf
p∈π(bΣ)

Φc(x, p) + Φc(p, y).

Proof: Item 2 is trivial. Observe that for all S, T > 0 and y ∈M ,

hT+S(x, z) ≤ hT (x, y) + hS(y, z).

Taking lim infT→+∞ we get that

h(x, z) ≤ h(x, y) + hS(y, z), for all S > 0.
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80 3. globally minimizing orbits.

Taking lim infS→+∞, we obtain item 3.

1. Taking the infimum on S > 0, we get that

h(x, z) ≤ h(x, y) + Φc(y, z) ∀x, y, z ∈M.

≤ h(x, y) +A dM (y, z),

where A is a Lipschitz constant for Φc. Changing the roles of x, y, z,

we obtain that h is Lipschitz.

4. Observe that

inf
S>T

hS(x, y) ≤ Φc(x, p) + hT (p, q) + Φc(q, x).

Taking lim infT→+∞ we get item 4.

5. We first prove that if p ∈ P = π(Σ̂), then h(p, p) = 0. Take

v ∈ Σ̂ such that π(v) = p and y ∈ π(ω-limit(v)). Let γ(t) := π ϕt(v)

and choose tn ↑ +∞ such that γ(tn)→ y. Then

0 ≤ h(p, p) ≤ h(p, y) + Φc(y, p)

≤ lim
n
AL+c(γ|[0,tn]) + Φc(y, p)

≤ lim
n
−Φc(γ(tn), p) + Φc(y, p) = 0.

Conversely, if h(x, x) = 0, then there exists a sequence of Tonelli

minimizers γn ∈ C(x, x;Tn) with Tn → +∞ and AL+c(γn)
n→ 0. By

lemma 3-2.3, |γ̇| is uniformly bounded. Let v be an accumulation point

of γ̇n(0) and η(t) := π ϕt(v). Then if γ̇nk
(0)

k→ v, for any s > 0 we have

that

0 ≤ Φc(x, π ϕs v) + Φc(π ϕs v, x)

≤ AL+c

(
η|[0,s]

)
+ Φc(π ϕs v, x)

≤ lim
k
AL+c

(
γnk
|[0,s]

)
+AL+c

(
γnk
|[s,Tn]

)

= 0.

Thus v ∈ Σ̂.

80



3-7. the peierls barrier. 81

6. Using items 4 and 5, we get that

h(x, y) ≤ inf
p∈π(bΣ)

[
Φc(x, p) + 0 + Φc(p, y)

]
.

3-7.2 Proposition. If M is compact, then

h(x, y) = inf
p∈π(bΣ)

[
Φc(x, p) + Φc(p, y)

]
.

Proof:

From proposition 3-7.1.6 we have that

h(x, y) ≤ inf
p∈π(bΣ)

[
Φc(x, p) + Φc(p, y)

]
.

In particular h(x, y) < +∞ for all x, y ∈ M . Now let γn ∈ CTn(x, y)

with Tn → +∞ and AL+c(γn)→ h(x, y) < +∞. Then 1
TAL+c(γn)→ 0.

Let µ be a weak limit of a subsequence of the measures µγn . Then µ

is minimizing. Let q ∈ π
(
supp(µ)

)
and qn ∈ γn([0, Tn]) be such that

limn qn = q. Then,

Φc(x, q) + Φc(q, y) ≤ Φc(x, qn) + Φc(qn, y) + 2Ad(qn, q)

≤ AL+c(γn) + 2Ad(qn, q).

Letting n→∞, we get that

Φc(x, q) + Φc(q, y) ≤ h(x, y).
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3-8 Graph Properties.

In this section we shall see that the projection π : Σ̂ → M is injective.

We shall call P := π(Σ̂) the Peierls set. 3 Thus the projection π|bΣ gives

an identification P ≈ Σ̂.

For v ∈ TM , write xv(t) = π ϕt(v). Given ε > 0, let

Σε := {w ∈ TM |xw : [0, ε)→M or xw : (−ε, 0]→M is semistatic }.

3-8.1 Theorem. (Mañé) [39]

For all p ∈ π(Σ̂) there exists a unique ξ(p) ∈ TpM such that

(p, ξ(p)) ∈ Σε, in particular (p, ξ(p)) ∈ Σ̂ and Σ̂ = graph(ξ).

Moreover, the map ξ : π(Σ̂)→ Σ is Lipschitz.

The proofs of the injectivity of π in this book only need that the

solutions of the Euler-Lagrange equation are differentiable4. The reader

may provide those proofs as exercises. The proof of the Lipschitz con-

dition need the following lemma, due to Mather. For the proof see [46]

or Mañé [36].

3-8.2 Mather’s Crossing lemma. [46]

Given A > 0 there exists K > 0 ε1 > 0 and δ > 0 with the following

property: if |vi| < A, (pi, vi) ∈ TM , i = 1, 2 satisfy d(p1, p2) < δ and

d((p1, v1), (p2, v2)) ≥ K−1d(p1, p2) then, if a ∈ R and xi : R → M ,

i = 1, 2, are the solutions of L with xi(a) = pi, ẋi(a) = vi, there exist

solutions γi : [a− ε, a+ ε]→M of L with 0 < ε < ε1, satisfying

γ1(a− ε) =x1(a− ε) , γ1(a+ ε) = x2(a+ ε) ,

γ2(a− ε) =x2(a− ε) , γ2(a+ ε) = x1(a+ ε) ,

AL(x1|[a−ε,a+ε]) +AL(x2|[a−ε,a+ε]) > AL(γ1) +AL(γ2)

3This name is justified by proposition 3-7.1(5).
4and hence a non-differentiable curve can not be a Tonelli minimizer.
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Proof of theorem 3-8.1:

We prove that if (p, v) ∈ Σ̂, (q, w) ∈ Σε, and d(p, q) < δ, then

dTM
(
(p, v), (q, w)

)
< K dM (p, q) .

Observe that this implies the theorem. For simplicity, we only prove

the case in which xv|[−ε,0] is semistatic. Suppose it is false. Then by

lemma 3-8.2 there exist α, β : [−ε, ε]→M such that

α(−ε) = xw(−ε) =: q−ε , α(0) = p ,

β(−ε) = xv(−ε) =: pε , β(0) = q ,

and

AL(α) +AL(β) < AL(xw|[−ε,0]) +AL(xv|[−ε,0]).
So

Φc(q−ε, p) + Φc(p−ε, q) < Φc(q−ε, q) + Φc(p−ε, p)

= Φc(q−ε, q)− Φc(p, p−ε)

Thus

Σ̂
q

p

fig. 1: graph property.

Φc(q−ε, q) ≤ Φc(q−ε, p) + Φc(p, p−ε) + Φc(p−ε, q) < Φc(q−ε, q)

which is a contradiction.
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84 3. globally minimizing orbits.

Using the graph property 3-8.1 we can define an equivalence relation on

Σ̂ by

u, v ∈ Σ̂, u ≡ v ⇐⇒ dc(π(u), π(v)) = 0.

The equivalence classes are called static classes. The continuity of the

pseudo-metric dc implies that a static class is closed, and it is invariant

by proposition 3-5.5.

For v ∈ TM denote by ω(v) its ω-limit. Let Γ be a static class, the

set

Γ+ =
{
v ∈ Σ+(L) | ω(v) ⊆ Γ

}

is called the (forward) basin of Γ. Clearly Γ+ is forward invariant. Let

Γ+
0 =

⋃
t>0 ϕt(Γ

+)

=
⋃
ε>0

{
v ∈ TM | xv|]−ε,+∞[ is semistatic and ω(v) ⊆ Γ

}
.

The set π(Γ+ \ Γ+
0 ) is called the cut locus of Γ+.

3-8.3 Theorem. (Mañé)[39]

For every static class Γ, the projection π : Γ+
0 →M is injective with

Lipschitz inverse.

The projection π : Γ+ → M may not be surjective. But when M is

compact for generic lagrangians π(Γ+) = π(Γ−) = M because there is

only one static class (cf. theorem 7-0.1.(B)). But π may not be injective

on Γ+ \ Γ+
0 even for generic lagrangians.

Proof: We prove that for K as in lemma 3-8.2, if v ,w ∈ Γ+
0 then

dTM (v,w) ≤ K dM (π(v), π(w)). (3.15)

Suppose it is false. Then there are v, w ∈ Γ+
0 such that inequality (3.15)

does not hold. Let ε > 0 be such that xv|[−ε,+∞[ and xw|[−ε,+∞[ are

semistatic. By lemma 3-8.2, there exist α ∈ C2ε(xv(−ε), xw(ε)) and

β ∈ C2ε(xw(−ε), xv(ε)) such that

AL+c(α) +AL+c(β) + δ < AL+c(xv|[−ε,ε]) +AL+c(xw|[−ε,ε]),
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for some δ > 0. Let p, q ∈ π(Γ) and sn tn → +∞ be such that xv(sn)→
+∞ and xv(sn)→ p, xw(tn)→ q. Then

Φc(xv(−ε), xw(tn)) + Φc(xw(−ε), xv(sn)) + δ

≤ AL+c(α ∗ xw|[ε,tn]) +AL+c(β ∗ xv|[ε,sn]) + δ

< AL+c(xv|[−ε,sn]) +AL+c(xw|[−ε,tn])

= Φc(xv(−ε), xv(sn)) + Φc(xw(−ε), xw(tn)).

Letting n→∞ and adding dc(p, q) = 0, we have that

Φc(xv(−ε), p) + Φc(xw(−ε), q)
≤ Φc(xv(−ε), q) + Φc(xw(−ε), p) + Φc(q, p) + Φc(p, q)

< Φc(xv(−ε), p) + Φc(xw(−ε), q).
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86 3. globally minimizing orbits.

3-9 Coboundary Property.

The coboundary property was first presented by R. Mañé in [38] and

further developed in [39] and by A. Fathi.

3-9.1 Theorem. (Mañé) [39]

If c = c(L), then (L+c)
∣∣

bΣ
is a Lipschitz coboundary. More precisely,

taking any p ∈M and defining G : Σ̂→ R by

G(w) = Φc

(
p, π(w)

)
,

then

(L+ c)
∣∣

bΣ
=
dG

df
,

where
dG

dϕ
(w) := lim

h→0

1

h

[
G(ϕh(w) −G(w)

]
.

Proof: Let w ∈ Σ̂ and define Fw(v) := Φc(π(w), π(v)). We have that

dFw
dϕ

∣∣∣∣
w

= lim
h→0

1
h

[
Fw(ϕh w)− Fw(w)

]

= lim
h→0

1
h

[
Φc(πw, πϕh w)− Φc(πw, πw)

]

= lim
h→0

1
h SL+c

(
xw|[0,h]

)

= lim
h→0

1

h

∫ h

0

[
L

(
xw(s), ẋw(s)

)
+ c

]
ds

= L(w) + c.

We claim that for any p ∈M and any w ∈ Σ̂, h ∈ R,

G(ϕh w) = Φc

(
p, π(ϕh w)

)
= Φc

(
p, π(w)

)
+ Φc

(
π(w), π(ϕh w)

)

G(ϕh w) = Φc

(
p, π(w)

)
+ Fw

(
ϕh(w)

)
. (3.16)
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3-9. coboundary property. 87

This is enough to prove the theorem because then

dG

dϕ

∣∣∣∣
w

=
d

dh
Fh(ϕh w)

∣∣∣∣
h=0

=
Fw
dϕ

∣∣∣∣
w

= L(w) + c,

and G is Lipschitz by proposition 2-1.1.

We now prove (3.16). Let q := π(w), x := π(ϕh w). We have to

prove that

Φc(p, x) = Φc(p, q) + Φc(q, x). (3.17)

Since the points q and x can be joined by the static curve xw|[0,h], then

Φc(x, q) = −Φc(q, x).

Using twice the triangle inequality for Φc we get that

Φc(p, q) ≤ Φc(p, x) + Φc(x, q) = Φc(p, x)− Φc(q, x) ≤ Φc(p, q).

This implies (3.17).
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3-10 Covering Properties.

3-10.1 Theorem. π(Σ+(L)) = M .

But in general π : Σ+(L)→M is not injective.

Proof: First suppose that Σ̂(L) 6= �. Take p ∈ π(Σ̂). Given x ∈
M \ π(Σ̂), take a Tonelli minimizer γn ∈ CTn(x, p) such that

AL+c(γn) < Φc(x, p) + 1
n .

By the a priori bounds 3-2.3, |γ̇n| < A and Tn > 1
A d(x, p). Let v =

limk γ̇nk
(0) be an accumulation point of 〈γ̇n(0)〉. Let η(t) := π ϕt(v).

Then, if 0 < s < lim infk Tnk
, we have that

AL+c

(
η|[0,s]

)
= lim

k
AL+c

(
γnk
|[0,s]

)

≤ lim
k

[
Φc

(
γnk

(0), γnk
(s)

)
+ 1

nk

]

= Φc

(
η(0), η(s)

)
.

Then η is semistatic on [0, S], where S = lim infk Tnk
. If S < +∞ then

η(S) = limk γnk
(Tk) = p. Since x /∈ π(Σ̂), this contradicts the graph

property 3-8.1; hence S = +∞. Thus η|[0,+∞[ is semistatic and v ∈ Σ+.

If Σ̂ = �, then by corollary 3-6.2, M is non-compact. Let x ∈ M
and 〈yn〉 ⊆ M such that dM (x, yn) → +∞. Let γn ∈ CTn(x, yn) be a

Tonelli minimizer such that

AL+c(γn) < Φc(x, yn) + 1
n .

Then by lemma 3-2.3, |γ̇n| < A, and hence Tn → +∞. The rest of the

proof is similar to the case above.

By corollary 3-5.3 E(Σ+) = c(L), using (1.5) we get that c(L) ≥ e0
and then

e0 ≤ cu ≤ ca ≤ c0 ≤ c(L). (3.18)
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3-11. recurrence properties. 89

3-11 Recurrence Properties.

Let Λ be the set of static classes. Define a reflexive partial order 4 in

Λ by

(a) 4 is reflexive.

(b) 4 is transitive.

(c) If there is v ∈ Σ with the α-limit set α(v) ⊆ Λi
and ω-limit set ω(v) ⊆ Λj , then Λi 4 Λj .

3-11.1 Theorem.

Suppose that M is compact and the number of static classes is finite.

Then given Λi and Λj in Λ, we have that Λi 4 Λj.

Λ

ΛΛ

1

32

fig. 2: connecting orbits between static classes.

The three closed curves represent the static classes and the
other curves represent semistatic orbits connecting them.

Theorem 3-11.1 could be restated by saying that if the cardinality

of Λ is finite, then given two static classes Λi and Λj there exist classes

Λi = Λ1, . . . ,Λn = Λj and semistatic vectors v1, . . . , vn−1 ∈ Σ such that

for all 1 ≤ k ≤ n − 1 we have that α(vk) ⊆ Λk and ω(vk) ⊆ Λk+1.

In other words, between two static classes there exists a chain of static

classes connected by heteroclinic semistatic orbits (cf. figure 2).
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90 3. globally minimizing orbits.

A proof of the following theorem can be found in [12]

3-11.2 Theorem. If M is compact, then

1. Σ(L) is chain transitive.

2. Σ̂(L) is chain recurrent.

Now we proceed to prove theorem 3-11.1. Assume for the rest of this

section that M is compact.

3-11.3 Proposition.

If v ∈ Σ is semistatic, then α(v) ⊂ Σ̂(L) and ω(v) ⊂ Σ̂(L). Moreover

α(v) and ω(v) are each contained in a static class.

Proof: We prove only that ω(v) ⊂ Σ̂. Let γ(t) = π ϕt(v). Suppose that

tn → +∞ and γ̇(tn) → w ∈ TM . Let η(t) = π ϕt(w). Since γ and η

are solutions the Euler-Lagrange equation, then γ|[tn−s,tn+s] −→
C1

η|[−s,s].
Then

AL+c

(
η|[−s,s]

)
+ Φc(η(s), η(−s)) =

= lim
n

{
AL+c(γ|[tn−s,tn+s]) + lim

m
AL+c(γ|[tn+s,tm−s])

}

= lim
n

lim
m

AL+c(γ|[tn−s,tm−s])

= lim
n

lim
m

Φc(γ(tn − s), γ(tm − s))

= Φc(η(−s), η(−s)) = 0.

Thus w ∈ Σ̂(L). Let u ∈ ω(v). We may assume that γ̇(sn) → u with

tn < sn < tn+1. Then

dc(πw, πu) = Φc(πw, πu) + Φc(πu, πw)

= lim
n

AL+c(γ|[tn,sn]) +AL+c(γ|[sn,tn+1])

= lim
n

AL+c(γn|[tn,tn+1]) = Φc(πw, πw) = 0.

Thus w and u are in the same static class.
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3-11.4 Proposition. Every static class is connected.

Proof: Let Λ be a static class and suppose that it is not connected. Let

U1, U2 be disjoint open sets such that Λ ⊆ U1 ∪ U2 and Λ ∩ Ui 6= �,

i = 1, 2. Let pi ∈ π(Ui ∩ Λ), i = 1, 2. Since U1 and U2 are disjoint sets

we can take a solution xvn : [an, bn] → M , an < 0 < bn of (E-L) such

that xvn(0) /∈ π(U1 ∪ U2), xvn(an) = p1, xvn(bn) = p2 and

AL+c(xvn) ≤ Φc(p1, p2) + 1
n . (3.19)

Let u be a limit point of vn, then xu : R → M is semistatic (see the

proof of claim 2 item (a)). Then, for an ≤ s ≤ t ≤ bn,

dc(p1, p2) ≤ Φc(p1, xvn(s))+Φc(xvn(s), xvn(t))+Φc(xvn(t), p2)+Φc(p2, p1),

therefore

dc(p1, p2) ≤ Φc(p2, p1)

+ lim inf
n

[Φc(p1, xvn(s)) + Φc(xvn(s), xvn(t)) + Φc(xvn(t), p2)]

≤ Φc(p2, p1) + lim inf
n

AL+c(xvn)

≤ dc(p1, p2) = 0,

where in the last inequality we used (3.19). Hence

Φc(p1, xu(s)) + Φc(xu(s), xu(t)) + Φc(xu(t), p2) + Φc(p2, p1) = 0.

Combining the last equation with the triangle inequality we obtain

dc(xu(s), xu(t)) ≤
≤ Φc(xu(s), xu(t)) + [Φc(xu(t), p2) + Φc(p2, p1) + Φc(p1, xu(s))] = 0.

So that u ∈ Σ̂. Moreover, for s = 0, t = 1:

dc(xu(0), p1) ≤
≤ Φc(p1, xu(0)) + [Φc(xu(0), xu(1)) + Φc(xu(1), p2) + Φc(p2, p1)] = 0.

Hence xu(0) ∈ π(Λ). On the other hand xu(0) /∈ π(U1 ∪ U2). This

contradicts the fact that Λ ⊆ U1 ∪ U2.
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92 3. globally minimizing orbits.

Proof of theorem 3-11.1.

Given v ∈ TM denote by α(v) and ω(v) its α and ω-limits respec-

tively. By proposition 3-11.4 the static classes are connected. Hence

if we assume that there are only finitely many of them, the connected

components of Σ̂ are finite and must coincide with the static classes. For

ε > 0, let Σ̂(ε) be the ε-neighborhood of Σ̂, i.e.

Σ̂(ε) := { v ∈ TM | dTM (v, Σ̂) < ε }.

Fix ε > 0 small enough such that the connected components of Σ̂(ε) are

the ε-neighborhoods of the static classes. So that for 0 < δ < ε, Σ̂(δ) =∑N(ε)
i=1 Λi(δ), where Λi(δ) are disjoint open sets containing exactly one

static class and the number of components N(ε) is fixed for all 0 < δ < ε.

Now suppose that the theorem is false. Let Λi, Λk ∈ Λ be such that

Λi 64 Λk. Let

A :=
⋃

{Λj∈Λ |Λi4Λj }

Λj , B :=
⋃

{Λj∈Λ |Λi 64Λj }

Λj.

Given v ∈ Σ with α(v) ⊆ A and 0 < δ < ε, define inductively sk(v),

tk(v), Tk(v) as follows. Let

s1(v) := inf{ s ∈ R | fs(v) /∈ A(ε) } ∈ R ∪ {+∞}.

If sk(v) < +∞, k ≥ 1, define

tk(v) := sup{ t < sk(v) | ft(v) ∈ A(δ) },
Tk(v) := inf{ t > sk(v) | ft(v) ∈ A(δ) }.

Observe that sk(v) < +∞ implies that Tk(v) < +∞ because by the
definition of B and the transitivity of 4 we have that ω(v) ⊆ A. Define

Ak = Ak(δ) := sup{ |Tk(v)− tk(v) | : v ∈ Σ, α(v) ⊆ A, sk(v) < +∞},
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if sk(v) = +∞ for all v ∈ Σ with α(v) ⊆ A, write Aℓ(δ) ≡ 0 for all ℓ ≥ k.
Now set:

sk+1(v) := inf{ s > Tk(v) | ft(v) /∈ A(ε) }.
Observe that sk(v), tk(v) and Tk(v) are invariant under ft.

We split the rest of the proof of theorem 3-11.1 into the following

claims:

Claim 1. Ak(δ) < +∞ for all k = 1, 2, . . . and all 0 < δ < ε.

Define

M := { v | v ∈ Σ, α(v) ⊆ A }.

Claim 2.

(a) M ∩ B 6= �.

(b) lim supkAk(δ) = supk Ak(δ) = +∞.

Claim 3. There exist sequences vn ∈ Σ, 0 < sn < tn such that vn →
u1 ∈ A, fsn(vn)→ u2 /∈ A(ε), ftn(vn)→ u3 ∈ A and dc(πu1, πu3) = 0.

We now use claim 3 to complete the proof of theorem 3-11.1. If u1 ∈
Λj ⊆ A, we shall prove that u2 ∈ Λj\A(ε), obtaining a contradiction and

thus proving theorem 3-11.1. It is enough to show that dc(πu1, πu2) = 0.

Indeed

dc(πu1, πu2) = Φc(πu1, πu2) + Φc(πu2, πu1)

≤ Φc(πu1, πu2) + Φc(πu2, πu3) + Φc(πu3, πu1)

≤ lim
n

[
Φc(πvn, πfsn(vn))+Φc(πfsn(vn), πftn(vn))

]

+ Φc(πu3, πu1)

= lim
n

Φc(πvn, πftn(vn)) + Φc(πu3, πu1)

= dc(πu1, πu3) = 0,

where the fourth equation holds because vn is a semistatic vector.
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94 3. globally minimizing orbits.

Proof of claim 1:

Suppose that Ai < +∞ for i = 1, . . . , k − 1 and Ak = +∞. The

case k = 1 is similar. Then there exists vn ∈ Σ, with α(vn) ⊂ A and

Tk(vn) − tk(vn) → +∞. We can assume that tk(vn) = 0 and that vn
converges (Σ is compact). Let u = limn vn ∈ ∂A(δ). Then for all n, we

have that

m{ t < 0 | ft(vn) /∈ A(ε) } ≤
k−1∑
i=1

Ai ,

where m is the Lebesgue measure on R. This implies that

m{ t < 0 | ft(u) /∈ A(ε) } ≤
k−1∑
i=1

Ai

and hence α(u) ∩ A(ε) 6= �. By proposition 3-11.3, α(u) ⊂ A. Since

ft(vn) /∈ A(ε) for 0 < t < Tk(vn) and Tk(vn) → +∞, then ft(u) /∈ A(ε)

for all t > 0 and hence ω(u) ⊆ B. But then the orbit of u contradicts

the definition of B.

Proof of claim 2:

(a) Let p ∈ πA, q ∈ πB. For n > 0, let xvn : [an, bn] → M be a

solution of (E-L) such that xvn(an) = p, xvn(bn) = q and

AL+c(xvn) ≤ Φc(p, q) + 1
n .

This implies that

AL+c

(
xvn |[s,t]

)
≤ Φc

(
xvn(s), xvn(t)

)
+ 1

n (3.20)

for all an ≤ s ≤ t ≤ bn. We can assume that

inf{ s > an |xvn(s) ∈ B(δ) } = 0,

and that the sequence vn converges (cf. lemma 3-2.3). Let u = limn vn ∈
π−1(∂ πB(δ)). Taking limits in (3.20) we obtain that xu|[s,t] is semistatic

for all lim infn an ≤ s ≤ t ≤ lim supn bn.
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Any limit point w of ẋvn(an) = fan(vn) satisfies π(w) = p ∈ πA,

and by the graph property (theorem 3-8.1), w ∈ A. Similarly, any limit

point of fbn(vn) is in B. Since A ∪ B is invariant and u /∈ A ∪ B, then

limn an = −∞, limn bn = +∞. Hence u ∈ Σ. Since ft(vn) /∈ B(δ) for

all an ≤ t < 0 and an → −∞, then ft(u) /∈ B(δ) for all t < 0. Hence

α(u) ⊆ A and thus u ∈ M. Since u ∈ π−1(∂ πB(δ)) there exists z ∈ B

such that dM (π(u), π(z)) ≤ δ. Since z ∈ Σ̂ and u ∈ Σ, by theorem 3-8.1

we have that

dTM
(
(π(u), u), (π(z), z)

)
≤ K δ.

Thus u ∈M ∩ B(Kδ). Letting δ → 0, we obtain that M ∩ B 6= �.

(b) By claim 1 it is enough to show that supk Ak(δ) = +∞. If

supk Ak(δ) < T , then M ⊆M(δ, T ), where

M(δ, T ) = { v ∈ Σ | f[−T,T ](v) ∩ A(δ) 6= � }.

Then M∩B ⊆M(δ, T )∩B = �, because B is invariant and B∩A(δ) = �.

This contradicts item (a).

Proof of claim 3:

Given 0 < δ < ε, by claim 2(b) there exists k > N(ε) such that

Ak(δ) > 0. Hence there is v = vδ ∈ Σ with α(v) ⊂ A, such that the orbit

of v leaves A(ε) and returns to A(δ) at least k times. Since k > N(ε)

there is one component Λj(δ) ⊆ A(δ) with two of these returns, i.e.

there exist τ1(δ) < s(δ) < τ2(δ) with fτ1(v) ∈ Λj(δ), fs(v) /∈ A(ε) and

fτ2(v) ∈ Λj(δ). We can choose vδ so that τ1(δ) = 0. Now, there exists a

sequence such that the repeated component Λj ⊂ Λj(δn) is always the

same. Let sn := s(δn), tn := τ2(δn) and choose a subsequence such that

vn, fsn(vn) and ftn(vn) converge. Let u1 = limn vn ∈ ∩nΛj(δn) = Λj,

u3 = limn ftn(vn) ∈ Λj and u2 = limn fsn(vn) /∈ A(ε). Since u1, u3 ∈ Λj,

then dc(πu1, πu3) = 0.
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Chapter 4

The Hamiltonian

viewpoint.

4-1 The Hamilton-Jacobi equation.

Let ω be the canonical symplectic form on T ∗M . A subspace λ of

TpT
∗M is called isotropic if ω(X,Y ) = 0 for all X,Y on λ. Since ω is

nondegenerate, the isotropic subspaces have dimension ≤ n, half of the

dimension of T ∗M . Isotropic spaces of dimension n are called lagrangian

subspaces We say that a submanifold W ⊂ T ∗M is lagrangian if at

each point θ ∈ W , its tangent space TθW is a lagrangian subspace of

TθT
∗M . In particular, dimW = dimM = n.

4-1.1 Theorem (Hamilton-Jacobi).

If the hamiltonian H is constant on a lagrangian submanifold N ,

then N is invariant under the hamiltonian flow.

Proof: We only have to show that the hamiltonian vector field X is

tangent to N . Since H is constant on N , then dH|TN ≡ 0. Since

ω(X, ·) = dH, then ω(X, ξ) = 0 for all ξ ∈ TN . Since the tangent spaces

to N are lagrangian, they are maximal isotropic subspaces, therefore

X ∈ TN .
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98 4. the hamiltonian viewpoint.

Some distinguished n-dimensional manifolds on T ∗M are the graph

submanifolds, which are of the form

Gη = { (x, ηx) |x ∈M } ⊂ T ∗M, (4.1)

where ηx is a 1-form on M . A lagrangian graph is a lagrangian graph

submanifold. In fact,

4-1.2 Lemma. Gη is a lagrangian graph if and only if the form η is

closed:

Gη is lagrangian ⇐⇒ dη ≡ 0

Proof: Choose local coordinates q1, . . . , qn of M . Then η(q) =∑
k pk(q) dqk. A basis of the tangent space to the graph Gη is given

by Ei =
(
∂
∂qi
,
∑

k
∂pk

∂qi
∂
∂pk

)
. Applying ω = dp ∧ dq,

ω(Ei, Ej) = ∂pi

∂qj
− ∂pj

∂qi
.

Since

dη =
∑

i<j

(
∂pi

∂qj
− ∂pj

∂qi

)
dqj ∧ dqi ,

then ω|TGη ≡ 0⇐⇒ dη ≡ 0.

Thus, we can associate a cohomology class [η] ∈ H1(M,R) to each

lagrangian graph Gη. Lagrangian graphs with zero cohomology class are

the graphs of the exact 1-forms: Gdf , with η = df and f : M → R a

smooth function. These are called exact lagrangian graphs.

The Hamilton-Jacobi equation for autonomous hamiltonians is

H(x, dxu) = k, u : M → R. (H-J)

Thus a smooth solution of the Hamilton-Jacobi equation corresponds to

an exact invariant lagrangian graph.
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4-2 Dominated functions.

We say that a function u is dominated by L+ k, and write u ≺ L+ k if

u(y)− u(x) ≤ Φk(x, y) for all x, y ∈M.

The triangle inequality implies that the functions u(x) = Φk(y, x)

and v(x) = −Φk(x, y) are dominated, for any y ∈M .

4-2.1 Lemma.

1. If u ≺ L+ k, then u is Lipschitz with the same Lipschitz constant

as Φc. In particular, a family of dominated functions is equicon-

tinuous.

2. If u ≺ L+ k then H(x, dxu) ≤ k at any differentiability point x of

u.

Proof:

1. We have that u(y)− u(x) ≤ Φc(x, y) ≤ A dM (x, y), where A is a

Lipschitz constant for Φc. Changing the roles of x and y, we get that u

is Lipschitz.

2. We have that

u(y)− u(x) ≤
∫

γ
L(γ, γ̇) + k

for all curves γ ∈ C(x, y). This implies that

dxu · v ≤ L(x, v) + k

for all v ∈ TxM when u is differentiable at x ∈M . Since

H(x, dxu) = sup{ dxu · v − L(x, v) | v ∈ TxM },

then H(x, dxu) ≤ k.
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100 4. the hamiltonian viewpoint.

4-2.2 Exercises:

1. If u : M → R is differentiable, then

H(x, dxu) ≤ k ⇐⇒ u ≺ L+ k.

2. Fix x0 ∈ M . For k > c(L) choose fk ∈ C∞(M,R) such that f(x0) = 0
and H(dfk) < k (cf. 4-4.4). Let u(x) := lim supk→c(L) fk(x).

Then u < +∞, u is Lipschitz and H(x, dxu) ≤ c(L) for a.e. x ∈M .

4-2.3 Definition. Given a dominated function u ≺ L+ k, we say that

an absolutely continuous curve γ : [a, b]→M realizes u, if

u(γ(t))− u(γ(s)) = AL+k(γ|[s,t]), for all a ≤ s ≤ t ≤ b. (4.2)

Observe that such realizing curves must be global minimizers. In

particular for k = c(L), they are semistatic.

The following proposition shows that we actually get a solution

of (H-J) if there are (semistatic) curves which realize a dominated func-

tion u.

4-2.4 Proposition. Suppose that u ≺ L+ k.

1. If γ :]− ε, ε[→M realizes u, then u is differentiable at γ(0).

2. If γ :]−ε, 0]→M or γ : [0, ε[→ M realizes u and u is differentiable

at x = γ(0), then dxu = Lv(x, γ̇(0)) and H(x, dxu) = k.

4-2.5 Remarks.

1. Equation dxu = Lv(x, γ̇(0)) means that the tangent vector

(x, γ̇(0)) of any a.c. curve γ realizing u is sent by the Legendre

transform to dxu.

2. In particular, since the functions u(x) = Φk(p, x) (resp. v(x) =

−Φc(x, p)) are dominated, then they are differentiable at any point

which is not at the (backward) (resp. forward) (L + k)-cut locus

of p.
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3. Observe that the energy E(x, γ̇(0)) = H(x, dxu). In proposition 4-

9.7, we show that any semistatic orbit realizes some dominated

function. Thus we obtain another proof for Σ ⊂ E−1{c}, i.e. that

the semistatic orbits have energy c(L).

Proof: 1. Let w ∈ TxM and let η(s, t) be a variation of γ fixing the

endpoints γ(−ε), γ(ε) such that η(0, t) = γ(t) and ∂
∂sη(0, 0) = w. Define

A(s) :=

∫ 0

−ε
L( ∂∂tη(s, t)) + k dt.

Then, integrating by parts and using the Euler-Lagrange equation (E-L),

A′(0) = Lv ξ|0−ε +

∫ 0

−ε

[
Lx − d

dtLv
]
ξ dt = Lv(x, γ̇(0)) · w ,

where ξ(t) := ∂
∂sη(0, t). Also

1
s

[
u(η(s, 0)) − u(x)

]
= 1

s

[
u(η(s, 0)) − u(γ(−ε)) + u(γ(−ε)) − u(γ(0))

]

≤ 1
s [A(s)−A(0) ] ,

where we used that u ≺ L+ k and (4.2). Hence

lim
s→0

sup 1
s

[
u(η(s, 0)) − u(x)

]
≤ A′(0). (4.3)

Similarly, if B(s) := AL+k

(
η(s, ·)|[0,ε]

)
, then

u(γ(ε)) − u(η(s, 0)) − u(γ(ε)) + u(x) ≤ B(s)− B(0),

lim sup
s→0

1
s

[
u(x)− u(η(s, 0))

]
≤ B′(0) = −Lv(x, γ̇(0)) · w.

Hence

lim inf
s→0

1
s

[
u(η(s, 0)) − u(x)

]
≥ Lv(x, γ̇(0)) · w. (4.4)

From (4.3) and (4.4) we get that u is differentiable at x = γ(0). and

dxu = Lv(x, γ̇(0)).
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102 4. the hamiltonian viewpoint.

2. Now assume that γ :]− ε, 0] →M realizes u and that u is differ-

entiable at x = γ(0). The same argument as in 4.3 shows that

dxu · w ≤ Lv(x, γ̇(0)) · w for all w ∈ TxM.

Applying this inequality to −w and combining both inequalities we get

that dxu = Lv(x, γ̇(0)).

Now, since u ≺ L+ k, by lemma 4-2.1, H(x, dxu) ≤ k. Since

u(γ(0)) − u(γ(t)) = AL+k(γ|[t,0]) =

∫ 0

t

[
L(γ(s), γ̇(s)) + k

]
ds,

then

dxu · γ̇(0) = L(γ(0), γ̇(0)) + k.

Hence

H(x, dxu) = sup
v∈TxM

{ dxu · v − L(x, v) } ≥ k.
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4-3 Weak solutions of the Hamilton-Jacobi

equation.

We shall see in corollary 4-4.7 that there are no weakly differentiable

subsolutions of (H-J) for k < c(L).

In the next proposition we show that when k ≥ c(L) there are always

Lipschitz solutions of (H-J). On the other hand, in theorem 4-8.4 we

show that when M is compact the only energy level that supports a dif-

ferentiable solution is k = c(L). When M is non-compact there may

be differentiable solutions on k > c(L), as example ?? shows.

4-3.1 Proposition. If k ≥ c(L), then for any y ∈ M , the function

u(x) = Φk(y, x) satisfies H(x, dxu) = k for a.e. x ∈M .

Proof: Since u is Lipschitz, by by Rademacher’s theorem [19], it is

differentiable at Lebesgue-almost every point. Since u is dominated by

proposition 4-2.4.2, it is enough to see that u is one-sided realized at

every point.

If k > c(L), by proposition 3-5.1, for all x ∈M , x 6= y, there exists a

finite-time global minimizer γ ∈ CT (y, x) with AL+k(γ) = Φk(y, x). By

the triangle inequality, the function δ(t) = AL+k(γ|[0,t])− Φk(y, γ(t)) is

increasing. Also δ(t) ≥ 0 and δ(T ) = 0. So that δ(t) ≡ 0 and hence γ

backward-realizes u at x.

If k = c(L) then u may be realized by an infinite semistatic orbit as

follows. Let γn ∈ C(y, x), γn : [−Tn, 0]→M be a Tonelli minimizer such

that

Φc(y, x) ≤ AL+c(γn) ≤ Φc(y, x) + 1
n .

This implies that

Φc(y, γ(s)) ≤ AL+c(γn|[−Tn,s]) ≤ Φc(y, γ(s)) + 1
n ,

for all −Tn ≤ s ≤ 0. Thus

∣∣u(x)− u(γn(s))−AL+c(γn|[s,0])
∣∣ ≤ 1

n . (4.5)
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104 4. the hamiltonian viewpoint.

By proposition 3-2.3, |γn| < A for all n. Hence, if x 6= y, lim infn Tn > 0.

We can assume that γ̇n(0) → v ∈ TxM and Tn > ε > 0. Let λ(t) =

π ϕt(v). Then γn|[−ε,0] → λ|[−ε,0] in the C1-topology. Letting n → ∞
on (4.5), we get that λ realizes u.
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4-4 Lagrangian graphs.

We say that a function u : M → R is a subsolution of the Hamilton-

Jacobi equation if

H(x, dxu) ≤ k,

We shall prove that for k > c(L) there is always a C∞ subsolution of

the Hamilton-Jacobi equation and for k < c(L) there are no (weakly)

differentiable subsolutions. Hence

4-4.1 Theorem. If M is any covering of a closed manifold, then

c(L) = inf
f∈C∞(M,R)

sup
x∈M

H(x, dxf)

= inf{k ∈ R : there exists f ∈ C∞(M,R) such that H(df) < k}.

where H is the hamiltonian associated with L.

Theorem 4-4.1 could be restated by saying that c(L) is the infimum of

the values of k ∈ R for which H−1(−∞, k) contains an exact lagrangian

graph. This is a very geometric way of describing the critical value.

In exercise 4-2.2. there is an elementary construction of a weak

subsolution for k = c(L). Theorem 4-4.1 is an immediate consequence

of lemma 4-4.2 and proposition 4-4.4 below.

4-4.2 Lemma. If there exists a C1 function f : M → R such that

H(df) ≤ k, then k ≥ c(L).

Proof: Recall that

H(x, p) = max
v∈TxM

{p(v) − L(x, v)}.

Since H(df) ≤ k it follows that for all (x, v) ∈ TM ,

dxf(v)− L(x, v) ≤ k.
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106 4. the hamiltonian viewpoint.

Therefore, if γ : [0, T ] → M is any absolutely continuous closed curve

with T > 0, we have

∫ T

0
(L(γ, γ̇) + k) dt =

∫ T

0

[
L(γ, γ̇) + k − dγf(γ̇)

]
dt ≥ 0,

and thus k ≥ c(L).

4-4.3 Remark. The utility of a differentiable subsolution of the

Hamilton-Jacobi equation can be seen in lemma 4-4.2. If H(du) ≤ c(L),

then the lagrangian L can be replaced by the lagrangian

L(x, v) := L(x, v)− dxu(v) + c(L) ≥ 0

The new lagrangian L is positive, has the same minimizing measures as

L, its α and β functions are translates of those for L. The static set

Σ̂(L) is contained in the level set L = 0.

4-4.4 Proposition.

For any k > c(L) there exists f ∈ C∞(M,R) such that H(df) < k.

Proof: Set c = c(L). Fix q ∈ M and let u(x) := Φc(q, x). By the

triangle inequality, u ≺ L + c. By lemma 4-2.1.2, H(dxu) ≤ c at any

point x ∈M where u(x) is differentiable.

We proceed to regularize u. Since u is Lipschitz, by Rademacher’s

theorem (cf. [19]) it is differentiable at Lebesgue almost every point.

Moreover it is weakly differentiable (cf. [19, Section 4.2.3]), that is, for

any C∞ function ϕ : U → R with compact support, equation (4.6) holds.

The next lemma completes the proof.

4-4.5 Lemma. Let M be a riemannian covering of a compact manifold

and suppose that sup|v|≤k

∥∥∂L
∂x (x, v)

∥∥ < +∞. If u : M → R is weakly

differentiable and

H(x, dxu) ≤ k for a.e. x ∈M,
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then for all δ > 0 there exists f ∈ C∞(M,R) such that H(x, dxf) < k+δ

for all x ∈M .

4-4.6 Remark. If M is a covering M
ρ→ N of a compact manifold N

and the lagrangian L on M is lifted from a lagrangian ℓ on N : L = ℓ◦dρ,
then the condition on ∂L

∂x follows. In general it may not be true as the

lagrangian L(x, v) = 1
2 |v|2 + sin(x2) on R shows.

The condition on M can be replaced by some bounds in the rieman-

nian metric of M , see appendix ??.

Proof: We shall explain first how to prove the proposition in the case

in which M is compact and then we will lift the construction to an

arbitrary covering M .

We can assume that M ⊂ R
N . Let U be a tubular neighbourhood

of M in RN , and ρ : U → M a C∞ projection along the normal bun-

dle. Extend u(x) to U by u(z) = u
(
ρ(z)

)
. Then u(z) is also weakly

differentiable.

Extend the lagrangian to U by

L(z, v) = L
(
ρ(z), dzρ(v)) + 1

2 |v − dzρ(v)|
2 .

Then the corresponding hamiltonian satisfies H(z, p ◦dzρ) = H
(
ρ(z), p

)

for p ∈ T ∗
ρ(z)M . At any point of differentiability of u, we have that

dzu = dρ(z)u ◦ dzρ, and H(dzu) = H(dρ(z)u) ≤ k.
Let ε > 0 be such that

(a) The 3ε-neighbourhood of M in RN is contained in U .

(b) If x ∈ M , (y, p) ∈ T ∗
R
N = R

2N , H(y, p) ≤ k and dRN (x, y) < ε,

then H(x, p) < k + δ.

Let ψ : R → R be a C∞ function such that ψ(x) ≥ 0, support(ψ) ⊂
(−ε, ε) and

∫
RN ψ(|x|) dx = 1. Let K : R

N × R
N → R be K(x, y) =

ψ(|x − y|). Let Nε be the ε-neighbourhood of M in RN . Define f :
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108 4. the hamiltonian viewpoint.

Nε → R by

f(x) =

∫

RN

u(y) K(x, y) dy .

Then f is C∞ on Nε.

Observe that ∂xK(x, y) = −∂yK(x, y). Since u(y) is weakly differ-

entiable, for any C∞ function ϕ : U → R with compact support

∫

RN

(ϕ du+ u dϕ) dx = 0 . (4.6)

Hence

−
∫

RN

u(y) ∂yK(x, y) dy =

∫

RN

K(x, y) dyu dy.

Now, since

dxf =

∫

RN

u(y) ∂xK(x, y) dy,

we obtain

dxf =

∫

RN

K(x, y) dyu dy.

From the choice of ε > 0 we have that H(x, dyu) < k + δ for almost

every y ∈ suppK(x, ·) and x ∈ M . Since K(x, y) dy is a probability

measure, by Jensen’s inequality

H(dxf) ≤ H(dxf) ≤
∫

RN

H(x, dyu)K(x, y) dy < k + δ .

for all x ∈M .

Now, suppose that M is a covering of a compact manifold N with

covering projection p. Assume that N ⊆ R
N . We can regularize our

function u similarly as we shall now explain. For x̃ ∈ M let x be the

projection of x̃ to N and let µx be the Borel probability measure on N

defined by ∫

N
ϕdµx =

∫

RN

(ϕ ◦ ρ)(y) K(x, y) dy,
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for any continuous function ϕ : N → R. Then the support of µx satisfies

supp(µx) ⊂ {y ∈ N : dN (x, y) < ε}.

Let µ̂ex be the Borel probability measure on M uniquely defined by the

conditions: supp(µ̂ex) ⊂ {ŷ ∈ M : dM (x̃, ŷ) < ε} and p∗µ̂ex = µx. Then

we have
d

dx̃

∫

M
ϕdµ̂ex =

∫

M
dbyϕdµ̂ex(ŷ),

for any weakly differentiable function ϕ : M → R. The condition (b)

above is now granted by the bound on ∂L
∂x . Then the same arguments

as above show that

f(x̃) =

∫

M
u(ŷ) dµ̂ex(ŷ),

satisfies H(dexf) < k.

Combining lemma 4-4.5 with lemma 4-4.2, we obtain:

4-4.7 Corollary.

There are no weakly differentiable subsolutions of (H-J) for k < c(L).

If we consider lagrangian graphs with other cohomology classes, we

obtain Mather’s alpha function:

4-4.8 Corollary. If M is compact,

α(κ) = inf
[ω]=κ

sup
x∈M

H(x, ω(x)).

In particular the critical value of the abelian cover c0 = minκ α(κ)

is the infimum of the energy levels which contain a lagrangian graph of

any cohomology class in is interior.

Proof: Let us fix a closed one form ω0 such that [ω0] = κ. By equality

(2.30) we have that α(κ) = c(L− ω0). Hence, it suffices to show that

c(L− ω0) = inf
[ω]=κ

sup
x∈M

H(x, ω(x)). (4.7)
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110 4. the hamiltonian viewpoint.

It is straightforward to check that the hamiltonian associated with L−ω0

is H(x, p+ω0(x)). Since all the closed one forms in the class κ are given

by ω0 + df where f ranges among all smooth functions, equality (4.7) is

now an immediate consequence of theorem 4-4.1.

110



4-5. contact flows. 111

4-5 Contact flows.

Let N be a 2n+1 smooth manifold and let α be a non-degenerate

1-form, i.e. α ∧ (dα)n is a volume form for N .

dim ker dα ≡ 1, where

ker dxα := { v ∈ TxN | dxα(v,w) = 0, ∀w ∈ TxN }, x ∈ N.

Define a vector field Y on N by Y (x) ∈ ker dxα,

etc

4-5.1 Proposition. The hamiltonian flow on the energy level [H ≡ k]

is a reparametrization of a Θ-preserving flow if and only if k > c(L).

¿También se tiene desigualdad estricta cuando M no es com-

pacta?

Proof: Let Σ = [H ≡ k]. Observe that

d
dtψ

∗
tΘ = LXΘ|Σ = iX dΘ + d iXΘ = dH|Σ + dΘ(X) = dΘ(X)|Σ.

Thus a reparametrization of ψt preserves Θ if and only if its vector field

is a constant multiple of Y = 1
Θ(X) X. Such reparametrization exists if

and only if Θ(X) 6= 0 on Σ.

Since H is convex, the sets Σx := T ∗
xM ∩ Σ have compact convex

interiors. The outward normal vector to Σx at (x, p) isHp(x, p). Observe

that Θ(X) = p · Hp. Then if the point (x, 0) lies on the exterior of Σx

and (x, p) is the tangency point of a tangent line to Σx passing through

(x, 0), we have that Θ(X(x, p)) = 0. Thus Θ(X) 6= 0 on Σ implies that
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112 4. the hamiltonian viewpoint.

the zero section of T ∗M lies in H < k. Since the zero section is the

derivative of a constant function, by theorem 4-4.1, k ≥ c(L).

Moreover, if the zero section lies inside H < k, then Θ(X) > 0.

Now suppose that k > c(L). By theorem 4-4.1, there exists

f ∈ C∞(M,R) with H(df) < k. Define the new convex hamiltonian

H(x, p) := H(x, p + dxf). Then the energy level [H ≡ k] contains the

zero section. Thus, if X is its hamiltonian vector field, then Θ(X) > 0.

Let L := L− df . Let H be the hamiltonian of L and X its hamiltonian

flow. Then
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4-6 Finsler metrics.

In this section we prove that if k > c(L) then the Euler-Lagrange flow

on the energy level E ≡ k is a reparametrization of the geodesic flow

on the unit tangent bundle of a Finsler metric. This allows to borrow

theorems from Finsler geometry.

We give first a lagrangian proof and afterwards a hamiltonian proof,

with a flavor of symplectic geometry.

When k > c(L), the subsolution H(df) < k obtained in proposi-

tion 4-4.4 can be used to replace the lagrangian L by the lagrangian

L = L − df , then L + k > 0. These lagrangians have the same energy

function and equivalent variational principles. Hence they have the same

lagrangian flow, minimizing orbits, and the same action functional on

closed curves and invariant measures. Their action potentials are related

by

Pk(x, y) = Φk(x, y) + f(y)− f(x).

Given a Finsler metric
√
F and an absolutely continuous curve γ,

define its Finsler length as

lF (γ) =

∫ √
F (γ̇).

Observe that since the Finsler metric is homogeneous of degree one, the

definition does not depend on the parametrization of the curve. Define

the Finsler distance as

DF (x, y) = inf
γ∈C(x,y)

lF (γ).

4-6.1 Theorem. [14, 30] If k > c(L) then the lagrangian flow on the

energy level E ≡ k is a reparametrization of the geodesic flow of a Finsler

metric on its unit tangent bundle.

Moreover, if f ∈ C∞(M,R) is such that H(df) < k, the Finsler

lagrangian F can be taken to be
√
F (x, v) = L(x, v) + k − dxf(v)
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on E(x, v) = k, and then

Φk(x, y) = DF (x, y) + f(y)− f(x), for all x, y ∈M. (4.8)

If k > − inf L then f can chosen f ≡ 0.

Proof: By theorem 4-4.1, if k > c(L) then there exists f ∈ C∞(M,R)

such that H(df) < k. Observe that

H(x, 0) = max
v∈TxM

[
0 · v − L(x, v)

]
= − inf

v∈TxM
L(x, v).

So that if k > − inf L, we can choose f ≡ 0.

Observe that if H(df) < k then k > c(L) > e0. So that the zero

section M × 0 ⊂ E−1{k} ⊂ TM . Also, L + k − df > 0. Then we can

define a Finsler metric on TM by
√
F = L+k−df on E−1{k} and extend

it by homogeneity. Since k > c(L) = c(L− df), by proposition 3-5.1, for

any x 6= y there exists a global minimizer on C(x, y) for L+k−df which

has energy k. By the homogeneity of
√
F , we can restrict the curves in

the definition of DF to those with energy k. Thus Φk −∆f = DF .

To show that the lagrangian flow on E ≡ k is a reparametrization

of the geodesic flow on the unit tangent bundle of
√
F , we only need to

prove that sufficiently small Euler-Lagrange solutions with energy k are

geodesics of
√
F . Let L = L − df . The equality (4.8) implies that any

(L + k)-global minimizer is a geodesic for
√
F . So it is enough to prove

that sufficiently small orbits with energy k are global minimizers.

Fix x ∈ M and a small neighbourhood N (x) of x such that for all

y ∈ N (x) there exists a unique Euler-Lagrange solution contained in

N (x), with energy k and joining x to y. Let Pk be the action potential

for L and let

ε = inf{Pk(x, z) | z /∈ N (x) } > 0,

M(x) = { y ∈M |Pk(x, y) < ε
2 }.

Then M(x) is a neighborhood of N (x) with M(x) ⊂ N (x). By the

triangle inequality, any (L+k)-global minimizer joining x to a point y ∈
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M(x) must be contained in N (x). By proposition 3-5.1 such minimizer

exists. Hence all the small solutions contained in N (x) joining x to

points y ∈M(x) are global minimizers.

Now we shall give a hamiltonian proof of theorem 4-6.1.

First we need a hamiltonian characterization of Finsler lagrangians.

We say that a function f : R
n → R is a Finsler energy if f(x) > 0 when

x 6= 0 and f is positively homogeneous of order 2. Observe that L is a

Finsler lagrangian if and only if it is a Finsler energy on each tangent

space TxM

4-6.2 Lemma. Let f ∈ C2(M,R) be strictly convex and superlinear.

Then f is a Finsler energy if and only if its convex dual f∗ is a Finsler

energy.

Proof: If f is homogeneous, then, writing v = λw, λ > 0, we have

f∗(λ p) = max
v

[
λp v − f(v)

]
= max

w

[
λ2p w − λ2f(w)

]
= λ2f∗(p).

Let Lf be the Legendre transform of f . Observe that

f∗ ◦Lf (p) = f ′(p) ·p−f(p) = d
dtf(tp)

∣∣
t=1
−f(p) = 2 f(p)−f(p) = f(p).

So that f∗ > 0.

Since f is strictly convex and superlinear, then f∗∗ = f . Thus the

argument above shows that if f∗ is homogeneous then so is f .

4-6.3 Lemma. If two convex hamiltonians have a common regular level

set Σ, then their hamiltonian vector fields are parallel on Σ.

Proof: Suppose that H−1{k} = G−1{ℓ} = Σ. If p ∈ Σ, then dpH =

ker dpG = TpΣ. Since Σ is a regular energy level, these derivatives are

nonzero. Moreover, since H and G are convex, they are positive on

vectors pointing outwards Σ. Thus dpH = λ(p) dpG for some λ(p) > 0.

Also,

ω(XH , ·) = dpH = λ(p) dpG = λ(p)ω(XG, ·)
So that XH = λ(p)XG.
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4-6.4 Lemma. If F is a Finsler lagrangian, then the orbits of its la-

grangian flow are reparametrizations of the unit speed geodesics of F .

Proof: We prove it for a Finsler hamiltonian G. The result follows

because the Euler-Lagrange flow of F is the hamiltonian flow of its

energy function on TM with respect to the symplectic form L∗F (ω),

where ω is the canonical symplectic form on T ∗M .

Let G be a Finsler hamiltonian. Since G(x, λp) = λG(x, p), then

dλpG(w) = d
dsG(x, λp + sw)

∣∣
s=1

= d
dsλ

2G(x, p+ swλ )
∣∣
s=1

= λdpG(w).

If X is the hamiltonian flow of G, then ω(X(p), ·) = dpG. Therefore

X(λ p) = λX(p).

Hamiltonian proof of theorem 4-6.1:

If k > c(L), by theorem 4-4.1, there exists f ∈ C∞(M,R) with

H(df) < k. Let H(x, p)
def
= H(x, p+ dxf). Then H

−1(]−∞, k[) contains

the zero section of T ∗M . Define a new hamiltonianG : T ∗M−M×0→ R

by G ≡ 1
4 on H−1{k} and G(x, λp) = λ2G(x, p) for all λ ≥ 0. By

lemma 4-6.2, the convex dual G∗ of G is a Finsler metric on TM .

Since by definition G−1{1
4} = H

−1{k}, it follows from lemma 4-

6.3 that the hamiltonian flows of G and H
−1{k} coincide up to

reparametrization on the energy level G−1{1
4} = H−1{k}.

The Legendre transforms LG(x, p) = (x,Gp) and LH(x, p) = (x,Hp)

on H−1{k} satisfy

Gp · w = 0 = Hp · p, for all w ∈ Tp(T ∗
XM ∩H

−1{k});
Gp · p = 2G(p) = 1

2 > 0, Hp · p = Θ(X) > 0, (by 4-5.1).
(4.9)

So that LG(x, p) = λLH(x, p) for some λ(x, p) > 0. Also LH conjugates

the hamiltonian flow on H
−1{k} to the lagrangian flow of L on E−1{k}.

By lemma 4-6.4 the orbits of the Euler-Lagrange flow of L on E−1{k}
are reparametrization of unit speed geodesic of G∗.
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We now compute G∗. From (4.9), Hp = 2Θ(X)Gp, thus

G∗(x,Hp) = G∗(x, 2Θ(X)Gp) = 4Θ(X)2 G∗(x,Gp)

= 4Θ(X)2G(p) = Θ(X)2 = (p ·Hp)
2

= (Lv · v)2 = (L + k)2.

Let h : T ∗M → T ∗M be the map h(x, p) = (x, p + dxf). Then the

hamiltonian flows φt of H and ψt of Hdf (x, p) = H(x, p+dxf) are related

by h ◦ φt = ψt ◦ h. Thus, the hamiltonian flow of H is conjugate to a

Finsler hamiltonian flow.

A hamiltonian level set can be made a Finsler level set if and only

if it contains the zero section. On the other hand, a lagrangian energy

level [E = k] with k > e0 always contains the zero section.
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4-7 Anosov energy levels.

An Anosov energy level is a regular energy level on which the flow φt is

an Anosov flow.

4-7.1 Theorem. If the energy level E−1(k) is Anosov, then

k > cu(λ).

Proof: Suppose that the energy level k is Anosov and set Σ
def
= H

−1(k).

Let π : T ∗N → N denote the canonical projection. G.P. Paternain and

M. Paternain proved in [57] that Σ must project onto the whole manifold

N and that the weak stable foliation Ws of φ∗t is transverse to the fibers

of the fibration by (n− 1)-spheres given by

π|Σ : Σ→ N.

Let Ñ be the universal covering of N . Let Σ̃ denote the energy level k

of the lifted hamiltonian H. We also have a fibration by (n− 1)-spheres

π̃|eΣ : Σ̃→ Ñ .

Let W̃s be the lifted foliation which is in turn a weak stable foliation

for the hamiltonian flow of H restricted to Σ̃. The foliation W̃s is also

transverse to the fibration π̃|eΣ : Σ̃→ Ñ . Since the fibers are compact a

result of Ehresmann (cf. [7]) implies that for every (x, p) ∈ Σ̃ the map

π̃|fWs(x,p)
: W̃s(x, p)→ Ñ ,

is a covering map. Since Ñ is simply connected, π̃|fWs(x,p)
is in fact a dif-

feomorphism and W̃s(x, p) is simply connected. Consequently, W̃s(x, p)

intersects each fiber of the fibration π̃|eΣ : Σ̃ → Ñ at just one point.

In other words, each leaf W̃s(x, p) is the graph of a one form. On the

other hand it is well known that the weak stable leaves of an Anosov
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energy level are lagrangian submanifolds. Since any closed one form in

the universal covering must be exact, it follows that each leaf W̃s(x, p) is

an exact lagrangian graph. The theorem now follows from lemma 4-4.2

and the fact that by structural stability there exists ε > 0 such that for

all k′ ∈ (k − ε, k + ε) the energy level k′ is Anosov.

For e ∈ R, let Ae be the set of φ ∈ C∞(M) such that the flow of

H + φ is Anosov in (H + φ)−1(e) and let Be be the set of φ ∈ C∞(M)

such that (H + φ)−1(e) contains no conjugate points. As is well known

Ae is open in Ck topology and Be is closed. On the other hand G. and

M. Paternain [54] have shown that Ae is contained in Be. It is proved

in [15] the following

4-7.2 Theorem. The interior of Be in the C2 topology is Ae.

This theorem is an extension to the Hamiltonian setting of a result

of R. O. Ruggiero for the geodesic flow [64]. Theorems 4-7.2 and 4-7.1

have as corollary:

4-7.3 Corollary. Given a convex superlinear lagrangian L, k < cu(L)

and ε > 0 there exists a smooth function ψ : N → R with |ψ|C2 < ε and

such that the energy level k of L+ ψ possesses conjugate points.

Proof: Suppose now that there exists ǫ > 0 such that for every ψ with

|ψ|C2 < ǫ, the energy level k of λ + ψ has no conjugate points. The

main result in [15] says that in this case the energy level k of λ must be

Anosov thus contradicting theorem 4-7.1.

4-7.4 Proposition. If k is a regular value of the energy such that k < e,

then the energy level k has conjugate points.

Proof: If an orbit does not have conjugate points then there exist along

it two subbundles called the Green subbundles. They have the following

properties: they are invariant, lagrangian and they have dimension n =

dimN . Moreover, they are contained in the same energy level as the

orbit and they do not intersect the vertical subbundle (cf. [13]). If k is
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a regular value of the energy with k < e, then π(E−1(k)) is a manifold

with boundary and at the boundary the vertical subspace is completely

contained in the energy level. Therefore the orbits that begin at the

boundary must have conjugate points, because at the boundary two n-

dimensional subspaces contained in the energy level (which is (2n− 1)-

dimensional) must intersect.
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4-8 The weak KAM Theory.

In the rest of this chapter we develop the theory of global weak KAM

solutions, discovered by Albert Fathi. Recall that for an autonomous

hamiltonian H : T ∗M → R, the Hamilton-Jacobi equation is

H(x, dxu) = k, (H-J)

where u : U ⊆ M → R. Here we are interested on global solutions

of (H-J), i.e. u : M → R satisfying (H-J).

It may not be possible to obtain a smooth global solution of (H-J).

Instead, for certain values of k, we shall find weak solutions of (H-J),

which are Lipschitz. By Rademacher’s theorem [19], a Lipschitz function

is Lebesgue almost everywhere differentiable so that (H-J) makes sense

in a.e. point.

In fact, we have seen in corollary 4-4.7 that there are no weakly dif-

ferentiable1 global solutions for k ≤ c(L). In theorem 4-8.4 we shall see

that when M is compact, there are no C1+Lip solutions unless k = c(L).

In proposition 4-9.7 we show that there are always Lipschitz solutions

for k = c(L), and in proposition 4-10.2 we show that when M is non-

compact there are Lipschitz solutions for k > c(L).

Given a dominated function u ≺ L+ c define the sets

Γ+
0 (u) := { v ∈ Σ+ |u(xv(t))− u(xv(0)) = Φc(xv(0), xv(t)), ∀t > 0 },

Γ−
0 (u) := { v ∈ Σ− |u(xv(0)) − u(xv(t)) = Φc(xv(t), xv(0)), ∀t < 0 },

Γ+(u) :=
⋃
t>0
ϕt

(
Γ+(u)

)
, Γ−(u) :=

⋃
t<0
ϕt

(
Γ+(u)

)
,

where xv(t) = π ϕt(v). We call Γ+(u) (resp. Γ+(u)) the basin of u and

π
(
Γ+

0 (u) \ Γ+(u)
)

(resp. π
(
Γ+

0 (u) \ Γ+(u)
)
) the cut locus of u.

4-8.1 Definition.

A function u− : M → R is a backward weak KAM solution of (H-J) if

1In particular, by Rademacher’s theorem, there are no Lipschitz global solutions.
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122 4. the hamiltonian viewpoint.

1. u− ≺ L+ c.

2. π
(
Γ−

0 (u−)
)

= M .

A function u+ : M → R is a forward weak KAM solution of (H-J) if

1. u+ ≺ L+ c.

2. π
(
Γ+

0 (u+)
)

= M .

4-8.2 Remark.

From the domination condition it follows that u is Lipschitz and that

the curve γ is semistatic. From proposition 4-2.4, at an interior point

x of such a curve γ, the function u is differentiable and H(x, dxu) = c.

Moreover, item 2 in proposition 4-2.4 shows that if u is differentiable

at an endpoint of a curve γ, then H(x, dxu) = c. By Rademacher’s

theorem [19], u is differentiable at (Lebesgue) almost every point in M .

So that u is indeed a weak solution of the Hamilton-Jacobi equation for

k = c(L).

4-8.3 Theorem.

If u ∈ S
+ (resp. u ∈ S

−) is a weak KAM solution, then

1. u is Lipschitz and hence differentiable (Lebesgue)-almost every-

where.

2. u ≺ L+ c.

3. H(x, dxu) = c(L) at any differentiability point x of u.

4. Covering Property: π(Γ+
0 (u)) = M .

5. Graph Property: π : Γ+(u)→ M is injective and its inverse is

Lipschitz, with Lipschitz constant depending only on L.

6. Smoothness Property: u is differentiable on Γ+(u) and its

derivative dxu is the image of (π|Γ+(u))
−1(x) under the Legendre

transform L of L. In particular, the energy of Γ+
0 (u) is c(L).
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Proof: Items 2 and 4 are the definition of u ∈ S
+. Item 1 follows from

proposition 4-2.1.1 and Rademacher’s theorem [19]. Item 3 follows from

proposition 4-2.4.2 and the fact that by item 4, u is one-sided realized

at every point. Item 6 follows from proposition 4-2.4 and remark 4-2.5.

We prove item 5. Let (z1, v1), (z2, v2) ∈ Γ+(u) and suppose that

dTM (v1, v2) > K dM (z1, z2), where K is from lemma 3-8.2 and the A

that we input on lemma 3-8.2 is from lemma 3-2.3. Let 0 < ε < ε1, (with

ε1 from lemma 3-8.2) be such that ϕ−ε(zi, vi) ∈ Γ+(u). Let yi = xvi
(ε),

i = 1, 2, then u(yi) = u(xi) + Φc(xi, yi), i = 1, 2. Then lemma 3-8.2

implies that

Φc(x1, y2) + Φc(x2, y1) < Φc(x1, y1) + Φc(x2, y2).

Adding u(y1) + u(y2) and using that u ≺ L+ c, we get that

u(x1) + u(x2) ≤ Φc(x1, y2) + u(y2) + Φc(x2, y1) + u(y1)

< Φc(x1, y1) + u(y1) + Φc(x2, y2) + u(y2)

= u(x1) + u(x2),

which is a contradiction. This proves item 5.

(t)

2

2

1

1

γ

x

y

x

y

fig. 1: graph property.
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124 4. the hamiltonian viewpoint.

4-8.4 Theorem (Fathi [23]).

If u ∈ C1+Lip(M,R), M is compact and

H(x, dxu) = k, ∀x ∈M. (4.10)

Then k = c(L) and u is a weak KAM solution u ∈ S
− ∩S

+.

Conversely, if u ∈ S
+ ∩S

−, then u ∈ C1+Lip.

Proof: From (4.10) we get that

max
v∈TxM

dxu · v − L(x, v) = k. (4.11)

The strict convexity of L on TxM implies that the maximum is attained

at a unique vector ξ(x) ∈ TxM . The implicit function theorem implies

that the vector field x 7→ ξ(x) is Lipschitz. Thus it can be integrated to

obtain a flow ψt on M .

From (4.11), u ≺ L+ k and the flow lines of ψt realize L+ k, i.e.

u
(
ψt(x)

)
= u

(
ψs(x)) +

∫ t

s

[
L(ψτ (x),

d
dτψτ (x)) + k

]
dτ, ∀s < t, ∀x ∈M.

(4.12)

From (4.11), L+ k − du ≥ 0. This implies that

c(L− du) = c(L) ≥ k.

Let µ be and invariant measure for the flow ψt. Observe that the measure

ν := ξ∗(µ) is holonomic and L+ k = du on supp(ν). Then

∫
(L+ k) dν =

∫
(du) dν = 0.

Hence k ≤ c(L) and thus k = c(L). Then by (4.12), u ∈ S
− ∩S

+.

Conversely, if u ∈ S
− ∩ S

+, by 4-8.3.6, u is differentiable and

L−1(dxu) = ξ(x). Moreover, Γ∓(u) = M and by 4-8.3.5, ξ is Lipschitz.
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4-9 Construction of weak KAM solutions

In this section we present three ways to construct weak KAM solutions:

when the Peierls set is non-empty (in remark 4-9.3.4), when the Peierls

barrier is finite (in proposition 4-9.2), and the general case (in proposi-

tion 4-9.7). In the horocycle flow (example 5-8), the Peierls barrier is

finite, but the Peierls set is empty. In example 5-7, hc = +∞ and also

P = �.

WhenM is compact we characterize all weak KAM solutions in terms

of their values on each static class.

We begin by observing that

4-9.1 Lemma.

1. If U ⊆ S
− is such that v(x) := infu∈U u(x) > −∞, for all x ∈M ;

then v ∈ S
−.

2. If U ⊆ S
+ is such that v(x) := supu∈U u(x) < +∞, for all x ∈M ;

then v ∈ S
+.

Proof: We only prove item 1. Since u ≺ L+ c for all u ∈ U , then

v(y) = inf
u∈U

u(y) ≤ inf
u∈U

u(x) + Φc(x, y) = v(x) + Φc(x, y). (4.13)

Thus v ≺ L+ c.

Let x ∈ M and choose un ∈ U such that un(x) → v(x). Choose

wn ∈ Γ−(un) ∩ TxM . Since by lemma 3-2.3 |wn| < A, we can assume

that wn → w ∈ TxM . By lemma 4-2.1.1, all the functions u ∈ U have

the same Lipschitz constant K as Φc. For t < 0, we have that

v(xw(t)) ≤ lim inf
n

un(xwn(t)) +K dM (xw(t), xwn(t))

= lim inf
n

un(x)− Φc(xw(t), x) +K dM (xw(t), xwn(t))

= v(x)− Φc(xw(t), x) ≤ v(xw(t)), because v ≺ L+ c.

Hence w ∈ Γ−(v).
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4-9.a Finite Peierls barrier.

4-9.2 Proposition. If hc < +∞ and f : M → R is a continuous

function. Suppose that

v−(x) := inf
z∈M

f(z) + hc(z, x) > −∞,

v+(x) := sup
z∈M

f(z)− hc(x, z) > −∞.

Then v− ∈ S
− and v+ ∈ S

+.

Proof: We only prove that v− ∈ S
−. By lemma 4-9.1 it is enough to

prove that the functions u(x) 7→ hc(z, x) are in S
− for all z ∈M .

By proposition 3-7.1.4, u ≺ L+ c. Now fix x ∈ M . Choose Tonelli

minimizers γn : [Tn, 0]→M such that γn ∈ C(z, x), Tn < −n and

AL+c

(
γn|[Tn,0]

)
≤ hc(z, x) + 1

n .

By lemma 3-2.3, |γ̇n(0)| < A for all n. We can assume that γ̇n(0)
n→

w ∈ TxM . If −n ≤ s ≤ 0, then s > Tn and

AL+c

(
γn|[Tn,s]

)
+ Φc(γn(s), x) ≤

≤ AL+c

(
γn|[Tn,s]

)
+AL+c

(
γn|[s,0]

)

≤ hc(z, x) + 1
n

≤ hc(z, γn(s)) + Φc(γn(s), x) + 1
n , for − n ≤ s < 0.

Taking lim infn→∞, we get that

hc(z, xw(s)) +AL+c

(
xw|[s,0]

)
= hc(z, x).

Hence w ∈ Γ−(u).

4-9.3 Remarks.
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1. Observe that, since Φc(x, x) = 0,

u ≺ L+ c⇐⇒ u(x) = inf
z∈M

u(z) + Φc(z, x).

2. Item 4-9.3.1 implies that the function hc in proposition 4-9.2 can

not be replaced by Φc. In fact, the function uz(x) = Φc(z, x)

satisfies uz ≺ L + c, but in general u /∈ S
−, if z is not properly

chosen.

3. For any z ∈ M the function uz(x) = hc(z, x) ∈ S
− and vz(x) :=

−hc(x, z) ∈ S
+.

4. If p ∈ P then up(x) := Φc(p, x) ∈ S
−, because

Φc(p, x) ≤ hc(p, x) ≤ hc(p, p) + Φc(p, x) ≤ Φc(p, x).

Similarly, vp(x) := −Φc(x, p) ∈ S
+.

4-9.b The compact case.

In the next theorem we characterize all weak KAM solutions when M

is compact. They are determined by their values on one point of each

static class.

Let Γ = P/dc be the set of static classes of L. For each γ ∈ Γ choose

pΓ ∈ Γ and let P = { pΓ |Γ ∈ Γ }. We say that a function f : P → R is

dominated (f ≺ L+ c) if f(p) ≤ f(q) + Φc(q, p), for all p, q ∈ P.

4-9.4 Theorem.

If M is compact, the maps { f : P→ R | f ≺ L+ c } → S
−,

f 7−→ uf (x) := inf
p∈P

f(p) + Φc(p, x),

and { f : P→ R | f ≺ L+ c } → S
+,

f 7−→ vf (x) := sup
p∈P

f(p)− Φc(x, p),

are bijective isometries in the sup norm.
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Proof: We only prove it for f 7→ uf .

The domination condition f ≺ L + c implies that uf > −∞. Then

remark 4-9.3.4 and lemma 4-9.1.1 imply that uf ∈ S
−.

The injectivity follows from

uf (p) = min
q∈P

f(q) + Φc(q, p) = f(p) ∀p ∈ P,

because f is dominated.

To prove the surjectivity, let u ∈ S
− and let f = u|P. Given x ∈M

choose w ∈ Γ−
0 (u) ∩ TxM and let γ(t) = π ϕt(w). So that

u(x)− u(γ(t)) = AL+c(γ|[t,0]) = Φc(γ(t), x) for t < 0. (4.14)

Choose q ∈ π[α-lim(v)] ⊂ P (by proposition 3-11.3), and tn → −∞ such

that γ(tn)
n→ q. Using t = tn on equation (4.14), in the limit we have

that

u(x) = u(q) + Φc(q, x). (4.15)

Now take p ∈ P such that dc(p, q) = 0. Since u ≺ L+ c, then

u(q) ≤ u(p) + Φc(p, q) ≤ u(q) + Φc(q, p) + Φc(p, q) = u(q).

So that

u(q) = u(p) + Φc(p, q). (4.16)

By the triangle inequality

Φc(p, x) ≤ Φc(p, q) + Φc(q, x)

≤ Φc(p, q) + Φc(q, p) + Φc(p, x) = Φc(p, x).

So that

Φc(p, x) = Φc(p, q) + Φc(q, x). (4.17)

Combining equalities (4.15), (4.17) and (4.16), we have that

u(x) = u(p) + Φc(p, x),
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with p ∈ P. So that uf ≤ u. But since u ≺ L + c and f = u|P, using

remark 4-9.3.1, we have that u ≤ uf .
Now we see that f 7→ uf is an isometry in the supremum norm ‖ ‖0.

Given x ∈ M , choose pn ∈ P such that ug(x) = limn f(pn) + Φc(pn, x).

Since uf ≺ L+ c, we have that

uf (x)− ug(x) ≤ lim inf
n

f(pn) + Φc(pn, x)− g(pn)− Φc(pn, x)

≤ ‖f − g‖0 .

Changing the roles of f and g we get that ‖uf − ug‖0 ≤ ‖f − g‖0. Since

uf |P = f and ug|P = g, then ‖uf − ug‖0 ≥ ‖f − g‖0.

4-9.5 Corollary. There is only one static class if and only if S
− (resp.

S
+) is unitary modulo an additive constant.

This characterization of weak KAM solutions allows us to recover

the following theorem: We say that two weak KAM solutions u− ∈ S
−

and u+ ∈ S
+ are conjugate if u− = u+ on P and denote it by u− ∼ u+.

4-9.6 Corollary. (Fathi [20]) If M is compact, then

h(x, y) = sup
u∓∈S∓

u−∼u+

{u−(y)− u+(x) }.

Proof: If u+ ∼ u− and p ∈ P, from the domination we get

u+(p) ≤ u=(x) + Φc(x, p),

u−(y) ≤ u−(p) + Φc(p, y).

Adding these equations and using that u=(p) = u−(p), we get

u−(y)− u+(x) ≤ Φc(x, p) + Φc(p, y).
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Taking infp∈P and then supu=∼u− we obtain

sup
u+∼u−

{
u−(y)− u+(x)

}
≤ h(x, y).

On the other hand, let u=(z) := −h(z, y) and

u−(z) : = min
q∈P

{
u=(q) + Φc(q, z) } (4.18)

= min
q∈P

{
− h(q, y) + Φc(q, z)

}

= min
q∈P

{
− φc(q, y) + Φc(q, z) } (4.19)

From remark 4-9.3.3 and corollary 4-9.4, u± ∈ S
±. Since u+ is domi-

nated, from (4.18) we get that u+ ∼ u−. From (4.19), u−(y) = 0 and

hence u−(y)− u+(x) = h(x, y).

4-9.c Busemann weak KAM solutions.

When hc = +∞, we use another method to obtain weak KAM solutions,

resembling the constructions of Busemann functions in riemannian ge-

ometry. By proposition 3-10.1, Σ+ 6= � and Σ− 6= � even when M

is non-compact. We call the functions of proposition 4-9.7 weak KAM

Busemann functions.

4-9.7 Proposition.

1. If w ∈ Σ−(L) and γ(t) = xw(t), then

uw(x) = inf
t<0

[Φc(γ(t), x) − Φc(γ(t), γ(0))]

= lim
t→−∞

[Φc(γ(t), x) − Φc(γ(t), γ(0))]

is in S
−.
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2. If w ∈ Σ+(L) and γ(t) = xw(t), then

uw(x) = sup
t>0

[Φc(γ(0), γ(t)) − Φc(x, γ(t))]

= lim
t→+∞

[Φc(γ(0), γ(t)) − Φc(x, γ(t))]

is in S
+.

Proof: We only prove item 1. We start by showing that the function

δ(t) = Φc(γ(t), x)− Φc(γ(t), 0)

is increasing. If s < t, then

δ(t) − δ(s) = Φc(γ(t), x) − Φc(γ(s), x) +
[
Φc(γ(s), γ(0)) − Φc(γ(t), γ(0))

]

= Φc(γ(t), x) − Φc(γ(s), x) + Φc(γ(s), γ(t))

≥ 0,

where the last inequality follows from the triangle inequality applied to

the triple (γ(s), γ(t), x). By the triangle inequality, δ(t) ≤ Φc(γ(0), x),

hence limt↓−∞ δ(t) = inft<0 δ(t) and this limit is finite.

Since

u(y) = inf
t<0

Φc(γ(t), y) − Φc(γ(t), γ(0))

≤ inf
t<0

Φc(γ(t), x) + Φc(x, y)− Φc(γ(t), γ(0))

= u(x) + Φc(x, y),

then u ≺ L+ c.

Suppose that x ∈ P 6= �. Let (x, v) ∈ Σ̂ and t < 0. Let p = xv(t)

and y ∈M . Since dc(x, p) = 0, then

Φc(y, x) = Φ(y, x) + Φc(x, p) + Φc(p, x)

≥ Φc(y, p) + Φc(p, x) ≥ Φc(y, x).
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Hence Φc(y, x) = Φc(y, p) + Φc(p, x). For y = γ(s) (and p = xv(t)), we

have that

u(x)− u(xv(t)) = lim
s→+∞

[Φc(γ(s), x) − Φc(γ(s), xv(t))] = Φc(xv(t), x)

= AL+c

(
xv|[t,0]

)
.

Now let x ∈M \ P and choose yn : [Tn, 0]→M a Tonelli minimizer

such that yn(Tn) = γ(-n), yn(0) = x and

AL+c(yn|[Tn,0]) ≤ Φc(γ(-n), x) + 1
n .

This implies that

AL+c(yn|[s,t]) ≤ Φc(yn(s), yn(t)) + 1
n , for Tn ≤ s < t ≤ 0. (4.20)

By lemma 3-2.3, |ẏn| < A. We can assume that ẏn(0) → v ∈ TxM .

Then

AL+c(xv|[t,0]) = Φc(γ(t), x) for lim inf
n

Tn ≤ t ≤ 0. (4.21)

We prove below that limn Tn = −∞. Then v ∈ Σ−(L). Observe that

for Tn ≤ s ≤ 0 we have that

Φc(γ(-n), x) ≤ Φc(γ(-n), yn(s)) + Φc(yn(s), x)

≤ AL+c(yn|[Tn,0]) ≤ Φc(γ(-n), x) + 1
n .

Since y 7→ Φc(z, y) is uniformly Lipschitz, we obtain that

u(x) = lim
n

Φc(γ(-n), x)− Φc(γ(-n), γ(0))

= lim
n

Φc(γ(-n), xv(s)) + Φc(xv(s), x)− Φc(γ(-n), γ(0))

= u(xv(s)) + Φc(xv(s), x) for all s < 0.

= u(xv(s)) +AL+c(xv|[s,0]) because v ∈ Σ−.

Now we prove that limn Tn = −∞. Suppose, for simplicity, that

limn Tn = T0 > −∞. Since ẏn(0) → v, then yn|[Tn,0]
C1

−→ xv|[T0,0] and
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hence γ(-n) = yn(Tn) → xv(T0) =: p. Since by lemma 3-2.3 |γ̇| is

bounded, we can assume that limn γ̇(-n) = (p,w1). By lemma 3-11.3,

w1 ∈ α-lim(γ̇) ⊆ Σ̂. From (4.21), ẋv(T0) ∈ Σε. Since π(w1) = xv(T0) =

p, then lemma 3-8.1 implies that ẋv(T0) ∈ Σ̂. Since Σ̂ is invariant, then

v ∈ Σ̂ and hence x = π(v) ∈ π(Σ̂) = P. This contradicts the hypothesis

x ∈M \ P.

4-9.8 Corollary. S
− 6= � and S

+ 6= �.
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4-10 Higher energy levels.

The method in proposition 4-9.7 allows us to obtain analogous weak

KAM solutions on energy levels k > c(L) when M is non-compact.

Let

Σ−(k) :=
{
v ∈ TM |AL+k

(
xv|[t,0]

)
= Φk

(
xv(t), xv(0)

)
, ∀t ≤ 0

}
.

For u ≺ L+ k define

Γ−(u, k) =
{
v ∈ TM |AL+k

(
xv|[t,0]

)
= u

(
xv(0)

)
− u

(
xv(t)

)
, ∀t ≤ 0

}
.

(4.22)

Let

S
−(k) =

{
u : M → R |u ≺ L+ k and π

(
Γ−(u, k)

)
= M

}
.

Define similarly Σ+(k), Γ+(u, k) and S
+(k). Then the functions u ∈ S

±

satisfy Lipschitz, covering, graph and smoothness properties analogous

to theorem 4-8.3.

Observe that we are requiring that the global minimizers in (4.22)

are defined in the whole ray ]−∞, 0]. In the following lemma we show

that there are not such weak KAM solutions when M is compact and

k > c(L). If we look for weak solutions of (H-J) with realizing curves

defined only on finite intervals then the action potential u(x) = Φk(p, x),

v(x) = −Φk(p, x) give such examples.

4-10.1 Proposition.

If M is compact, then Σ±(k) = � and hence S
±(k) = � for all k > c(L).

If M is non-compact then Σ±(k) 6= � for all k > c(L).

Moreover, if v ∈ Σ±(k), then ω-lim(v) = � (resp. α-lim(v) = �).

Proof: Suppose that v ∈ Σ+(k) 6= � and that w ∈ ω-lim(v) 6= �.

Observe that the orbit of w can not be a fixed point (i.e. w 6= 0) because

by (3.18), k > c(L) ≥ e0. Let p = π(w) and choose s > 0 such that
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q = π(ϕs(w)) 6= p. Then the same argument as in proposition 3-11.3

shows that

dk(p, q) = Φk(p, q) + Φl(q, p) = 0,

which contradicts proposition 2-1.1.4.

This proves that Σ±(k) = � when M is compact. Observe that if

u+ ∈ S
+(k) then � 6= Γ+(u, k) ⊆ Σ+(k). Hence S

±(k) = � when M is

compact.

Assume now that M is non-compact. We show that Σ+(k) 6= 0. Let

x ∈ M and 〈yn〉 ⊆ M such that dM (x, yn) → +∞. Let γn ∈ CTn(x, yn)

be a Tonelli minimizer such that

AL+c(γn) < Φk(x, yn) + 1
n . (4.23)

Then by lemma 3-2.3, |γ̇n| < A, and hence Tn → +∞. Let v be a density

point of {γ̇n(0)}. Since γn|[0,t] C1

−→ xv|[0,t] for all t > 0, from (4.23) we

obtain that v ∈ Σ+(k).

By corollary 4-4.7, there are no weak solutions of (H-J) for k < c(L).

We complete the picture with the following:

4-10.2 Proposition.

If M is non-compact, then S
±(k) 6= � for all k ≥ c(L).

If M is compact, then S
±(k) = � for all k > c(L).

Proof: Proposition 4-10.1 proves the case M compact.

Now we reproduce the proof of proposition 4-9.7. Let w ∈ Σ+(k) 6=
�, write γ(t) := xw(t) and

uw(x) := lim
t→+∞

[Φk(γ(0), γ(t)) − Φk(x, γ(t))]

The limit exists because by the triangle inequality for Φk, the function

δ(t) = Φk(γ(0), γ(t)) − Φk(x, γ(t))
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is non-decreasing and it is bounded above by Φk(γ(0), x). The triangle

inequality implies that u ≺ L+ k.

Now let x ∈M and choose yn : [0, Tn]→M a Tonelli minimizer such

that yn(0) = x, yn(Tn) = γ(n) and

AL+c(yn|[0,Tn]) ≤ Φk(x, γ(n)) + 1
n .

This implies that for all 0 < t < Tn,

Φk(x, γ(n)) ≤ AL+k

(
yn|[0,t]

)
+ Φk(yn(t), γ(n)) ≤ Φk(x, γ(n)) + 1

n .

(4.24)

By lemma 3-2.3, |ẏn| < A. Since yn(Tn) = γ(n) and by proposition4-

10.1, γ(n) → ∞, then lim infn Tn = +∞. Let v ∈ TxM be a density

point of ẏn(0).

Since yn|[0,t] C1

−→ xv|[0,t], using (4.24) we get that

u(xv(t)) = lim
n

Φk(γ(0), γ(n)) − Φk(xv(t), γ(n))

= lim
n

Φk(γ(0), γ(n)) − Φk(x, γ(n)) +AL+k(yn|[0,t])

= u(x) +AL+k(xv|[0,t]),

for all 0 < t < lim infn Tn = +∞.
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4-11 The Lax-Oleinik semigroup.

The Lax-Oleinik semigroup was used to obtain weak KAM solutions by

Lions, Papanicolaou and Varadhan [32] on tori T
n and later by

Fathi [21] for compact manifolds.

Nahman and Roquejoffre

Roquejoffre

Through this section we shall assume that M is compact. The

Lax-Oleinik semigroup 〈T−〉t≥0 is the semigroup of operators T−
t :

C0(M,R)→ C0(M,R) defined by

T−
t u(x) = inf

γ
{u(γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) + c ds }

= min
y∈M
{u(y) + Φc(y, x; t) },

where the infimum is taken on all piecewise differentiable curves γ :
[0, T ]→M with γ(T ) = x. Similarly, define

T+
t u(x) = max

z∈M
{u(z) − Φc(x, z; t) }.

4-11.1 Proposition. If M is compact.

1. The unique c ∈ R for which the semigroup 〈T−
t 〉t≥0 has a fixed

point is the critical value c = c(L).

2. u ∈ S
− ⇐⇒ u is a fixed point of the semigroup 〈T−

t 〉t≥0.

3. For all ε > 0 there exists a Lipschitz constant K = K(ε) > 0 such

that T−
t (C0(M,R)) ⊆ LipK(M,R) for all t > ε.

4. T−
t is a weak contraction: For all t ≥ 0 and all u, v ∈ C0(M,R),∥∥T−
t u− T−

t v
∥∥

0
≤ ‖u− v‖0.

5. For ε > 0 there exists K(ε) > 0 such that if u, v ∈ C0(M,R) and

s, t > ε, then
∥∥T−

s u− T−
t v

∥∥
0
≤ ‖u− v‖0 +K(ε) |s − t|.

137



138 4. the hamiltonian viewpoint.

Proof:

1. By proposition 3-4.1, limt→+∞ Φk(x, y; t) = ±∞ when k 6= c(L),

uniformly in x, y ∈ M . This implies that there are no fixed points for

T±
t when c 6= c(L). The existence of a fixed point is given by item 2.

2. Let u ∈ S
−. For x ∈ M take v ∈ Γ−(u) ∩ TxM and let γ(t) :=

π ϕt(v). For t > 0 we have that

u(x) = u(γ(−t)) +AL+c

(
γ|[−t,0]

)

= u(γ(−t)) + Φc(γ(−t), x; t).

But since u ≺ L+ c, then

u(x) ≤ u(y) + Φc(y, x) ≤ u(y) + Φc(y, x; t).

Hence T−
t u = u for all t > 0.

Now suppose that T−
t u = u for all t ≥ 0. Then

u(x) ≤ u(z) + Φc(z, x; t) ∀t ≥ 0, ∀z ∈M.

Taking the infimum on t ≥ 0, we get that u ≺ L+ c. Moreover,

u(x) ≤ min
z∈M

u(z) + Φc(z, x) ≤ min
z∈M

u(z) + hc(z, x).

For t > 0 let zt be such that u(x) = u(zt) + Φc(zt, x; t). Let tn → +∞
be a sequence such that the limit limn ztn = y exists. Then

u(x) = u(y) + lim
n

Φc(ztn , x; tn) ≥ u(y) + hc(y, x),

where the last inequality follows from the definition of hc and the

Lipschitz property for Φc(x, y; t) in proposition 3-4.1.1. Thus u(x) =

minz∈M u(z) + hc(z, x), by proposition 4-9.2, u ∈ S
−.

3. Using proposition 3-4.1, let K = K(ε) be a Lipschitz constant

for (x, y; t) 7→ Φc(x, y; t) on M ×M × [ε,+∞[. Given u ∈ C0(M,R),
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x, y ∈M and t > ε, let z ∈M be such that T−
t u(y) = u(z)+ Φc(z, y; t).

Then

T−
t u(x) ≤ u(z) + Φc(z, x; t)

≤ u(z) + Φc(z, y; t) + |Φc(z, x; t)− Φc(z, y; t)|
≤ T−

t u(y) +K(ε) d(x, y).

Changing the roles of x and y we get that T−
t u ∈ LipK(M,R).

5. Observe that item 5 implies item 4. Let u, v ∈ C0(M,R), s, t > ε

and x ∈ M . Let K = K(ε) be as in item 3. Choose z ∈ M such that

T−
s u(x) = u(z) + Φc(z, x; s). Then

T−
t v(x) ≤ v(z) + Φc(z, x; t)

≤ T−
s u(x) + |v(z) − u(z)|+ |Φc(z, x; t)− Φc(z, x; s)|

≤ T−
t u(x) + ‖u− v‖0 +K(ε) |s− t|.

Changing the roles of u and v we get item 5.

4-11.2 Remark. Fixed Points for the Lax-Oleinik semigroup.

Another proof of the existence of a fixed point in 4-11.3

We sketch here another proof of existence of a fixed point for the

Lax-Oleinik semigroup using properties 3 and 4 of proposition 4-11.1.

Consider the semigroup λT−
t , with 0 < λ < 1 acting on the

space C0(M,R)/R of continuous functions modulo an additive con-

stant. Then λT−
t is a contraction whose image is in the compact space

LipK(M,R)/R, independent of λ or t. Let uλ,t be a fixed point for λT−
t .

Choosing a sequence λn → 1 and a subsequence such that uλn,t con-

verges in LipK(M,R)/R, one obtains a fixed point ut for T−
t . Now let

tn → 0 and choose a subsequence such that utn converges to some v in

LipK(M,R)/R. Fix s ∈ R and let Nn ∈ Z be such that limnNntn = s.

Since by the semigroup property, utn is also a fixed point for T−
Nntn

,

using proposition 4-11.1.5, we get that in the C0-topology,

T−
s v = lim

n
T−
Nntn

utn = lim
n
utn = v.
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So that v is a fixed point for the whole semigroup 〈T−
t 〉t≥0.

4-11.3 Theorem (Fathi [23]). If M is compact,

for all u ∈ C0(M,R) the uniform limit lim
t→+∞

T−
t u exists.

To prove this theorem we shall need some lemmas.

4-11.4 Lemma. If M is compact then limt→+∞
1
tΦc(x, y; t) = 0, uni-

formly on (x, y) ∈M ×M .

Proof: Write ht(x, y) := Φc(x, y; t). Then

inf
M×M

ht + 2 inf
M×M

h1 ≤ ht+2 ≤ inf
M×M

ht + 2 sup
M×M

h1.

Then, writing C = 2 (suph1 − inf h1), we have that

∀t > 2, sup
M×M

ht − inf
M×M

ht ≤ 2C.

Now let u be a weak KAM solution. Since T−
t u = u, we have that for

all t > 0,

u(y) = min
x∈M

u(x) + Φc(x, y; t).

Thus, for all (x, y) ∈M ×M and t > 2,

|Φc(x, y; t)| ≤ sup
x∈M

u(x)− inf
x∈M

u(x) + 2C.

This implies the lemma.

4-11.5 Lemma. For all ε > 0, there exists T0 > 0 such that if T > T0

and γ : [0, T ]→M is a Tonelli minimizer, then |E(γ, γ̇)− c(L)| < ε.

Proof: Let Tn → +∞ and let γn : [0, Tn]→M be a Tonelli minimizer.

Then by lemma 3-2.2 there is A > 0 such that |γ̇n| < A for all n.

Then there exists a subsequence such that the probabilities µγn converge

140



4-11. the lax-oleinik semigroup. 141

weakly* to a limit µ. Since L is bounded on |v| ≤ A, and using lemma 4-

11.4,

AL+c(µ) = lim
n
AL+c(µγn) = lim

n

1
Tn

Φc(γn(0), γn(Tn);Tn) = 0.

Hence µ is a minimizing measure and E(suppµ) ≡ c(L). Thus

E(γn, γ̇n)→ c(L).

For f : T ∗M → R measurable and u : M → R Lipschitz, define

ess sup
p∈T ∗M

f = inf
A⊆T∗M

Leb(T ∗M\A)=0

sup
p∈A

f(p),

and

H(f) = ess sup
x∈M

H(x, dxf).

4-11.6 Lemma. If u : M → R is Lipschitz, then u ≺ L+ H(u).

Proof: Using a convolution argument as in lemma 4-4.5, we can approx-

imate both H(u) and u in the C0 topology by a C∞ function. Hence we

can assume that u is C1. Then for all (x, v) ∈ TM ,

dxu · v ≤ L(x, v) +H(x, dxu) ≤ L(x, v) + H(u).

If γ ∈ C(x, y), then

u(y)− u(x) ≤
∮

γ
du ≤

∮

γ
L+ H(u).

4-11.7 Lemma. If u ∈ C0(M,R), then lim
t→+∞

H(T−
t u) = c.
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Proof: By proposition 4-11.1.3, T−
t u is Lipschitz. If x is a differentia-

bility point for T−
t u, then

dx(T
−
t u) = Lv(γ(t), γ̇(t)),

where γ : [0, t] → M is a Tonelli minimizer satisfying γ(t) = x, and

T−
t u(x) = u(γ(0)) + AL+c(γ|[0,t]). Thus H(dx(T

−
t u)) = E(γ(t), γ̇(t)).

By lemma 4-11.5, E(γ, γ̇) converges to c(L) uniformly on t.

Proof of theorem 4-11.3:

Let u ∈ C0(M,R). By proposition 4-11.1.2 the family 〈T−
t u〉t≥1 is

equilipschitz. By Arzela-Áscoli theorem there exists a sequence tn →
+∞ such that the uniform limit u∞ = limn T

−
tnu exists. By lemma 4-

11.6, T−
t u ≺ L+ H(T−

t u) and by lemma 4-11.7, H(T−
t u) → c. This

implies that u∞ ≺ L+ c.

Now we prove that u∞ is a fixed point of the semigroup T−
t . Since

u∞ ≺ L + c, then u∞ ≤ T−
t u∞ for all t ≥ 0. Since T−

t preserves the

order, we get that u∞ ≤ T−
s u∞ ≤ T−

t u∞ for all s ≤ t. It is enough to

show that there is a sequence sn → +∞ such that Tsnu∞ → u∞. Write

sn = tn+1 − tn, we can assume that sn → +∞. Then, using 4-11.1.4,

∥∥T−
sn
u∞ − u∞

∥∥
0
≤

∥∥T−
sn
u∞ − T−

sn
T−
sn
u
∥∥

0
+ ‖T−

tn+1
u− u∞‖0

≤ ‖u∞ − Ttnu‖0 + ‖T−
tn+1

u− u∞‖0 → 0.

It remains to show that the fixed point u∞ of T−
t is the limit of T−

t u.

But for all s ≥ 0,

∥∥T−
tn+su− u∞

∥∥
0

=
∥∥T−

s T
−
tnu− T−

s u∞
∥∥

0
≤

∥∥T−
tnu− u∞

∥∥
0

n−→ 0.

The following corollaries are also due to A. Fathi.

4-11.8 Corollary. If M is compact, then lim
t→∞

Φc(x, y; t) = hc(x, y),

uniformly in x ∈M and also in y ∈M .
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Proof: The uniform limit on y ∈ M follows from the equality

Φc(x, y; t) = T−
t−1u(y), where u(z) = Φc(x, z; 1). And the uniform

limit on x ∈ M follows from −Φc(x, y; t) = T+
t−1v, where v(z) =

−Φc(z, y; 1).

Recall that a ray is a curve γ(t) such that it is a Tonelli minimizer

for all t ≥ 0 (resp. t ≤ 0).

4-11.9 Corollary. If M is compact then the rays are semistatic.

Proof: For an a.c. curve γ, and s ≤ t in its domain, define

δ(s, t) := AL+c(γ[s,t])− Φc(γ(s), γ(t)).

Observe that δ(s, t) ≥ 0. We show that

[s1, t1] ⊆ [s2, t2] =⇒ δ(s1, t1) ≤ δ(s2, t2).

Indeed, by the triangle inequality,

−Φc(γ(s2), γ(s1))−Φc(γ(s1), γ(t1))− Φc(γ(t1), γ(t2)) ≤ −Φc(γ(s2, t2).

Adding the equality

AL+c(γ|[s2,s1]) +AL+c(γ|[s1,t1]) +AL+c(γ|[t1,t2]) = AL+c(γ|[s2,t2])

and using that δ(s, t) ≥ 0, we get that

δ(s1, t1) ≤ δ(s2, s1) + δ(s1, t1) + δ(t1, t2) ≤ δ(s2, t2).

Now suppose that γ : [0,+∞[→M is a ray. Observe that

δ(s, t) = Φc(γ(s), γ(t); t − s)− Φc(γ(s), γ(t)). (4.25)

By theorem 4-11.3, the map t 7→ δ(0, t) is bounded. Define

δ(s,+∞) := lim
t→+∞

δ(s, t) = sup
t≥s

δ(s, t) ≤ δ(0, t).
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Since the map s 7→ δ(s,+∞) is increasing, we have that

lim
s→+∞

δ(s,+∞) = 0.

Now we prove that the ω-limit vectors of a ray are static. Write

γ(t) = πϕt(v), t ≥ 0. Suppose that tn → +∞ and γ̇(tn) → w ∈ TM .

Let η(t) = π ϕt(w). Since γ and η are solutions the Euler-Lagrange

equation, then γ|[tn−s,tn+s] −→
C1

η|[−s,s]. We have that

AL+c

(
η|[−s,s]

)
+ Φc(η(s), η(−s)) =

= lim
n

{
AL+c(γ|[tn−s,tn+s]) + lim

m
Φc(γ(tn + s), γ(tm − s))

}

= lim
n

{
AL+c(γ|[tn−s,tn+s]) + lim

m
AL+c(γ|[tn+s,tm−s])− δ(tn + s, tm − s)

}

= lim
n

lim
m

AL+c(γ|[tn−s,tm−s])− δ(tn + s, tm − s)

= lim
n

lim
m

Φc(γ(tn − s), γ(tm − s)) + δ(tn − s, tm + s)− δ(tn + s, tm − s)

= Φc(η(−s), η(−s)) + lim
n
δ(tn − s,+∞)− δ(tn + s,+∞)

= 0.

Thus w ∈ Σ̂(L).

Finally, we prove that γ is semistatic. Let tn → +∞ be such that

the limit p = limn γ(tn) exists. Then p ∈ P = π(Σ̂). Using (4.25), we

have that corollary 4-11.8, implies that

δ(s,+∞) = lim
n
δ(s, tn) = hc(γ(s), p)− Φc(γ(s), p) = 0

for all s ≥ 0. Thus δ(s, t) ≡ 0 for all 0 ≤ s ≤ t, i.e. γ is semistatic.
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4-12 The extended static classes.

The method in proposition 4-9.7 resembles the construction of Buse-

mann functions in complete manifolds of non-positive curvature. In that

case, Ballmann, Gromov and Schroeder [5] proved that the manifold can

be compactified adjoining the sphere at infinity that can be defined in

terms of Busemann functions.

Here we emulate that construction to obtain a compactification of

the manifold that identifies the points in the Peierls set which are in the

same static class and adjoins what we call the extended Peierls set P∓.

By definition of Busemann function, the extended static classes in B∓

correspond to the α-limits (resp. ω-limits) of semistatic orbits in the

compactification. But as we shall see in example 4-12.4 the classes in

P∓ \B∓ do not correspond to α or ω limits of orbits in TM .

On C0(M,R) we use the topology of uniform convergence on compact

subsets. Consider the equivalence relation on C0(M,R) defined by f ∼ g
if f − g is constant. Let F := C0(M,R)/∼ with the quotient topology.

Let M
− be the closure in F of { f(x) = Φc(z, x) | z ∈ M }/∼ and

M
+ the closure in F of { g(x) = Φc(x, z) | z ∈M }. Fix a point 0 ∈M .

We can identify

F ≈ { f ∈ C0(M,R) | f(0) = 0 }.

4-12.1 Lemma. M
− and M

+ are compact.

Proof: Observe that the functions in M
− and M

+ are dominated. By

lemma 4-2.1.1 the families M
− and M

+ are equicontinuous. Since M

is separable by Arzelá-Ascoli theorem M
− and M

+ are compact in the

topology of uniform convergence on compact subsets.

Then M
− is the closure of the classes of the functions

fz(x) := Φc(z, x)− Φc(0, x), ∀ z ∈M
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146 4. the hamiltonian viewpoint.

and M
+ is the closure of the classes of

gz(x) := Φc(x, z)− Φc(0, z), ∀ z ∈M.

4-12.2 Lemma.

1. If fw(x) = fz(x) for all x ∈M , then dc(w, z) = 0.

2. If gw(x) = gz(x) for all x ∈M , then dc(w, z) = 0.

Proof: We only prove item 1. Suppose that fz = fw. From fz(z) =

fw(z) we get that

Φc(w, z) = Φc(w, 0) − Φc(z, 0),

and from fz(w) = fz(w) we get

Φc(z,w) = −Φc(w, 0) + Φc(z, 0).

Adding these equations we get that dc(z,w) = 0.

Conversely, if dc(z,w) = 0 and x ∈M , then

Φc(w, x) ≤ dc(w, z) + Φc(z, x) = Φc(z, x) − Φc(z,w) ≤ Φc(w, x).

Thus Φc(w, x) = Φc(w, z) + Φc(z, x) for all x ∈ M . This implies that

fz = fw.

Then we have embeddings M/dc →֒ M
−, by z 7→ [fz] ∈ F and

M/dc →֒M
+ by z 7→ [gz] ∈ F , where M/dc is the quotient space under

the equivalence relation x ≡ y if dc(x, y) = 0. Let B
− be the functions

defined in proposition 4-9.7.1 and B
+ those of 4-9.7.2. Let B+ = B

+/∼
and B− = B

−/∼.

4-12.3 Remark. By proposition 4-9.7, if p ∈ P 6= � then u−(x) :=

Φc(p, x) ∈ B− and u+(x) := −Φc(x, p) ∈ B+ (modulo an additive con-

stant).
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Observe that dc(z,w) = 0 if and only if z = w or z, w ∈ P and

they are in the same static class. Under the identifications M →֒ M
∓

we have that B∓ ∪ (M \ P) ⊆M
∓ respectively. But this inclusion may

be strict as the following example shows:

4-12.4 Example. B− ∪ (M \ P) 6= M
−.

Let M = R and L(x, v) := 1
2v

2 − cos(2πx), corresponding to the

universal cover of the simple pendulum lagrangian. Then c(L) = 1,

and the static orbits are the fixed points (2k + 1, 0) ∈ TR, k ∈ Z.

Moreover, H(x, p) = 1
2p

2 + cos(2πx) and the Hamilton-Jacobi equation

H(x, dxu) = c(L) gives dxu = ±2
√

1− cos(2πx). The function

u(x) =

∫ x

0
2
√

1− cos(2πs) ds,

with dxu ≡ +2
√

1− cos(2πx), is in S
−, is the limit of un(x) :=

Φc(−n, x) − Φc(−n, 0) but it is not a Busemann function associated

to a semistatic orbit γ because if γ(−∞) = 2k + 1 ∈ Z is the α-limit of

γ, then the Busemann function bγ associated to γ satisfies

dxbγ =

{
+2

√
1− cos(2πx) if x ≥ γ(−∞),

−2
√

1− cos(2πx) if x ≤ γ(−∞).
(4.26)

Similarly a function v : R → R with dxv ≡ −2
√

1− cos(1πx) is in S
+

but it is not a Busemann function.

Observe that in the Busemann function in (4.26), at the point y =

γ(−∞)+3 the semistatic orbit η(t) with η̇(0) = Γ−(u)∩TyM has α-limit

η(−∞) = γ(−∞) + 2 6= γ(−∞). Moreover, the Busemann function bη
associated to η satisfies

dxbη =

{
+2

√
1− cos(2πx) if x ≥ γ(−∞) + 2,

−2
√

1− cos(2πx) if x ≤ γ(−∞) + 2;

so that bη 6= bγ . In fact, there is no semistatic orbit passing through y

with α-limit γ(−∞). This implies that the Busemann functions can not
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148 4. the hamiltonian viewpoint.

be parametrized just by a (semistatic) vector based on a unique point

0 ∈ M as in the riemannian case. In particular, it may not be possible

to choose a single point qα ≡ 0 ∈ M, ∀α ∈ B− in the construction for

theorem 4-12.7.

The functions in B
− and B

+ are special among the weak KAM

solutions. They are “directed” towards a single static class and they are

the most regular in the following sense:

4-12.5 Lemma.

1. If w ∈ Σ− and uw ∈ B
− is as in proposition 4-9.7.1, then

uw(x) = max{u(x) |u ∈ S
−, u(π(w)) = 0, w ∈ Γ−(u) }.

2. If w ∈ Σ+ and uw ∈ B
+ is as in proposition 4-9.7.2, then

uw(y) = min{u(y) |u ∈ S
+, u(π(w)) = 0, w ∈ Γ+(u) }.

By the remark 4-12.3, this also holds for the functions

u−(x) = Φc(p, x) and u+(x) = −Φc(x, p) (modulo an additive constant),

for any p ∈ P.

Proof: We prove item 1. Let x := π(w) and v ∈ S
− with v(x) =

uw(x) = 0 and w ∈ Γ−(v). Let xw(t) = π(Φt(w)). Since v ≺ L+ c and

w ∈ Γ−(v), then for t < 0, we have that

v(y) ≤ v(xw(t)) + Φc(xw(t), y)

= v(x)− Φc(xw(t), x) + Φc(xw(t), y).

Since v(x) = uw(x) = 0, letting t ↓ −∞, we get that v(y) ≤ uw(y) for

all y ∈ M . On the other hand, uw is in the set of such u’s, so that the

maximum is realized by uw.
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Define

P− := M
− \ (M − P) , P+ := M

+ \ (M − P).

4-12.6 Proposition.

The functions in P− and P+ are weak KAM solutions.

Proof: Let u ∈ M
− \ (M \ P). Since u is dominated, we only

have to prove the condition 4-8.1.2. Adding a constant, we can as-

sume that u(0) = 0. Then there is a sequence zn ∈ M such that

u(x) = limn Φc(zn, x) − Φc(zn, 0). Let x ∈ M and let γn ∈ CTn(zn, x)

be a Tonelli minimizer such that Tn < 0, γn(0) = x, γn(Tn) = zn and

AL+c(γn) ≤ Φc(zn, x) + 1
n . In particular

AL+c(γn|[t,0]) ≤ Φc(γn(t), x) + 1
n , ∀ Tn ≤ t ≤ 0.

Since u ∈ P−, then we can assume that either dM (zn, x) →∞ or zn →
p ∈ P. Since by lemma 3-2.3 |γ̇n| < A and hc(p, p) = 0 for p ∈ P, in

either case we can assume that Tn → −∞.

We can assume that γ̇n(0)→ v ∈ TxM . Then for t ≤ 0

u(xv(x)) − u(xv(t)) = lim
n

Φc(zn, x)− Φc(znxv(t))

= lim
n

Φc(zn, x)− Φc(zn, γn(t)) +K dc(γn(t), xv(t))

≤ lim
n
AL+c

(
γn|[t,0]

)
+ 1

n

≤ AL+c

(
xv|[t,x]

)
,

where K is a Lipschitz constant for Φc.

For p ∈ B and z ∈ M let x 7→ bp,z(x) be the function in the class

p ∈ B such that bp,z(z) = 0, i.e.

bp,z(x) = lim
y→p

Φc(y, x)− Φc(y, z).
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150 4. the hamiltonian viewpoint.

We now give a characterization of weak KAM solutions similar to that

of corollary 4-9.4. For each α ∈ B− choose qα ∈ M such that there is

a unique semistatic vector v ∈ Σ− such that π(v) = q and the α-limit

of v is in the static class α. This can be done by the graph property 4-

8.3.5. Moreover, choose them such that the map B− ∋ α 7→ qα ∈ M is

injective. Let P := { qα |α ∈ B− }. We say that a function f : P→M is

strictly dominated if

f(qa) < f(qβ) + bβ,qβ(qα)

for all a 6= β in B−. And we say that f is dominated if f(qa) ≤ f(qβ) +

bβ,qβ(qα) for all a 6= β in B−.

4-12.7 Theorem.

The map { f : P → R | f strictly dominated } → {u ∈
S

− |u|P strictly dominated }, f 7→ uf , given by

uf (x) := inf
α∈B−

f(qα) + bα,qα(x),

is a bijection.

Proof: We first prove that uf is bounded below. The domination con-

dition implies that uf (qα) = f(qα) for all α ∈ B−. Then the same

argument as in formula (4.13), shows that uf ≺ L+c. Fix α ∈ B−, then

for all x ∈M ,

uf (x) ≥ uf (qα)− Φc(qα, x) = f(qα)− Φc(qα, x) > −∞. (4.27)

Since uf > −∞ and it is an infimum of weak KAM solutions, from

lemma 4-9.1 we get that uf ∈ S
−. Since uf (qα) = f(qα) for all α ∈ B−,

the map f 7→ uf is injective.

We now prove the surjectivity. Suppose that u ∈ S
− and u|P is

strictly dominated. Let

v(x) := min
α∈B−

u(qα) + bα,qα(x).
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Observe that the domination condition implies that

v(qα) = u(qa) for all α ∈ B−. (4.28)

Given x ∈M , let θ ∈ Γ−(u) ∩ TxM and let α ∈ B− be the α-limit of θ.

Then,

u(x) = u(xθ(s)) + Φc(xθ(s), x) for all s < 0.

Since u is dominated, u(qα) ≤ u(xθ(s)) + Φc(xθ(s), qα). Hence

u(x) ≥ u(qa)− Φc(xθ(s), qa) + Φc(xθ(s), x) for all s < 0.

Taking the limit when s→ −∞, we get that

u(x) ≥ v(x) for all x ∈M. (4.29)

Now we prove that u = v on the projection of the backward orbits of

vectors in Γ−(u) ending at the points qα, α ∈ B−. Let ξ ∈ Γ−(u)∩TqαM
and let β ∈ B− be the α-limit of ξ. From the definition of v(x) for all

ε > 0 and s < 0 there exists γ = γ(s, ε) ∈ B− such that

v(xξ(s)) ≥ v(qγ) + bγ,qγ(xξ(s))− ε.

Since ξ ∈ Γ−(u) ∩ TqαM , then for s < 0,

u(qα) = u(xξ(s)) + Φc(xξ(s), qα) (4.30)

≥ v(xξ(s)) + Φc(xξ(s), qα) by (4.29) (4.31)

≥ v(qγ) + bγ,qγ (xξ(s))− ε+ Φc(xξ(s), qα)

= lim
t→−∞

v(qγ) + Φc(xξ(t), xξ(s)) + Φc(xξ(s), qα)− Φc(xξ(t), qγ)− ε

≥ v(qγ) + lim
t→−∞

Φc(xξ(t), qα)− Φc(xξ(t), qγ)− ε

≥ v(qγ) + bγ,qγ (qα)− ε
≥ v(qα)− ε (4.32)

= u(qα)− ε. by (4.28).
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152 4. the hamiltonian viewpoint.

Letting ε ↓ 0, from the equality between (4.31) and (4.32) we get that

v(qα) = v(xξ(t)) + Φc(xξ(t), qα) for all t < 0. (4.33)

But then

v(qβ) ≤ v(xξ(t)) + Φc(xξ(t), qβ) = v(qα)− Φc(xξ(t), qα) + Φc(xξ(t), qβ).

Equivalently

v(qα) ≥ v(qβ) + Φc(xξ(t), qα)−Φc(xξ(t), qβ).

Taking the limit when t → −∞, we get that v(qα) ≥ v(qβ) + bβ,qβ(qα).

This contradicts the strict domination, hence β = α. Then, from the

equality between (4.30) and (4.31), we have that

u(xξ(t)) = v(xξ(t)) for all t < 0, and ξ ∈ Σ− ∩ TqαM, α-lim(ξ) = α.

(4.34)

Now let x ∈M and α ∈ B−. Let ξ ∈ Σ− ∩ TqaM with α-lim(ξ) = α.

Then for t < 0,

u(x) ≤ u(xξ(t)) + Φc(xξ(t), x)

= v(xξ(t)) + Φc(xξ(t), x) by (4.34)

= v(qα)− Φc(xξ(t), qα) + Φc(xξ(t), x), by (4.33).

Letting t→ −∞, we have that

u(x) ≤ v(qα) + bα,qα(x) = u(qα) + bα,qα(x).

Since α ∈ B− is arbitrary, from the definition of v we get that u ≤ v.

4-12.8 Theorem.

Given u ∈ S
−, for all α ∈ B−(u) choose qα ∈ π[Λ−

0 (α) ∩ Γ−
0 (u)],

and let P(u) := {qα |α ∈ B−(u) }. Then

u(x) = inf
qα∈P(u)

u(qα) + bα,qα(x) for all x ∈M.

152



4-12. the extended static classes. 153

Proof: Let u ∈ S
−. For all α ∈ B−(u), choose qα ∈ π(Λ−

0 (α)∩Γ−
0 (u)).

Let P(u) := { qα |α ∈ B−(u) }. We show that u|P(u) is dominated. Let

α, β ∈ B−(u) and let θ ∈ TqβM ∩ Λ−(β) ∩ Γ−(u). Then for t < 0,

u(qα) ≤ u(xθ(t)) + Φc(xθ(t), qα)

= u(qβ)− Φc(xθ(t), qβ) + Φc(xθ(t), qα).

Letting t → −∞, we get that u(qα) ≤ u(qβ) + bβ,qβ(qα), for all α, β ∈
B−(u).

Let

v(x) := inf
qα∈P(u)

u(qα) + bα,qα(x). (4.35)

The same arguments as in equation (4.27) show that v > −∞ and by

lemma (4-9.1) v ∈ S
−.

Given x ∈M , let θ ∈ Γ−(u)∩TxM and let α ∈ B−(u) be the α-limit

of θ. Then,

u(x) = u(xθ(s)) + Φc(xθ(s), x) for all s < 0,

u(x) ≥ u(qa)− Φc(xθ(s), qa) + Φc(xθ(s), x) because u is dominated.

Since α ∈ B=(u), taking the limit when s→ −∞, we get that

u(x) ≥ v(x) for all x ∈M. (4.36)

Now let x ∈M and qα ∈ P(u). Let ξ ∈ Λ(α) ∩ Γ−(u) ∩ TqαM . Then

for s < 0,

u(x) ≤ u(xξ(s)) + Φc(xξ(s), x)

= u(qα)− Φc(xξ(s), qα) + Φc(xξ(s), x), because ξ ∈ Γ−(u) ∩ TqαM .

Since ξ ∈ Λ−(α), letting s→ −∞, we have that

u(x) ≤ u(qα) + bα,qα(x).

Since qα ∈ P(u) is arbitrary, we get that u ≤ v.
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Chapter 5

Examples

5-1 Riemannian Lagrangians.

For a riemannian lagrangian L(x, v) = 1
2 ‖v‖

2
x, we have that

e0 = cu = c0 = c(L) = 0.

The static orbits are the fixed points (x, 0), x ∈M . The only weak KAM

solutions are the constant functions and so are the only subsolutions

of (H-J) for k = c(L).

Nevertheless, since the α function is superlinear, from (??) when we

add some closed forms to L we obtain c(L − ω) > c(L) = 0. Moreover,

the semistatic static orbits are not fixed points because by ?? they have

energy c(L−ω) > 0. By the graph properties, the static set of L−ω, the

support of it minimizing measures and the basins of weak KAM solutions

are geodesic laminations. Since semistatic geodesics are minimizing,

they don’t have conjugate points.

5-2 Mechanic Lagrangians.

For a mechanic lagrangian L(x, v) = 1
2 ‖vx‖

2 − U(x), we have that

c(L) = c0 = cu = e0 = min
x∈M

E(x, 0) = max
x∈M

U(x),
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156 5. examples

the maximum of the potential energy. The static orbits are the fixed

points (x, 0), where U(x) is maximal. If U is non-degenerate at a

minimum x (i.e. d2
xU is non-singular), then x is a hyperbolic sad-

dle point. The constant functions are always subsolutions of (H-J) for

k = c(L) = e0.

5-3 Symmetric Lagrangians.

For a symmetric lagrangian L(x, v) = L(x,−v), and then H(x, p) =

H(x,−p). Since v 7→ L(x, v) is convex, it attains its minimum at v = 0.

Thus, if M is compact,

L(x, v) + e0 = L(x, v) −max
x∈M

L(x, 0) ≥ 0,

and it is 0 exactly at the fixed points (x, 0) which maximize L(x, 0). This

implies that c(L) = e0. In fact, the constant functions are subsolutions

of the Hamilton-Jacobi equation (H-J) for k = e0. The static orbits are

the fixed points (x, 0) where x maximizes L(x, 0).

If M is non-compact, the constant functions are still subsolutions

of (H-J) for k = e0, and thus

c(L) = c0 = cu = e0,

but there may be no maximizers of L(x, 0) and then the static set Σ̂(L) =

� (see example 5-7).

5-4 Simple Pendulum.

The simple pendulum is the mechanic lagrangian L : TS1 → R given by

L(θ, θ̇) = 1
2 |θ̇|2 − cosθ,

identifying the circle S1 = [0, 2π] mod 2π. Hence c(L) = e0 = 1. The

static set is Σ̂(L) = {(π, 0)}. Since there is a unique static class, there

156



5-5. the flat torus ≈n. 157

are only one weak KAM solutions on S
+ and S

− modulo an additive

constant. But S
− 6= S

+ because the solutions are not differentiable.

Their cut locus is x = 0 ∈ S1. For u ∈ S
+ its is the whole Σ(L) and it

is shown in figure 5-4.

ba Ε= =c(L)oe

E=c(L+

TS1

θ)

fig. 1: simple pendulum.

If ω 6= 0 is a closed 1-form, c(L−ω) > e0 = 1 and the static set Σ̂(L−
ω) is a whole component of the energy level E = c(L), oriented by ω > 0.

Again, there is only one static class and #S
± = 1 modulo constants.

Since π(Σ̂(L− ω)) = S1, the functions on S
± are differentiable.

5-5 The flat Torus T
n.

Also called the harmonic oscillator, it is the riemannian lagrangian for

Tn = Rn/Zn with the riemannian metric induced by the euclidean metric

on R
n. The solutions of (E-L) are the projection of straight lines in R

n

parametrized with constant speed. If ω(x, v) = 〈A, v〉 with A ∈ R
n

fixed, then L − ω is globally minimized at all the vectors (x,A). Since

the orbits of this vector field are recurrent, they must be static. These

vectors are sent to 0 by the Legendre transform. By the smoothness

property 4-8.3.6, du = 0 and thus any weak KAM solution must be

constant. By corollary 4-9.5, there is only one static class.
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5-6 Flat domain for the β-function.

This example is a special case of those studied by Carneiro and Lopes [8].

Let L : TT
2 → R be the lagrangian

L
(
(x, y), (u, v)

)
= 1

2(u2 + v2) + v sin(x),

where T2 = [0, 2π] mod 2π. Then the lagrangian is minimized at the

vectors x = −π
2 , v = 1 and x = π

2 , v = −1. These vectors are tangent

to the closed curves γ+ : x ≡ −π
2 , ẏ ≡ 1 and γ− : x ≡ π

2 , ẏ ≡
−1. Since the curves γ+ and γ− are closed, they must be static curves.

Since their tangents are exactly all the vectors which minimize L, the

Peierls set is just P =
(
{−π

2 } × [0, 2π]
)
∪

(
{π2 } × [0, 2π]

)
. The invariant

measures µ+ := µγ+ , µ− := µγ− supported on the closed orbits γ̇+, γ̇−
are minimizing measures with homology ρ+ = (0, 1

2π ), ρ− = (0,− 1
2π ).

Since Mather’s β-function is convex and attains its minimum at ρ+

and ρ−, then the line

[ρ−, ρ+] =
{

(0, t) ∈ H1(T
,
R) ≈ R

2 | − 1
2π ≤ t ≤ 1

2π

}

must be a flat domain for the β-function, in fact β|[ρ−,ρ+] ≡ c(L). Since

the static set Σ̂(L) contains only the support of the measures µ+, µ−,

then for any homology h ∈ [ρ−, ρ+, h = tρ− + (1 − t)ρ+, the unique

minimizing measure in homology h is M(h) = {tµ− + (1− t)µ+}.

5-7 A Lagrangian with Peierls barrier h = +∞.

Let L : TR2 → R be L(x, v) = 1
2 |v|2 + ψ(x), where | · | is the euclidean

metric on R
2 and ψ(x) is a smooth function with ψ(x) = 1

|x| for |x| ≥ 2,

ψ ≥ 0 and ψ(x) = 2 for 0 ≤ |x| ≤ 1.

Then

c(L) = − inf ψ = 0,

158



5-7. a lagrangian with peierls barrier h = +∞. 159

because if γn is a smooth closed curve with length ℓ(γn) = 1, |γn(t)| ≥ n
and energy E(γn) = 1

2 γ̇
2
n − ψ(γn) ≡ 0, then

c(L) ≥ − inf
n>0

AL(γn) = −
∫ Tn

0

1
2 γ̇

2
n + ψ(γn)

= −
∫ 1

|γ̇n|

0
|γ̇n|2 = −|γ̇n| ≤ −

√
2
n −→ 0.

On the other hand,

c(L) = − inf {AL(γ) | γ closed } ≤ 0,

because L ≥ 0.

Observe that since L > 0 and on compact subsets of R
2, L > a > 0,

then we have that

dc(x, y) = Φc(x, y) > 0 for all x, y ∈ R
2.

Hence Σ̂(L) = �.

Suppose that h(0, 0) < +∞. Then u(x) := h(x, 0) is in S
+. Let

ξ ∈ Γ+(u)∩T0R
2 and write xξ(t) = (r(t), θ(t)) in polar coordinates about

the origin 0 ∈ R
2. Then lim inft→+∞ r(t) = +∞ because otherwise the

orbit of ξ would lie on a compact subset E ≡ 0 and then � 6= ω-lim(ξ) ⊆
Σ(L) = �, then

|ẋξ(t)| =
√

2
r(t)

and

L(ϕt ξ) = |ẋξ(t)|2 =
√

2
r(t) |ẋξ(t)|.

Let Tn → +∞ be such that r(Tn)→ +∞. Since L+ c = L ≥ 0, then

h(0, 0) ≥
∫ +∞

0
L(ϕt(ξ)) + c(L) =

∫ +∞

0

√
2
r(t)

[
|ẋ|+ r |θ̇|

]
dt

lim sup
Tn

∫ Tn

0

√
2
r ẋ dt = lim sup

n

∫ r(Tn)

0

√
2
r dr = +∞.
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α 0oo

5-8 Horocycle flow.

Peierls barrier 0 < h < +∞, Σ̂ = � and differentiable Busemann

functions u with B
−(u) = B

+(u) = {α}.

Let H := R×]0,+∞[ with the Poincaré metric ds2 = 1
y2

(dx2 + dy2).

Let L : TH→ R be a Lagrangian of the form

L(x, v) = 1
2 ‖v‖

2
x + ηx(v),

where ηx is a 1-form on H such that dη(v) is the area form an |·|x is the

Poincaré metric. The Euler-Lagrange equation is

Dt
dt ẋ = Yx(ẋ) = ẋ⊥, (5.1)

where Yx : TH→ TH is a bundle map such that

dηx(u, v) = 〈Yx(u), v〉.

The energy function is E(x, v) = 1
2 ‖v‖

2
x. On the energy levels E < 1

2

the solutions of (5.1) are closed curves, and on E = 1
2 the solutions are

the horospheres parametrized by arc length.

Choose the form η(x, y) = dx
y , where (x, y) ∈ H = R×]0,+∞[. Then

L
(
(x, y), (ẋ, ẏ)

)
=

1

2y2

(
ẋ2 + ẏ2

)
+
ẋ

y
·
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5-8. horocycle flow. 161

Observe that the form η is bounded in the Poincaré metric, so that the

Lagrangian is superlinear and satisfies the boundedness condition.

It can be seen directly from the Euler-Lagrange equation that the

curves ẋ = −y, ẏ = 0 are solutions with

L(ẋ = −y, ẏ = 0) + 1
2 ≡ 0. (5.2)

The images of these curves are the stable horospheres associated to the

geodesic x = 0, ẏ = y, parametrized by arc length.

We show that c(L) = 1
2 and hc < +∞. Observe that if v = (ẋ, ẏ),

ẋ < 0, then

L = 1
2 ‖v‖

2 − ‖(ẋ, 0)‖ ≥ 1
2 ‖v‖

2 − ‖v‖ ≥ −1
2 . (5.3)

Hence L+ 1
2 ≥ 0 and then c(L) ≤ 1

2 .

Now fix x ∈ H. For r > 0 let Dr be a geodesic disc of radius r

such that x ∈ ∂Dr. Let γr be the curve whose image is the boundary

of Dr oriented clockwise and with hyperbolic speed ‖γ̇‖ ≡ a. Since

E(γ) = 1
2 a

2, then

∫

γr

L+ 1
2a

2 =

∫

γr

v · Lv =

∫

γr

‖v‖2 +

∫

Dr

dA

= a · length(γr)− area(Dr),

= a · 2π sinh(r)− 2π cosh(r),

= 2π
[

1
2 (a− 1) er − e−r

]
+ 2π. (5.4)

If a < 1, for r > 0 large, formula (5.4) is negative. Hence c(L) ≥ 1
2

and c(L) = 1
2 . Moreover,

h(x, x) ≤ lim inf
r→+∞

AL+ 1
2
(γr) = 2π < +∞.

We prove that Σ̂ = �. This implies that h > 0. First observe that

if T is an isometry of H, then d(T∗η) is also the area form, so that T∗η
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is cohomologous to η. This implies that given any two points x, y ∈ D,

there is a constant b = b(x, y) ∈ R such that for all γ ∈ C(x, y),

AL(γ) = AL(T ◦ γ) + b(x, y).

In particular, the map dT leaves σ(L) and Σ̂(L) invariant. Since a

horocycle h1 can be sent by an isometry to another horocycle h2 with

h1 ∩ h2 6= �, then the horocycles can not be static because it would

contradict the graph property.

The constant function u : H → {0} satisfies u ≺ L + 1
2 because

L+ 1
2 ≥ 0 and by (5.2) the vectors v = (−y, 0) ∈ Γ+(u) = Γ−(u) ∈ Σ−

are semistatic. Its derivative du = 0 is sent by the inverse of the Legendre

transform v 7→ Lv = 〈v, ·〉x + dx
y to

1
y2 〈v, ·〉eucl = −dx

y ,

that is v = (−y, 0). Also

H(du) = 1
2

∥∥du− dx
y

∥∥2
= 1

2

∥∥dx
y

∥∥2
= 1

2 .

Let T : H ←֓ be an isometry of the hyperbolic metric. Write η = dx
y .

Then dη = A is the hyperbolic area 2-form. Since T is an isometry, then

d(T ∗η) = T ∗(dη) = dη.

Hence the form T ∗η − η is exact on H and there is a smooth function

v : H→ R such that

T ∗η − η = −dv.

We show that v is a weak KAM solution. Observe that

L ◦ dT (x, v) = 1
2 ‖v‖

2
x + T ∗η(x, v)

= 1
2 ‖v‖

2
x + η(x, v) − dv(x, v)

= L(x, v)− dv(x, v). (5.5)
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Since by (5.3) L ◦ dT + 1
2 ≥ 0, then

dv ≤ L+ 1
2 . (5.6)

Hence v ≺ L + 1
2 . Moreover, the equality in (5.6) holds exactly when

L ◦ dT (x, v) + 1
2 = 0, i.e. when dT (v) = (−y, 0) ∈ T(x,y)H.

Since the isometries send horospheres to horospheres, they are self-

conjugacies of the hamiltonian flow and hence the curves γ(t) = T−1(x−
ty, y) realize v, i.e.

v(γ(t)) − v(γ(s)) =

∮

γ
dv =

∮

γ
L+ 1

2 .

Here v is the Busemann weak KAM solution associated to the class

T (∞) ∈ ∂H, on the sphere at infinity of H.

We now show a picture of a non-Busemann weak KAM solution. We

use the isometry T : H ←֓ , T (z) = −1
z , z = x + iy ∈ C. The isometry

T = T−1 sends the line t 7→ −ty + iy to a horosphere with endpoint

0 ∈ C, oriented clockwise. Choose v : H → R such that dv = η − T ∗η.

Since T leaves the line Re z = 0 invariant and η = 0 on vertical vectors,

hence v is constant on Re z = 0.

Now we describe the weak KAM solution

w(z) := min{u(z), v(z) } ∈ S
−.

Let γ(t) = −ty + iy. Then, using (5.5),

v(T−1γ(t)) = v(T−1γ(0)) +

∮

T−1◦γ
dv

= 0 +

∫ t

0

[
L ◦ dT ◦ γ̇ + 1

2

]
−

∫ t

0

[
L ◦ γ̇ + 1

2

]

= 0 +

∫ t

0

[
L ◦ dT ◦ γ̇ + 1

2

]
− 0.
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Since by (5.6) L(x, v) + 1
2 > 0 when v 6= −y + i0, then v(z) > 0 on

Re z > 0 and v(z) < 0 on Re z < 0. Thus

w(z) =

{
0 = u(z) if Re z > 0.

v(z) if Re z < 0.
(5.7)

The cut locus of w is Re z = 0 and the basin of w is Γ−(w) = A∪dT (A)

where A is the set of vectors (y, 0) ∈ Tx+iyH.
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Chapter 6

Generic Lagrangians.

In [38], Mañé introduced the concept of generic property of a lagrangian

L. A property P is said to be generic for the lagrangian L if there exists

a residual set O on C∞(M,R) such that if ψ is in O then L+ψ has the

property P .

A set is called residual if it contains a countable intersection of open

and dense subsets. We recall which topology is used in C∞(M,R). Given

u ∈ C∞(M,R), denote by |u|k its Ck-norm. Define

‖u‖∞ :=
∑

k∈N

arctan(‖u‖k)

2k .

Note that ‖ · ‖∞ is not a norm. Endow C∞(M,R) with the translation-

invariant metric ‖u− v‖∞. This metric is complete, hence the Baire

property holds: any residual subsets of C∞(M,R) is dense.

One of Mañé’s objectives was to show that Mather’s the-

ory of minimizing measures becomes much more accurate and

stronger if one restricts it to generic lagrangians. In this chap-

ter we shall prove

6-0.1 Theorem.

For every lagrangian L there exist a residual set O ⊂ C∞(M,R) such

that if ψ ∈ O
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166 6. generic lagrangians.

1. The lagrangian L + ψ has a unique minimizing measure µ, and

this measure is uniquely ergodic.

2. supp(µ) = Σ̂(L+ ψ) = Σ(L+ ψ).

3. When µ is supported on a periodic orbit or a fixed point, this orbit

(point) Γ is hyperbolic and if its stable and unstable manifolds

intersect then they do it transversally.

Mañé conjectures in [35] that there exists a generic set O such that

this unique minimizing measure is supported on a periodic orbit or an

equilibrium point.

Item 1 of theorem 6-0.1 was proved by Mañé in [34]. Item 2 is proved

in [16] and item 3 in [13]. Th proof of item 1 presented here is extracted

from a more general result in [6] about families of lagrangian systems.

We will prove only the first part and give only the ideas of the proofs

of the last part.

6-1 Generic Families of Lagrangians.

In this chapter the manifold M is compact. Denote by M(L) the set of

minimizing measures of the lagrangian L:

M(L) := {µ ∈M(L) : AL(µ) + c(L) = 0 }.

Observe that M(L) is a simplex whose extremal points are the ergodic

minimizing measures (see exercises 6-1.2). In general M(L) may be

infinite dimensional.

In this section we shall prove the following
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6-1. generic families of lagrangians. 167

6-1.1 Theorem. Let A be a finite dimensional convex family of la-

grangians. Then there exists a residual subset O of C∞(M,R) such that

u ∈ O, L ∈ A =⇒ dim M(L− u) ≤ dimA.

In other words, there exist at most 1 + dimA ergodic minimizing mea-

sures for L− u.

6-1.2 Exercises:

1. Let V be a real vector space. A set Y ⊂ V is affinely independent if for
any finite subset F = {v0, v1, · · · , vn} ⊂ Y , every point in the convex hull
of F is uniquely expressible as a convex combination λ0 v0 + · · ·+ λn vn,
0 ≤ λi ≤ 1 of the elements of F . Show that a finite set F is affinely
independent if and only if {v1− v0, · · · , vn− v0} is linearly independent,
and in this case the dimension of the convex hull dim(conv(F )) = n.

2. Let K ⊂ V be a closed convex subset. An extreme or extremal point of
K is a point in K which is not in the (relative) interior of any segment
contained in K. Prove thatK is the convex closure of its extremal points.
A simplex is a subset Σ ⊂ V such that the set of its extremal points is
affinely independent.

3. Show that if µ and ν are ergodic invariant Borel probabilities of a dynam-
ical system, then they are either equal or mutually singular (i.e. there is
a Borel set A such that µ(A) = 1 and ν(A) = 0).

4. Prove any set of ergodic invariant Borel probabilities is affinely indepen-
dent.

5. Prove that the set of minimizing measures M(L) of a lagrangian L is
a simplex in the vector space of signed Borel measures on TM whose
extremal points are the ergodic minimizing measures.

Fix B > 0 and let HB be the set of holonomic measures supported

on [|v| ≤ B]:

HB := {µ ∈ C(M) : µ([ |v| > B ]) = 0 }.
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168 6. generic lagrangians.

Consider a lagrangian L as a functional L : HB → R given by L(µ) =

AL(µ). Let

MHB
(L) := arg min

HB

L

be the set of measures µ ∈ HB which minimize L|HB
. Let P = P(M) be

the set of probability measures on M endowed with the weak* topology.

A compatible metric (cf. on P(M) is defined as follows: fix a countable

dense set { fn | n ∈ N } in C∞(M,R) and let

d(µ, ν) =
∑

n

1

2n
1

cn

∣∣∣∣
∫
fn dµ −

∫
fn dν

∣∣∣∣ .

Since M is compact, under this topology the set P(M) is compact Let

π∗ : HB → P be the push-forward induced by the projection π : TM →
M . Let

MP (L,B) := π∗
(
MHB

(L)
)
.

6-1.3 Proposition. Let A be a finite dimensional convex family of la-

grangians on M and let B > 0. There is a residual subset O(A,B) ⊂
C∞(M,R) such that

L ∈ A, u ∈ O(A,B) =⇒ dim MP (L,B) ≤ dimA. (6.1)

Proof of theorem 6-1.1:

The set O(A) := ∩B∈NO(A,B) is residual in C∞(M,R). By corol-

lary 3-6.3, E(M(L)) = {c(L)}. Then inequality 1.6 implies that there is

B0(L) > 0 such that M(L) ⊂ HB for all B > B0(L). From theorem 2-

4.1.2

M(L) = arg min
HB

L = MHB
(L) for all B > B0(L).

By the graph property 3-8.1 and 3-6.1

dimM(L) = dimπ∗
(
M(L)

)
= dim MP(L,B) for all B > B0(L).

These remarks, together with proposition 6-1.3 prove theorem 6-1.1.
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Proof of proposition 6-1.3:

Define the ε-neighbourhood Wε of a subset W ⊂ P(M) as the union

of all the open balls in P(M) which have radius ε and are centered in W .

Given D ⊂ A, k ∈ N, ε > 0, denote by O(D, ε, k) the set of potentials

u ∈ C∞(M,R) such that for all L ∈ D, the convex set MP(L,B) is

contained in the ε-neighbourhood of some k-dimensional convex subset

of P(M).

We shall prove that the proposition holds with

O(A,B) =
⋂

ε>0

O(A, ε,dimA).

Indeed, if u ∈ O(A,B) then the inequality in (6.1) holds. Because

otherwise for some L ∈ A the convex set MP (L,B) would contain a

ball of dimension dimA+ 1, and, if ε is small enough, such a ball is not

contained in the ε-neighbourhood of any convex set of dimension dimA.

So we have to prove that O(A,B) is residual. It is enough to prove

that O(A, ε,dimA) is open and dense for any compact subset D ⊂ A

and any ε > 0. In 6-1.a we prove that it is open and in 6-1.b that it is

dense.

6-1.a Open.

We prove that for all k ∈ N, ε > 0 and any compact D ⊂ A, the set

O(D, ε, k) is open. We need a lemma:

6-1.4 Lemma.

The set valued map (L, u) 7→MHB
(L− u) is upper semi-continuous

on A × C∞(M,R). This means that for any open subset U of HB, the

set

{(L, u) ∈ A×C∞(M,R) : MHB
(L− u) ⊂ U } ⊂ A× C∞(M,R)
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is open in A × C∞(M,R). Consequently, the set-valued map (L, u) 7→
MP(L− u,B) is also upper semi-continuous.

Proof: The lemma is a consequence of the continuity of the map

A× C∞(M,R)×HB ∋ (L, u, µ) 7−→ (L− u)(µ) = L(µ)−
∫
u dµ.

Now let u0 ∈ O(D, ε, k). For each L ∈ D there is a k-dimensional

convex subset V ⊂ P(M) such that MP (L − u0, B) ⊂ Vε. Then the

open sets in D ×C∞(M,R) of the form

{ (L, u) ∈ D × C∞(M,R) |MP (L− u,B) ⊂ Vε },

where V is a k-dimensional convex subset of P(M), cover the compact

subset D×{u0}. This implies that there is a finite subcover of D×{u0}
by open sets of the form Ωi × Ui, where Ωi is an open set in A and

Ui ⊂ O(Ωi, ε, k) is an open set in C∞(M,R) containing u0. We conclude

that the open set ∩Ui is contained in O(D, ε, k) and contains u0.

6-1.b Dense.

We prove the density of O(D, ε,dimA) in C∞(M,R) for any ε > 0.

Let w ∈ C∞(M,R). We want to prove that w is in the closure of

O(D, ε,dimA). We consider a function w ∈ C∞(M,R) as a linear

functional w : P(M) → R as w(ν) =
∫
w dν or w : HB → R as

w(µ) =
∫

(w ◦ π) dµ.

6-1.5 Lemma. There is an integer m and a continuous map

Tm = (w1, . . . , wm) : P(M)→ R
m,

with wi ∈ C∞(M,R) such that

∀x ∈ R
m diamT−1

m {x} < ε. (6.2)
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Proof: To each function w ∈ C∞(M,R) we associate the open set

Uw =
{

(ν, µ) ∈ P(M)× P(M)
∣∣ ∫

w dν 6=
∫
w dµ

}
.

The open sets Uw cover the complement of the diagonal in P(M)×P(M).

One can extract a countable subcover Uwk
, k ∈ N. This amounts to say

that the sequence wk separates P(M). Defininig Tm = (w1, . . . , wm), we

have to prove that (6.2) holds for m large enough. Otherwise, we would

have some ε > 0 and two sequences νm and µm in P(M) such that

Tm(νm) = Tm(µm) and d(νm, µm) ≥ ε.

By extracting a subsequence, we can assume that the sequences νm and

µm have different limits ν and µ, which satisfy d(ν, µ) ≥ ε. Take m large

enough so that Tm(ν) 6= T (µ). Such m exists because the sequence wk
separates P(M). We have that

Tm(νk) = Tm(µk) for k ≥ m.

Hence at the limit Tm(ν) = Tm(µ). This is a contradiction.

Define the convex function Fm : A× R
m → R ∪ {+∞} as

Fm(L, x) = min
µ∈HB

Tm◦π(µ)=x

(L− w)(µ),

when x ∈ Tm(HB) and Fm(L, x) = +∞ if x /∈ Tm(HB). For y =

(y1, . . . , ym) ∈ R
m let

Mm(L, y) := arg min
x∈Rm

[F (L, x) − y · x] ⊂ R
m

be the set of points wich minimize the function x 7→ F (L, x)− y · x. We

have that

MP(L− w − y1w1 − · · · − ymwm, B) ⊂ T−1
m (Mm(L, y)).
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172 6. generic lagrangians.

Let

Om(w) := { y ∈ R
m | ∀L ∈ A : dimMm(L, y) ≤ dimA }.

From lemma 6-1.5 it follows that

y ∈ Om(w) =⇒ w + y1w1 + · · ·+ ymwm ∈ O(A, ε,dimA).

Therefore, in order to prove that w is in the closure of O(A, ε,dimA) it

is enough to prove that 0 is in the closure of Om(w), which follows from

the next proposition.

6-1.6 Proposition. The set Om(w) is dense in R
m.

Proof: Consider the Legendre transform of Fm with respect to the sec-

ond variable

Gm(L, y) = max
x∈Rm

y · x− Fm(L, x) (6.3)

= max
µ∈HB

∫ (
w + y1w1 + · · ·+ ymwm − L

)
dµ (6.4)

It follows from the second expession that the function Gm is convex and

finite-valued, hence continuous on A× Rm.

Let ∂Gm be the subdifferential of Gm and let

Σ̃ = { (L, y) ∈ A× R
m | dim ∂Gm(L, y) ≥ dimA+ 1 } .

By proposition E.1 the Hausdorff dimension

HD(Σ̃) ≤ (m+ dimA)− (dimA+ 1) = m− 1.

Consequently, the projection Σ of the set Σ̃ on the second factor R
m also

has Hausdorff dimension at most m− 1. Therefore, the complement of

Σ is dense in Rm. So it is enough to prove that

y /∈ Σ =⇒ ∀L ∈ A : dimMm(L, y) ≤ dimA.
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Since we know by definition of Σ that if y /∈ Σ, dim ∂Gm(L, y) ≤ dimA,

it is enough to observe that

dimMm(L, y) ≤ dim ∂Gm(L, y).

The last inequality follows from the fact that the set Mm(L, y) is con-

tained in the subdifferential of the convex function

R
m ∋ z 7→ Gm(L, z)

at the point y.
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Chapter 7

Generic Lagrangians.

In [34], Mañé introduced the concept of generic property of a lagrangian

L. A property P is said to be generic for the lagrangian L if there exists

a generic set O (in the Baire sense) on the set C∞(M,R) such that if ψ

is in O then L+ψ has the property P . One of Mañé’s objectives was to

show that Mather’s theory of minimizing measures becomes much more

accurate and stronger if we restrict ourselves to generic lagrangians. The

main purpose of this chapter is to proof the following

7-0.1 Theorem. For every lagrangian L there exists a generic set O ⊆
C∞(M,R) such that

(A) If ψ is in O then L+ψ has a unique minimizing measure, µ and

this measure is uniquely ergodic.

(B)Moreover supp(µ) = Σ̂(L+ ψ) = Σ(L+ ψ).

(C) When µ is supported on a periodic orbit or a fixed point, this orbit

(point) Γ is hyperbolic and its stable and unstable manifolds if intersect

they do it transversally.

On Mañé [35], it is conjectured that there exists a generic set O such

that this unique minimizing measure is supported on a periodic orbit or

an equilibrium point.
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The first statement of this was proved by Mañé in [34]. The second

statement is proved in [16] and the third one in [13]. We will prove only

the first part and give only the ideas of the proofs of the last part.

7-1 Generic Lagrangians.

Proof of (A)

Given a potential ψ on C∞(M,R) define

m(ψ) = min
ν∈C

∫
L+ ψdν,

M(ψ) = {ν ∈ C :

∫
L+ ψdν = m(ψ)}

Where C is the set of holonomic measures. For ǫ > 0 let

Oǫ = {ψ : diam M(ψ) < ǫ}

This set is open, in fact if νn is in M(ψn) then
∫
L+ ψdνn ≤ m(ψ) + 2||ψ − ψn||C0 (7.1)

So by theorem 2-4.1 in chapter 2 if ψn → ψ then the sequence νn is

precompact and the limit is in M(ψ). From this follows that Oǫ is open.

It remains to prove that it is also dense.

Given a compact convex set K0 on C and potential ψ on C∞(M,R)

define

m0(ψ) = min
ν∈K0

∫
ψdν,

M0(ψ) = {ν ∈ K0 :

∫
ψdν = m0(ψ)}
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7-1.1 Lemma. Let K0 as before then if µ is an extremal point of K0,

for all ǫ > 0there exists ψ on C∞(M,R) such that

diam M0(ψ) < ǫ

d(µ,M0(ψ)) < ǫ

Proof

Denote by D the diagonal of K0×K0 for each pair (µ, ν) in K0×K0−
D take a potential ψ(µ,ν) such that

∫
ψ(µ,ν)dµ 6=

∫
ψ(µ,ν)dν, then there

is a neigbourhood U(µ, ν) contained on K0×K0 such that
∫
ψ(µ,ν)dµ

′ 6=∫
ψ(µ,ν)dν

′ for every (µ′, ν ′) in U(µ, ν).

Take a covering {U(µn, νn)} of K0 ×K0 −D and set ψn = ψ(µn,νn)

then if (µ, ν) in K0 ×K0 −D there exist n such that

∫
ψndµ 6=

∫
ψndν (7.2)

Define Tn : C → R
n as

Tn(µ) = (

∫
ψ1dµ, ...,

∫
ψndµ)

Using (7.2) and the compactness of K0 × K0 it is easy to see that

given ǫ there exist δ > 0 and n > 0 such that

S ⊂ R
n,diam S < δ ⇒ diam T−1S < ǫ (7.3)

Let B = Tn(k0) then B is a compact convex set, let f : R
n → R a

linear function such that its minimum restricted to B is attained in only

one point p.

Define ψ =
∑

i λiψi where f =
∑

i λipi, then

f ◦ Tn =
∑

i

λi

∫
ψi
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and so

M0(ψ) = T−1
n (p)

Then by (7.3) we get

diam M0(ψ) < ǫ

The following lemma proves the density of Oǫ and hence the first

part of (A).

7-1.2 Lemma. If ψ is on C∞(M,R) and µ is an extremal point of

M(ψ) then for every neighbourhood U of ψ and every ǫ > 0 there

exists ψ1 on U such that

diam M(ψ1) = ǫ

Proof

For K0 = M(ψ) applying the previous lemma, we can find given ǫ a

ψ1 such that
∫
ψ1dν attains its minimum, say m1 for all measures ν on

K0 = M(ψ) on a set S = M0(ψ1) such that d(µ, S) < ǫ. Set

m0 = m(ψ)

f0(ν) =

∫
L+ ψ −m0dν

f1(ν) =

∫
ψ1 −m1dν

Then

f1(ν) = f0(ν) if ν ∈ S (7.4)

f1(ν) ≥ 0 if ν ∈M(ψ) (7.5)

ν ∈M(ψ), f1(ν) = 0⇒ ν ∈ S (7.6)
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ν ∈ C, f0(ν) = 0⇒ ν ∈M(ψ) (7.7)

For λ > 0 define

fλ = f0 + λf1

and set

m(λ) = min
ν∈C

fλ(ν),

M(λ) = {ν ∈ C : fλ(ν) = m(λ)}.

We claim that

lim
λ→0

diam (M(λ), {µ}) ≤ ǫ (7.8)

This proves the lemma since

M(λ) = M(ψ + λψ1)

Proof of the claim

Suppose otherwise that there exist λn → 0 and µλn , νλn on M(λn) =

M(ψ+λnψ1) such that d(µλn , νλn) > ǫ. Then by (7.1) {µλn} and {νλn}
are precompact and as in the proof of the open property we may assume

that µλn → µ ∈M(ψ) and νλn → ν ∈M(ψ). Naturally d(µ, ν) ≥ ǫ.
Now Because of (7.4) we have that m(λ) ≤ 0

0 ≥ m(λn) =

= f0(µλn) + λf1(µλn)

≥ λnf1(µλn)

So f1(µλn) ≤ 0 and hence f1(µ) ≤ 0, since µ ∈ M(ψ) by (7.5)

f1(µ) = 0 and then by (7.6) µ is in S. Similarly ν is in S. This is a

contradiction with the fact that the diameter of S is less than ǫ.

The fact that µ is uniquely ergodic follows from the fact that ergodic

components of a minimizing measure are also minimizing. And the proof

of (A) is complete.
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It is worth to remark that the proof presented here is a particular

case of Mañé’s original [38] more general setting:

Let E, F be real convex spaces, K contained on F a metrizable

convex subset and φ : E → F ′, L : F → R linear maps satisfying

• (a) The map E×F → R defined by (w, x) 7→ φ(w)(x) is continuous.

• (b) For any x 6= y in K there exists w in E such that φ(w)(x) 6=
φ(w)(y).

• (c) For all w in E and c in R the set

{x ∈ K : L(x) + φ(w)(x) ≤ c}

is compact.

Denote by

m(w) = min
x∈K

L(x) + φ(w)(x)

which exists by (c). And

M(w) = {x ∈ K : L(x) + φ(w)(x) = m(w)

7-1.3 Proposition. If E is a Frechet space then there exists a residual

set O contained on E such that if w is on E then M(w) has only one

element.

The reader can verify that with the following choices, we get the

desired result.

• (1) Let E be the Banach space C∞(M,R)

• (2) As in section 2-3 let C0
ℓ be the set of continuous functions

f on TM such that sup f(x,v)
1+|v| ≤ ∞, and C the set of holonomic

probabilities. Let K be C and F be the subspace of (C0
ℓ )

∗ spanned

by C.
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• (3) Finally let L : F → R is the linear map such that if µ is in C

then L(µ) =
∫
Ldµ; and for ψ in C∞(M,R) φ(ψ) is the restriction

to F of the linear map on (C0
ℓ )

∗ such that w 7→< w,ψ >.

This general setting has some other applications see theorems A, C

D in [35] and also [11]

Proof of (C)

Let O be the residual given by (A). Let A be the subset of O of

potentials ψ for which the measure on M(L + ψ) is supported on a

periodic orbit. Let B := O \ A and let A1 be the subset of A on

which the minimizing periodic orbit is hyperbolic. We prove that A1 is

relatively open on A. For, let ψ ∈ A1 and

M(L+ ψ) = {µγ}

where µγ is the invariant probability measure supported on the hyper-

bolic periodic orbit γ for the flow of L + ψ. We claim that if φk ∈ A,

φk → ψ and M(L + φk) = {µηk
}, then ηk → γ. Indeed, since L is

superlinear, the velocities in the support of the minimizing measures

µk := µηk
are bounded (cf. corollary 3-6.3 and inequality 1.6), and

hence there exists a subsequence µk → ν converging weakly* to a some

invariant measure ν for L+ ψ. Then if ν 6= µγ ,

lim
k
SL+φk

(µk) = SL+ψ(ν) > SL+ψ(µγ) . (7.9)

Thus if δk is the analytic continuation of the hyperbolic periodic orbit

γ to the flow of L + φk in the original energy level c(L + ψ), since

limk SL+ψk
(µδk) = SL+ψ(µγ), for k large we have that,

SL+φk
(µδk) < SL+φk

(µηk
) ,

which contradicts the choice of ηk. Therefore ν = µγ . For energy levels

h near to c(L + ψ) and potentials φ near to ψ, there exist hyperbolic

periodic orbits γφ,h which are the continuation of γ. Now, on a small
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neighbourhood of a hyperbolic orbit there exists a unique invariant mea-

sure supported on it, and it is in fact supported in the periodic orbit.

Thus, since ηk → γ, then ηk is hyperbolic. Hence φk ∈ A1 and A1

contains a neighbourhood of φ in A.

Let U be an open subset of C∞(M,R) such that A1 = U ∩ A. We

shall prove below that A1 is dense in A. This implies that A1 ∪ B is

generic. For, let ψ := int (C∞(M,R) \ U), then U ∪ ψ is open and

dense in C∞(M,R). Moreover, ψ ∩ A = � because A ⊆ A1 ⊆ U and

ψ ∩A ⊆ A \ U = �. Since O = A ∪ B is generic and

(U ∪ ψ) ∩ (A ∪ B) = (U ∩ A) ∪
(
(U ∪ ψ) ∩ B

)

⊆ A1 ∪ B ,

then A1 ∪ B is generic.

The perturbation to achieve hyperbolicity in a fixed point is easy. Is

very much as the mechanic case: L = 1
2 < v, v >x −U(x). The reader

can verify that if x0 = maxU then the Dirac measure supported on the

point (x0, 0) is minimizing. And it is well known that this critical point

is hyperbolic if and only if the maximum has

non degenerate quadratic form.

In fact, from the Euler-Lagrange equation (E-L) we get that

Lx(x0, 0) = 0. Differentiating the energy function (1.3) we see that

(x0, 0) is a singularity of the energy level c(L). Moreover, the min-

imizing property of µ implies that x0 is a minimum of the function

x 7→ Lxx(x, 0). In particular, Lxx(x0, 0) is positive semidefinite in linear

coordinates in Tx0M . And it is hyperbolic if and only if it is positive

definite. So to achieve hyperbolicity we must just add a small quadratic

form.

The perturbation needed in the case of a periodic orbit the same

spirit; Because of the graph property the projection of the orbit Γ, π(Γ)

is a simple closed curve. We add a C∞-small non negative potential ψ,

which is zero if and only if x is on π(Γ) that is nondegenerate in the

transversal direction. It follows that Γ is also a minimizing solution of

the perturbed lagrangian L+ ψ.
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To prove that it actually is hyperbolic is much more difficult. The

reason is that the linearization of the flow (the Jacobi equation) is along

the periodic orbit and hence non autonomous as in the case of a singu-

larity.

To explain the idea of the proof we need some definitions. Let H

be the associated hamiltonian by the Legendre transformation on T ∗M

and ψ its flow. Denote by π : T ∗M → M be the canonical projection

and define the vertical subspace on θ ∈ T ∗M by ψ(θ) = ker(dπ). Two

points θ1, θ2 ∈ T ∗M are said to be conjugate if θ2 = ψτ (θ1) for some

τ 6= 0 and dψτ (ψ(θ1)) ∩ ψ(θ2) 6= {0}.
A basic property of orbits without conjugate points is given by the

following

7-1.4 Proposition. Suppose that the orbit of θ ∈ T ∗M does not contain

conjugate points and H(θ) = e is a regular value of H. Then there exist

two ϕ-invariant lagrangian subbundles E, F ⊂ T (T ∗M) along the orbit

of θ given by

E(θ) = lim
t→+∞

dψ−t

(
ψ(ψt(θ))

)
,

F(θ) = lim
t→+∞

dψt
(
ψ(ψ−t(θ))

)
.

Moreover, E(θ)∪F(θ) ⊂ TθΣ, E(θ)∩ψ(θ) = F(θ)∩ψ(θ) = {0}, 〈X(θ)〉 ⊆
E(θ)∩F(θ) and dim E(θ) = dim F(θ) = dimM , where X(θ) = (Hp,−Hq)

is the hamiltonian vector field and Σ = H−1{e}.

These bundles where constructed for disconjugate geodesics of rie-

mannian metrics by Green [27] and of Finsler metrics by Foulon [24]. In

the general case where constructed in [13]

We will only sketch the proof;

Fix a riemannian metric on M and the corresponding induced metric

on T ∗M . Then TθT
∗M splits as a direct sum of two lagrangian sub-

spaces: the vertical subspace ψ(θ) = ker (dπ(θ)) and the horizontal sub-
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space H(θ) given by the kernel of the connection map. Using the isomor-

phism K : TθT
∗M → Tπ(θ)M × T ∗

π(θ)M , ξ 7→ (dπ(θ) ξ , ∇θ(π ξ)), we can

identify H(θ) ≈ Tπ(θ)M×{0} and ψ(θ) ≈ {0}×T ∗
π(θ)M ≈ Tπ(θ)M . If we

choose local coordinates along t 7→ π ψt(θ) such that t 7→ ∂
∂qi

(π ψt(θ)) are

parallel vector fields, then this identification becomes ξ ↔ (dq(ξ), dp(ξ)).

Let E ⊂ TθT ∗M be an n-dimensional subspace such that E∩ψ(θ) = {0}.
Then E is a graph of some linear map S : H(θ) → ψ(θ). It can be

checked that E is lagrangian if and only if in symplectic coordinates S

is symmetric.

Take θ ∈ T ∗M and ξ = (h, v) ∈ TθT ∗M = H(θ)⊕ ψ(θ) ≈ Tπ(θ)M ⊕
Tπ(θ)M . Consider a variation

αs(t) =
(
qs(t), ps(t)

)

such that for each s ∈]−ε, ε[, αs is a solution of the hamiltonian H such

that α0(0) = θ and d
dsαs(0)|s=0 = ξ.

Writing dψt(ξ) =
(
h(t), v(t)

)
, we obtain the hamiltonian Jacobi

equations

ḣ= Hpq h+Hpp v ,

v̇ = −Hqq h−Hqp v , (7.10)

where the covariant derivatives are evaluated along π(αo(t)), and Hqq,

Hqp, Hpp and Hqq are linear operators on Tπ(θ)M , that in local co-

ordinates coincide with the matrices of partial derivatives
(

∂2H
∂qi∂qj

)
,

(
∂2H
∂qi ∂pj

)
,
(

∂2H
∂pi ∂pj

)
and

(
∂2H
∂pi ∂qj

)
. Moreover, since the hamiltonian H is

convex, then Hpp is positive definite.

We derive now the Riccati equation. Let E be a lagrangian subspace

of TθT
∗M . Suppose that for t in some interval ] − ε, ε[ we have that

dψt(E) ∩ ψ(ψt(θ)) = {0}. Then we can write dψt(E) = graph S(t),

where S(t) : H(ψt θ) → ψ(ψt θ) is a symmetric map. That is, if ξ ∈ E
then

dψt(ξ) =
(
h(t), S(t)h(t)

)
.
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Using equation (7.10) we have that

Ṡh+ S(Hpqh+HppSh) = −Hqqh−HqpSh .

Since this holds for all h ∈ H(ψt(θ)) we obtain the Riccati equation:

Ṡ + SHppS + SHpq +HqpS +Hqq = 0 . (7.11)

Let Kc(θ) : H(θ) → ψ(θ) be the symmetric linear map such that

graph(Kc(θ)) = dψ−c(ψ(ψc(θ))). Define a partial order on the sym-

metric isomorphisms of Tπ(θ)M by writing A ≻ B if A − B is positive

definite.

The following proposition based essentially on the convexity of H

proves 7-1.4.

7-1.5 Proposition. For all ε > 0,

(a) If d > c > 0 then K−ε ≻ Kd ≻ Kc.

(b) If d < c < 0 then Kε ≺ Kd ≺ Kc.

(c) lim
d→+∞

Kd = S, lim
d→−∞

Kd = U.

(d) S 4 U.

(e) The graph of S is the stable green bundle E and the graph of U is

the unstable green bundle F

An example of the relationship between the transversality of the

Green subspaces and hyperbolicity appears in the following

7-1.6 Proposition. Let Γ be a periodic orbit of ψt without conju-

gate points. Then Γ is hyperbolic (on its energy level) if and only if

E(θ)∩F(θ) = 〈X(θ)〉 for some θ ∈ Γ, where 〈X(θ)〉 is the 1-dimensional

subspace generated by the hamiltonian vector field X(θ). In this case E

and F are its stable and unstable subspaces.
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This proposition follows ideas of Eberlein [18] and Freire, [25].

It is known that minimizing orbits do not have conjugate points. So

by proposition 7-1.4 and 7-1.6 to prove the density of hyperbolicity it is

enough to perturb to make the Green bundles transverse. This is done

using two formulas for the index. One in the lagrangian setting and

another one in the hamiltonian setting.

Let ΩT be the set of continuous piecewise C2 vector fields ξ along

γ[0,T ]. Define the index form on ΩT by

I(ξ, η) =

∫ T

0

(
ξ̇ Lvv η̇ + ξ̇ Lvx η + ξ Lxv η̇ + ξ Lxx η

)
dt , (7.12)

which is the second variation of the action functional for variations f(s, t)

with ∂f
∂s ∈ ΩT . For general results on this form see Duistermaat [17].

From this formula it is easy to compare the index of the original and

the perturbed lagrangian along the same solution Γ.

Finally we use the following transformation of the index form. It is

taken from Hartman [29] and originally due to Clebsch [10] see also [13].

Let θ ∈ T ∗M and suppose that the orbit of θ, ψt(θ), 0 ≤ t ≤ T does not

have conjugate points. Let E ⊂ TθT
∗M be a lagrangian subspace such

that dψt(E) ∩ ψ(ψt(θ)) = {0} for all 0 ≤ t ≤ T .

Let E(t) := dψt(E) and let H(t), ψ(t) be a matrix solution of the

hamiltonian Jacobi equation (7.10) such that detH(t) 6= 0 and E(t) =

Image (H(t), ψ(t)) ⊂ Tψt(θ)(T
∗M) is a lagrangian subspace. For ξ =

Hζ ∈ ΩT , η = Hρ ∈ ΩT , we obtain (see [13])

I(ξ, η) =

∫ T

0
(Hζ ′)∗ (Hpp)

−1 (Hρ′) dt + (Hζ)∗(V ρ)|T0. (7.13)

Define N(θ) := {w ∈ Tπ(θ)M | 〈w, γ̇〉 = 0 }. Then N(θ) is the sub-

space of Tπ(θ)M generated by the vectors ∂
∂x2

,. . ., ∂
∂xn

. Let vo ∈ N(θ),

|vo| = 1 and let ξT (t) := Z̃T (t) vo. Denote by ĨT and IT be the index

forms on [0, T ] for L̃ and L respectively. Using the solution (Z̃T , ṼT ) on
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formula (7.13), we obtain that

ĨT (ξT , ξT ) = −(Z̃T (0) vo)
∗ (ṼT (0) vo) = −vo∗ K̃T (0) vo . (7.14)

Moreover, in the coordinates (x1, . . . , xn;
∂
∂x1

, . . . , ∂
∂xn

) on TU we have

that

ĨT (ξT , ξT ) =

∫ T

0

(
ξ̇T L̃vv ξ̇

T + 2 ξ̇T L̃xv ξ
T + ξT L̃xx ξ

T
)
dt

=

∫ T

0

(
ξ̇T Lvv ξ̇

T + 2 ξ̇T Lxv ξ
T + ξT Lxx ξ

T
)
dt

+

∫ T

0
ε

n∑

i=2

∣∣ξTi
∣∣2 dt .

(7.15)

We have that Z̃T (0) = I and for all t > 0, limt→∞ Z̃T (t) = h̃(t)

with h̃(t) the solution of the Jacobi equation for H̃ corresponding to the

stable Green bundle. Writing πN (ξ) = (ξ2, ξ3, . . . ξn) then
∣∣∣πN h̃(0) v0

∣∣∣ =

|v0| = 1 because v0 ∈ N(θ). Hence there exists λ > 0 and T0 > 0

such that
∣∣πNξT (t)

∣∣ =
∣∣∣πN Z̃T (t) v0

∣∣∣ > 1
2 for all 0 ≤ t ≤ λ and T > T0.

Therefore

ĨT (ξT , ξT ) ≥ IT (ξT , ξT ) +
ελ

4
. (7.16)

Let (h(t), v(t)) = dψt ◦
(
dπ|E(θ)

)−1
be the solution of the Jacobi

equation for H corresponding to the stable Green subspace E and let

S(ψt(θ)) = v(t)h(t)−1 be the corresponding solution of the Riccati equa-

tion, with graph[S(ψt(θ)] = E(ψt(θ)). Using formula (7.13), and writing

ξT (t) = h(t) ζ(t), we have that

IT (ξT , ξT ) =

∫ T

0
(h ζ̇)∗H−1

pp (h ζ̇) dt + 0−
(
h(0) ζ(0)

)∗(
v(0) ζ(0)

)

IT (ξT , ξT ) ≥ −v∗o S(θ) vo . (7.17)

From (7.14), (7.16) and (7.17), we get that

v∗o S(θ) vo ≥ v∗o K̃T vo +
ελ

4
.
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From proposition 7-1.5, we have that limT→+∞ K̃T (0) = S̃(θ), where

graph(S̃(θ)) = Ẽ(θ), the stable Green bundle for H̃. Therefore

v∗o S(θ) vo ≥ v∗0 S̃(θ) vo +
ελ

4
. (7.18)

Similarly, for the unstable Green bundles we obtain that

v∗o U(θ) vo + λ2 ≤ v∗o Ũ(θ) vo for vo ∈ N(θ), |vo| = 1. (7.19)

for some λ2 > 0 independent of vo.

From proposition 7-1.5 we have that U(θ) � S(θ). From (7.18) and

(7.19) we get that Ũ|N ≻ U|N � S|N ≻ S̃|N. Since Ẽ(θ) = graph(S̃(θ))

and F̃(θ) = graph(Ũ(θ)), we get that Ẽ(θ) ∩ F̃(θ) ⊆ 〈X̃(θ)〉. Then

proposition B shows that Γ is a hyperbolic periodic orbit for L+ φ.

This proves that A1 is dense in A.

Let A2 be the subset of A1 of potentials ψ for which the minimizing

hyperbolic periodic orbit Γ has transversal intersections. The proof that

A2 is open and dense in A1 is similar to the previous proof, see [13].

7-2 Homoclinic Orbits.

Assume in this section that Σ̂ contains only one static class. By theo-

rem 7-0.1.(A), this is true for generic lagrangians. By proposition 3-11.4,

the static classes are always connected, thus if we assume that there is

only one static class, Σ̂ must be connected.

Given ε > 0, let Uε be the ε-neighbourhood of π(Σ̂). Since Σ̂ is

connected, the open set Uε is connected for ε sufficiently small. Let

H1(M,Uε,R) denote the first relative singular homology group of the

pair (M,Uε) with real coefficients.

We shall say that an orbit of L is homoclinic to a closed invariant

set K ⊂ TM if its α and ω-limit sets are contained in K.

Observe that to each homoclinic orbit x : R→M to the set of static

orbits Σ̂ we can associate a homology class in H1(M,Uε,R). Indeed,
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since there exists t0 > 0 such that for all t with |t| ≥ t0, x(t) ∈ Uε, the

class of x|[−t0,t0] defines an element in H1(M,Uε,R). Let us denote by

H the subset of H1(M,Uε,R) given by all the classes corresponding to

homoclinic orbits to Σ̂.

7-2.1 Theorem. Suppose that Σ̂ contains only one static class. Then

for any ε sufficiently small the set H generates over R the relative homol-

ogy H1(M,Uε,R). In particular, there exist at least dimH1(M,Uε,R)

homoclinic orbits to the set of static orbits Σ̂.

Let Uε be an ε-neighbourhood of supp(µ). From theorems 7-2.1

and 7-0.1 we obtain:

7-2.2 Corollary. Given a lagrangian L there exists a generic set

O ⊂ C∞(M,R) such that if ψ ∈ O the lagrangian L + ψ has a unique

minimizing measure µ in M0(L + ψ) and this measure is uniquely er-

godic. For any ε sufficiently small the set H of homoclinic orbits to

supp(µ) generates over R the relative homology H1(M,Uε,R). In partic-

ular, there exist at least dimH1(M,Uε,R) homoclinic orbits to supp(µ).

To prove theorem 7-2.1 we consider finite coverings M0 of M whose

group of deck transformations is given by the quotient of the torsion free

part of H1(M,Uε,Z) by a finite index subgroup. Using that the lifted

lagrangian L0 has the same critical value as L, we conclude that the

number of static classes of L0 must be finite. Hence we can apply theo-

rem 3-11.1 to L0 to deduce that the group generated by the homoclinic

orbits to the set of static orbits of L coincides with H1(M,Uε,R).

We note that the homoclinic orbits that we obtain in theorem 7-2.1

and corollary 7-2.2 have energy c but they are not semistatic orbits of

L. However, they are semistatic for lifts of L to suitable finite covers.

Combining corollary 7-2.2, theorem 7-0.1 and lemma 7-2.4, we obtain

7-2.3 Corollary. Let M be a closed manifold with first Betti number

≥ 2. Given a lagrangian L there exists a generic set O ⊂ C∞(M,R)

such that if ψ ∈ O the lagrangian L+ψ has a unique minimizing measure
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in M0(L+ψ) and this measure is uniquely ergodic. When this measure

is supported on a periodic orbit, this orbit is hyperbolic and the stable

and unstable manifolds have transverse homoclinic intersections.

7-2.4 Lemma. Let M be a closed manifold with first Betti number

b1(M,R) ≥ 2. Then if A ⊂M is a closed submanifold diffeomorphic to

S1 and Uε denotes the ε neighborhood of A, we have that H1(M,Uε,R)

is non zero for all ε sufficiently small.

Proof: Since A is diffeomorphic to a circle, the singular homology of

the pair (M,Uε) coincides with the singular homology of the pair (M,A)

and therefore the vector space H1(M,Uε,R) must have dimension ≥
b1(M,R)− 1 ≥ 1.

For the proof of theorem 7-2.1 we shall need the following lemma:

7-2.5 Lemma. Let p : M1 →M2 be a covering such that c(L1) = c(L2).

Then any lift of a semistatic curve of L2 is a semistatic curve of L1.

Also the projection of a static curve of L1 is a static curve of L2. If in

addition, p is a finite covering, then any lift of a static curve of L2 is a

static curve of L1.

Proof: Observe first that for any k ∈ R we have that

Φ1
k(x, y) ≥ Φ2

k(px, py),

for all x and y in M1. Hence if we write c = c(L1) = c(L2) we have

Φ1
c(x, y) ≥ Φ2

c(px, py), (7.20)

for all x and y in M1.

Suppose now that x2 : R → M2 is a semistatic curve of L2 and let

x1 : R→M1 be any lift of x2 to M1. Using (7.20) and the fact that x2

is semistatic we have for s ≤ t,
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Φ1
c(x1(s), x1(t)) ≤ AL1+c(x1|[s,t]) = AL2+c(x2|[s,t])

= Φ2
c(x2(s), x2(t)) ≤ Φ1

c(x1(s), x1(t)).

Hence x1 is semistatic for L1.

Suppose now that x1 : R → M1 is a static curve of L1 and let

x2 : R → M2 be p ◦ x1. Using (7.20) and the fact that x1 is static we

have for s ≤ t,

−Φ1
c(x1(t), x1(s)) = Φ1

c(x1(s), x1(t)) = AL1+c(x1|[s,t]) = AL2+c(x2|[s,t])
≥ Φ2

c(x2(s), x2(t)) ≥ −Φ2
c(x2(t), x2(s)) ≥ −Φ1

c(x1(t), x1(s)).

Hence x2 is static for L2.

Suppose now that p is a finite covering and let x2 : R → M2 be a

static curve of L2. Let x1 : R→M be any lift of x2 to M1. Since x2 is

static, given s ≤ t and ε > 0, there exists a curve α : [0, T ] → M2 with

α(0) = x2(t), α(T ) = x2(s) such that

AL2+c(x2|[s,t]) +AL2+c(α) ≤ ε.

Since p is a finite covering, there exists a positive integer n, bounded

from above by the number of sheets of the covering, such that the n-th

iterate of x2|[s,t] ∗ α lifts to M1 as a closed curve. Hence, there exists a

curve β joining x1(t) to x1(s) such that

AL1+c(x1|[s,t]) +AL1+c(β) ≤ nε,

and thus x1 is static for L1.

Proof of theorem 7-2.1:

Let U
def
= Uε denote the ε-neighborhood of π(Σ̂(L)), where Σ̂(L) is

the set of static vectors of L. Since we are assuming that Σ̂(L) contains

only one static class, the set U is also connected for small ε. Let i : U →
M be the inclusion map. The vector space H1(M,U,R) is isomorphic

to the quotient of H1(M,R) by i∗(H1(U,R)).
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Let H denote the torsion free part of H1(M,Z) and let K denote

the torsion free part of i∗(H1(U,Z)). Let us write G
def
= H/K = Z ⊕

k. . . ⊕ Z where k = dimH1(M,U,R). Let J be a finite index subgroup

of G. There is a surjective homomorphism j : G → G/J given by the

projection.

If we take the Hurewicz map

π1(M) 7→ H1(M,Z),

and we compose it with the projections H1(M,Z) 7→ H, H 7→ G and

j : G→ G/J , we obtain a surjective homomorphism

π1(M) 7→ G/J,

whose kernel will be the fundamental group of a finite covering M0

of M with covering projection map p : M0 → M and group of deck

transformations given by the finite abelian group G/J .

Since J is a subgroup of G = H/K, G/J acts transitively and freely

on the set of connected components of p−1(U) which coincides with the

set of connected components of p−1(π(Σ̂(L))). Therefore we have

7-2.6 Lemma. There is a one to one correspondence between elements

in G/J and connected components of p−1(π(Σ̂(L))).

Observe that to each homoclinic orbit x : R → M to Σ̂(L) we can

associate a homology class in H/K. Indeed, since there exists t0 > 0

such that for all t with |t| ≥ t0, x(t) ∈ U , the class of x|[−t0,t0] defines an

element in H1(M,U,Z). Let us denote by H the subset of H/K given

by all the classes corresponding to homoclinic orbits to Σ̂(L).

7-2.7 Lemma. For any J as above, the image of 〈H〉 under j is precisely

G/J .

Proof: Let L0 denote the lift of the lagrangian L to M0. Observe first

that by proposition 2-7.2, c(L) = c(L0) and therefore by lemma 7-2.5

we have

π0(Σ̂(L0)) = p−1(π(Σ̂(L))), (7.21)

192



7-2. homoclinic orbits. 193
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fig. 1: Creating homoclinic connections with finite coverings.

where π0 : TM0 →M0 is the canonical projection of the tangent bundle

TM0 to M0.

Let us prove now that L0 satisfies the hypothesis of theorem 3-11.1,

that is, the number of static classes of L0 is finite. In fact, we shall

show that the projection to M0 of a static class of L0 coincides with

a connected component of p−1(π(Σ̂(L))). Using (7.21) and proposition

3-11.4 we see that the projection of a static class of L0 to M0 must

be contained in a single connected component of p−1(π(Σ̂(L))). Hence,

it suffices to show that if x and y belong to a connected component

of p−1(π(Σ̂(L))) then d0
c(x, y) = 0. Since we are assuming that Σ̂(L)

contains only one static class we have that dc(px, py) = 0. Since p :

M0 → M is a finite covering there are lifts x1 of px and y1 of py such

that d0
c(x1, y1) = 0. Since static classes are connected x1 and y1 must

belong to the same connected component of p−1(π(Σ̂(L))) and thus there

is a covering transformation taking x1 into x and y1 into y which implies

that d0
c(x, y) = 0 as desired.
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Now theorem 3-11.1 and (7.21) imply that every covering transfor-

mation in G/J can be written as the composition of covering transfor-

mations that arise from elements in H, that is, j(〈H〉) = G/J .

We shall need the following algebraic lemma.

7-2.8 Lemma. Let G = Z ⊕ k. . . ⊕ Z. Given a finite index subgroup

J ⊂ G let us denote by j : G→ G/J the projection homomorphism.

Let A be a subgroup of G. If A has the property that for all J as

above j(A) = G/J , then A = G.

Proof: The hypothesis readily implies that

A/A ∩ J is isomorphic to G/J (7.22)

• If the rank of A is strictly less than the rank of G, one can easily

construct a subgroup J ⊂ G with finite index such that A ⊆ J and

G/J 6= {0}. But this contradicts (7.22) because A/A ∩ J = {0}.

• If the rank of A equals the rank of G, then A has finite index in

G and by (7.22) G/A = {0} and thus G = A.

Observe now that any set H of a free abelian group G of rank k

such that the group generated by H is G must have at least k elements.

Therefore if we combine lemma 7-2.7 and lemma 7-2.8 with 〈H〉 = A

we deduce that the set H of classes corresponding to homoclinic orbits

generates G and must have at least k elements thus concluding the proof

of theorem 7-2.1.
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A Absolutely continuous functions.

A.1 Definition. A function f : [a, b] → R is absolutely continuous, if

∀ ε > 0 ∃ δ > 0 such that

N∑

i=1

|ti − si| < δ =⇒
N∑

i=1

|f(ti)− f(si)| < ε,

whenever ]s1, t1[, . . . , ]sN , tN [ are disjoint intervals in [a, b].

A.2 Proposition.

The function f : [a, b]→ R is absolutely continuous if and only if

(i) The derivative f ′(t) exists for a.e. t ∈ [a, b].

(ii) f ′ ∈ L1([a, b]).

(iii) f(t) = f(a) +
∫ t
a f

′(s) ds.

Proof: Define

µ([s, t]) := f(t)− f(s).

We claim that µ defines a finite signed Borel measure on [a, b]. Indeed,

let A be the algebra of finite unions of intervals. The function µ can be

extended to a σ-additive function on A. Moreover, if B is a Borel set
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and {An}n∈N ⊂ A is a family with An ↓ B, then µ(B) := limn µ(An)

exists because µ(Bn \Bm)→ 0 when n,m→ +∞.

Observe that the properties of external measures and the absolute

continuity of f imply that µ ≪ m, where m is the Lebesgue measure.

Let g = dµ
dm be the Radon-Nikodym derivative. Then g ∈ L1 and

f(t)− f(a) = µ([a, t]) =

∫ t

a
g(s) ds.

By the Lebesgue differentiation theorem

lim
h→0

f(t+ h)− f(t)

h
= lim

h→0

1

h

∫ t+h

t
g = g(t) for a.e. t ∈ [a, b].

Conversely, suppose that (i)-(iii) hold. Using (ii), let µ(A) =∫
A f

′ dm. Then by (iii),

µ([s, t]) = f(t)− f(s) for s, t ∈ [a, b].

Then µ≪ m implies1 that f is absolutely continuous.

The Lebesgue differentiation theorem gives the following characteri-

zation.

A.3 Corollary.

The function f : [a, b]→ R is absolutely continuous if and only if

there exists g ∈ L1([a, b]) such that f(t) = f(a) +
∫ t
a g(s) ds.

1If µ is finite, then µ≪ m is equivalent, using the Borel-Cantelli lemma, to

∀ e > 0 ∃ δ > 0, m(A) < δ =⇒ |µ|(A) < ε.
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B Measure Theory

B.1 Riesz Theorem. [28]

Let X be a locally compact Hausdorff topological space and let Cb(X)

the vector space of continuous functions f : X → R with compact sup-

port. Then any positive linear functional I : P (X)→ R defines a unique

Borel measure µ on X such that I(f) =
∫
f dµ for all f ∈ Cb(X).
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C Convex functions.

A function f : R
n → R is said convex if

f
(
λx+ (1− λ) y

)
≤ λ f(x) + (1− λ) f(y)

for all 0 ≤ λ ≤ 1 and x, y ∈ R
n. Equivalently, if the set { (x, r) ∈

R
n × R | r ≥ f(x) } is convex.

For x0 ∈ R
n the subdifferential of f at x0 is the set

∂f(x0) := { p ∈ R
n∗ | f(x) ≥ p (x− x0) + f(x0) }.

Its elementst are called subderivatives or subgradient of f at x0, and the

planes

{ (x, r) ∈ R
n × R | r = p (x− x0) + f(x0) }

are called supporting hyperplanes for f at x0. The functional p ∈ Rn∗

is called the slope of the hyperplane.

For the proof of the following proposition see Rockafellar [62].

C.1 Proposition.

(a) ∂f(x) 6= � for every x ∈ Dom(f).

(b) A finite convex function is continuous and Lebesgue almost every-

where differentiable.

(c) If ∂f(x) = {p} then f is differentiable at x and f ′(x) = p.
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D The Fenchel and Legendre Transforms.

Given a convex function f : R
n → R the Fenchel Transform (or the

convex dual of f is the function f : (Rn)∗ → R ∪ {+∞} defined by

f∗(p) = max
x∈Rn

[ p x− f(x) ] (D.1)

The function f admits a supporting hyperplane with slope p ∈ R
n∗

if

and only if f∗(p) 6= +∞. If f is superlinear, then f∗ is finite on all R
n.

D.1 Proposition.

1. If f is convex then f∗ is convex.

2. If f and f∗ are superlinear then f∗∗ = f .

3. f is superlinear if and only if f∗ is bounded on balls, more explic-

itly,

f(x) ≥ A |x|−B(A) , ∀x ∈ R
n ⇐⇒ f∗(p) ≤ B(|p|) , ∀p ∈ R

n∗

4. If f is superlinear, the maximum D.1 is attained at some point

x ∈ Rn.

Proof:

1. Given 0 ≤ λ ≤ 1 and p1, p2 ∈ R
n∗

we have that

f∗
(
λ p1 + (1− λ) p2

)
= max

x∈Rn

[(
λ p1 + (1− λ) p2

)
x− f(x)

]

≤ λ max
x∈Rn

[ p1 x− f(x) ] + (1− λ) max
x∈Rn

[ p2 x− f(x) ]

= λ f∗(p1) + (1− λ) f∗(p2).

2. From (D.1) we get that

f(x) ≥ p x− f∗(p) for all x ∈ R
n, p ∈ (Rn)∗
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Hence,

f(x) ≥ sup
p∈Rn∗

[ p x− f∗(p) ] = f∗∗(x).

Let px ∈ ∂f(x) 6= �. Then

f(y) ≥ f(x) + px (y − x), ∀ y ∈ R
n.

Hence

f∗(px) = max
y∈Rn

[
px y − f(y)

]
= px x− f(x).

And

f(x) = px x− f∗(px) ≤ max
p∈Rn∗

[
p x− f(x)

]
= f∗∗(x).

3. We have that

f∗x(p) = max
v∈Rn

[ p v − fx(v) ]

≤ max
v∈Rn

[ p v − |p| v ] +B(|p|)

= B(|p|).

Conversely, suppose that f∗x(p) ≤ B(|p|). Given A ∈ R and x ∈ Rn

there exists px ∈ R
n∗

such that |px| = A and px v = |px| |x| = A |x|.
Then

f(x) = max
p∈Rn∗

[ p x− f∗(p) ]

≥ px v −B(|px|) = A |x| −B(A).

4. By item 3, f∗ is finite. Let p ∈ R
n∗

. If b > 0 is such that f(x) >

(|p|+ 1) |x| − b, then

p x− f(x) < b− |x| < f∗(p)− 1 for |x| > b+ 1− f∗(p).

Hence

f∗(p) = max
|x|≤b+1−f∗(p)

[ p x− f(x) ],
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and the maximum is attained at some interior point xp in the

closed ball |x| ≤ b+ 1− f∗(p).

D.2 Corollary.

If f : R
n → R is convex and superlinear then so is f∗ : R

n∗ → R. In

this case f∗∗ = f .

Observe that in this case we have

f∗(0) = − min
x∈Rn

f(x) and f(0) = − min
p∈Rn∗

f∗(p).

If f : R
n → R is convex and superlinear we define the Legendre

Transform L : R
n → 2Rn∗

of f , by

L(x) = { p ∈ R
n∗ | p x = f(x) + f∗(p) }, (D.2)

D.3 Proposition. If f : Rn → R is C2 and there is a > 0, such that

y · f ′′(x) · y ≥ a |y|2 for all x, y ∈ R
n,

then the Legendre transform L : Rn → Rn∗
is a C1 diffeomorphism given

by L(x) = dxf .

Proof: The function f is convex and it is superlinear because

f(x) = f(0) +

∫ 1

0
f ′(sx) ds

= f(0) +

∫ 1

0

∫ 1

0
sx f ′′(ts x)x dt ds

≥ f(0) + 1
2 a |x|2.
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From (D.1) we get that

p x ≤ f(x) + f∗(p) for all x ∈ R
n, p ∈ R

n∗
. (D.3)

By proposition D.2, f∗ is superlinear. Then item 4 in proposition D.2

implies that

L(x) = arg max
p∈Rn∗

{ p x− f∗(p) } 6= �.

Moreover, from (D.3), if p ∈ L(x) then x = arg maxx∈Rn{ p x − f(x) }.
Thus p = dxf = L(x). This proves that L differentiable and singled

valued. Moreover since dxL = f ′′(x) is non-singular, then L is a local

C1 diffeomorphism.

Since

(y − x) · [ dyf − dxf ] =

∫ 1

0
f ′′

(
sx+ (1− s)y

)
ds > 0,

then x 7→ dxf = L(x) is injective. We now prove that L is surjective.

By item 4 in proposition D.1 the maximum

f∗(p) = max
x∈Rn

[ p x− f(x) ]

is attained at some xp ∈ R
n. Then p ∈ L(xp).
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E Singular sets of convex funcions.

Let f : R
n → R be a convex function. Recall that its subdifferential at

x ∈ R
n is the set

∂f(x) := { ℓ : R
n → R linear | f(y) ≥ f(x) + ℓ (y − x) , ∀y ∈ R

n }.

Then the sets ∂f(x) ⊂ R
n are convex. If k ∈ N, let

Σk(f) := {x ∈ R
n | dim∂f(x) ≥ k }.

E.1 Proposition. If f : Rn → R is a convex function then for all

0 ≤ k ≤ n the Hausdorff dimension HD(Σk(f)) ≤ n− k.

We recall here an elegant proof due to Ambrosio and Alberti, see [3].

More can be said on the structure of Σk, see [2, 66] for example.

By adding |x|2 if necessary (which does not change Σk) we can as-

sume that f is superlinear and that

f(y) ≥ f(x) + ℓ(y − x) + 1
2 |y − x|

2 ∀x, y ∈ R
n, ∀ℓ ∈ ∂f(x). (E.4)

E.2 Lemma. ℓ ∈ ∂f(x), ℓ′ ∈ ∂f(x′) =⇒ |x− x′| ≤ ‖ℓ− ℓ′‖.

Proof: From inequality (E.4) we have that

f(x′) ≥ f(x) + ℓ(x′ − x) + 1
2

∣∣x′ − x
∣∣2 ,

f(x) ≥ f(x′) + ℓ′(x− x′) + 1
2

∣∣x− x′
∣∣2 .

Then

0 ≥ (ℓ′ − ℓ)(x− x′) +
∣∣x− x′

∣∣2 (E.5)
∥∥ℓ− ℓ′

∥∥ ∣∣x− x′
∣∣ ≥ (ℓ− ℓ′)(x− x′) ≥

∣∣x− x′
∣∣2 . (E.6)

Therefore ‖ℓ− ℓ′‖ ≥ |x− x′|.

Since f is superlinear, the subdifferential ∂f is surjective and we

have:
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E.3 Corollary.

There exists a Lipschitz function F : R
n → R

n such that

ℓ ∈ ∂f(x) =⇒ x = F (ℓ).

Proof of Proposition E.1:

Let Ak be a set with HD(Ak) = n − k such that Ak intersects any

convex subset of dimension k. For example

Ak = {x ∈ R
n |x has at least k rational coordinates }.

Observe that

x ∈ Σk =⇒ ∂f(x) intersects Ak =⇒ x ∈ F (Ak).

Therefore Σk ⊂ F (Ak). Since F is Lipschitz, we have that HD(Σk) ≤
HD(Ak) = n− k.

204



F. symplectic linear algebra. 205

F Symplectic Linear Algebra.
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1994), Birkhäuser, Basel, 1995, pp. 1216–1220.

[38] , Generic properties and problems of minimizing measures of Lagrangian

systems, Nonlinearity 9 (1996), no. 2, 273–310.

[39] , Lagrangian flows: the dynamics of globally minimizing orbits, Interna-
tional Conference on Dynamical Systems (Montevideo, 1995), Longman, Har-
low, 1996, Reprinted in Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 141–153.,
pp. 120–131.

[40] Daniel Massart, Normes stables des surfaces, C. R. Acad. Sci. Paris Sér. I Math.
324 (1997), no. 2, 221–224.

[41] , Stable norms of surfaces: local structure of the unit ball of rational

directions, Geom. Funct. Anal. 7 (1997), no. 6, 996–1010.

[42] John N. Mather, Modulus of continuity for Peierls’s barrier, Periodic solutions
of Hamiltonian systems and related topics (Il Ciocco, 1986), Reidel, Dordrecht-
Boston, MA, 1987, pp. 177–202.

[43] , Minimal action measures for positive-definite Lagrangian systems, IXth
International Congress on Mathematical Physics (Swansea, 1988), Hilger, Bris-
tol, 1989, pp. 466–468.

[44] , Minimal measures, Comment. Math. Helv. 64 (1989), no. 3, 375–394.

[45] , Differentiability of the minimal average action as a function of the ro-

tation number, Bol. Soc. Brasil. Mat. (N.S.) 21 (1990), no. 1, 59–70.

[46] , Action minimizing invariant measures for positive definite Lagrangian

systems, Math. Z. 207 (1991), no. 2, 169–207.

209



210 BIBLIOGRAPHY

[47] , Variational construction of orbits of twist diffeomorphisms, J. Amer.
Math. Soc. 4 (1991), no. 2, 207–263.

[48] , Variational construction of connecting orbits, Ann. Inst. Fourier (Greno-
ble) 43 (1993), no. 5, 1349–1386.

[49] John N. Mather and Giovanni Forni, Action minimizing orbits in Hamiltonian

systems, Transition to chaos in classical and quantum mechanics (Montecatini
Terme, 1991), Springer, Berlin, 1994, Lectures by Bellissard, J. and Degli Es-
posti, M. and Forni, G. and Graffi, S. and Isola, S. and Mather, J. N. given at
the Third C.I.M.E. Session held in Montecatini Terme, July 6–13, 1991, Edited
by S. Graffi, pp. 92–186.

[50] Marston Morse, A fundamental class of geodesics on any closed surface of genus

greater than one, Trans. Amer. Math. Soc. 26 (1924), 25–60.

[51] , Calculus of variations in the large, Springer-Verlag, Berlin, 1994, Lec-
tures given at the Third C.I.M.E. Session held in Montecatini Terme, July 6–13,
1991, Edited by S. Graffi.

[52] G. Namah and J.-M. Roquejoffre, Comportement asymptotique des solutions

d’une classe d’equations paraboliques et de hamilton-jacobi, C. R. Acad. Sci.,
Serie I, 324 (1997), 1367–1370.

[53] Richard S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299–
340.

[54] Gabriel P. Paternain, Entropy and completely integrable Hamiltonian systems,
Proc. Amer. Math. Soc. 113 (1991), no. 3, 871–873.

[55] , On the topology of manifolds with completely integrable geodesic flows,
Ergodic Theory Dynamical Systems 12 (1992), no. 1, 109–121.

[56] , Hyperbolic dynamics of Euler-Lagrange flows on prescribed energy levels,
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