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Abstract. We consider the set of mapsf ∈ Fα+ = ∪β>αC1+β of the circle which are
covering maps of degreeD, expanding, minx∈S1 f ′(x) > 1 and orientation preserving.
We are interested in characterizing the set of such mapsf which admit a uniquef -invariant
probability measureµ minimizing

∫
ln f ′ dµ over all f -invariant probability measures.

We show there exists a setG+ ⊂ Fα+, open and dense in theC1+α-topology, admitting a
unique minimizing measure supported on a periodic orbit. We also show that, iff admits
a minimizing measure not supported on a finite set of periodic points, thenf is a limit in
theC1+α-topology of maps admitting a unique minimizing measure supported on a strictly
ergodic set of positive topological entropy.

We use in an essential way a sub-cohomological equation to produce the perturbation.
In the context of Lagrangian systems, the analogous equation was introduced by R. Ma˜né
and A. Fathi extended it to the all configuration space in [8].

We will also present some results on the set off -invariant measuresµ maximizing∫
Adµ for a fixedC1-expanding mapf and a general potentialA, not necessarily equal to

−ln f ′.

1. Introduction
We consider the spaceFα of C1+α maps of the circlef : S1 → S1 (whereα < 1) which
are covering maps of degreeD, orientation-preserving and expanding:

λ(f ) = min
x∈S1

f ′(x) > 1.

We denote by H¨olα(A) theα-Hölder constant of a functionA : S1 → R,

Hölα(A) = sup
0<d(x,y)<π

{ |A(x)− A(y)|
d(x, y)α

}
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by ‖A‖0 the uniform norm and by‖A‖α theα-Hölder norm ofA,

‖A‖α = Hölα(A)+ ‖A‖0.

We noteCα, the set ofα-Hölder functions, andCα+, the set∪β>αCβ equipped with theCα
topology. The set ofC1+α maps of the circle is endowed with the distance

d(f, g) = ‖f − g‖0 + ‖f ′ − g′‖α
wheref , g denote the covering maps off , g to R fixing zero. The spaceC1+α becomes a
complete space andFα an open set ofC1+α. We denote byFα+ the set∪β>αFβ equipped
with theC1+α-topology. AlthoughC2 maps are dense inC1 for theC1-topology, the closure
of Cα+ for theCα-topology is strictly included inCα.

Definition 1. LetK(f ) be the set off -invariant probability measures,

J (f ) = inf

{
exp

( ∫
ln f ′ dν

) ∣∣∣∣ ν ∈ K(f )
}

M(f ) =
{
µ ∈ K(f )

∣∣∣∣
∫

ln f ′ dµ = ln J (f )

}
.

A measure inM(f ) is called aLyapunov minimizing measure.

The purpose of this paper is to show the following theorem. We recall first that a
compact invariant set is said to bestrictly ergodicif it is minimal and uniquely ergodic
or, equivalently, if it is uniquely ergodic and the support of the unique invariant measure is
equal to the compact set itself.

THEOREM 2. Letα < 1.
(i) The setG+ of mapsf in Fα+ having a unique Lyapunov minimizing measure

supported on a periodic orbit and satisfying the property of continuously varying
support is open and dense inFα+.

(ii) If f ∈ Fα+ has a Lyapunov minimizing measure not supported on a finite set of
periodic points, thenf is a limit in theC1+α-topology of maps(fn) in Fα+ admitting
a unique Lyapunov minimizing measureµn such thatfn restricted tosupp(µn) is
strictly ergodic and has positive topological entropy.

The property of continuously varying support was first introduced by Ma˜né in the
Lagrangian setting. It can be formulated in our setting in the following way.

Definition 3. Supposef ∈ Fα admits a unique Lyapunov minimizing measureµ. We say
thatf satisfies theproperty of continuously varying supportif, for any sequence(fn) of
Fα converging tof in theC1+α-topology, for any Lyapunov minimizing measuresµn for
fn, the sequence(µn) converges toµ in the weak topology and the sequence of compact
sets(supp(µn)) converges to supp(µ) in the Hausdorff topology.

The problem we consider here is in some sense analogous (although we do not consider
the homological position) to the problems considered in Aubry–Mather theory (see [6, 18])
for Lagrangian flows. A recent result of Ma˜né (see [18] and also [5, 6]) on Lagrangian
flows shows that generically on the Lagrangian there is a unique measure minimizing
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action. The main difference of these results to our setting is that the minimization in our
theorem is among invariant probabilities and in Ma˜né’s theorem the minimization can be
done among a fixed subset of probability measures (not necessarily invariant) independent
of L. Therefore, in the setting considered here, if we change the map, the set of invariant
probabilities will also change and this is one of the main differences from [18] to our
proof. The above theorem is the analogous result for the setting of expanding maps of
a conjecture for Lagrangians proposed by Ma˜né in [18, 19]. Ott also proposed a related
conjecture (see [12]). In the Lagrangian case, the conjecture whether, generically on the
Lagrangian, the unique maximizing measure is supported on a periodic orbit is still open.
Lyapunov minimizing measures have been previously considered by [12–15, 22].

In our setting, the setM(f ) may not be reduced to a single probability measure and
the more pathological case is when lnf ′ is cohomologous to a constant lnD, that is, when
there exists a positive functionh : S1 → R such thatf ′ = D(h ◦ f/h). In that case,
J (f ) = D and any invariant measure is minimizing. See Proposition 28 for equivalent
properties for lnf ′ to be cohomologous to a constant. Nevertheless, lnf ′ always satisfies a
sub-cohomological equation which is one of the key ingredients of the proof of Theorem 2.

THEOREM 4. For anyf ∈ Fα , there exists aα-Hölder functionh : S1 → ]0,1] such that
f ′ ≥ J (f )(h ◦ f/h) everywhere onS1 andf ′ = J (f )(h ◦ f/h) on the support of any
Lyapunov minimizing measures.

The proof of Theorem 2 depends actually on similar statements wheref is fixed and
A = −logf ′ varies among all H¨older functions with zero pressure. We therefore develop
in §2 a theory for maximizing a general potentialA (not necessarily of zero pressure).

Definition 5. For anyC1-expanding mapf and any H¨older function defined onS1, A :
S1 → R, we call

m(A, f ) = sup

{∫
Adν

∣∣∣∣ ν ∈ K(f )
}

M(A, f ) =
{
µ ∈ K(f )

∣∣∣∣
∫
Adµ = m(A, f )

}
.

Any measure inM(A, f ) will be called amaximizing measurefor (A, f ).

As usual, a set is said to begenericif it contains a countable intersection of open and
dense sets.

THEOREM 6. Let f be a C1-expanding map andα > 0. Then the set ofα-Hölder
functionsA admitting a unique maximizing measure for(A, f ) is generic inCα. For such
functionsA, the mapf is strictly ergodic on the support of its unique maximizing measure.

If A is C0 and has a unique maximizing measureµ, if (An) converges toA in theC0-
topology andµn is chosen inM(An, f ) for all n, then(µn) converges toµ in the weak
topology (see step one in the proof of Proposition 16). In the following definition we ask a
stronger property.

Definition 7. Let f be aC1-expanding map and letA be aα-Hölder function admitting a
unique maximizing measureµ. We sayA satisfies the property of continuously varying
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support if, for any sequence(An) of α-Hölder functions converging toA in theα-Hölder
topology and for any measureµn chosen inM(An, f ), the sequence of measures(µn)
converges weakly toµ and the sequence of its compact supports(suppµn) converges to
suppµ in the Hausdorff topology.

In the case when the unique maximizing measureµ is supported by a single orbit,
because the mapf is expanding, the property of continuously varying support is equivalent
to saying there exists a neighborhoodU of A in theCα-topology such that, for allB in U ,
M(B, f ) = M(A, f ) = {µ}.
THEOREM 8. Letf be aC1-expanding map.
(i) The set ofA ∈ Cα having a unique maximizing measureµA satisfying the property

of continuously varying support is generic inCα.
(ii) The setG of A ∈ Cα having a unique maximizing measure supported on a periodic

orbit and satisfying the property of continuously varying support is open inCα and
G+ = G ∩ Cα+ is open and dense inCα+.

(iii) Let A ∈ Cα+ be fixed. IfM(A, f ) contains a maximizing measure which is
not supported on a finite set of periodic points then there exists a sequence(Bn)

converging toA in the Cα-topology such that eachBn has a unique maximizing
measure supported on a strictly ergodic invariant compact set of positive entropy
and satisfying the property of continuously varying support.

As before, the main tool to prove Theorem 8 is the following sub-cohomological
equation. For a generalization to smooth Anosov diffeomorphisms, see [23].

THEOREM 9. Let f be aC1-expanding map andA ∈ Cα. Then there existsV ∈ Cα such
thatA ≤ V ◦ f − V + m(A, f ). In particular, A is cohomologous tom(A, f ) on the
support of any maximizing measureµ ∈ M(A, f ), that is,A = V ◦ f − V +m(A, f ) on
the support ofµ.

The functionV should be called sub-action in analogy with Lagrangian mechanics,
KAM theory and with [8], because it corresponds, for the discrete time version, to a sub-
solution of the Hamilton–Jacobi equation:

S(γ (1))− S(γ (0)) ≤
∫ 1

0
Ldt − E,

whereL is the Lagrangian restricted toγ (t), t ∈ (0,1), andE is the energy. The function
A plays the role of the Lagrangian,m(A, f ) plays the role of energy,f plays the role of
the flow and the inequality is inverted because we are maximizing and not minimizing.

The strategy of the proof of the above results is the following. In §2 we prove
Theorems 6, 8 and 9 for a fixed expanding mapsf ∈ F0. We then transfer in §3 the
above properties to prove Theorems 2 and 4 for varying functionsf . In that case, the
potentialA is linked to the function by the formulaA = −logf ′ and the thermodynamic
formalism is used. Analogous results hold for topologically mixing one-sided sub-shifts of
finite type inD-symbols and by means of a Markov partition to general mixing expanding
maps on a compact set (see [4] for the construction of such a Markov partition).
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2. Maximizing measures for Ḧolder potentials
We begin by proving that, generically, there exists a unique maximizing measure.
This comes mainly from the fact that, for a compact convex set inR

N , among the set
of hyperplanes which support the convex set, the set of those hyperplanes having an
intersection reduced to a single point is generic. Nonetheless, the proof has to be carried
in infinite dimension and requires more details.

We first recall some definitions. We say that a pointp is an extremal point of a compact
convex setC of R

n if p is not the mid point of a segment totally included inC. We say that
p is strictly extremal if there exists a linear form which attains its maximum at the point
p only. A classical result (see [21]) states thatC is equal to the closed convex hull of its
strictly extremal points. Theorem 6 is a direct consequence of the one whereK = K(f )
andH = Cα.

PROPOSITION10. LetK be a compact convex subset of the set of probability measures on
S1 and(H, ‖ · ‖H) be a dense Banach space inC0(S1,R) which embeds continuously in
C0(S1,R). Then there exists a residual setR in H (for the‖ · ‖H-topology) such that, for
all A ∈ R, if

M(A)
def=

{
µ ∈ K

∣∣∣∣
∫
Adµ = m(A)

}
and m(A)

def= max

{ ∫
Adµ

∣∣∣∣µ ∈ K
}

thenM(A) contains a unique measure.

Proof. Let {Hn}n>1 be a dense subset of the unit ball ofH. SinceH is dense

d(µ,µ′) def=
∑
n≥1

1

2n

∣∣∣∣
∫
Hn dµ−

∫
Hn dµ

′
∣∣∣∣

defines a metric onK compatible with the weak topology. Let us call

Rε
def= {A ∈ C0(S1,R) | diamM(A) < ε}.

We claim thatRε is open inC0(S1,R) andRε ∩ H is dense inH for the‖ · ‖H-topology.
The desired residual set will beR = ∩εRε ∩ H.

We show by contradiction thatRε is open. If not, one can findA in Rε ,Bn in C0(S1,R)

and(µn, νn) in M(A+Bn) such that‖Bn‖0 converges to zero andd(µn, νn) ≥ ε for all n.
We may assume by taking a subsequence that(µn) and(νn) converge toµ̄ andν̄. Let us
prove thatµ̄ ∈ M(A): indeed for everyµ ∈ K,∫

(A+ Bn) dµ ≤
∫
(A+ Bn) dµn ≤

∫
Adµn + ‖Bn‖0

and
∫
Adµ ≤ ∫

Adµ̄ by taking the limit onn. For the same reason̄ν belongs toM(A).
We have obtained a contradiction sinced(µ̄, ν̄) ≥ ε.

We now show thatRε ∩ H is dense inH. Let A0 ∈ H and K0 = M(A0).
The continuous projectionsπn : K → R

n, πn(µ) = ( ∫
H1 dµ, . . . ,

∫
Hn dµ

)
sendsK0

to a compact convex setπn(K0) which admits a strictly extremal pointpn. We first notice
that diamπ−1

n (pn) ≤ 2−n and we choosen large enough so that 2−n < ε. By definition of
pn = (p1, . . . , pn) there exists(a1, . . . , an) ∈ R

n such that
n∑
i=1

aipi >

n∑
i=1

aiqi ∀q = (q1, . . . , qn) ∈ πn(K0), q 6= p.
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In particular, ifA1 = ∑n
i=1 a

iHi ,m0(A1) = max
{ ∫

A1 dµ | µ ∈ K0
}

and

M0(A1)
def=

{
µ ∈ K0

∣∣∣∣
∫
A1 dµ = m0(A1)

}
,

thenM0(A1) = π−1
n (pn) has diameter less thanε. We show that, for small enough

ζ > 0, Aζ = (1 − ζ )A0 + ζA1 ∈ Rε . More precisely we show that, for any open set
U ⊃ M0(A1), for anyζ sufficiently small,M(Aζ ) ⊂ U . By contradiction, there exists
a sequenceµn ∈ M(Aζn) \ U for someζn converging to zero. We may assume that(µn)

converges tōµ ∈ K \ U . We first show that̄µ ∈ K0 = M(A0): for everyµ ∈ K,∫
Aζn dµ ≤

∫
Aζn dµn ≤

∫
A0 dµn + ζn‖A1 − A0‖0

and by taking a limit inn,
∫
A0 dµ ≤ ∫

A0 dµ̄. We then show that̄µ belongs toM0(A1):
for everyµ ∈ K0, ∫

Aζn dµ = (1 − ζn)

∫
A0 dµ+ ζn

∫
A1 dµ

≤ (1 − ζn)

∫
A0 dµn + ζn

∫
A1 dµn.

Since
∫
A0 dµn ≤ ∫

A0 dµ, we have obtained
∫
A1 dµ ≤ ∫

A1 dµn and at the limit∫
A1 dµ ≤ ∫

A1 dµ̄. We have obtained a contradiction sinceµ̄ 6∈ U . 2

We now prove the cocycle Theorem 9. We show that anyA ∈ Cα is sub-cohomologous
to a constantm(A, f ) with a unique minimal coboundaryVA. The main tool is the
shadowing lemma. We say that two pointsx andy belong to the same inverse branch
of lengthn if there exists a close intervalI containingx andy such thatf n restricted
to int(I) is one-to-one andf n(I) = S1. Theorem 9 is strongly related to Theorem B of
Mañé [17]. Our result is in some sense stronger since we obtain a sub-coboundary defined
everywhere (this fact is crucial in the following) whereas Ma˜né’s proof gives a coboundary
defined only on the support of the maximizing measure.

PROPOSITION11. Letf be aC1-expanding map andA ∈ Cα. Then there exists a unique
minimal non-negativeα-Hölder functionVA : S1 → R such that:
(i) A ≤ VA ◦ f − VA +m(A, f ) onS1;
(ii) for any non-negative functionW : S1 → R (not necessarily Ḧolder) satisfying

A ≤ W ◦ f −W +m(A, f ) onS1, we haveVA ≤ W onS1.
Moreover,Hölα(VA) ≤ Hölα(A)/(λα − 1) andA = VA ◦ f − VA +m(A, f ) everywhere
onsupp(µ) of any maximizing measureµ for (A, f ).

Proof. We may assumem(A, f ) = 0. We recall thatSnA denotes the Birkhoff sum∑n−1
k=0A ◦ f k and thatSnA = 0 whenn = 0. Let us define

VA(x) = sup{SnA(y) | n ≥ 0 andf n(y) = x}.
We show thatVA is well defined. On the one hand, for any periodic pointp of periodn,
SnA(p) ≤ 0. On the other hand, for anyn ≥ 0 and anyy ∈ S1 there exists a periodic
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pointp in the same inverse branch of lengthn asy such thatf n(p) = p. Moreover, ifN
is large enough,λN > 2, for all k < n−N , d(f k(y), f k(p)) < 1

2 and

|SnA(y)− SnA(p)| ≤ Hölα(A)

λα − 1
+ 2N‖A‖0.

We now show thatVA isα-Hölder. Iff n(y) = x, f n(y ′) = x ′ andy andy ′ are in the same
inverse branch of lengthn, if d(x, x ′) < 1

2 then

|SnA(y)− SnA(y
′)| ≤ Hölα(A)

λα − 1
d(x, x ′)α

and, by taking the supremum overy andn, we finally obtain

|VA(x)− VA(x
′)| ≤ Hölα(A)

λα − 1
d(x, x ′)α.

By definition of VA, we haveVA ◦ f ≥ A + VA on S1. If W is non-negative and
satisfiesW ◦ f ≥ A + W on S1, then for everyn ≥ 0, (x, y) such thatf n(y) = x,
W(x) ≥ SnA(y) + W(y) and thereforeW(x) ≥ VA(x). If µ is a maximizing measure,∫
(VA ◦ f − VA − A) dµ = 0 andVA ◦ f − VA = A on supp(µ). 2

Remark 12.We collect here alternative proofs of the existence of a sub-coboundary.
(i) If we choose in Proposition 11 the following definition ofṼA:

ṼA(x) = lim
n→∞ sup

k>n

sup
f k(y)=x

{SkA(y)− km(A, f )},

we again obtain a sub-coboundary which satisfies in addition the functional equation
considered by Bousch [2] and Fathi [8]:

∀x ∈ S1, ṼA(x) = max
f (y)=x

{A(y)−m(A, f )+ ṼA(y)}.

In particular (D = 2), for any opposite pointsx, x ′ (i.e.f (x) = f (x ′)), one of them
belongs to the set6 = {A − m(A, f ) = ṼA ◦ f − ṼA}. 6 has therefore always a
non-empty interior andx ∈ ∂6 ⇒ x ′ ∈ 6.
A second way to prove the existence of a sub-coboundary is to use Proposition 23(iii)
where we define an action potentialSA(x, y). A third way is to use the
thermodynamic formalism: see Proposition 29(iii).

(ii) If A is not equal to a coboundary modulo a constant then the set ofα-Hölder
functionsW which are solutions ofA ≤ W ◦ f −W + m(A, f ) is always a large
set. Indeed letR = VA ◦ f − VA − A + m(A, f ) and 1≥ α0 ≥ α1 · · · ≥ αn ≥ 0,
α-Hölder functions, then

W = VA + (α0R)+ (α1R) ◦ f + · · · + (αnR) ◦ f n

is such a solution.
(iii) Proposition 11 shows that, in the case whenA admits a unique maximizing

measureµ, f is uniquely ergodic on supp(µ). This follows from the fact that any
measureν with support contained in the support ofµ satisfies

∫
Adν = m(A, f ).

A maximizing measure forAmay not be unique: for instance, whenA is of the form
A = m+ V ◦ f − V , any invariant measure is maximizing.
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In order to prove the property of continuously varying support, we introduce a
vocabulary close to what is used in the setting of Lagrangian flows.

Definition 13. LetA be a continuous function andm = m(A, f ).
(i) A functionW is called asub-actionfor (A, f ) if it satisfies the inequalityA−m ≤

W ◦ f −W everywhere. We then call the set

6A,W = {x ∈ S1 | A(x)−m = W ◦ f (x)−W(x)}
theW -actionset (we could have called it the Ma˜né set).

(ii) If W is a sub-action and(x, y) is a pair of points ofS1, we say that the points(x, y)

areW -connectedand we writex
W→ y if, for every ε > 0, there existz ∈ S1 and

n ≥ 1 such thatd(z, x) < ε, f n(z) = y and

|Sn(A−m)(z)− (W(y)−W(x))| < ε.

We say that(x, y) areW -equivalentif x
W→ y andy

W→ x.
(iii) A point x ∈ S1 is said to be non-wandering with respect to(A, f ) if, for any ε > 0,

there existz ∈ S1 andn ≥ 1 such that

d(z, x) < ε, f n(z) = x and |Sn(A−m)(z)| < ε.

We denote by�(A, f ) the set of non-wandering points with respect to(A, f ).
We will see shortly that�(A, f ) is not empty.

(iv) If W is a sub-action, a compact invariant setK (i.e. f (K) = K) is said to be
W -irreducible if any two points(x, y) of K areW -equivalent.

We first give elementary properties. The main tool is the standard shadowing lemma.
We recall that, for a complete orbitx = (xn)n∈Z in S1 (f (xn) = xn+1 for all n ∈ Z), ω(x)
denotes the compact invariant set of accumulation points of(xn)n≥0 andα(x) the compact
invariant set of accumulation points of(x−n)n≥0. We also recall that anε-pseudo orbit with
M jumps fromx to y is a finite sequence of points{x0 . . . xn} such thatx0 = x, xn = y,
d(f (xk), xk+1) < ε for all 0 ≤ k < n, and the cardinality of the set of indices 0≤ k < n

satisfyingf (xk) 6= xk+1 is bounded byM.

LEMMA 14. LetW be a Ḧolder sub-action.
(i) Let (x, y) be a pair of points andM > 0 an integer. Thenx

W→ y if and only if, for
everyε > 0, there exists aε-pseudo orbit with at mostM jumps fromx to y such
that ∣∣∣∣

n−1∑
k=0

(A−m(A, f ))(xk)− (W(y)−W(x))

∣∣∣∣ < ε.

(ii) If x
W→ y andy

W→ z thenx
W→ z.

(iii) AnyW -irreducible compact invariant setK is included in�(A, f ).
(iv) If x = (xn)n∈Z is a complete orbit in theW -action set, thenα(x) andω(x) are

compact invariantW -irreducible sets and therefore belong to�(A, f ). For any

α ∈ α(x) andω ∈ ω(x), α W→ x
W→ ω.
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The main ingredients for proving Theorem 8 are given by the following two
propositions. Proposition 15(ii) shows in particular thatM(A, f ) is equal to the set of
all invariant measures whose support stays in�(A, f ).

PROPOSITION15. LetA be a Ḧolder function. Then:
(i) �(A, f ) is a compact invariant set included in theW -action set of any continuous

sub-actionW .
(ii) For any invariant measureµ, µ ∈ M(A, f ) if and only if supp(µ) ⊂ �(A, f ).

In particular, (A, f ) admits a unique maximizing measure, if and only if�(A, f ) is
uniquely ergodic. Ifµ is an ergodic maximizing measure,supp(µ) isW -irreducible
for any continuous sub-actionW .

(iii) If �(A, f ) isW -irreducible for some Ḧolder sub-actionW , then�(A, f ) contains
all compact invariant sets included in theW -action set.

(iv) If (A, f ) admits a unique maximizing measure, then�(A, f ) is W -irreducible for
any Hölder sub-actionW .

Proof. Part (i). If (xi)i≥0 is a sequence of points of�(A, f ) converging tox and
ε > 0, thend(xi, x) < 1

2ε for somei and there existyi , n > 0 such thatd(yi, xi) <
1
2ε, d(f

n(yi), xi) <
1
2ε and |Sn(A − m(A, f ))(yi)| < ε. Then d(yi, x) < ε and

d(f n(yi), x) < ε. We have proved�(A, f ) is closed.
Let x be a point of�(A, f ) andε > 0. We choose, using the continuity off andA,

η > 0 so thatf (B(x, η)) ⊂ B(f (x), ε) and the oscillation ofA on B(x, η) is bounded
by ε. Then there existy and n > 0 such thatd(y, x) < η, d(f n(y), x) < η and
|Sn(A − m(A, f ))(y)| < ε. Using the definition ofη, we obtaind(f (y), f (x)) < ε,
d(f n+1(y), f (x)) < ε and

|Sn(A−m(A, f ))(f (y))| = |Sn(A −m(A, f ))(y)− (A− A ◦ f n)(y)| < 2ε.

We have provedf (�(A, f )) ⊂ �(A, f ).
If x ′ ∈ �(A, f ), (y ′

i )i≥0 is a sequence of points inS1 converging tox ′, (ni)i≥0

is an increasing sequence of integers such thatf ni (y ′
i ) converges tox ′ and |Sni (A −

m(A, f ))(y ′
i )| converges to zero, by taking a subsequence we may assumef ni−1(y ′

i )

converges to somex satisfyingf (x) = x ′. For any largei, y ′
i admits a unique pre-image

yi close tox and as above|Sni (A − m(A, f ))(yi)| converges to zero. We have proved
f (�(A, f )) = �(A, f ).

To prove that�(A, f ) is included in theW -action set, we introduce the non-negative
function

RA,W = W ◦ f −W +m(A, f )− A.

If x ∈ �(A, f ), (yi)i≥0 converges tox and(ni)i≥0 is chosen so thatf ni (yi) converges to
x andSni (A−m(A, f ))(yi) converges to zero, then

Sni (A−m(A, f ))(yi)+ SniRA,W (yi) = W ◦ f ni (yi)−W(yi)

converges to zero and thereforeR(x) = 0.
Part (ii). The fact that the support of any maximizing measureµ is included in�(A, f )

follows from Atkinson’s theorem [1] since, by definition ofµ,
∫
(A − m(A, f )) dµ = 0.
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If, in addition µ is ergodic, for any two points(x, y) in supp(µ), there exists a path
{z, . . . , f n(z)} included in the support ofµ which connects as close as we want(x, y).
Since that path is included in theW -action set, we have just shown that supp(µ) is
W -irreducible.

Part (iii). We now assume that�(A, f ) isW -irreducible for some H¨older sub-actionW .
Let K be a compact invariant set included in theW -action set. We pickz = (zn)n∈Z, a
complete orbit inK passing throughz (i.e. z0 = z), α ∈ α(z) andω ∈ ω(z). Then

α
W→ z

W→ ω and by irreducibility of�(A, f ), ω
W→ α. Therefore,z

W→ z and
z ∈ �(A, f ).

Part (iv). The proof is very similar to part (iii). Letµ be the unique maximizing
measure,x, y, points of�(A, f ), andx = (xn)n∈Z, y = (yn)n∈Z complete orbits passing
throughx, y, respectively. We define two sequences of probability measures:

ωn = 1

n

n−1∑
k=0

δxk and αn = 1

n

n−1∑
k=0

δy−k .

By taking subsequences,(ωn′) and(αn′ ) converge to the same measureµ and in particular

one can findω ∈ ω(x) ∩ supp(µ) andα ∈ α(y) ∩ supp(µ). Sincex
W→ ω, α

W→ y and

ω
W→ α by ergodicity ofµ, we obtainx

W→ y for all (x, y) ∈ �(A, f ) : �(A, f ) is
W -irreducible. 2

Proposition 25 shows that6A,W may contain invariant compact sets bigger than
�(A, f ): it may contain heteroclinic orbits connecting two irreducible sets.

PROPOSITION16. LetA : S1 → R be aα-Hölder function.
(i) If �(A, f ) is minimal then, for any sequence(An)n≥0 of α-Hölder functions

converging toA in the Cα-topology, the sequence of compact sets(�(An, f ))n≥0

converges to�(A, f ) in the Hausdorff topology.
(ii) If �(A, f ) is strictly ergodic,A satisfies the property of continuously varying

support.

Proof. Step one.Using only the convergence of(An)n≥0 toA in theC0-topology, we show
that(m(An, f ))n≥0 converges tom(A, f ) and that, ifµn is some maximizing measure for
(An, f ), any weak limit of(µn)n≥0 is again a maximizing measure for(A, f ). Indeed, we
have

|m(A, f )−m(B, f )| ≤ ‖A− B‖0

for all A, B and for any sub-sequence(µn′)n′≥0 converging to some measureµ,∫
Adµ = lim

n′

∫
An′ dµn′ = lim

n′ m(An′ , f ) = m(A, f ).

Step two.LetKn = �(An, f ) andK be a limit set in the Hausdorff topology of some
sub-sequence(Kn′)n′≥0. Thanks to Propositions 11 and 15(i), for eachn, there exists a
α-Hölder sub-actionVn for (An, f ) such thatKn is included in theVn-action set:

An −m(An, f ) = Vn ◦ f − Vn onKn.
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We may assume thatVn is normalized so thatVn = 0 for some point inKn. Since(An)n
converges toA in the Cα-topology, using Proposition 11 we may also assume that the
α-Hölder norm ofVn is uniformly bounded. By Ascoli’s theorem, we can extract a sub-
sequence(Vn′)n′≥0 which converges uniformly to anα-Hölder functionV . We have thus
obtained a sub-actionV ∈ Cα for (A, f ) and a compact invariant setK (i.e. f (K) = K)
included in theV -action set. Since�(A, f ) isV -irreducible by minimality, we know from
Proposition 15(iii) thatK has to be included in�(A, f ) and therefore has to be equal to
�(A, f ).

Step three.We assume now that�(A, f ) is strictly ergodic and is equal to the support
of the unique ergodic measureµ. Let µn be some maximizing measure for(An, f ) and
Kn = supp(µn). Thanks to Proposition 15(ii),Kn is included in�(An, f ), and any
accumulation set of(Kn)n≥0 is contained in�(A, f ) and equals�(A, f ) by minimality.
Any weak-accumulation measure has a support included in�(A, f ) and is therefore equal
toµ by unique ergodicity. 2

We are now able to prove the first part of Theorem 8.

Proof of Theorem 8(i).We actually prove a little more. LetZ be the set ofα-Hölder
potentialsA such that�(A, f ) is minimal. We show thatZ is generic inCα . The setR of
α-Hölder potentialsA such that�(A, f ) is uniquely ergodic is also generic according to
Proposition 10. Therefore,Z ∩ R is generic and anyA ∈ Z ∩ R satisfies the property of
continuously varying support as is shown in Proposition 16(ii). For everyε > 0, we define

Zε =
{
A ∈ Cα

∣∣∣∣ ∃ n ≥ 0, ∀y ∈ �(A, f ), �(A, f ) ⊂
n⋃
k=0

f−k(B(y, ε))
}
.

Let us first notice thatZ = ∩εZε . In order to show thatZ is dense, for anyA ∈ Cα,
we choose someK ⊂ �(A, f ) minimal. Then we can findφ ∈ Cα such thatφ = 0
on K, φ > 0 everywhere outsideK and such thatA − φ is Cα-close toA. Then
m(A − φ, f ) = m(A, f ), any sub-actionV for A is again a sub-action forA − φ, the
V -action set forA− φ is equal toK

{A− φ −m = V ◦ f − V } = K

and�(A− φ, f ) = K is minimal.
We now show thatZε containsZ in its interior. LetA ∈ Z, then there existsn ≥ 0

such that

�(A, f ) ⊂
n⋃
k=0

f−k(B(y, ε))

for everyy ∈ �(A, f ). By compactness of�(A, f ), there exists a neighborhoodUε of
�(A, f ) such that

Uε ⊂
n⋃
k=0

f−k(B(y, ε))

for everyy ∈ Uε . By Proposition 16(i), anyB close toA (in theCα-topology) satisfies
�(B, f ) ⊂ Uε and therefore is included inZε . 2
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The strategy of the proof of Theorem 8(ii) is to find a periodic orbit well distributed and
closed to�(A, f ). We begin by proving a lemma of approximation in theCα-topology for
functions having a better regularityCβ , β > α.

LEMMA 17. Let 0< α < β < 1. For anyβ-Hölder functionsA,

Hölα(A) ≤ 2 Hölβ(A)α/β‖A‖1−α/β
0 .

In particular, if (An) is a sequence ofβ-hölder functions uniformly bounded in theCβ -
topology, if(An) converges to zero in theC0-topology, then(An) converges to zero in the
Cα-topology.

Proof. The two estimates

|A(x)− A(y)| ≤ Hölβ(A)d(x, y)
β ≤ Hölβ(A)d(x, y)

β−αd(x, y)α,

|A(x)− A(y)| ≤ 2‖A‖0 ≤ 2‖A‖0

d(x, y)α
d(x, y)α,

show thatA is α-Hölder with

Hölα(A) ≤ 2 sup
x 6=y

min

( ‖A‖0

d(x, y)α
,Hölβ(A)d(x, y)

β−α
)
.

The minimum is reached at the intersection of the decreasing grapht 7→ ‖A‖0t
−α and the

increasing grapht 7→ Hölβ(A)tβ−α . 2

Although the following is a very standard lemma, we need a precise estimate of the
shadowing constant in the proof of Lemma 19 and so we give a proof.

LEMMA 18. Letf beC1-expanding,λ = λ(f ) andN be such thatλN > 2. Then for any
x ∈ S1 such thatd(x, f N(x)) is less than1

4, there exists a periodic pointp of periodN
such that

∀ 0 ≤ k ≤ N, d(f k(p), f k(x)) ≤ λN

λN − 1

d(x, f N(x))

λN−k .

Notice thatλN/(λN − 1) → 1 whenN → +∞.

Proof. We call x1 = fN(x) andx0 = x. We assumex1 6= x0 (otherwise we choose
p = x0) and we denote by]a, b[ the smallest unordered interval joininga andb. Let x ′

0
be the closest pre-image ofx1, f N(x ′

0) = x1, such thatfN restricted to]x ′
0, x0[ is an

homeomorphism ontoS1 \ {x1} and such that]x ′
0, x0[ is disjoint from]x0, x1[ (we use the

fact thatλN > 2). Letx−1 be the unique pre-image ofx0 in ]x ′
0, x0[ by the mapf N , then

fN( ]x−1, x0[) = ]x0, x1[ (we use the fact thatfN preserves the orientation). By induction
we obtain a sequence(x−k) of points]x ′

0, x0[ such that(]x−k, x−k+1[) are pairwise disjoint
and such thatf N maps]x−k−1, x−k[ onto ]x−k, x−k+1[ . The pointp, limit of (x−k) is
therefore a periodic point of periodN and the length of the interval]p, x1[ is bounded by

d(x0, x1)

[
1 + 1

λN
+ 1

λ2N + · · ·
]

≤ λN

λN − 1
d(x0, x1).

In particular, this length is bounded by1
2, fN maps]p, x0[ onto]p, x1[ and

∀ 0 ≤ k ≤ N, d(f k(p), f k(x0)) ≤ 1

λN−k d(p, x1).

The two inequalities combined end the proof. 2
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LEMMA 19. Let � be an invariant compact set,f (�) = �, without periodic orbit.
Let η = 1

2(1 − 1/λ). Then for anyε > 0 sufficiently small, there exists a periodic orbit
{p, f (p), . . . , f N(p) = p} such that

d(f i(p),�) < ε and d(f i(p), f j (p)) > ηε,

for all 0 ≤ i < j < N .

Proof. For eachK > 0 we define

d(K) = min{d(f i(x), f j (x)) | x ∈ �,0 ≤ i < j ≤ K}.
Since no periodic orbit belongs to�, d(K) > 0 and tends to zero whenK tends to infinity.
We now chooseK so thatλK > 5 and

1 − λK

λK − 1

(
1

λ
+ 1

λK

)
> η.

Let ε be small enough such thatε < 1
3d(K). We first exhibit an almost closed orbit

{x, f (x), . . . , f N(x)} in � satisfying

d(x, f N(x)) < ε and d(f i(x), f j (x)) ≥ ε

for all 0 ≤ i < j ≤ N except i = 0 and j = N . This can be achieved by
choosing an orbit{y, f (y), . . . , f n(y)} in � such thatd(y, f n(y)) < ε and a sub-orbit
{x, f (x), . . . , f N(x)} with the property thatd(x, f N(x)) < ε andN is minimal (x is a
point in the orbit ofy). Sinceε < d(K), N has to be bigger thanK. By the shadowing
lemma, Lemma 18, there exists a periodic pointp of periodN such that

d(f i(p), f i(x)) <
λN

λN − 1

ε

λN−i ,

for all 0 ≤ i ≤ N . We now show thatp is the good candidate.
For 0≤ i < j ≤ N −K,

d(f i(p), f i(x)) <
ε

4
, d(f j (p), f j (x)) <

ε

4
, d(f i(x), f j (x)) ≥ ε

and we obtaind(f i(p), f j (p)) > 1
2ε > ηε.

ForN −K ≤ i < j ≤ N ,

d(f i(p), f i(x)) < ε, d(f j (p), f j (x)) < ε, d(f i(x), f j (x)) ≥ d(K) > 3ε

and we obtain in this cased(f i(p), f j (p)) > ε > ηε.
For 0≤ i < N −K < j < N , d(f i(x), f j (x)) ≥ ε and

d(f i(p), f i(x)) <
λK

λK − 1

ε

λK
, d(f j (p), f j (x)) <

λK

λK − 1

ε

λ
,

and we obtain

d(f i(p), f j (p)) > ε

(
1 − λK

λK − 1

(
1

λ
+ 1

λK

))
> ηε. 2
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Proof of Theorem 8(ii).Let G be the set of functionsA ∈ Cα having a unique maximizing
measure supported on a periodic orbit and satisfying the property of continuously varying
support. We first show thatG is open inCα. Let A0 ∈ G andµ0 = n−1 ∑n−1

k=0 δf k(p)
be the unique maximizing measure supported on a periodic orbitp. By the property of
continuously varying support, there exist a neighborhoodN of orb(p) and a neighborhood
U in Cα ofA0 such that, for anyA ∈ U and anyµ ∈ M(A, f ), the support ofµ is included
in N . By the standard shadowing lemma,µ = µ0 is the only invariant measure close to
orb(p). ThenU ⊂ G.

We now show thatG+ = G ∩ Cα+ is dense inCα+. LetA1 ∈ Cα+, thenA1 ∈ Cβ , for
someα < β < 1. We look for someA = A1 + φ, φ ∈ Cβ , with small‖ · ‖α-norm such
that�(A, f ) is reduced to a single periodic orbit. From Proposition 16(ii), we know that
A will satisfy the property of continuous varying support. We actually prove the existence
of a sequence(φε) of Cβ-functions having aβ-norm, uniformly bounded and converging
to zero in the uniform topology whenε goes to zero.

From Propositions 11 and 15(i), we can write

A1 = m(A1, f )+ V1 ◦ f − V1 − R1

whereV1, R1 ∈ Cβ , R1 ≥ 0 andR1 = 0 on�(A1, f ). Letm(A1, f ) = m1.
We first construct someφε ∈ Cβ , φε ≥ 0, with small‖ · ‖α-norm such thatA1 + φε

admits a maximizing measure supported on a periodic orbit. If�(A, f ) already contains
a periodic orbit, we chooseφε = 0. If not, from Lemma 19, for anyε > 0, there exists a
periodic orbit{p, . . . , f N(p) = p} satisfyingd(q,�(A1, f )) < ε andd(q, q ′) > ηε for
anyq, q ′ ∈ orb(p), q 6= q ′, whereη = 1

2(1 − 1/λ). We note that

C1 = Hölβ(R1).

SinceR1 = 0 on�(A1, f ) andR1(q) ≤ C1d(q,�(A1, f ))
β , we obtain for allq ∈ orb(p)

ε > d(q,�(A1, f )) ≥
(
R1(q)

C1

)1/β

.

We now define for eachq on the orbit a localized functionφε,q . The functions
{φε,q}q∈orb(p) have disjoint support; they satisfy 0≤ φε,q ≤ R1 everywhere andφ1,q(q) =
R1(q) for all q ∈ orb(p), by the following formula

φε,q(x) = [R1(q)−D1d(x, q)
β]+

whereD1 = (2/η)βC1. ClearlyD1 ≥ C1 and by the H¨older property ofR1 we have
φε,q ≤ R1. The support of eachφε,q is included in the ball of centerq and radius[

R1(q)

D1

]1/β

=
[
R1(q)

C1

]1/β
η

2
<

1

2
εη

which shows that{φε,q}q∈orb(p) have disjoint support.
On the one hand, the H¨olβ -semi-norm ofφε,q is uniformly bounded, independently ofε,

Hölβ(φε,q) ≤ C1 +D1 ≤ 2

(
2

η

)β
C1

(we have used|a+ − b+| ≤ |a − b|, |aβ − bβ | ≤ |a − b|β whenβ < 1).
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On the other hand, the‖ · ‖0-norm ofφε,q tends to zero whenε tends to zero,

‖φε,q‖0 ≤ R1(q) ≤ C1ε
β.

We have thus obtained a non-negative function

φε =
∑

q∈orb(p)

φε,q

satisfying‖φε‖0 ≤ C1ε
β , Hölβ(φε) ≤ 4(2/η)βC1, 0 ≤ φε ≤ R1 everywhere and

φε(q) = R1(q) for all pointsq ∈ orb(p). By using Lemma 17,φε ∈ Cβ has small
‖ · ‖α-norm. Moreover,m(A1 + φε, f ) = m1 and�(A1 + φε, f ) contains both�(A1, f )

and orb(p). Indeed

A1 + φε = V1 ◦ f − V1 − R1 + φε +m1 ≤ V1 ◦ f − V1 +m1.

If x ∈ �(A1, f ), ε > 0 and z, n > 0 have been chosen such thatd(x, z) < ε,
d(x, f n(z)) < ε and

∑n−1
k=0R ◦ f k(z) < ε, then

∑n−1
k=0 φε ◦ f k(z) < ε and we have

shown thatx ∈ �(A1 + φε, f ). Actually, although we do not need it, we can show that

�(A1 + φε, f ) = �(A, f ) ∪ orb(p).

We now chooseψε ≥ 0,ψε ∈ Cβ , with small‖ · ‖β -norm such thatψε = 0 on orb(p)
andψε > 0 elsewhere. ThenA = A1 + φε − ψε ∈ Cβ is close toA0 in theCα-topology
and admits a unique maximizing measure supported on orb(p):

µ = 1

# orb(p)

∑
q∈orb(p)

δq . 2

Proof of Theorem 8(iii).We actually give a criterion to decide whether�(A, f ) can stay
stably a finite union of periodic points. The proof of Theorem 8 is a direct consequence of
the following proposition.

PROPOSITION20. Let f be aC1-expanding map,0 < α < β, andA be aβ-Hölder
function. Then one of the following cases occurs.
(i) A is a limit in the Cα-topology ofCβ -functions(An), uniformly bounded in the

Cβ -topology, having a unique maximizing measureµn whose support is strictly
ergodic and has positive topological entropy.

(ii) �(A, f ) is a finite union of periodic points and there exists aCβ neighborhoodU of
A such that, for allB ∈ U ,�(B, f ) ⊂ �(A, f ).

Before proving Proposition 20, we need the following lemma.

LEMMA 21. LetK be a compact set (not necessarily invariant). ThenK admits a basis
of closed neighborhoodsU such that

3U =
⋂
n≥0

f−n(U)

possesses the following property:
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(i) either3U has positive entropy and3U contains a strictly ergodic invariant compact
set of positive entropy; or

(ii) 3U has zero entropy and the set of periodic points belonging to3U is finite.

Proof. We first assume thatK is a compact set of the one-sided full shiftB+(D). LetV be
an open set containingK andC1, . . . , CN , a finite union of cylinders coveringB+(D) \ V
and disjoint fromK. We may assume the cylinders have all the same length. LetU =
B+(D) \ (C1 ∪ · · · ∪ CN). ThenU is a closed neighborhood ofK and

3U = {x ∈ B+(D) | ∀ i = 1, . . . , N,∀ n ≥ 0, σ n(x) 6∈ Ci}
is topologically conjugate to a one-sided Markov chain. If the entropy of3U is equal
to zero, the set of periodic points in3U is finite. If the entropy of3U is positive, we
use Grillenberger’s theorems [10] and [11] to construct a strictly ergodic compact set of
positive entropy inside3U .

In the general case, letK ′ be a compact set ofS1 and V ′ a neighborhood ofK ′.
We denote byπ : B+(D) → S1 the canonical extension ofS1. Let K = π−1(K ′),
V = π−1(V ′), C1 . . . CN , U as before andU ′ = π(U). ThenU ′ is a closed neighborhood
of K ′ (π(Ci) is disjoint fromK ′) included inV ′. Moreover,π(3U ) ⊂ 3U ′ and a pointx
in 3U ′ which does not belong toπ(3U ) is necessarily a pre-image of one. Modulo a
countable set in3U and in3U ′ , π is a bijection,3U , 3U ′ have the same topological
entropy and the set of periodic points of3U ′ (except maybe one) is equal to the projection
of the set of periodic points of3U .

Finally, if L is a strictly ergodic invariant compact set,π(L) is also strictly ergodic and
L andπ(L) have the same topological entropy. 2

Proof of Proposition 20. Step one.Assume there exists aCβ sub-actionV such that, for
any closed neighborhoodU of theV -action set

K = {A−m = V ◦ f − V },
the invariant set3U has positive topological entropy. As in the proof of Theorem 8(ii), we
start by writing the cohomological equation for the sub-actionV ,

A−m = V ◦ f − V − R

wherem = m(A, f ) andR is a non-negativeCβ-function which is equal to zero onK.
We want to find a sequence of non-negativeCβ -functions(φn) converging to zero in the
uniform topology and uniformly bounded in theCβ-topology such thatV is still a sub-
action ofA+ φn and theV -action set ofA+ φn contains a neighborhood ofK. We define

φn = min

(
R,

1

n

)
.

Then 0≤ φn ≤ R, A + φn − m ≤ V ◦ f − V andφn equalsR on a neighborhoodUn
of K (notice thatm(A, f ) = m(A + φn, f )). By using Lemma 21,Un contains a strictly
ergodic compact invariant setLn of positive topological entropy. We finally chooseψn
non-negative,ψn = 0 onLn andψn > 0 onS1 \ Ln with small‖ · ‖β -norm. We have just
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proved thatAn = A+ φn −ψn converges toA uniformly with boundedCβ -norm and that
each�(An, f ) is strictly ergodic and has positive entropy.

Step two.Assume that for everyCβ sub-actionV there exists a neighborhoodU of K
such that3U has zero entropy.

We first show that�(A, f ) is a finite union of periodic points. LetV be any sub-action.
Then, by Lemma 21, there exists a neighborhoodU ofK such that3U contains only a finite
number of periodic points. If a periodic point belongs toK, it actually belongs to�(A, f ).
We can therefore chooseU so that all periodic points in3U are in�(A, f ). Conversely,
if x is a point in�(A, f ), thenx is a limit of periodic pointszn of periodpn such that
Spn(A−m)(zn) tends to zero. ThenSpnR(zn) also tends to zero and the orbit ofzn has to
stay closer and closer toK. Forn large enough,zn belongs to3U andx is a periodic point.

Let (Bn) be a sequence ofCβ functions, with boundedCβ -norm, converging toA in
the Cα-topology. We want to show that�(Bn, f ) ⊂ �(A, f ) for n sufficiently large.
As in step two of the proof of Proposition 16, for eachBn we choose a sub-actionVn and
we may assume (maybe by taking a sub-sequence) that(Vn) converges to some sub-action
V of classCβ and that theVn-action setKn converges to some compact set included in
theV -action set. We choose a neighborhoodU as before so that the only periodic points
included in3U are actually in�(A, f ). For n large enough,�(Bn, f ) ⊂ Kn ⊂ U and
by the same argument as before�(Bn, f ) has to be included into the closure of the set of
periodic points of3U . That is, for largen,�(Bn, f ) ⊂ �(A, f ). 2

The rest of this section is independent of Theorem 8. The reader interested just in the
minimization of Lyapunov measures can go directly to §3. We first show how to construct
other sub-actions from a functionSA(x, y) that we call the action potential. We then define
the notion of aV -heteroclinic orbit which is stronger than the notion ofV -connection and
apply it to the case where there is a finite number of irreducible sets.

Definition 22. Let (x, y) ∈ S1 andA : S1 → R. We call theaction potentialof A from x

to y the following quantity:

SA(x, y) = lim
ε→0

sup{Sn(A−m)(x ′) | n ≥ 1, d(x ′, x) < ε, f n(x ′) = y}
(notice that we take the supremum over all paths of lengthn ≥ 1 ending aty and beginning
within ε of x).

As in the definition ofVA in Proposition 11,SA(x, y) is uniformly bounded from
above but it may happen thatSA(x, y) = −∞. The interesting case takes place when
x ∈ �(A, f ).
PROPOSITION23. Letf be aC1-expanding map andA be aCα-function. Then the action
potential ofA satisfies the following properties:

(i) for any sub-actionV , for anyx, y ∈ S1, SA(x, y) ≤ V (y)−V (x) andx
V→ y if and

only if SA(x, y) = V (y)− V (x);
(ii) for anyx, y, z ∈ S1, SA(x, y)+ SA(y, z) ≤ SA(x, z), SA(x, x) ≤ 0 andSA(x, x) =

0 if and only ifx ∈ �(A, f );
(iii) for anyx ∈ �(A, f ), SA(x, ·) is aCα sub-action (in particular,SA(x, y) > −∞ for

anyy ∈ S1).
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Proof. (We only prove part (iii).) Letx ∈ �(A, f ) be fixed.
Step one.We first show thatSA(x, ·) never takes the value−∞. Let us define an

approximate action potential

SεA(x, y) = sup{Sn(A−m)(x ′) | d(x, x ′) < ε, f n(x ′) = y, n ≥ 1}
where the supremum is taken over all paths of lengthn ≥ 1 starting withinε of x and
ending aty. ThenSA(x, y) = infε SεA(x, y). Let ε0 < 1

2 andn0 ≥ 1, x ′ such that
d(x, x ′) < ε0, f n0(x ′) = y andSn0(A − m)(x ′) is close toSεA(x, y). Sincex belongs
to �(A, f ), for everyε > 0, there existn ≥ 1, large enough so thatλ−nε0 < ε/2, z
such thatd(z, x) < ε/2, f n(z) = x and|Sn(A − m)(z)| < ε. We choosez′ in the same
inverse branch of lengthn asz such thatf n(z′) = x ′. Thend(z, z′) ≤ λ−nd(x, x ′) < ε/2,
d(x, z′) < ε and

|Sn(A−m)(z)− Sn(A−m)(z′)| < Hölα(A)

λα − 1
ε0,

Sn0+n(A−m)(z′) ≥ Sn0(A−m)(x ′)− Hölα(A)

λα − 1
ε0 − ε.

By letting ε go to zero, we obtain

SA(x, y) > S
ε0
A (x, y)−

Hölα(A)

λα − 1
ε0.

This section shows in addition that, in the definition ofSεA(x, y), n can be as large as we
want.

Step two.Let (y, z) ∈ S1 such thatd(y, z) < 1
2. Letε > 0 andn ≥ 1 such thatλ−n < ε.

Then there existsx ′ such thatd(x, x ′) < ε, f n(x ′) = y andSεA(x, y) < Sn(A−m)(x ′)+ε.
Let x ′′ be the uniquen-pre-image ofz in the same inverse branch asx ′. Thend(x ′x ′′) < ε,
d(x, x ′′) < 2ε and

Sn(A−m)(x ′) ≤ sn(A−m)(x ′′)+ Hölα(A)

λα − 1
d(y, z).

Combining all these inequalities we obtain

SA(x, y) ≤ SεA(x, y)

≤ Sn(A−m)(x ′)+ ε

≤ S2ε
A + ε + Hölα(A)

λα − 1
d(y, z)

≤ SA(x, z)+ ε + Hölα(A)

λα − 1
[2ε + d(y, z)]

andSA(x, ·) is Cα with α-Hölder constant H¨olα(A)/(λα − 1).
Step three.We show thatSA(x, ·) is a sub-action. Forε > 0 we have clearly

SεA(x, y)+ (A−m)(y) ≤ SεA(x, f (y)).

By letting ε go to zero we obtain

(A−m)(y) ≤ SA(x, f (y))− SA(x, y). 2
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From the first part of Proposition 23, we notice that, if an invariant compact setK is
irreducible for two sub-actionsV andW , thenV −W is constant onK. The last part of the
proposition shows that, for anyx ∈ �(A, f ), there exists a sub-actionV (y) = SA(x, y)

such that anyy ∈ S1 is V -connected tox (x
V→ y).

We now define a stronger notion ofV -connection.

Definition 24. Let V be a sub-action and�0, �1 be two disjointV -irreducible compact
invariants sets of�(A, f ). We say that(�0,�1) arestronglyV -connectedif there exists
a complete orbitx = (xn)n∈Z included in theV -action set such thatα(x) ⊂ �0 and
ω(x) ⊂ �1.

If �0 and�1 are periodic orbits of�(A, f ) and stronglyV -connected, such a complete
orbit x satisfyingα(x) ⊂ �0 andω(x) ⊂ �1 could be called aheteroclinic orbit.

PROPOSITION25. Let V be a sub-action and let us assume that�(A, f ) is equal to
a finite disjoint union ofV -irreducible compact invariant sets{�i}Ni=1. Then each�i
is a maximalV -irreducible invariant compact set and cannot be a disjoint union of two
invariant compact sets. Leti 6= j . If (�i,�j ) areV -connected, then there exist a chain
(i0, i1, . . . , ir ) of pairwise distinct indexes in{1, . . . , N} such thati0 = i, ir = j in each
(�ik−1,�ik ) are stronglyV -connected.

Proof. Step one.LetK be an invariant compact set and assume thatK can be written as a
disjoint union of two (not necessarilyV -irreducible) compact invariant setsK0 andK1. We
assume, moreover, that there existp0 ∈ K0 andp1 ∈ K1 which areV -connected. We show
that, ifU0 andU1 are disjoint open sets containingK0 andK1, there existsx0 6∈ K0 ∪K1

and a complete orbitx included in theV -action set going throughx0 such thatα(x) ⊂ U0

and
p0

V→ α(x)
V→ x0

V→ ω(x)
V→ p1.

Since(p0, p1) areV -connected, for everyε > 0, there existnε ≥ 1 andpε such that
d(p0, pε) < ε, f nε (pε) = p1 and

V (p1)− V (pε)− ε ≤ Sn(A−m)(pε) ≤ V (p1)− V (pε).

Let us show, for all 0≤ k < l ≤ n,

V ◦ f l(pε)− V ◦ f k(pε)− ε ≤ Sl−k(A−m) ◦ f k(pε)
and

Sl−k(A−m) ◦ f k(pε) ≤ V ◦ f l(pε)− V ◦ f k(pε).
On the one hand, becauseV is a sub-action

Sl−k(A−m) ◦ f k(pε) ≤ V ◦ f l(pε)− V ◦ f k(pε).
On the other hand,

V (p1)− V (pε)− ε ≤ Sn−l (A−m) ◦ f l(pε)
+ Sl−k(A−m) ◦ f k(pε)+ Sk(A−m)(pε),
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and

Sk(A−m)(pε) ≤ V ◦ f k(pε)− V (pε),

Sn−l (A−m) ◦ f l(pε) ≤ V (p1)− V ◦ f l(pε).
Combining these inequalities we obtain

V ◦ f l(pε)− V ◦ f k(pε)− ε ≤ Sl−k(A−m) ◦ f k(pε).
Let sε be the first time the iterates ofpε escapeU0, that is, f k(pε) ∈ U0 for k =
0,1, . . . , sε and f sε+1(pε) 6∈ U0. Let x−k(ε) = f sε−k(pε). By a procedure of
diagonal extraction, we can find a subsequence ofε’s converging to zero such that each
x−k(ε) converges to somex−k (note thatsε → ∞ when ε → 0). By construction,
x0 ∈ U0\f−1(U0), x−k ∈ U0 for all k = 1,2, . . . and the complete orbitx = (xn) is

included in theV -action set. Moreover, for anyn ∈ Z, p0
V→ xn

V→ p1.
Step two.We show that a maximal (for the inclusion)V -irreducible compact invariant

setK cannot be equal to a disjoint union of two invariant compact setsK0 andK1.
Otherwise, we choosep0 ∈ K0, p1 ∈ K1 and by assumption(p0, p1) areV -connected
in both directions. Thanks to step one there exist complete orbitsx andy included in the
V -action set such thatx andy do not belong toK and

p0
V→ orb(x)

V→ p1
V→ orb(y)

V→ p0.

The setK0 ∪ orb(x)∪K1 ∪ orb(y) is compact, invariant andV -irreducible, which contra-
dicts the maximality ofK.

Step three. We assume from now on that�(A, f ) is equal to a disjoint union of
irreducible compact invariant sets{�i}Ni=1 and that�i is V -connected to�j . Let i0 = i.
There exists a complete orbitxi0 not included in�(A, f ) such thatα(xi0) ⊂ �i0 and
ω(xi0) is V -connected to�j (we use the fact thatα(xi0) can be chosen in a neighborhood
of �i0 and has to be included in�(A, f )). Butω(xi0) is included in�(A, f ) and has to
be included into some�i1 (thanks to step twoω(xi0) cannot intersect two�i). Necessarily
i1 6= i0, otherwise, by irreducibility of�i0 we would have

α(xi0)
V→ xi0(0)

V→ ω(xi0)
V→ α(xi0)

andxi0(0) would belong to�i0. Eitheri1 = j and we are done or we repeat the previous
construction. There existsxi1 such thatα(xi1) ⊂ �i1, ω(xi1) is contained in some�i2
andxi1(0) 6∈ �(A, f ). By irreducibility of �i0 or �i1, i2 cannot be equal toi0 or i1.
This process has to stop since the number of irreducible parts is finite. 2

3. Lyapunov minimizing measures
The idea of the proof of Theorem 2 is first to conjugatef to a fixed mapT by preserving the
same geometry of the orbits and second to transfer the smoothness off into two invariants
(A,µ) whereA = −ln f ′ has pressure zero andµ, the Lebesgue measure, is the unique
equilibrium measure associated to(A, f ).

We first show in the following lemma that any maps(f, g) in Fα are conjugate by bi-
Hölder maps and that the H¨older exponent can be as close to 1 as we want, depending
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on theC1+α-distance off andg. Notice that the composition of anα-Hölder map with a
β-Hölder map isαβ-Hölder. We use the notationa∧b = min(a, b) anda∨b = max(a, b).

LEMMA 26. For simplicity we assume all maps inFα fix 1 ∈ S1.
(i) For any C1 f and g in Fα, there exists a unique orientation-preserving

homeomorphismθ = θf,g such thatθ(1) = 1 andf ◦ θ = θ ◦ g. The conjugating
map is bi-Ḧolder:

C−1/γ d(x, y)1/γ ≤ d(θ(x), θ(y)) ≤ C d(x, y)γ , ∀ x, y ∈ S1

with Hölder exponentγ = γ (f, g) andγ -Hölder normC = C(g):

γ (f, g) = inf

{
ln f ′(x)
ln g′(y)

∧ ln g′(x)
ln f ′(y)

∣∣∣∣ d(x, y) ≤ ‖f − g‖0

λ(f ) ∨ λ(g)− 1

}

λ(g) = min
x∈S1

g′(x), C(g) = 2 max
0≤i<D

d(z
g
i , z

g

i+1)
−1 exp

(
Hölα(g′)
λ(g)α − 1

)

wherezg0, . . . , z
g

D−1 are theD pre-images of1 byg.
(ii) LetT ∈ Fα be fixed. Then for anyf, g ∈ Fα, θf = θf,T andθg = θg,T satisfy

‖θf − θg‖0 ≤ ‖f − g‖0

λ(f ) ∨ λ(g)− 1

‖(θf )−1 − (θg)
−1‖0 ≤ C(T )‖θf − θg‖γ (T ,f )∨γ (T ,g)0

whereθf , θg : R → R denote the lifts ofθf , θg with θf (0) = θg(0) = 0.

Proof. Let f ∈ Fα, zf0 = 1 and zf1 . . . z
f

D−1 be the pre-images of 1 byf ordered
canonically onS1 \ {1}. More generally, we callZ(f ) the set of pre-images of 1
by (f n), n ≥ 0, and code the points inZ(f ) by points of the form{zfi1...in} where
in = 0,1, . . . ,D − 1. For instance, whenD = 2 the pre-images are ordered in the
following way:

1 = z
f

0...000, z
f

0...001, z
f

0...010, z
f

0...011, z
f

0...100, . . . , z
f

1...111< 1.

Moreover, Z(f ) is dense inS1, otherwise any non-empty connected component of
S1 \ Z(f ) would be permuted without containing the point 1 and this would contradict
the uniform growth of the length.

Since the conjugating mapθf,g has to preserve the order of the pre-images, we have
necessarily

θf,g(z
g
i ) = z

f
i , ∀i = i1 . . . in.

Thenθf,g extends uniquely to a homeomorphism which conjugatesf andg. Let f be the
lifting of f fixing 0. We denote byf−1

i : [0,1[ → [0,1[ , i = 0,1, . . . ,D− 1, the inverse
branches off :

f ◦ f−1
i (w) = w + i, ∀w ∈ [0,1[ .

Then the points(zfi1...in ) onS1 correspond to the points

z
f

i1...in
= f−1

i1
◦ · · · ◦ f−1

in
(0)
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on [0,1[. We first prove that for anyw on [0,1[, n ≥ 1:

|wfi1...in − w
g
i1...in

| ≤ ‖f − g‖0

λ(f ) ∨ λ(g)− 1

wherewfi1...in = f−1
i1

◦ · · · ◦ f−1
in
(w). By induction

|wfji1...in −w
g
ji1...in

| ≤ |f−1
j (w

f
i1...in

)− f−1
j (w

g
i1...in

)| + |f−1
j (w

g
i1...in

)− g−1
j (w

g
i1...in

)|
≤ 1

λ(f )

[
|wfi1...in −w

g
i1...in

| + ‖f − g‖0

]
.

(The second term is obtained using the estimate

|f−1
(u)− g−1(u)| = |f−1 ◦ g ◦ g−1(u)− f

−1 ◦ f ◦ g−1(u)|
for anyu ∈ [0,D[.) In particular, this proves

‖θf,T − θg,T ‖0 ≤ sup
i=i1...in

|θf,T (zTi )− θg,T (z
T
i )| = sup

i=i1...in
|zfi − z

g

i |

≤ ‖f − g‖0

λ(f ) ∨ λ(g)− 1
.

Assuming thatθf = θf,T is β-Hölder, we obtain

‖θ−1
f − θ

−1
g ‖0 = ‖θ−1

f ◦ θg ◦ θ−1
g − θf−1 ◦ θf ◦ θ−1

g ‖0

≤ Hölγ (θ
−1
f )‖θg − θf ‖γ0 .

We now prove thatθ = θf,g is Hölder. We begin by proving that, for alln ≥ 1, for any
consecutive pre-images of ordern,

z
g
i = g−1

i1
◦ · · · ◦ g−1

in
(0), z

g

i+1 = g−1
i1

◦ · · · ◦ g−1
in
(1),

we havezfi = θ(z
g
i ) and|zfi − z

f

i+1| ≤ |zgi − z
g

i+1|β . Indeed

|zfi − z
f

i+1| =
∫ 1

0

n∏
k=1

[
D

Dw
f−1
ik

]
(w

f
ik+1···in ) dw.

Since|wfik ...in −wgik...in | ≤ ‖f − g‖0/[λ(f )∨λ(g)− 1], we obtain by definition ofγ (f, g)

|zfi − z
f

i+1| ≤
∫ 1

0

n∏
k=1

[
D

Dw
g−1
ik

]γ
(w

g
ik+1···in ) dw ≤ |zgi − z

g

i+1|γ .

(We use Jensen’s inequality to extract the powerγ outside the integral sinceγ (f, g) < 1
for anyf 6= g.) Let zgi andzgi+1 (i = i1 . . . in) be two consecutive pre-images of ordern,
then[zgi , zgi+1[ containsD pre-images of ordern+ 1 that we callzgij , whereij = ii . . . inj

andj = 0,1, . . . ,D − 1. We show that for anyj = 0, . . . ,D − 1,

|zgi − z
g

i+1| ≤ 1
2C(g)|zgij − z

g

ij+1|.
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whereC(g) is given in the above lemma. It is enough to show that the distortion of
g−1
i1

◦ · · · ◦ g−1
in

is uniformly bounded by exp(Hölα(g′)/(λ(g)α − 1)), that is∣∣∣∣∣
d
dw
g−1
i1

◦ · · · ◦ g−1
in
(u)

d
dw
g−1
i1

◦ · · · ◦ g−1
in
(v)

∣∣∣∣∣ =
n∏
k=1

∣∣∣∣∣
g′(vgik ···in)
g′(ugik ···in )

∣∣∣∣∣ ≤ exp
n∑
k=1

|g′(vgik ···in )− g′(ugik ···in )|

is bounded by exp(Hölα(g′)/(λ(g)α − 1)) which is a consequence of

|vgik ···in − u
g
ik ···in | ≤ λ(g)n−k+1.

We conclude the proof. Givenx, y ∈ S1 there existsz ∈ [x, y] such that[x, z] (respectively
[z, y]) can be covered by an interval of the form[zgi , zgi+1] of ordern and simultaneously
contains at least an interval of the form[zgij , zgij+1] of ordern+ 1 (n need not be the same
for x andy). Then

d(θ(x), θ(z)) ≤ |zfi − z
f

i+1| ≤ |zgi − z
g

i+1|γ

≤
(

1
2C(g)

)γ |zgij − z
g

ij+1|γ ≤ 1
2C(g)d(x, y)

γ

and an equivalent estimate holds ford(θ(z), θ(y)). To obtain the other inequality, we use
instead

|zgij − z
g

ij+1| ≤ |zfij − z
f

ij+1|γ ≤ d(θ(x), θ(z))γ . 2

In the next lemma, we show that anyC1+β -map of the circle can be approximated by
smooth maps, in theC1+α-topology, for anyα < β (and not in theC1+β -topology). For the
purposes of this paper we need a more precise statement.

LEMMA 27. For any0 < α < 1, the spaceFα ∩ C∞ of smooth maps ofS1 is dense in
Fα+ in theC1+α-topology.

Proof. Let f ∈ Fβ for someβ > α, f be the lift to R of f , (ρn) be a smooth
approximation of unity (i.e.

∫
ρn(t) dt = 1, the support ofρn is included in] − 1/n,1/n[)

andf n = f ∗ ρn − f ∗ ρn(0), the convolution off with ρn. Thenf n is a smooth map,
f n(x + 1) = f n(x) + D, f n(0) = 0 andλ(fn) ≥ λ(f ). The sequence of maps(f n)
converge tof in the C1-topology. In particular, for largen, fn is a smooth covering of
degreeD of the circle, preserves orientation and satisfies the same constraints for the first
derivative. Moreover, theβ-Hölder semi-norm off ′

n is uniformly bounded:

|f ′
n(x)− f ′

n(y)| ≤
∫

|f ′(x − t)− f ′(y − t)|ρ(t) dt
≤ Hölβ(f

′)|x − y|β.
By using Lemma 17,(f ′

n) converges tof ′ in the Cα-topology for anyα < β, and(fn)
converges tof in theC1+αtopology. 2

We now give a short summary of the theory of the thermodynamic formalism for any
T ∈ Fα, which are particular expanding Markov maps. An interested reader may find a
comprehensive exposition of this theory in [20]. Given a potentialA : S1 → R, we define
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theRuelle–Perron–Frobenius operatorLA, acting on the set of continuous functions, by
the following formula:

(LA.h)(x) =
∑

T (y)=x
h(y)eA(y), ∀x ∈ S1

whereh : S1 → R is a continuous function and the summation is taken over theD pre-
images ofx. If A is α-Hölder,LA also acts onα-Hölder functions and, by duality,LA acts
on the set of probability measures by∫

h d(L∗
A.µ) =

∫
LA.h dµ

for any continuous test functionsh. For such Markov expanding and mixing mapT and for
suchα-Hölder potentialsA, the spectrumσ(LA) of LA, acting onCα-potentials, admits an
isolated simple eigenvalueePT (A) which dominates the whole spectrum.PT (A) is called
thepressureof A and the rest of the spectrum has a strictly smaller modulus:

sup
z 6=expPT (A)

{|z| | z ∈ σ(LA)} < expPT (A).

Moreover, there exists a unique probability measureµA, called theGibbs measure, and a
unique positiveα-Hölder functionhA such that

L∗
A.µA = ePT (A)µA, LA.hA = ePT (A)hA and

∫
hA dµA = 1.

We also recall that a mapT possesses aJacobianJ : S1 → ]0,+∞[ with respect toµ if

µ(T (U)) =
∫
U

J dµ

for all the Borel setU whereT : U → S1 is one-to-one. ThenePT (A)−A is the Jacobian
of T with respect toµA. The measureµequi

A = hAµA is called theequilibrium measure
associated toA, it is T -invariant and

hA

hA ◦ T exp(PT (A)− A)

is the Jacobian ofT with respect toµequi
A .

Although the following proposition is certainly well known, the thermodynamic
formalism gives simple criteria for lnf ′ to be cohomologous to a constant and the existence
of a sub-action simplifies the proof.

PROPOSITION28. Letf ∈ Fα . The following properties are equivalent:
(i) ln f ′ is measurably cohomologous to a constant (the constant is actually equal to

lnD);
(ii) for any periodic pointx of periodp, (f p)′(x) = Dp ;
(iii) f is C1-conjugate toT (z) = zD (if f (1) = 1 the conjugacy is actually unique and

C1+α; moreover,ln f ′ is equal to an Ḧolder coboundary);
(iv) if µ denotes the unique absolutely continuous invariant probability, thenhµ(f ) =

htop(f ).
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Proof. We first notice that Pesin’s formula giveshµ(f ) = ∫
ln f ′ dµ, besideshtop(f ) =

lnD.
(i) ⇒ (iv) uses the fact that, if a coboundaryV ◦ f − V is integrable, then

∫
(V ◦ f −

V ) dµ = 0.

(iv) ⇒ (iii) uses Jensen’s inequality: leth be the unique eigenfunction,LA(h) = h,
for the Ruelle–Perron–Frobenius operator associated toA = −ln f ′ normalized by∫
h dµ = 1. Thenµ = hLeb and

lnD =
∫

ln f ′ dµ =
∫

ln(f ′h ◦ f/h) dµ ≤ ln

[ ∫
f ′(h ◦ f/h) dµ

]
= lnD

(we have used
∫
φLA(ψ) d Leb = ∫

φ ◦ fψ d Leb andLA(f ′) = D). By strict convexity
of ln, we geth ◦ ff ′ = Dh. If h is a lift of h andθ(x) = ∫ x

0 h(t) dt thenθ ◦ f = T ◦ θ .

(iii) ⇒ (ii) is trivial.
(ii) ⇒ (i) uses the fact that periodic measures are dense (for the weak topology) in the

space of ergodic invariant probability measures. Then

min
µ

∫
ln f ′ dµ = max

µ

∫
ln f ′ dµ = lnD

where we minimize (maximize) over the set of invariant probability measures. Thanks to
Proposition 11, we can find H¨older functionsV ,W such that

lnD +W ◦ f −W ≥ ln f ′ ≥ lnD + V ◦ f − V.

W − V is increasing along the orbits and is therefore constant everywhere. We have
therefore shown lnf ′ = lnD + V ◦ f − V . 2

Using the thermodynamic formalism, we are now able to give another construction
of maximizing measures and sub-actions. We recall that an equilibrium measure gives
positive mass to any non-empty open set and is therefore never a maximizing measure
for a potential which is not cohomologous to a constant. Part (i) of the next proposition
appeared in a slightly different form in [16]. Part (iii) was suggested to the last author by
M. Pollicott from a communication of S. V. Savchenko.

PROPOSITION29. Letf be expanding andA be aα-Hölder potential. Then

(i) any weak limitµ of (µequi
tA ) whent goes to+∞ is a maximizing measure forA;

(ii) the metric entropy ofh(µequi
tA ) converges tohtop(f | �(A, f )) whent goes to+∞;

in particular, any weak limitµ is of maximal entropy forf restricted to�(A, f );
(iii) rewrite htA = exp(tVt ), the unique eigenfunction ofLtA for the eigenvalue

expPT (tA) normalized by
∫
htA dµ

equi
tA = 1. Then the sequence(Vt )t>0 stays in

a compact set in the uniform topology and any accumulation functionV gives a
sub-action satisfying

V (x) = max
T (y)=x

(V (y)+ A(y)−m).
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Proof. To simplify, we denoteµt = µ
equi
tA . For anyf -invariant measureµ

t

∫
Adµ ≤ h(µ)+ t

∫
Adµ ≤ h(µt)+ t

∫
Adµt ≤ htop + t

∫
Adµt.

We obtain, therefore, for any maximizing measureµ ∈ M(A, f )∣∣∣∣
∫
Adµ−

∫
Adµt

∣∣∣∣ ≤ 1

t
htop(T ) and h(µ) ≤ h(µt)

which shows the first assertion. On the one hand,

htop(f | �(A, f )) ≤ inf
t>0

h(µt ).

On the other hand,µ → h(µ) is upper semi-continuous and

lim sup
t→+∞

h(µt) ≤ htop(f | �(A, f )).

To simplify again, we denoteLt = LtA−PT (tA). For everyn, defineV nt byLt1 = exp(tV nt )
for t > 0 andV n0 = 0 by convention. SinceLt leaves invariant the following compact set
of functions (for the uniform topology)

St =
{
h ∈ C0(S1)

∣∣∣∣ h ≥ 0,
∫
h dµt = 1, h(x) ≤ h(y) exp(Ctd(x, y)α), ∀x, y

}

where
Ct = Hölα(tA− PT (tA))/(λ

α − 1) = t Hölα(A)/(λα − 1),

we obtain for allt ≥ 0 and for alln ≥ 0

Hölα(V nt ) ≤ Hölα(A)/(λα − 1).

Since (Lnt 1)n≥0 converges uniformly toht = htA−PT (A) > 0, (V nt )n≥0

converges uniformly to someVt with the same H¨older coefficient H¨olα(A)/(λα − 1).
The eigenfunctionht = exp(tVt ) is a solution ofLt ht = ht or Lt (ht/ht ◦ T ) = 1.
We first obtain (fort > 0)

tRt
def= t (Vt ◦ T − Vt)− tA+ PT (tA) > 0.

The definition of pressure impliestm(A) ≤ PT (tA) ≤ htop(T ) + tm(A). By letting t
go to infinity, any accumulation limitV of (Vt ) is a sub-action. SincetRt satisfies more
precisely the functional equation,

exp(−tRt (x1))+ · · · + exp(−tRt (xD)) = 1

for anyx1, . . . , xD with the same image. Whent goes to infinity, a sub-sequence of(Rt )t>0

converges toR = V ◦ T − V − A+m(A) with

min(R(x1), . . . , R(xD)) = 0. 2

In the following lemma we define a kind of ‘local’ chart(UT ,8T ) about anyT ∈ Fα+.
The difficulty comes from the loss of differentiability in the conjugating mapθ which is
not Lipschitz butγ -Hölder withγ as close to one as we want providedUT is small enough.
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LEMMA 30. Let 0< α < β, T ∈ Fβ andA = −ln T ′.
(i) There exists aC1+β -neighborhoodŨT of T such thatP(f ) = −ln f ′ ◦ θf,T is a

Cα-function depending continuously onf ∈ ŨT .
(ii) Conversely, there exist aCβ -neighborhoodUT of A and a continuous map8T :

UT → Fα+ such that for everyF ∈ UT , f = 8T (F) is the solution of the equation,

F − PT (F ) = −ln f ′ ◦ θf,T .
Moreover,UT can be any neighborhood of the form

UT = {F ∈ Cβ | Hölβ(F ) < C and‖F − A‖0 < ε}
whereC is any positive constant andε = ε(C) is sufficiently small.

Proof. Part (i).Sinceθf isγ (f, T )-Hölder and can be as close to one as desired, we choose
γ ∗ < 1 such thatβγ ∗ > α. We also chooseC∗ > Hölβ(T ′), λ∗ < λ(T ),3∗ > 3(T ) and

ŨT = {f ∈ Fβ | γ (f, T ) > γ ∗, Hölβ(f ′) < C∗, λ(f ) > λ∗ and3(f ) < 3∗}.
For anyf ∈ ŨT , theβγ ∗-Hölder norm ofF = P(f ) is bounded by

C∗[2D exp(C∗/(λ∗β − 1)]β.
For anyf , g in ŨT , F = P(f ),G = P(g),

|F(x)−G(x)| ≤ |f ′ ◦ θf (x)− g′ ◦ θg(x)|
(we have used the fact that|f ′| > λ > 1), and by using Lemma 26 we obtain

‖A− B‖0 ≤ ‖f ′ − g′‖0 + 3∗

λ∗ − 1
‖f − g‖0.

Continuity ofP now follows from Lemma 17.
Part (ii). For anyCβ -functionF , exp(PT (F )− F) is the Jacobian ofT with respect to

the Gibbs measureµF . If θF : S1 → S1 is a homeomorphism, exp(PT (F )−F)◦θ−1
F is the

Jacobian off = θF ◦ T ◦ θ−1
F with respect to the push measure(θF )∗µF . We are therefore

looking for aθF which satisfies(θF )∗µF = Leb andθF (1) = 1. The only possibility for
θF is given by the formula

Leb(θF [0, x]) = θF (x) = µF ([0, x]), ∀x ∈ [0,1[
whereθF is the lift of θF andµF is the corresponding measure on[0,1[. SinceµF
gives positive measure to non-empty open sets and has no mass,θF : S1 → S1 is an
homeomorphism. Letf = θF ◦ T ◦ θ−1

F , thenf is a covering of degreeD and preserves
the orientation. Moreover,J = exp(PT (F ) − F ◦ θ−1

F ) is the Jacobian off with respect
to the Lebesgue measure and

f (y)− f (x) =
∫ y

x

J (t) dt

for any 0< x < y < 1. This shows in particular thatf is C1 and

− ln f ′ ◦ θF = F − PT (F ).
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By Lemma 26 (withβ instead ofα), θf = θF , θ−1
F is γ (T , f )-Hölder and itsγ -Hölder

constant is bounded byC(T ). Thenf ′ is βγ -Hölder and

Hölβγ (f ′) ≤ ‖exp(PT (F )− F)‖0 Hölβ(F )C(T )β .

Let γ ∗ < 1, close to 1, such thatβγ ∗ > α. LetC∗ > Hölβ(A). Let λ∗ < 3∗ such that
λ∗ < λ(T ) and3∗ > 3(T ) = maxx∈S1 T ′(x). Define for smallε,

UT = {F ∈ Cβ | Hölβ(F ) < C∗ and‖F − A‖0 < ε}.
For smallε we get

max
F∈UT

max
x∈S1

exp(PT (F )− F(x)) ≤ 3∗, min
F∈UT

min
x∈S1

exp(PT (F )− F(x)) ≥ λ∗.

We also getγ (T , f ) ≥ γ ∗ and a uniform upper bound for theβγ ∗-Hölder constant off ′.
If we can show thatf ′ depends continuously with respect toF in the uniform topology,
using Lemma 17, we prove the continuity of8T (F) with respect toF ∈ UT as aC1+α-
maps.

We first notice the following estimate:

‖f − g‖0 ≤ ‖f ′ − g′‖0

wheref ′ = exp(PT (F )− F) ◦ θ−1
F , g′ = exp(PT (G)−G) ◦ θ−1

G . Then we have

‖f ′ − g′‖0 ≤ 3∗[2‖F −G‖0 + C∗‖(θF )−1 − (θG)
−1‖β0 ]

‖(θF )−1 − (θG)
−1‖0 ≤ C(T )‖θF − θG‖ln λ∗/ ln3∗

0 .

To conclude, it is now enough to prove thatθF depends continuously with respect to
F ∈ UT in the uniform topology.

Let (Fn) be a sequence ofβ-Hölder functions converging toF in theCβ -topology and
(fn) the corresponding maps. We show that(θFn) converges toθF uniformly. Restricted to
[0,1], θFn corresponds to the distribution of the measureµFn . SinceθF , θFn are increasing
and continuous, by using Helly’s theorem, it is enough to show that(θFn) converges
pointwise toθF or that(µFn) converges weakly toµF (we use here the fact thatµA has no
atom).

Let ν be a weak limit of some sub-sequence(µFn′ ). SinceLFn converges toLF in the
uniform topology, for any test functionh : S1 → R,

lim
n′→∞

∫
LFn′ .h dµFn′ =

∫
LF .h dν∫

LFn′ .h dµFn′ = eP(Fn′ )
∫
h dµFn′

lim
n′→∞

eP(Bn′ )
∫
h dµBn′ = eP(F )

∫
h dν.

We thus obtain thatν is solution ofLF .ν = eP(F )ν, and by uniqueness of Gibbs measures,
ν = µF . Sinceγ (T , f ) depends continuously with respect tof in the C1-topology,
γ (T , f ) can be made larger thanγ ∗ for everyF ∈ UT as soon asε is chosen small
enough. 2
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Remark 31.In the previous lemma,(UT ,8T ) is not a one-to-one parametrization.
Although we do not need it, we could have been more precise. The setP = {A ∈
Cα | A < 0 andPT (A) = 0} is actually an embeddedC1-manifold: for eachA ∈ P ,
P is homeomorphic to an open set in a Banach spaceTA = {F ∈ Cα | F < 0 and∫
(F − A) dµ

equi
A = 0}. Indeed ifF ∈ P ,∫

Adµ
equi
A∫

F dµ
equi
A

F ∈ TA and

∫
Adµ

equi
A∫

F dµ
equi
A

≥ 1

whereµequi
A is the equilibrium measure associated toA. Conversely, ifF ∈ TA, the

pressureP is C1-differentiable on the space ofCα-potentials (see [17]) and

P ′
T (A).H =

∫
H dµ

equi
A .

The mapp(t, F ) = PT (tF ) is thereforeC1 with respect tot andF ,

∂p

∂t
=

∫
F dµ

equi
F < 0, p(0, F ) = lnD and p(1, F ) ≤ 0.

The function p(t, F ) is decreasing with respect tot , and there exists a unique
0< δ(F) ≤ 1 such thatp(δ(F ), F ) = 0. By the implicit function theorem, the function
F 7→ δ(F ) is C1.

Proof of Theorem 2.Let G be the set of mapsf in Fα admitting a unique Lyapunov
minimizing measure supported on a periodic orbit and satisfying the property of
continuously varying support. We first show thatG is open inFα and thatG+ = G ∩ Fα+
is dense inFα+(λ,3).

To show thatG is open, we proceed as in the proof of Theorem 8(ii). Letf0 ∈ G, let

µ0 = 1

N

N−1∑
k=0

δf k0 (p0)

be the unique minimizing periodic measure,N a neighborhood of the orbit orb(p0) =
{p0, f0(p0), . . . , f

N
0 (p0) = p0} andU a neighborhood off0 in theC1+α-topology such

that, for anyf ∈ U , f has a unique periodic orbitp of periodN in N which is also the
only f -invariant compact set inN . We note that

µf = 1

N

N−1∑
k=0

δf k(p)

be the corresponding periodic measure. Thanks to the property of continuously varying
support,U can be chosen small enough so that, for anyf ∈ U , any Lyapunov minimizing
measureµ for f has a support included inN and is therefore equal toµf . To prove that
any f ∈ U also satisfies the property of continuously varying support, we choose(fn)

converging tof in the uniform topology and notice that any accumulation setK of the
sequence(supp(µfn)) is equal to the unique periodic orbit off in N .

We now show thatG+ is dense inFα+. Let T ∈ Fα+, thenT ∈ Fβ for someβ > α

andA = −ln T ′ is Cβ . According to Theorem 8 (and more precisely its proof) there
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exists a sequence(Fn) of β-Hölder functions having aβ-Hölder norm uniformly bounded
converging toA in theC0-topology and such thatFn ∈ G+ for all n. Thanks to Lemma 30,
(8T (Fn)) converges toT asC1+α-maps and the set of Lyapunov minimizing measures of
8T (Fn) coincides with the set of maximizing measures ofFn.

The proof of the second part of Theorem 2 follows from the equivalence between (i)
and (ii) in Proposition 20. 2
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