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Abstract

Let L be a convex superlinear Lagrangian on a closed connected man-
ifold N . We consider critical values of Lagrangians as defined by
R. Mañé in [M3]. We show that the critical value of the lift of L
to a covering of N equals the infimum of the values of k such that
the energy level k bounds an exact Lagrangian graph in the cotan-
gent bundle of the covering. As a consequence, we show that up to
reparametrization, the dynamics of the Euler-Lagrange flow of L on
an energy level that contains supports of minimizing measures with
non-zero rotation vector can be reduced to Finsler metrics. We also
show that if the Euler-Lagrange flow of L on the energy level k is
Anosov, then k must be strictly bigger than the critical value cu(L)
of the lift of L to the universal covering of N . It follows that given
k < cu(L), there exists a potential ψ with arbitrarily small C2-norm
such that the energy level k of L+ ψ possesses conjugate points. Fi-
nally we show the existence of weak KAM solutions for coverings of
N and we explain the relationship between Fathi’s results in [F1,2]
and Mañé’s critical values and action potentials.

1 Introduction

Let N be a closed connected smooth manifold and let L : TN → R be
a smooth convex superlinear Lagrangian. This means that L restricted
to each TxN has positive definite Hessian and that for some Riemannian
metric we have that

lim
|v|→∞

L(x, v)
|v| =∞ ,
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uniformly on x ∈ N . Let H : T ∗N → R be the Hamiltonian associ-
ated to L and let L : TN → T ∗N be the Legendre transform (x, v) 7→
∂L/∂v(x, v). Since N is compact, the extremals of L give rise to a com-
plete flow φt : TN → TN called the Euler-Lagrange flow of the Lagrangian.
Using the Legendre transform we can push forward φt to obtain another
flow φ∗t which is the Hamiltonian flow of H with respect to the canonical
symplectic structure of T ∗N . Recall that the energy E : TN → R is defined
by

E(x, v) =
∂L
∂v

(x, v).v − L(x, v) .

Since L is autonomous, E is a first integral of the flow φt.
A very interesting aspect of the dynamics of the Euler-Lagrange flows

is given by those orbits or invariant measures that satisfy some global vari-
ational properties. Research on these special orbits goes back to M. Morse
[Mo] and G.A. Hedlund [H] and has reappeared in recent years in the work
of V. Bangert [B1,2], M.J. Dias Carneiro [Di], A. Fathi [F1,2], R. Mañé
[M3,4] and J. Mather [Ma1,2]. For autonomous systems, like the ones we
are considering, these distinguished orbits and measures have the remark-
able property of living on certain energy levels related to minimal values
of the action. This link was discovered by Dias Carneiro [Di] and later
exploited and enhanced by Mañé in his unfinished manuscript [M3] (for
proofs of Mañé’s results in [M3] we refer to [CoDI], [CoI]).

Recall that the action of the Lagrangian L on an absolutely continuous
curve γ : [a, b]→ N is defined by

AL(γ) =
∫ b

a
L
(
γ(t), γ̇(t)

)
dt .

Given two points, x and y in N and T > 0 denote by CT (x, y) the set of
absolutely continuous curves γ : [0, T ] → N , with γ(0) = x and γ(T ) = y.
For each k ∈ R we define the action potential Φk : N ×N → R by

Φk(x, y) = inf
{
AL+k(γ) : γ ∈ ∪T>0CT (x, y)

}
.

The critical value of L, which was introduced by Mañé in [M3], is the
real number c(L) defined as the infimum of k ∈ R such that for some x ∈ N ,
Φk(x, x) > −∞. Since L is convex and superlinear and N is compact such
a number exists and it has various important properties that we review
in section 2. We briefly mention a few of them since we shall need them
below. For any k ≥ c(L), the action potential Φk is a Lipschitz function
that satisfies a triangle inequality. In general the action potential is not
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symmetric but if we define dk : N ×N → R by setting

dk(x, y) = Φk(x, y) + Φk(y, x) ,

then dk is a distance function for all k > c(L) and a pseudo-distance for
k = c(L). In [M3], [CoDI], the critical value is characterized in other ways
relating it to minimizing measures (cf. section 2) or to the existence of
Tonelli minimizers with fixed energy between two points.

We can also consider the critical value of the lift of the Lagrangian L to a
covering of the compact manifold N . Suppose that p : M → N is a covering
space and consider the Lagrangian L : TM → R given by L := L ◦ dp. For
each k ∈ R we can define an action potential Φk in M ×M just as above
and similarly we obtain a critical value c(L) for L. It can be easily checked
that if M1 and M2 are coverings of N such that M1 covers M2, then

c(L1) ≤ c(L2) , (1)

where L1 and L2 denote the lifts of the Lagrangian L to M1 and M2 re-
spectively.

Among all possible coverings of N there are two distinguished ones; the
universal covering which we shall denote by Ñ , and the abelian covering
which we shall denote by N . The latter is defined as the covering of N
whose fundamental group is the kernel of the Hurewicz homomorphism
π1(N) 7→ H1(N,R). When π1(N) is abelian, Ñ is a finite covering of N .

The universal covering of N gives rise to the critical value

cu(L)def= c(lift of L to Ñ) ,

and the abelian covering of N gives rise to the critical value

ca(L)def= c(lift of L to N) .

From inequality (1) it follows that

cu(L) ≤ ca(L) ,

but in general the inequality may be strict, as shown in [PPa2].
One of our aims in this paper is to give new characterizations of the

critical value. In section 3 we shall prove:

Theorem A. If M is any covering of the closed manifold N , then

c(L) = inf
f∈C∞(M,R)

sup
x∈M

H(x, dxf)

= inf
{
k ∈ R : there exists f ∈ C∞(M,R) such that H(df) < k

}
,

where H is the Hamiltonian associated with L.
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Hence the critical value can be seen as the infimum of the values of k ∈ R
for which there exist smooth solutions of the Hamilton-Jacobi inequality
H(df) < k.

Recall that a smooth one form ω in M is a section of the bundle
T ∗M 7→M . Let Gω ⊂ T ∗M be the graph of ω. It is well known that
Gω is a Lagrangian submanifold of T ∗M if and only if ω is closed. When
ω is exact we shall say that Gω is an exact Lagrangian graph. Theorem A
could be restated by saying that c(L) is the infimum of the values of k ∈ R
for which H−1(−∞, k) contains an exact Lagrangian graph. This is a very
geometric way of describing the critical value.

Let α : H1(N,R) → R be the convex dual to Mather’s minimal action
function β : H1(N,R)→ R (cf. [Ma1] and section 2). Using the relationship
between critical values and the function α discovered by Mañé in [M3],
[CoDI] (cf. section 2), in section 3 we also derive the following corollary.
Corollary 1. α(q) = inf [ω]=q supx∈N H(x, ω(x)).

Following Mañé in [M3] let us define the strict critical value of L as

c0(L) := min
q∈H1(N,R)

α(q) .

It was shown in [PPa2] that c0(L) = ca(L). It follows right away from
Corollary 1 that c0(L) can be characterized as the infimum of the values
of k ∈ R such that H−1(−∞, k) contains a Lagrangian graph. The strict
critical value is particularly interesting since it is the cut off value for the
existence of energy levels containing minimizing measures. Indeed it follows
from a result of Dias Carneiro [Di] that a minimizing measure has support
contained in a fixed energy level k with k ≥ c0(L) and the minimizing
measure has non-zero rotation vector iff k > c0(L). Hence an energy level
E−1(k) contains the support of a minimizing measure with non-zero rotation
vector iff H−1(−∞, k) contains a Lagrangian graph.

Theorem A has also the following interesting corollary whose proof will
also be given in section 3. Let E : TM → R be the energy function of L.
Corollary 2. If k > c(L), then it is possible to see the dynamics of
φt|E−1(k) as the reparametrization of the geodesic flow on the unit tangent
bundle of an appropriately chosen Finsler metric on M .

Observe that the last corollary implies that if we take k > c0(L) then it
is possible to see the dynamics of φt|E−1(k) as the reparametrization of the
geodesic flow on the unit tangent bundle of an appropriately chosen Finsler
metric on N . Simply apply the corollary to the Lagrangian L − ω where
ω is a closed one form such that c0(L) = α([ω]). Therefore the dynamics
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of the Euler-Lagrange flow on an energy level that contains supports of
minimizing measures with non-zero rotation vector can be reparametrized
as a Finsler geodesic flow. Being able to reparametrize the Euler-Lagrange
flow on a fixed energy level as a Finsler geodesic flow has its importance. It
means, for example, that we can change the speed of the flow to make it of
contact type; this is not always possible as we explain below. Several results
from Riemannian geometry involving properties that are invariant under
reparametrizations (eg. [LyFe], [P1]) extend without significant changes to
Finsler geometry. Using them and Corollary 2 one can show, for example,
the existence of closed orbits on prescribed energy levels or positivity of
topological entropy for Euler-Lagrange flows. Finally we would like to
mention that in [A] M.C. Arnaud obtains results related to Corollary 2,
particularly about the existence of closed orbits with weaker hypotheses on
the Hamiltonian.

In our next theorem we turn to a different subject but still related
to Theorem A. Let π : TN → N denote the canonical projection and, if
(x, v) ∈ TN , let V (x, v) denote the vertical fibre at (x, v) defined as usual
as the kernel of dπ(x,v) : T(x,v)TN → TxN . Let us set

e = max
x∈M

E(x, 0) = −min
x∈N

L(x, 0) .

Note that the energy level E−1(k) projects onto the manifold N if and
only if k ≥ e and for any k > e, the energy level E−1(k) is a smooth
closed hypersurface of TN that intersects each tangent space TxN in a
sphere containing the origin in its interior. It is quite easy to check that
the inequality e ≤ cu(L) always holds, but in general the inequality may be
strict (cf. [PPa2]). An Anosov energy level is a regular energy level on which
the flow φt is an Anosov flow. G.P. Paternain and M. Paternain showed in
[PPa1] that Anosov energy levels are free of conjugate points and that they
must project onto the whole manifold thus generalizing a well-known result
of Klingenberg [K] for geodesic flows (cf. also [M1]). Conjugate points,
means, as usual, pair of points (x1, v1) 6= (x2, v2) = φt(x1, v1) such that
dφt(V (x1, v1)) intersects V (x2, v2) non-trivially. Moreover in [PPa2] they
showed that if there exists k such that for all k′ ≥ k, the energy level
E−1(k′) is Anosov, then k > cu(L). In section 4 we shall complete these
results by showing:

Theorem B. If the energy level E−1(k) is Anosov, then

k > cu(L) .

For the sake of simplicity, from now on whenever we say “energy level
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k” we shall be referring to E−1(k) or E−1(k).
In [PPa2], G.P. Paternain and M. Paternain gave examples of Anosov

energy levels k, with k < c0(L) on surfaces of genus greater than or equal
to two. These examples are Lagrangians of the form kinetic energy plus a
magnetic field. The Riemannian metric has negative Gaussian curvature
and the magnetic field is chosen so that it acts only on appropriately chosen
regions of constant negative curvature. The intensity of the magnetic field is
small enough to preserve the Anosov property of the flow but strong enough
to produce curves homologous to zero and with negative L + k-action.
These examples gave a negative answer to a question raised by Mañé, and
Theorem B finally settles the issue of which critical value bounds from below
the energy of an Anosov level. Passing by, we would like to point out a
remarkable feature of these examples. Since k > cu(L), Corollary 2 assures
that the energy level can be reparametrized as a Finsler geodesic flow on the
universal covering. In particular, since Finsler geodesic flows are contact,
one can thus reparametrize the Euler-Lagrange flow to make it of contact
type on the universal covering. However they cannot be reparametrized
as Finsler geodesic flows on N itself: Proposition 4.2 in [P2] shows that if
an Anosov energy level k on a surface can be reparametrized to make it
of contact type, then k > c0(L). This last result is closely related to the
regularity of the strong stable and unstable bundles.

We also have the following corollary of Theorem B whose proof will also
be given in section 4.
Corollary 3. Given a convex superlinear Lagrangian L, k < cu(L) and
ε > 0 there exists a smooth function ψ : N → R with |ψ|C2 < ε and such
that the energy level k of L+ ψ possesses conjugate points.

We remark that if k is a regular value of the energy such that k < e,
then the energy level k always contains conjugate points (cf. Proposition 8
in section 4), therefore in the light of the previous discussion it is natural
to pose the following:
Problem. Is it true that if k < cu(L), then the energy level k possesses
conjugate points?

After writing the first draft of this paper and having send it to Prof.
Albert Fathi, we learned from him that he had also discovered Corollary 1.
His proof was similar to ours and relied in his weak KAM theorem proved
in [F1]. Our proof, as we explain below, is based on the related notion of
action potential. In what follows we shall try to clarify the relationship
between Fathi’s approach and Mañé’s, and at the same time we shall prove
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the existence of weak KAM solutions also for non compact coverings M .
Let us begin with a few definitions. Let c = c(L). We say that an absolutely
continuous curve γ : [a, b]→M is semistatic if

AL+c(γ|[s,t]) = Φc

(
γ(s), γ(t)

)
for all a ≤ s ≤ t ≤ b and that γ is static if in addition

AL+c(γ|[s,t]) = −Φc

(
γ(t), γ(s)

)
,

equivalently, if γ is semistatic and dc(γ(s), γ(t)) = 0 for all a ≤ s ≤ t ≤ b.
Denote by xv : R → M the solution of the Euler-Lagrange equation of L
such that ẋv(0) = v. Let

Σ+ :=
{
v ∈ TM |xv : [0,+∞)→M is semistatic

}
,

Σ̂ :=
{
v ∈ TM |xv : R→M is static

}
.

Define an equivalence relation on π(Σ̂) by saying that x1 ≡ x2 if
dc(x1, x2) = 0. Since the projection π restricted to Σ̂ is injective (see
Theorem 12 in section 5) we can define an equivalence relation on Σ̂ as
well simply by saying that v1 ≡ v2 if dc(π(v1), π(v2)) = 0. We shall call
the classes defined by these relations static classes. An important fact is
that the ω-limit of a semistatic vector v ∈ Σ+ is contained in Σ̂ [CoDI].
A lemma in section 5 ensures that Σ+ is never empty. When M is com-
pact the ω-limit of a semistatic vector is never empty, hence Σ̂ 6= ø, but in
general it could be empty if M is not compact.

Given a continuous function u : M → R, we shall write u ≺ L + c
whenever u(x)− u(y) ≤ Φc(y, x) for all x, y ∈M . Let us define the sets

Γ+
0 (u) :=

{
v ∈ Σ+ |u(xv(t))− u(xv(0)) = Φc(xv(0), xv(t)) ∀t > 0

}
,

Γ+(u) :=
⋃
t>0

φt
(
Γ+(u)

)
,

where φt is the Euler-Lagrange flow on TM .
We shall say that a continuous function u : M → R is a weak KAM

solution if u satisfies the following three conditions:

1. u is Lipschitz;
2. u ≺ L+ c;
3. π(Γ+

0 (u)) = M .

It is important to point out that using the action potentials it is quite
simple to show the existence of a function u that satisfies only properties 1
and 2 above. Take any point p ∈ M and set u(x) = Φc(p, x). Elementary
properties of the action potential (cf. section 2) show that u satisfies 1 and 2.
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This is used in the proof of Theorem A which is based on a convolution
argument that smooths out a function u that satisfies 1 and 2.

Fathi shows in [F1] that weak KAM solutions exist assuming that M is
compact. His proof is based on applying the Banach fixed point theorem
to a certain semigroup of operators defined on the space of continuous
functions on M divided by the constant functions and, as presented, it
cannot be applied when M is not compact. In our next, and last, theorem
we show the existence of weak KAM solutions for M an arbitrary covering
of a compact manifold. In fact we give more information than just the
existence of a weak KAM solution and we explicitly show the form of the
solution in terms of the action potential hoping that this will clarify the
relationship between Fathi’s approach and Mañé’s.

Given a semistatic vectorw ∈ Σ+, let γ(t) = xw(t) and define u : M → R
by

u(x) = sup
t>0

[Φc(γ(0), γ(t))−Φc(x, γ(t))] . (2)

The function u thus defined clearly resembles the Busemann functions
from Riemannian geometry. In fact, the supremum in (2) is a limit as we
shall see in section 5, thus if ω-limit ω(w) 6= ø, then u(x) = u(p)−Φc(x, p)
for all x ∈M and any p in π(ω(w)).

Theorem C. The function u(x) in (2) is a weak KAM solution and at the
points x ∈M where u is differentiable it satisfies H(x, dxu) = c. Moreover
π|Γ+(u) is injective with Lipschitz inverse, u is differentiable on the set π(Γ+)
and the derivative dxu is the image of (π|Γ+(u))−1(x) under the Legendre
transform. In particular the vectors in Σ+ have energy c.

Given v ∈ Γ+
0 (u) if the ω-limit ω(v) 6= ø, then u(x) = u(p) − Φc(x, p)

for all x ∈M and any p in the static class of π(ω(v)).

Hence when M is compact, since ω(w) 6= ø for any semistatic vector w,
the function u(x) = −Φc(x, p), where p is any point in the static class of
π(ω(w)), is a weak KAM solution.

1.1 Acknowledgments. We thank Albert Fathi for making his manu-
scripts [F1,2] available to us prior to publication. This paper was partially
motivated by his results. We also thank M. Herman for suggesting a possi-
ble relationship between Lagrangian graphs and minimizing measures. G.P.
Paternain thanks the IMPA and the ICTP for hospitality while this work
was in progress.
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2 Critical Values and Mather’s α and β functions

Let N be a closed connected manifold and p : M → N a covering map.
Given a convex superlinear Lagrangian L : TN → R let L := L ◦ dp be the
lift of L to M .

The action of the Lagrangian L on an absolutely continuous curve
γ : [a, b]→M is defined by

AL(γ) =
∫ b

a
L
(
γ(t), γ̇(t)

)
dt .

Given two points, x and y in M and T > 0 denote by CT (x, y) the set of
absolutely continuous curves γ : [0, T ] → M , with γ(0) = x and γ(T ) = y.
For each k ∈ R we define the action potential Φk : M ×M → R by

Φk(x, y) = inf
{
AL+k(γ) : γ ∈ ∪T>0CT (x, y)

}
.

Theorem 4 (Basic properties of the critical value [M3], [CoDI]). There
exists c(L) ∈ R such that

1. if k < c(L), then Φk(x1, x2) = −∞, for all x1 and x2 in M ;
2. if k ≥ c(L), then Φk(x1, x2) > −∞ for all x1 and x2 in M and Φk is

a Lipschitz function;
3. if k ≥ c(L), then

Φk(x1, x3) ≤ Φk(x1, x2) + Φk(x2, x3) ,

for all x1, x2 and x3 in M and

Φk(x1, x2) + Φk(x2, x1) ≥ 0 ,

for all x1 and x2 in M ;
4. if k > c(L), then for x1 6= x2 we have

Φk(x1, x2) + Φk(x2, x1) > 0 .

Observe that in general the action potential Φk is not symmetric, how-
ever defining dk : M ×M → R by

dk(x, y) = Φk(x, y) + Φk(y, x) ,

Theorem 4 says that dk is a metric for k > c(L) and a pseudometric for
k = c(L). The number c(L) is called the critical value of L.

Using the theorem it is straightforward to check that if M1 and M2 are
coverings of M such that M1 covers M2, then

c(L1) ≤ c(L2) , (3)

where L1 and L2 denote the lifts of the Lagrangian L to M1 and M2 re-
spectively. Note that if M1 is a finite covering of M2 then c(L1) = c(L2).
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As we mentioned in the introduction among all possible coverings of
N there are two distinguished ones; the universal covering which we shall
denote by Ñ , and the abelian covering which we shall denote by N . The
latter is defined as the covering of N whose fundamental group is the ker-
nel of the Hurewicz homomorphism π1(N) 7→ H1(N,R). When π1(N) is
abelian, Ñ is a finite covering of N .

The universal covering of N gives rise to the critical value

cu(L)def= c(lift of L to Ñ) ,

and the abelian covering of N gives rise to the critical value

ca(L)def= c(lift of L to N) .

From inequality (3) it follows that

cu(L) ≤ ca(L) ,

but in general the inequality may be strict as it was shown in [PPa2].
Let us recall now the main concepts introduced by Mather in [Ma1]. Let

M(L) be the set of probabilities on the Borel σ-algebra of TN that have
compact support and are invariant under the Euler-Lagrange flow φt. Let
H1(N,R) be the first real homology group of N . Given a closed one-form
ω on N and ρ ∈ H1(N,R), let 〈ω, ρ〉 denote the integral of ω on any closed
curve in the homology class ρ. If µ ∈ M(L), its rotation vector is defined
as the unique ρ(µ) ∈ H1(N,R) such that〈

ω, ρ(µ)
〉

=
∫
ω dµ ,

for all closed one-forms on N . The integral on the right-hand side is with
respect to µ with ω considered as a function ω : TN → R. The function
ρ : M(L)→ H1(N,R) is surjective [Ma1]. The rotation vector of an invari-
ant measure is the projection of Schwartzman’s asymptotic cycle [S].

The action of µ ∈M(L) is defined by

AL(µ) =
∫
L dµ .

Finally we define the function β : H1(N,R)→ R by

β(γ) = inf
{
AL(µ) : ρ(µ) = γ

}
.

The function β is convex and superlinear and the infimum can be shown to
be a minimum [Ma1] and the measures at which the minimum is attained
are called minimizing measures . In other words, µ ∈M(L) is a minimizing
measure iff

β(ρ(µ)) = AL(µ) .
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Let us recall how the convex dual α : H1(N,R)→ R of β is defined. Since
β is convex and superlinear we can set

α([ω]) = max
{
〈ω, γ〉 − β(γ) : γ ∈ H1(N,R)

}
,

where ω is any closed one-form whose cohomology class is [ω]. The function
α is also convex and superlinear. It is not difficult to see that [Ma1]

α([ω]) = −min
{∫

(L− ω) dµ : µ ∈M(L)
}
. (4)

Mañé [M3], [CoDI] established a connection between the critical values
of a Lagrangian and α, the convex dual of Mather’s β function. He showed
that

c(L) = −min
{∫

L dµ : µ ∈M(L)
}
, (5)

and therefore combining (4) and (5) we obtain the remarkable equality
c(L− ω) = α([ω]) , (6)

for any closed one-form ω whose cohomology class is [ω].
Finally, Mañé defined the strict critical value of L as

c0(L)def= min
q∈H1(N,R)

α(q) = min
{
c(L− ω) : [ω] ∈ H1(N,R)

}
= −β(0) .

It was shown in [PPa2] that the strict critical value of L equals the critical
value of the lift of L to the abelian covering of N , that is, ca(L) = c0(L).

3 Proof of Theorem A and Corollaries 1 and 2

Theorem A will be an immediate consequence of Lemma 5 and Proposition 7
below.
Lemma 5. If there exists a C1 function f : M → R such that H(df) < k,
then k ≥ c(L).

Proof. Recall that
H(x, p) = max

v∈TxM

{
p(v)− L(x, v)

}
.

Since H(df) < k it follows that for all (x, v) ∈ TM ,
dxf(v)− L(x, v) < k .

Therefore, if γ : [0, T ]→M is any absolutely continuous closed curve with
T > 0, we have∫ T

0

(
L(γ, γ̇) + k

)
dt =

∫ T

0

(
L(γ, γ̇) + k − dγf(γ̇)

)
dt > 0 ,

and thus k ≥ c(L). �
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Lemma 6. Let k ≥ c(L). If f : M → R is differentiable at x ∈ M and
satisfies

f(y)− f(x) ≤ Φk(x, y)
for all y in a neighbourhood of x, then H(x, dxf) ≤ k.

Proof. Let γ(t) be a differentiable curve on M with (γ(0), γ̇(0)) = (x, v).
Then

lim sup
t→0+

f(γ(t))− f(x)
t

≤ lim inf
t→0+

1
t

∫ t

0

[
L(γ, γ̇) + k

]
ds .

Hence dxf(v) ≤ L(x, v) + k for all v ∈ TxM and thus

H(x, dxf) = max
v∈TxM

{
dxf(v)− L(x, v)

}
≤ k . �

Proposition 7. For any k > c(L) there exists f ∈ C∞(M,R) such that
H(df) < k.

Proof. We shall explain first how to prove the proposition in the case of
M = N and then we will lift the construction to an arbitrary covering M .

Set c = c(L). Fix q ∈ M and let u(x) := Φc(q, x). By the triangle
inequality, we have that

u(y)− u(x) ≤ Φc(x, y) for all x, y ∈M .

By the previous lemma, H(dxu) ≤ c at any point x ∈ M where u(x) is
differentiable.

We proceed to regularize u. We can assume that M ⊆ RN . Let U be a
tubular neighbourhood of M in RN , and ρ : U →M a C∞ projection along
the normal bundle. Extend u(x) to U by u(z) = u

(
ρ(z)

)
. Then u(z) is also

Lipschitz.
Extend the Lagrangian to U by L(z, v)=L(ρ(z), dzρ(v))+1

2 |v−dzρ(v)|2.
Then the corresponding Hamiltonian satisfies H(z, p ◦ dzρ) = H(ρ(z), p)
for p ∈ T ∗ρ(z)M . At any point of differentiability of u, we have that dzu =
dρ(z)u ◦ dzρ, and H(dzu) = H(dρ(z)u) ≤ c.

Let ε > 0 be such that
(a) The 3ε-neighbourhood of M in RN is contained in U .
(b) If x ∈ M , (y, p) ∈ T ∗RN = R2N , H(y, p) ≤ c and dRN (x, y) < ε then

H(x, p) < k.
Let ψ : R→ R be a C∞ function such that ψ(x) ≥ 0, support(ψ) ⊂ (−ε, ε)
and

∫
RN ψ(|x|) dx = 1. Let K : RN ×RN → R be K(x, y) = ψ(|x− y|). Let

Nε be the ε-neighbourhood of M in RN . Define f : Nε → R by

f(x) =
∫
RN

u(y)K(x, y)dy .
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Then f is C∞ on Nε.
Observe that ∂xK(x, y) = −∂yK(x, y). Since u(y) is Lipschitz, it is

differentiable at Lebesgue almost every point of U (Rademacher’s Theorem,
cf. [EG]). Moreover it is weakly differentiable (cf. [EG, Section 4.2.3]), that
is, for any C∞ function ϕ : U → R with compact support∫

RN
(ϕdu+ udϕ)dx = 0 .

Hence
−
∫
RN

u(y)∂yK(x, y)dy =
∫
RN

K(x, y)dyudy .

Now, since

dxf =
∫
RN

u(y)∂xK(x, y)dy ,

we obtain
dxf =

∫
RN

K(x, y)dyudy .

From the choice of ε > 0 we have that H(x, dyu) < k for almost every
y ∈ suppK(x, ·) and x ∈ M . Since K(x, y) dy is a probability measure, by
Jensen’s inequality

H(dxf) ≤ H(dxf) ≤
∫
RN

H(x, dyu)K(x, y)dy < k .

for all x ∈M .
Now, suppose that M is a covering of a compact manifold N with

covering projection p. Assume that N ⊆ RN . Fix q ∈ M and set u(x) :=
Φc(L)(q, x). We can regularize our function u similarly as we shall now
explain. For x̂ ∈ M let x be the projection of x̂ to N and let µx be the
Borel probability measure on N defined by∫

N
ϕdµx =

∫
Rn

(ϕ ◦ ρ)(y)K(x, y)dy ,

for any continuous function ϕ : N → R. Then the support of µx satisfies
supp(µx) ⊂

{
y ∈ N : dN (x, y) < ε

}
.

Let µ̂x̂ be the Borel probability measure on M uniquely defined by the
conditions: supp(µ̂x̂) ⊂ {ŷ ∈ M : dM (x̂, ŷ) < ε} and p∗µ̂x̂ = µx. Then we
have

d

dx̂

∫
M
ϕdµ̂x̂ =

∫
M
dŷϕdµ̂x̂(ŷ) ,

for any weakly differentiable function ϕ : M → R. The same arguments as
above show that

f(x̂) =
∫
M
u(ŷ)dµ̂x̂(ŷ) ,
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satisfies H(dx̂f) < k. �

Let us prove Corollary 1. Let us fix a closed one form ω0 such that
[ω0] = q. By equality (6) we have that α(q) = c(L− ω0). Hence, it suffices
to show that

c(L− ω0) = inf
[ω]=q

sup
x∈N

H
(
x, ω(x)

)
. (7)

It is straightforward to check that the Hamiltonian associated with L− ω0
is H(x, p + ω0(x)). Since all the closed one forms in the class q are given
by ω0 + df where f ranges among all smooth functions, equality (7) is now
an immediate consequence of Theorem A. �

Let us prove now Corollary 2. If k > c(L), then H−1(−∞, k) contains
an exact Lagrangian graph. This means that there exists a smooth func-
tion f : M → R such that H(x, dxf) < k for all x ∈ M . Therefore, the
new Hamiltonian Hdf (x, p)def=H(x, p + dxf) is such that H−1

df (−∞, k) con-
tains the zero section of T ∗M . Let ϕ : T ∗M → T ∗M be the map ϕ(x, p) =
(x, p+ dxf). Observe that the Hamiltonian flow φ∗t of H and the Hamil-
tonian flow ψt of Hdf are related by ψ∗t ◦ ϕ = ϕ ◦ φt. Define now a new
Hamiltonian G on T ∗M minus the zero section such that G takes the value
one on H−1

df (k) and such that G(x, λp) = λ2G(x, p) for all positive λ. Since
G is positively homogeneous of degree two and convex in p, it follows that
the Legendre transform LG associated to G is a diffeomorphism from TM
minus the zero section to T ∗M minus the zero section. Therefore the Hamil-
tonian G induces a Finsler metric on M simply by taking G ◦ LG.

Since by definition G−1(1) = H−1
df (k) it follows that the Hamiltonian

flows of G and H−1
df (k) coincide up to reparametrization on the energy

level G−1(1) = H−1
df (k) and therefore the Euler-Lagrange solutions of L

with energy k are reparametrizations of unit speed geodesics of G ◦ LG. �

4 Proof of Theorem B and Corollary 3

Suppose that the energy level k is Anosov and set Σdef=H−1(k). Let π :
T ∗N→N denote the canonical projection. G.P. Paternain and M. Paternain
proved in [PPa1] that Σ must project onto the whole manifold N and that
the weak stable foliationWs of φ∗t is transverse to the fibres of the fibration
by (n− 1)-spheres given by

π|Σ : Σ→ N .
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Let Ñ be the universal covering of N . Let Σ̃ denote the energy level k of
the lifted Hamiltonian H. We also have a fibration by (n− 1)-spheres

π̃|Σ̃ : Σ̃→ Ñ .

Let W̃s be the lifted foliation which is in turn a weak stable foliation for the
Hamiltonian flow of H restricted to Σ̃. The foliation W̃s is also transverse
to the fibration π̃|Σ̃ : Σ̃ → Ñ . Since the fibres are compact a result of
Ehresman (cf. [CL]) implies that for every (x, p) ∈ Σ̃ the map

π̃|W̃s(x,p) : W̃s(x, p)→ Ñ ,

is a covering map. Since Ñ is simply connected, π̃|W̃s(x,p) is in fact a dif-

feomorphism and W̃s(x, p) is simply connected. Consequently, W̃s(x, p)
intersects each fibre of the fibration π̃|Σ̃ : Σ̃ → Ñ at just one point. In
other words, each leaf W̃s(x, p) is the graph of a one form. On the other
hand it is well known that the weak stable leaves of an Anosov energy level
are Lagrangian submanifolds. Since any closed one form in the universal
covering must be exact, it follows that each leaf W̃s(x, p) is an exact La-
grangian graph. The theorem now follows from Lemma 5 and the fact that
by Structural Stability there exists ε > 0 such that for all k′ ∈ (k−ε, k+ε)
the energy level k′ is Anosov. �

Let us prove now Corollary 3. Suppose now that there exists ε > 0 such
that for every ψ with |ψ|C2 < ε, the energy level k of L+ψ has no conjugate
points. The main result in [CoIS] says that in this case the energy level k
of L must be Anosov thus contradicting Theorem B. �

Proposition 8. If k is a regular value of the energy such that k < e,
then the energy level k has conjugate points.

Proof. If an orbit does not have conjugate points then there exist along it
two subbundles called the Green subbundles . They have the following prop-
erties: they are invariant, Lagrangian and they have dimension n = dimN .
Moreover, they are contained in the same energy level as the orbit and they
do not intersect the vertical subbundle (cf. [CoI]). If k is a regular value of
the energy with k < e, then π(E−1(k)) is a manifold with boundary and at
the boundary the vertical subspace is completely contained in the energy
level. Therefore the orbits that begin at the boundary must have conjugate
points, because at the boundary two n-dimensional subspaces contained in
the energy level (which is (2n− 1)-dimensional) must intersect. �
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5 Proof of Theorem C

We begin by recalling a few definitions from the introduction. Let c = c(L).
We say that an absolutely continuous curve γ : [a, b]→M is semistatic if

AL+c(γ|[s,t]) = Φc

(
γ(s), γ(t)

)
for all a ≤ s ≤ t ≤ b and that γ is static if

AL+c(γ|[s,t]) = −Φc

(
γ(t), γ(s)

)
,

equivalently, if γ is semistatic and dc(γ(s), γ(t)) = 0 for all a ≤ s ≤ t ≤ b.
Denote by xv : R → M the solution of the Euler-Lagrange equation of L
such that ẋv(0) = v. Let

Σ+ :=
{
v ∈ TM

∣∣ xv : [0,+∞)→M is semistatic
}
,

Σ̂ :=
{
v ∈ TM

∣∣ xv : R→M is static
}
.

Lemma 9. Σ+ 6= ø.

We need the following lemma which is stated in [CoDI] for compact M
but it holds for any covering M of a compact manifold. This remark applies
as well to Theorem 12 and Lemma 13 below.

Lemma 10 [CoDI, Corollary 1.4]. There exists A > 0 such that if p, q ∈M
and x ∈ CT (p, q) satisfy

(a) AL(x) = min{AL(y) | y ∈ CT (p, q)}, that is, x is a Tonelli minimizer.
(b) AL+c(x) < Φc(p, q) + dM (p, q).

Then |ẋ(t)| < A for all t ∈ [0, T ].

Lemma 10 is an easy corollary (cf. [CoDI]) of the following lemma due
to Mather [Ma1, p. 182] (cf. also [M2, Theorem 3.3]) that is stated and
proved for the abelian covering of the compact manifold N . Its proof holds
for any covering M of N .

Lemma 11. For all C > 0, there exists A = A(C) > 0 such that if T > 0,
p, q ∈M and x ∈ CT (p, q) satisfy

(a) AL(x) = min{AL(y) | y ∈ CT (p, q)}, that is, x is a Tonelli minimizer.
(b) AL(x) < CT .

Then |ẋ(t)| < A for all t ∈ [0, T ].

Proof. In the autonomous case Lemma 11 has a considerably simpler proof
that we now indicate for the sake of completeness. Since the Lagrangian
is convex and superlinear and N is compact there exist positive constants
B and D such that for all (x, v) ∈ TM we have L(x, v) ≥ B|v| −D. The
hypothesis AL(x) < CT implies that there exists a t0 ∈ [0, T ] such that
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|ẋ(t0)| < D+C
B . The conservation of energy ensures now the existence of

another constant depending only on C and the Lagrangian that bounds
uniformly the speed of the minimizer in all [0, T ]. �

Proof of Lemma 9. If M is compact then there exists a minimizing measure
µ and the results in [CoDI] imply that ø 6= supp(µ) ⊆ Σ̂ ⊂ Σ+.

Assume that M is not compact. Then there is a sequence {qn} ⊂ M
such that dM (q0, qn) → +∞. Let xn : [0, Tn] → M be a Tonelli minimizer
such that xn(0) = q0, xn(Tn) = qn and

AL+c(xn) ≤ Φc(q0, qn) + 1
n · (8)

Since for any x : R→ M , the function δ(t) = AL+c(x|[0,t])− Φc(x(0), x(t))
is non-decreasing, inequality (8) implies that

AL+c(xn|[s,t]) ≤ Φc

(
xn(s), xn(t)

)
+ 1

n (9)

for all 0 ≤ s ≤ t ≤ Tn.
By Lemma 10, |ẋn(t)| < A for all n large enough, 0 ≤ t ≤ Tn. Let

vn = ẋn(0) and v a density point of {vn}. We can assume that vn → v.

Since dM (q0, qn) → +∞, then Tn → +∞. Since xn|[0,t]
C1
−→ xv|[0,t] for all

t > 0, from (9) we obtain that xv : [0,+∞)→M is semistatic. �

Before beginning with the proof of Theorem C we state the following
important graph properties. Set

Σε :=
{
v ∈ TM

∣∣ xv : [0, ε)→M or xv : (−ε, 0]→M is semistatic
}
.

Theorem 12 (Graph Properties [M3], [CoDI]). (a) If γ(t), t ≥ 0 is an
orbit in Σ+(L), then, denoting the canonical projection by π : TM → M ,
the map π|{γ̇|t>0} is injective with Lipschitz inverse.

(b) For all p ∈ π(Σ̂) there exists a unique ξ(p) ∈ TpM such that
(p, ξ(p)) ∈ Σε, in particular (p, ξ(p)) ∈ Σ̂ and Σ̂ = graph(ξ). Moreover,
the map ξ : π(Σ̂)→ Σ̂ is Lipschitz.

Let us begin now with the proof of Theorem C. Our candidate for a weak
KAM solution is defined as follows. Given a semistatic vector w ∈ Σ+, let
γ(t) = xw(t) and define u : M → R by

u(x) = sup
t>0

[
Φc(γ(0), γ(t))−Φc(x, γ(t))

]
.

By the triangle inequality, for x ∈M and t > 0,

Φc

(
γ(0), γ(t)

)
−Φc

(
x, γ(t)

)
≤ Φc

(
γ(0), x

)
+ Φc

(
x, γ(t)

)
−Φc

(
x, γ(t)

)
= Φc

(
γ(0), x

)
.
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Hence u(x) ≤ Φc(γ(0), x) < +∞. Moreover, the function δ(t) :=
Φc(γ(0), γ(t))−Φc(x, γ(t)) is increasing in t because if 0 ≤ s ≤ t, then

δ(t)− δ(s) = Φc

(
γ(0), γ(t)

)
− Φc

(
x, γ(t)

)
− Φc

(
γ(0), γ(s)

)
+ Φc

(
x, γ(s)

)
= Φc

(
γ(0), γ(s)

)
+ Φc

(
γ(s), γ(t)

)
−Φc

(
x, γ(t)

)
−Φc

(
γ(0), γ(s)

)
+ Φc

(
x, γ(s)

)
≥ 0 .

In the last inequality we used the triangle inequality for the triangle
(x, γ(s), γ(t)). Hence the supremum in the definition of u is a limit. For
x, y ∈M , we have that

u(x)− u(y) = lim
t→+∞

[
Φc(γ(0),γ(t))−Φc(x,γ(t))−Φc(γ(0),γ(t))+Φc(y,γ(t))

]
= lim

t→+∞

[
Φc(y, γ(t))−Φc(x, γ(t))

]
(10)

≤ lim
t→+∞

[
Φc(y, x) + Φc(x, γ(t))− Φc(x, γ(t))

]
≤ Φc(y, x) .

Hence u ≺ L+ c. This property implies that∣∣u(x)− u(y)
∣∣ ≤ max

{
|Φc(x, y)| , |Φc(y, x)|

}
,

and hence u(x) is Lipschitz, with the same Lipschitz constant as Φc.
We show now that M \ π(Σ̂) ⊆ π(Γ+

0 (u)), where Γ+
0 (u) was defined in

the introduction. Let x ∈ M \ π(Σ̂) and let xvn : [0, Tn] → M be a Tonelli
minimizer such that xvn(0) = x, xvn(Tn) = γ(n) and

Φc

(
x, γ(n)

)
≤ AL+c(xvn |[0,Tn]) ≤ Φc

(
x, γ(n)

)
+ 1

n .

The same argument as in inequality (9) shows that

AL+c(xvn |[s,Tn])− 1
n · ≤ Φc

(
xvn(s), γ(n)

)
≤ AL+c(xvn |[s,Tn]) ,

for all 0 ≤ s ≤ Tn, and then∣∣Φc(x, γ(n))−Φc(xvn(t), γ(n))−AL+c(xvn |[0,t])
∣∣ ≤ 1

n . (11)

By Lemma 10, |ẋvn(t)| < A for all n large enough and 0 ≤ t ≤ Tn. We
prove below that Tn → +∞, then the same arguments as in Lemma 9 show
that any limit point of {vn} is in Σ+ so we may assume that vn → v ∈ Σ+.
Using the triangle inequality we get

Φc

(
xv(t), γ(n)

)
−Φc

(
xv(t), xvn(t)

)
≤ Φc

(
xvn(t), γ(n)

)
≤ Φc

(
xv(t), γ(n)

)
+ Φc

(
xvn(t), xv(t)

)
and then∣∣Φc(xvn(t), γ(n))− Φc(xv(t), γ(n))

∣∣ ≤ K dM
(
xvn(t), xv(t)

)
,

(12)
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where K is the Lipschitz constant of Φc. Combining (12) and (11) we
obtain∣∣Φc(x, γ(n))−Φc(xv(t), γ(n))−AL+c(xvn |[0,t])

∣∣ ≤ 1
n+K dM

(
xvn(t), xv(t)

)
.

(13)

Therefore

u(xv(t))− u(x) = lim
n→+∞

[
Φc(x, γ(n))−Φc(xv(t), γ(n))

]
= lim

n→+∞
AL+c(xvn |[0,t])

= AL+c(xv|[0,t])
= Φc

(
x, xv(t)

)
,

because xvn |[0,t]
C1
−→ xv|[0,t] and xv is semistatic.

Now we prove that limn Tn = +∞. Suppose that this is not the case.
Then there exists a subsequence that we still denote by {Tn} such that
limn Tn = T0 < +∞. Hence the speed |ẋvn | is uniformly bounded in [0, T0]
and therefore we can assume that {vn} converges to a vector v, lim γ̇(n) =

(p,w1) ∈ Σ̂, xvn |[0,T0]
C1
−→ xv|[0,T0] and that xv|[0,T0] is semistatic. Note that

ẋv(T0) has the form (p,w2). Since xv|[0,T0] is semistatic, then ẋv(T0) belongs
to Σε for any ε sufficiently small and therefore the graph property (b) in
Theorem 12 implies that w1 = w2. Since Σ̂ is invariant, then x ∈ π(Σ̂).
This contradicts the hypothesis x ∈M \ π(Σ̂).

Now let (x, v) ∈ Σ̂ and t > 0. Let p = xv(t) and y ∈ M . Since
dc(x, p) = 0, then

Φc(x, y) = Φc(x, p) + Φc(p, x) + Φc(x, y)
≥ Φc(x, p) + Φc(p, y) ≥ Φc(x, y) .

Hence Φc(x, y) = Φc(x, p)+Φc(p, y). For y = γ(s) (and p = xv(t)), we have
that

u
(
xv(t)

)
− u(x) = lim

s→+∞

[
Φc(x, γ(s))− Φc(p, γ(s))

]
= Φc

(
x, xv(t)

)
= AL+c(xv|[0,t]) .

We now prove the graph properties for Γ+(u). A proof of the following
lemma due to Mather can be found in [Ma1] or [M2].

Lemma 13 (Crossing Lemma). Given A > 0 there exists K > 0, ε1 > 0
and δ > 0 with the following property: if |vi| < A, (xi, vi) ∈ TM , i = 1, 2
satisfy d(x1, x2) < δ and d((x1, v1), (x2, v2)) ≥ K−1d(x1, x2) and denoting
by xvi : R→ M , i = 1, 2 the solution of the Euler-Lagrange equation such
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Figure 1.

that xvi(0) = xi and ẋvi(0) = vi, then there exist solutions ηi : [−ε, ε]→M
of L with 0 < ε < ε1, satisfying

η1(−ε) =xv1(−ε) , η1(ε) = xv2(ε) ,
η2(−ε) =xv2(−ε) , η2(ε) = xv1(ε) ,

AL(xv1 |[−ε,ε]) +AL(xv2 |[−ε,ε]) > AL(η1) +AL(η2) . (14)
Let (x1,v1),(x2,v2)∈Γ+(u) and suppose that dTM (v1,v2)>KdM (x1,x2),

where K > 0 is given by Lemma 13 and the A > 0 that we input in
Lemma 13 is given by Lemma 10. Let pi = xvi(−ε) and qi = xvi(+ε),
i = 1, 2, where ε > 0 is such that φ[−ε,ε](vi) ⊂ Γ+(u), i = 1, 2 (cf. Figure 1).
Let η1, η2 be as in Lemma 13.

Since AL+c(xvi |[−ε,ε]) = Φc(pi, qi), i = 1, 2, then inequality (14) implies
that

Φc(p1, q2) + Φc(p2, q1) < Φc(p1, q1) + Φc(p2, q2) .
Writing pq = Φc(p, q), for t > 0 we have that

p1q2 + p2q1 − p2γ(t) + q2γ(t) < p1q1 + p2q2 − p2γ(t) + q2γ(t) .
Using the triangle inequality we obtain

p1γ(t)− q1γ(t) < p1q1 + p2q2 − p2γ(t) + q2γ(t) .
Letting t→ +∞ and using (10) we get that

u(q1)− u(p1) < p1q1 + p2q2 + u(p2)− u(q2) .
Since φ[−ε,ε](v1) ⊂ Γ+

0 (u), then u(q1)− u(p1) = p1q1. Then
p1q1 < p1q1 + p2q2 + u(p2)− u(q2) .

This implies that u(q2)−u(p2) < Φc(p2, q2), which contradicts the fact that
φ[−ε,ε](v2) ⊂ Γ+(u). Hence π|Γ+(u) is injective and has Lipschitz inverse.

If (x, v) ∈ Γ+
0 (u) and ω(v) 6= ø, let p ∈ π(ω(v)) and tn → +∞ be

such that πφtn(v)→ p. Then by definition of Γ+
0 (u), u(x) = u(πφtn(v))−
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Φc(x, πφtn(v)). Letting t→ +∞ we get u(x) = u(p)− Φc(x, p). Hence the
last equality holds for any p in the static class of π(ω(v)).

The remaining claims in Theorem C are proved by Fathi in [F1] and
they do not rely on any compactness assumption; they just use the fact
that u is a weak KAM solution and that π|Γ+(u) is injective with Lipschitz
inverse. �
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