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Abstract. We give a formula for the rates of escape for Julia sets with pre-
periodic critical points and for C°° endomorphisms of the interval with non-flat
pre-periodic critical points outside the basin of attracting periodic points.

0. Introduction

Let / : M <-> be a continuous mapping of a riemannian manifold and U ̂  M.
The rate of escape of U (by /) is defined to be

1 Λ"1 \
R(U) := lim - logvol Π f~k{U) < 0

VLo /
if this limit exists, i.e. the exponential decay of the volume of the set of points
which stay on U for n iterates. If / is Axiom A and U a small neighbourhood of
a basic set A, Bowen and Ruelle [2], [3] proved that

R(U) = P{φu) = sup{hv(f) — Σλf(v) | v ergodic measure with Supp(v) c A],

where λf(v) are the positive Lyapunov exponents of v, P is the topological
pressure, φu(x) = —log |detD/|£M(x)| and Eu(x) is the unstable space at x G A.
Axiom A attractors are characterized by P(φu) = 0, when A is not an attractor,
P(φu) = R(U) < 0 give a measure of the influence of A on neighbouring orbits.
Similar methods [12] apply to prove that R(U) = P(φ), φ(x) = - l o g |det/'(x)|
if U is a small neighbourhood of K and / : K <-̂  is strictly expanding.

Eckmann and Ruelle [3] raised the conjecture that for some open set
U =3 Supp(μ),

R{U)=hμ(f)-Σλt{μ)
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if μ is an ergodic measure which maximizes the quantity hv(f) — Σλf(v) when
v runs over the invariant probabilities with Supp(v) c U. It is clear that U can
not be arbitrary (see example of Fig. 17, [4]). Young proved this formula when
U is a small neighbourhood of A and / : A <-^> is uniformly partially hyperbolic,
i.e. there exists a continuous splitting TAM = Eu ® Ecs such that for an iterate
N > 0, Df_N is strictly expanding on Eu and not expanding on Ecs.

If / : (C +-> is an analytic endomorphism of the riemann sphere (C = (C U {oo}
(i.e. a rational map), then its Julia set J(f) usually acts as a repulsor. It is then
natural to ask about escapes of J(f). Let c(f) be the set of critical points of /.
Here we prove

Theorem A. / / / : (C <-̂  is a rational map such that the positive orbit ofc(f)ΠJ(f)
is finite then for any open set U such that f] fn(U) cz int(U), the following limit
exists and the formula holds: n^°

1 Λ"1 \
R(U) = R(U) = lim - log vol Π f~k{U)

n->+oo n \ I
\k=Q /

= min{0, sup{Λv(f) - 2 / log \f\dv \ v e Jί(j\ Supp(v) c U}},

where Jί(f) is the space of f-invariant Borel probabilities.

Thus proving the conjecture for Julia sets with pre-periodic critical points. In
particular it holds when all the critical are pre-periodic but not periodic and then
the Julia set is the whole sphere. If J(f) has a parabolic periodic point then it
actually attracts an open set to the parabolic orbits and R(U) = 0 for any open
set U containing one of those orbits.

The only analytical tool that we use on the proof of Theorem A is Sullivan's
structure theorem for rational maps. Its analogous for real one dimensional
dynamics is a theorem by Martens, deMelo, and van Strien [9, 10]. We explain
it. Let N be [—1, 1] or S1 and / : N —> N a C 2 non-invertible map having a finite
number of critical points which are non-flat. If / has some turning points let
Sing(/) be the set of turning points of / together with the boundary points of N.
If/ has no turning point and is not a diffeomorphism, it must be a covering map
of the circle and, therefore, it has a fixed point. In this case define Sing(/) as the
set of fixed points of/. We define the Julia set J(f) of/ as the α-limit of Sing(/),
and the Fatou set F(f) as the complement of J(/). In general F(f) is not forward
invariant. If U is a connected component of J(f) then f(U) is contained in the
closure of some component of F(f). The theorem says that the components of
F(f) are eventually periodic and the number of periodic components is finite.
Therefore any critical point in F(f) must have ω-limit a periodic orbit in F(f)
and the conditions of / in the following theorem are equivalent to say that the
ω-limit of every critical point is a periodic orbit. With this remark, the proof of
Theorem B is the same as that of Theorem A:

Theorem B. Let N be [—1, 1] or S1 and f : N -> N a C0 0 non-invertible map with
a finite number of critical points all of which are non-flat. If the positive orbit of
c(f) ΠJ(f) is finite then for any open set U cz N such that f] fn(U) cz int(l/), we
have n^°

R(U) = R(U) = min{0, sup{Λv(fl - / log \f\dv | v € Jt(j\ v(U) = 1}}.
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Another example is the map f(z) = 2 — z2. If we see / as / : [—2, 2] <-̂ ,
then / is conjugate to the Tent map g(x) = 2 — \x\. The Lebesgue measure is
invariant by g, coincides with the maximal entropy measure for g and is sent
by the conjugacy to the measure of maximal entropy for /, which is absolutely
continuous with respect to the Lebesgue measure. Therefore, by Pesin's formula
hμ{f) = /iτop(f) = log2 = λμ9 and the rate of escape from μ in [—2, 2] is 0. If
we see / as / : (C <-̂  then its Julia set J(f) = [—2, 2] is the complement of the
basin of oo. If U is a small neighbourhood of [—2, 2], we have, using Ruelle's
inequality and the methods of Theorem A, that

-log2 < R{U) = sup{hv(f)-2λv\ < - inf λv < -^ Iog2 < 0.
veJt{f) 2

In particular, J(f) acts as an "exponential" repulsor.

1. The General Inequality

We shall use a characterization of metric entropy due to Katok. Let T : X <-° be a
continuous mapping of a compact metric space (K, d) and μ a T-invariant Borel
probability. Let ρ : K —•](), 1] be a measurable function such that logρ G ^?1(μ).
For x e K and an integer n > 0, let

V(x,n,ρ) :={y£K\ d(Tk(x), Tk(y)) < Q(Tk(x)\ 0 < k < n) .

We say that E c K is (n,ρ)-separated if V(x,n,ρ) Π V(y,n,ρ) = φ whenever
x, y & E and xφ y. For 0 < 3 < 1, ε > 0 a set G ^ K is said μ — (n, ε, d)-spanning
if

μ( U F (

taking ρ = ε, the constant function; G ^ X is said (n,ε)-spanning if

Let Nτ(n,ε,d) be the minimal cardinality of any μ — (n,ε,d) -spanning set.

1.1. Theorem (Katok [7]). If μ is ergodic then for every 0 < d < 1:

Λ»(f) = lim liminf - log iVr (rc, ε, δ)
ε->0 n-^+oo n

= lim lim sup - log Nτ (w, ε, 3).

Recall that the capacity of a compact metric space K is defined as

where N(r) denotes the minimum number of balls of radius r required to
cover K.

1.2. Theorem (Brin-Katok-Mane) [8]. Let T : K <-̂  be a continuous map of a
compact metric space K with capacity (K) < +oo. Let μ be a T-invariant Borel
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probability measure and ρ : K —•](), H-oo] a measurable function such that logρ e
S£ι(μ). Let

h~ί~(T, x) := — lim lim inf - log μ(V(x, n, ερ)),
ε—>0 n n

ftJ(T, x) := - lim lim sup - log μ(F(x, w, ερ)),
^ ε-»0 n n

then h±(T,T(x)) = h±(T,x) for μ-almost every x e K, and hμ(T)
= f h±(T9x)dμ(x).

Now let / : C <-̂  be a rational map of the Riemann sphere C = CU {00} and
μ an ergodic /-invariant probability measure. Observe that log |/'| is measurable
and bounded from above. Then by Birkhoff's theorem, the unique Lyapunov
exponent λ of μ is

λ(x) := lim - log|(Γ)'(x)l = lim - X log W(x))l
j=0

= flθg\f\dμ.
By Ruelle's inequality hμ(f) < 2max{0,/l}. Now suppose hμ(f) > 0, then

0<hμ(f)<2λ = 2f\og\f\dμ.

Let c(f) be the set of critical points of/. Define ρ : C -»]0, 1] by

ρ(z):=

Let us see that —logρ is μ-integrable if hμ(f) > 0. It suffices to see that —logρ is
μ-integrable on a neighbourhood of each critical point. If ω € c(f) and r > 0 is
small enough, ρ(z) = \ d(z,ω) for z e Br(ω) and there exist A > 0 and m e Z+

such that \f(z)\ < Ad(z,ω)m if z 6 Br(z). Then logρ(z) = log(l/2) +logd(z,ω)
and

-logρ(z) < log 2,4 - 1 log |/ ;(ω)|.

Since the argument above showed that log|/'| is μ-integrable when hμ(f) > 0,
this concludes the proof that logρ e S£x{u).

The following is a corollary of Koebe's distorsion theorem [6].

1.3. Lemma. For all δ > 0, there exists ε(δ) > 0 such that ε(δ) —• 0 when δ —• 0,

e-δ\f(a)\d(a,b) < d(f(a)J(b)) < eδ\f(a)\d(a,b),

e-δ\f(a)\<\f(b)\<eδ\f(a)\
for all a,b e c(f) such that d(a,b) < e(δ)d(a,c(f)) and, setting r = ε(δ)d(a,c(f)),
f\Br(a) is injective.

Fix δ > 0 satisfying 0 < δ < λ(μ) and ε := min{l, ε{δ)}, define for r > 0, n > 1

Br(x) :=B(x,r) := {y G V\d(x9y) < r},

Gcn(x) := min{r > 01 V(x9 n, ερ) a Br(x)},

βn(x) := max{r > 01 Br(x) a V(x, n, ερ)} .
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1.4. Proposition (Mane [8]). (i) If x £ \J f~j(c(f)) then απ(x) < eδn\(fn)'{x)\~ι for
n>\. Also J=°

eδ»\(fn)f(x)\<\(fny(y)\<eδ»\(fny(x)\

for all y G V(x,n,ερ) and fn\v(x,n,ερ) is 1-1. In particular

limsup - logαn(x) < — λ(x)
n->+oo n

00

for all x £ \J f~j(c(f)) for which λ(x) exists.
7=0

(ii) If μ is an ergodίc f-invariant Borel probability with log |/' | 6 S£γ(μ) then for
μ-a.e. x,

lim inf - log βn(x) > -(λ + 2δ).
n-»+oo n

1.5. Proposition. Let f : <C <-̂  be a rational map and μ an ergodίc f-invariant
Borel probability measure such that log |/' | G J£λ{μ). Then for any open set U with
μ(U) = 1 we have

hμ(f) - 2 J log \f'\dμ < lim inf - log w( f ) Γk(U)) ,

w/ẑ re m is the riemannian measure on C.

Proof Let 5 > 0 be given. Let Λ = fl / ~ n ( ^ ) ? then μ(τl) = 1. Write

ε = min{ε(<5), 1} as in 1.3, then ε —• 0 when δ -> 0. By a combination of
Ergorov's and Lusin's theorems there exists a compact subset K a A a U such
that μ(K) > 1 — d for some 0 < 3 < 1 and the limit in 1.4 (ii) is uniform on K,
i.e. there exists a sequence of positive numbers εn —» 0 such that

n

for all xGKΛfδis small enough then ε < d(K9 fc-U) and K(x, n, ε) c "fl Z" f c(^)
k=0

for all x G K c yί. Let <Sn <= K be a maximal (n, ε)-separated set in K, then Sn is
a μ — (n, 2ε, δ)-spanning set because

H - l

Kc (J V(x,n,ε)<=f)Γk(U).
XGSn k=0

We have that #Sn > N(n,2ε,d) and then

\fc=0 / \χeSn / xeSn

> ^ m(V(x9n9ερ)) > ^ Q(βn(x))2

χeSn xeSn

> N(x9 2ε, d) exp 2(-λ + 2^ + επ),
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where Q > 0 is such that m(Br(x)) > Qr2 for all z G (C. The proposition follows

from taking - log, setting n —> oo and then δ —> 0 (and hence ε —> 0). D

2. Large Deviations Argument

Let K be a compact metric space and / : K <^> a continuous map. Denote by
C°(K) the space of continuous functions φ : K -» 1R, with the topology given by
the norm \φ\0 := sup{|φ(x)| \x e K}. Let Jί(K) be the space of positive Borel
measures on K with the weak* topology over C°(K), έ?(K) the subspace of Borel
probabilities on K and J({f) the subspace of /-invariant Borel probabilities.
Write v(φ) := / φdv for φ G C°(K) and v € Jt{K).

2.1. Proposition [5, 14]. Let f : K <^> be a continuous map of a compact metric
space and (mn) a sequence on Jί(K). For φ € C°(K) write

c(φ) := limsup - log/ eSnψ{x)dmn{x),
ftΠ-++CQ

where Snφ(x) := X φ(fk(x)). For v e Jί{K) write

k=0

I(v) := sup{v(φ) - c(φ) \ φ G C°

and for G c M(K) write
/(G):=inf/(v).

Then for any compact subset G <Ξ M{K) we have
l 1
* € G >,

J

1 ί I \ n~l

lim sup - log mix € K / - V*I / %=0
wfiere δx(A) = I if x € A, δx(A) = 0 if x £ A for any x e K and any Borel set
A<=.K.

F o r ί / c χ , m G Jί{K\ φ e C°(K) and x e K, let

R-(U) :=R-(UJ,m) :=liminf - logm ( f| /"*(!/) ] ,

l Λ" 1 \
i^+(ί/) :=R+(UJ9m) := limsup - logm |°| /"Λ(C/) ,

n - l n - 1

l/» := Π Γk(U), Snφ(x) := ̂  φ(f *(x» .
fc=0 k=0

2.2. Corollary. IfU^K is compact, and m G Jί(K), then, taking G^ := {v G
iC) = 1 = v(UN)} and mn := m\Un, we have

2.3. Corollary, (a) Let U ^ K be compact. Suppose that the entropy map Ji{f) —>
[0, +oo[ : v i—> hv(f) is upper semi-continuous on every v G Ji(f) with Supp(v) cz U.
Assume that there exists a continuous function φ : U —> R such that for all n>\,
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n - 1

m(V(x, n, ε)) < an(ε) exp(Snφ(x)) for all x G f | f~k(U),
fc=0

lim limsup - logαw(ε) = 0,
ε-»0 π_>+oo n

and that Jΐ(f) Π 0>(U) φ φ and

Q(U) := sup{/zv(f) + / φdv/v(U) = 1, v € ^ ( f ) } < 0,

< Q(JJ) = hμ{f) + fφdμfor some μ G J((f)n&(U).
n-\

(b) IfJ((f)n0>(U) = φ then there exists N > 1 such that f| f~k(U) = φ for all
n>N and hence R~(U) = R+(U) = -oo. k=°

Given φ G C°(K), the topological pressure of φ is defined as

P(φ) := lim limsup - loginf V eSnψ^,
ε—>0 H—> +oo n G ^ - ^

where the infimum is taken over all the (n, ε)-spanning sets for K. The variational
principle [13] says that for any φ G C°(X),

P(φ) = s\ιp{hμ(f) + / φdμ/μ G Ji(f)} .

Proof of 23. For ε > 0, π > 1, φ G C°(K), let Gπ be an (n, ε)-spanning set for K
and

fc(ε) := sup \φ(x) - φ{y)\ + sup \φ(x) - φ(y)\,

then k(ε) —• 0 when ε —> 0, and, if mn := m\un,

ί eSMx)dmn(x)= ί eSMx)dm(x)

un

" -nk(ε))m(V(x9n9ε))

an(ε) exp(Snφ(x) + 5nφ(x) + nk(ε)).

Let c(φ) be as in (2.1) then by the definition of topological pressure, for any
δ > 0 WQ can choose 0 < ε < δ and Gn such that c(φ) < P(φ + φ) + /c(ε) + £, and
hence c(φ) < P(φ + </>).

If v G ̂ ( / ) and v(C7) = 1, then

/(v) := sup (v(φ) - c(φ)) > sup (v(φ) - P(φ + φ))
ψ ψ

> - inf [P(φ + (/>)- v(φ + φ)] - v(φ).
ψ
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Since v >—• hv(f) is upper semicontinuous at v, then ([13] 9.12), inf [P(φ + φ) —

v(φ + φ)]=hv(f). Thus

/(v) > -hv(f) - v(φ) > -Q(U) for any v G Jί(f) Π 0>{U).

If v £ M(SX v G ̂ (X) then, by Theorem 9.11 of [13], for ψ = φ + φ,

I(v) > sup (v(ψ) - P(ψ)) - v(φ) > -v(φ), if v £ M(j).
ψ

1 n-l
For n > 1, z G K, let vn(z) := - Σ <5/fc(z) G ̂ (X). For AT > 1 let

n fe=o

G]v := closure of {vn(z)/vn(z) G ̂ ( t/ ) , n > AT},

then Giv ^ ^(K) is compact for all JV > 1 and like in Corollary (2.2), R+(U) <
-I(GN) for all N > 1. But

/(GN) = vin£ /(v) > min{-β(t/),inf{-v(0)/v e G n ) v ί Jt(f)}}

for all N > 1. Hence R*(U) < max /β(C/), limsup(&#)} where fejv := sup{v((/>)/

v G GJV, v ^ ^ ( / ) } There exists a subsequence VJV = vN(zN) G GJV, VTV ̂  ^ ( / )
such that limsup vN(φ) = limsup(frjv)- Since GN CZ £?(U) and 0>(U) is compact,

JV JV

there exists a subsequence (vm) of (VJV) such that vm —• μ G ^( ί/ ) . We will see
that μ G «/#(/) Π ̂ ((7). Indeed, if ψ G

. m—1

μ(ψ ° f) = u m ~
m m

1 m l 1 1
= lim - V ψ(fkzm) - - ψ(zm) + - ψ(fmzm)

m-\

Ψ(fkzm) ~
m m

= lim vm(tp) = μ ( φ ) ,
m

we have

lim sup bN = μ(ψ) < Λμ(f) + μ(0) < β(I7),
JV

and hence R+(U) < Q(U).
00

(b) Suppose Π f~k{U) ψ φ9 then GN φ φ for all N > 1. Since the compacts
k=Q

GN satisfy GJV+I ^ GJV, there exists μ G Π GN. The argument above shows that
JV

μ G Jί(j) Π ̂ ((7). If ^ ( / ) Π ̂ (10 = φ, then since f| ^JV = </> is an intersection
JV

of a decreasing sequence of compact sets, there must be some N > 0 such that
Un = φ for all n > N. Thus R+(U) = -oo. D

Given a rational map / : C <-̂  denote by J(/) its Julia set (see [1]), Fix(/) :=
{z G C//(z) = z} and Per(/) := (J Fix(/"). Let m G ^(C) be the normalized
riemannian measure. n^x
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2.4. Proposition. Let f _: C <-> be a rational map such that c(f) Π J(f) ^
U /-"(Per(/)). //17 <= <C is compact, then

R+(U) < sup{hv(f) - 2 f log |/Ίdv/v G uTtf), v(U) = 1}.

We begin with some reductions. If there exists v G Jί{j), v(U) = 1 with log \f\ $
<£x(y) then the lefthand side of the inequality is +oo, since always R+(U) < 0,
(2.4) holds. So assume log |/' | G JSf^v) for any v G Jί(f)9 v(U) = 1. Observe that
it is enough to prove (2.4) when c(f) n J(f) e (J /~n(Fix(/)). Indeed, we can

always find an iterate k > 1 such that for g = /*, c(g) Π J(g) c | J g"n(Fix(g)).
Given Q > 1 let n > 1 be such that n/c < β < (n + l)/c, then w^x

1 Λ " 1 \ 1 Z"*"1

- logm Π g-\U) )<k- logm f| / - (
\ 0 / V 0i=0 / V ;=0

Also, for all μ G Jί{f) sucht that log |/ r | G ^ f 1 ^ ) .

- 2 / log I/Vμ = khμif) ~ 2 / Σ
7 ;=0

Suppose (2.4) is true for g, then

k(hμ(f) - 2 I log |/Vμ) > k ̂  logmί

Since 1 < -̂ - < • 1 when Q -> +oo we get (2.4) for /.
nk n

From now on let / : C ̂  be a rational map with c(f)ΠJ(f) c | J /~~π(Fix(/)).

Let ^(/) := c(/) Π J(f). Observe that there are no singular domains D (Siegel
discs or Herman rings) because if so the boundary dD must be in the closure of
the positive orbits of critical points which are in J(f) (cf. [1]) and <&(/) has finite
positive orbit.

Suppose that there exists a parabolic periodic point p in 17, i.e. p G U with
fn(p) = p? X := (fn)'(p), λk = 1 for some n, fc > 1. If v is the ergodic measure
supported in the positive orbit of p, we have

0>R+(U) >R~(U) >hv(f) - 0 = 0.

Suppose that there exists a critical point ω G c(f) ΠJ{f) such that fn(ω) = p is
a fixed point such that |/'(p)| < 1. Then p must be a parabolic fixed point and
we may assume that p £ U. But then p £ Un+\ and since R+(Un+\) = .R+(ί7), we
can assume that p £ U.

If ω G c(/) and in local coordinates f(z) = f(ω) +am(z — ω)m + . . . for z near
ω, write m := ordω(/).
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2.5.Lemma. If ω e c(f), fn(ω) = p, f(p) = p, λ := \f'(p)\ > 1, then there exist
E = E(ω) > 0, ί = /(ω) > 1, D = D{ω) > 0 such that for all R > 0 sufficiently
small there are S = S(R) > 0 and εo > 0 depending on R such that S(R) —• 0 w/zen
R^O and
(a) /or α// z e B(ω9ES) - B(ω9S), fn^(z) <£ B(p9R)9

(b) fn{Bω,S))^B{p,R\
(c) for all z e B(ω,ES), z φp and O<ε<εo;ίfq>O is the first integer q € Έ+

such that

R<d(fn+«(z),p)<2\f'(p)\R,

then

V(z, n + q9 ε) cz V(z, n + q, εDR~{ρ),

diamF(z,w+l,ε) <iDRm^λq/mB9

D~ιR^λq/m < \(fn+q)f{z)\ < DR^λq/m

D-'R^λ-q^ < \(T)'{z)\ < DR^λ~q^).

Proof Choose SO < 0 and 0 < b < 1 such that for all x e B(ω, So),

bd(x,ω)m < d(fn{x),p) < b-χd{x,ω)m

ω)m-χ < | ( f )'(x)| < b-ιd(x,ω)m-χ. (1)

There exist RQ, TO > 0 and an analytic conjugacy (cf. [1]) F : B(p,Ro) -• 5(0, TO)
such that F(p) = 0, Fr(/?) = 1 and if x, /(x) e B(p,Ro)9 F(f(x)) = aF(x), where
a := /'(p). Choose A > 0 such that for all x, 3; G B{p,Ro):

A-χd{xyy) < d(F(x),F(y)) < Ad(x9y)

A-ι<\F'{x)\<A. (2)

Take 0 < Rγ < RQ such that \ \f(p)\ < |/'(x)| < 2\f(p)\ for all x e B(p,Rλ). Take

ε0, î 2, S2 > 0 such that 0 < ε0 < S2 < #2 < #1 < 1, /n + 1(^(ω,2S2)) c B{p,R2),

A :=d(B(p9Ro)9c{f))>O9

d(c, z(/)) =d(z, ω) for all z e B(ω, 2S2). (3)

Let #3 > 0 be such that B(p,R3) cz fn(B(ω,S2)). Suppose 0 < R < R3, let
z € £(ω, Si) be such that fn(z) e B(p, R). Let q > 0 be the first qeΈ+ such that

For x e V(z9 n + q9 ε), 0 < ε < ε0, let xn+fc := /n + / c(x), fc = 0,1,... , q then

d(xn+q9p) > A-χd{F(f-q{xn%0) > A~1d(aqF(xnl0)

> A-ιλqd(F(xn),0) > A-2λqd(xn,p)

d(xn,p) <A2λ-qd(xn+q,p)

and similarly

d(xn9p) > A-2λ-qd{xn+q,p).
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By (1), we have

d(x,ω) > b^md(xn,p)^m > bι/mA-Vmλ-«/md(xn+q,p)Vm,

d(x,ω)>λ-q/mR1/mQ-1, (4)

d(x,ω)<λ-q/mR1/mQ,

where Q > 0 is such that 0 < Q~ι < (M" 2 ±) 1 / m < (A2b-χ4\f'(p)\)ι/m < Q
and {R < R - ε < 2\f'(p)\R + ε < 4\f'(p)\R. If we take t > 0 such that
λ-ί2\f(p)\A2b-1 < b then for E > 1, S > 0, such that {2\f (p)\Rλ^ A2b~l) <S<
ES < RVmbι'm we have that fn(B(ω9ES)) a B(p,R)Vx G B(ω,ES) - B(ω,S):
fn+'(x) i B(p,R) and S(R) = S(ω,R) -• 0 when R -• 0. Using the conjugacy, F,
we have

\(fn+q)'(χ)\ = \(f"Y(χ)\ \(ίq)'(Snχ)\

\(fn+q)'\ <

for any Do > 0 such that 0 < D^1 < bg~ ( m - 1 ) A"2. Using the mean value theorem,
for all x e V(z, n + q, ε) there exists η e V(z, n + q, ε) such that

ε > d(zn+q,xn+q) = \(fn+q)'{η)\d{z,x) > V ^ Λ f ^ ) .

By (4), we have

d(x,z) < D{)εR-ιRι/mλ-qlm < D0Q e R~xd(z,ω), (5)

d(x,z)<D1R-ιεd(z,ω), (6)

forDi > D o β . By (3), for k = 0,1,... ,^,

d ( x n + k , z n + k ) < ε < ε l-JA<ε(- )d(zn+k, c(f)).

— ,Do,2Di k
J

Therefore, if D := max < — ,Do,2Di k z G B(ω,S2) and 0 < ε < εo < 1, we have
M J

from (5) that diam K(z,n + q,ε) < DoεR-^λ~^m and from (6) and (7) that
V(z,n + q,ε) cz V(z,n-\- q,εR~ιq). This completes the proof. We can also take

D > max{l, (b^A2)1^}. D (8)

We want to construct a continuous map φ which, integrated by ergodic measures,
nearly realizes the Lyapunov exponents. Let ^(/) := c(f)ΠJ(f)ΠU. For ω G ̂ (/)
let n(ω) be the first integer n(ω) G Z + such that p(ω) := fn{ω){ω) G Fix(/). We
can assume that λ(ω) := l/'^Cω))! > 1 for all ω G ^(/). Let M := max{n(ω)/ω G
*(/)}, then g := fM has the property that in the positive orbit of each ω G #(/)
there is at most another critical point in ^(/). Therefore we can assume that /
has this property.

We want to separate orbits of pre-periodic points which do not pass through
a critical point. Let M be the branched manifold defined as follows. Let Q(f) :=
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{ω G W ) / ( Γ ( ω ) ) ' ( / M ) = 0}. For each ω G Q(f) let V{ω) a small disc centered
at ω such that / is strictly expanding on fn(ω)(V(ω)) and all the fk(V(ω))9

0 < k < n(ω), ω G Q{f) form a collection of disjoint topological discs. Let M be
the quotient space M := M/=9 where:

n(ω)

Cx{0}u \Jfk(V(ω))x{ί}
k=l

and (x,0) = (y, 1) iff x = y G dfk(V(ω)) for some 1 < k < n(ω) and ω e Q(f).
Define g : M -• M by g(x,0) = (/(x),0) if x φ V(ω) for any ω G Q(f); g(x,0) =

1) if x € ); g(x,l) = (f(x)Λ) if /M
n ( ω ) l

U U fk(V(ω))
k=\

and g(x,l) = (f(x),0) if/(x) ^ / π ( ω ) (^(ω)), x e / n ( ω ) (F(ω)). The condition that
/ is strictly expanding on fn^(V(ω)) implies that / is continuous and C0 0. Let
π : M —• <C be the canonical projection.

In (2.5) we can choose S, E, D uniformly for all ω e <g(f), i.e. < > t(ω\
E > E(ω), D > D(ω)9 for all ω e ^ (/ ) . Let <50 > 0 be so small that all
B(fk(ω)9δ0) 0 < k < n(ω)9 ω e <€{f) are disjoint and B(fk(ω)9δ0) cz fk(V(ω))
for all 0 < k < n(ω), ω e Q(f). Fix 0 < δ < δo/4 and let φ = φδ, φ = φs :
M -> 1R be continuous functions defined as follows. Let 0 < R <C δ be such
that f*(B{p(ω),R)) c B{p(ω))9δ). Let ω € <£<J) - Q(f), i.e. (fn^)'ifω) φ 0. Let
S(ω9R) > 0 be as in (2.5), remember that fn{ω)(B(ω,S(ω9R)) a B(p,R). Then

φ(z,Q) =
m(ω)

*+1

for z G f| Γk(B(p(ω),R)),

m(ω)
< φ(z, 0) < - 2 for z G p | , R)),

z, 0) = - 2 log | for z G >-f)Γk(B(p(ω)9R))9

0(z,O) = - 2 logD + 2
m(ω)

2\og\f(fkω)\ for z G B(ω9S(ω9R))9

m(ω)

and

n(ω)

k=\

C)

for zG(/-n(ω)(5(p(ω),K))-B(ω,S(ω,Λ)))ΠJ3(ω,^), ,

ί,0) = - 2 1og|//(z)| for z e B(ω,δ) - f-n^(B(p(ω),R)),
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n(ω)l

φ(z,0) = -2log\f'(z)\ for ze \J fk{B{ω,δ)) •

Note that there is a constant K = K(ω) > 0 such that | / ' (z) | < K()

for all z e B(ω, δ)Πf-"{ω)(B(p(ω), R)) so that (*) makes sense if one chooses D > 0

sufficiently large but independent of ω, δ or R. Suppose that z G B(ω, S(ω,R))

and q > 0 is the first q € Έ+ such that /"<<">+« (z) g B (/>,#), let n = n(ω),

m = m(ω), Sfc</.(z,0) = £ Φ(g'(*,0)), then, by (2.5),
1=0

Sn+?</>(z,0) > - 2 logDR^λ^λe+1

> -2 log\(fn+q)'(z)\ - 2 log/ + 2 - 4 logD,

Sn+qφ(z,0) > -2 ^ ^ ^ 1

>-2 log \(fn+«y(z)\. (9)

If z e (Γn<ω)(β(p(ω),.R)) - B(ω,S(ω,R)))ΠB{ω,δ) and q > 0 is the first q e
Z+ such that /"(ω>+«(z) ^ B(ω,Λ), then 0 < q < ί and hence φ(gn+k(z, 0)) =
-2 log |/'(/"+/£(z))| for 0 < k < q. We have, by (2.5),

Sn+qΦ(z,0) > -2 logDR^ -2\og\(fi)'(f"z)\

< -2 log |(/")'(z)| - 2 logD2A«(^) - 2 log | ( fθ '( f z)|

> - 2 log \(fn+qY(z)\ - 2 \o%D2λ{,

Sn + ?4>(z,0)^-21og|(f+«)(z)|. (10)

If z € B(ω,δ) - f-n{ω){B(p(ω),R)) and q > 0 is the first q e Z+ such that
()

Now suppose that ω € Q(f), then we can assume that there exists one and only
one critical point in the forward orbit of ω. Let f(ω) = u € ^(/). Define

φ(z,ί) = φ(z,0) for z e U
k=l

logA(ω) for z e f|
^ ' ' m(ω)

logλ(ω) < φ{z, 1) < - 2 log |/'(z)| for z e f| Γk(B(p(ω), R)),
2

for z e fn{ω)(V(ω)) - f | f~k(B{p(ω),R)).
k=0
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n(ω)

Let z G U fk(V(ω)) and let q > 0 be the first q e Z+ such that f

B(p(ω),R), with z G fn{ω)~s{z)V(ω). Then, by the same arguments as in [9] and
[10], we get

Snφ(z, 1) > - 2 log \{fs{z)+q)f(z)) - 2 \ogD2λw.

But we don't get a good upper bound for Snφ(z, 1) + 2 log | (/ s ( z ) + ί ) '(z) | because

φ is \ogλ~2/m^ and not log λ~2/m^ near p(ω) = p(κ). Let

φ(z,0) = - 2 logD - Sn{ω)-γφ(f(z\ 1) - 2 m{ω] * XogR

for z G f-{n{ω)-n{μ))(B{u,S{u,R))) Π V(ω),

- Sniω)-ιφ(f(z), 1) - 2 m ( ^ 7 1 logl^l

for z e Γn{ω\B(p(ω),R)) J

for z G F(ω) - / - ^ > ( B ( p ( ω ) , K)).

If <So is small enough, then 5n(ω)_iφ(/(z), 1) > 0 and by the same remark as in
(*) we can choose a uniform D, not depending on ω, (S, JR; such that (**) can be
satisfied by a continuous </>. By the same arguments as above, if z e F(ω) and
q > 0 is the first integer such that /n ( ω ) +^(z) £ 5(/?(ω),K), we have

Snφ(z90) > -2 log\(

Snφ(z,0)>-2log\(fn{ω)+q)f(z)\.

Once φ is defined on a neighbourhood of all the critical points Z)
Qif) x {0}u(<g(f)-Q(f)) x {0,1}, define φ on the remaining points of V := π~ι{U)
by

Define φ = φs : M —>• 1R to be a continuous function such that

φ(z,α)<2 1ogD2Λ^2 if d((z,α),«M(g)) < (5,

0<φ(z,a)<2\ogD2Λm if δ < d((z,α),*M(g)) < 2(5,

φ(z,α) = 0 if d((z,α),*

for /ί > max{Λ(ω)/ω G ̂ (/)} and α = 0,1.
For ω G ̂ W(g) we can define p(ω), n(ω), m(ω) and λ(ω) as we did for /. If

z G .β(ω,(5). z 7̂  ω G M for some ω G %>M{g) and g > 0 is the first q G Έ+ such
that J(gn(ω)+ί(z),/?(ω)) > R, we say that the orbit gk(z), k = 0,1,... ,n(ω) + ^ is
feounJ to (ω,p(ω)) and that it frees at g n ( ω ) + ί (z). We also say that its forward
orbit remains free until it enters to a bound period again.

We have proven the following.

2.6. Lemma. Let V :== π~ι(U). There exists A > 0 such that for all δ > 0 suffi-
ciently small there are continuous functions φ = φs, φ = ψδ :K—>]R such that
0 < φ(z,oc) < A for all (z,α) G V and φ(z,oc) = 0 if d(z,V(f)) > 2δ and for all
n>ί
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n

for all (z,α) > Π g~k(V) s u c n that gn(z,α) is free, and

Snφ(z,0)<-2\og\(fn)f(z)\

for all z G C such that z e f | f~k(U).
k=0

2.7.Lemma. There exist Q > 0 and ε\ = ε\(δ) > 0 such that ifc(f)—J(f) a (C— U,
N-l

0 < ε < ei(<5), N > 0, V := π~ι(U) and z G VN := f| g~f(

/ «(ω)-l I=°
(a) //gN(z) /5/r^ i.e. gN(z) £ U U g

m(V(z9 AT, ε)) < Q exp(4(5iV + SN(0 + φ) (z)).

(b) Ifωe WM(g), n := π(ω), g*(z) G jB(p(ω,Λ)), N > n(ω) + fc, gN-n-*(z) G
B(ω,δ) is free, gN(z) is bound to (ω,p(ω)) and

Ak := {* G M/gN-n- fc(x) G B(ω, δ)9f
N~M(z) G B(p(ω), Λ), Vi = 0,1,... , k),

m(Λ Π F(z, N, 6» < Q exp(4<5N + SJV(^ + φ) (z)),

m(K(z,Λr,e)) < β N exp(45N + SN(φ + ψ) (z)).

(c) IfgN~k(z) e B(ω,δ) is free, ω 6 ^ M (g) and 0 < k < n(ω), then

m(V(z,N,ε)) < m(V(z,N-k,ή)<Q exp(4δ(N - k) + SN-k(φ + φ) (z)),

N-l

where m is the riemannian measure on M, Sχφ(z) := Σ Φ(f(z))> Φ = Φδ> ψ — ψδ

are from (2.6) and V(z9 N9 ε) = "ft g- '^fe^z), ε)).
i=0

Proof Let σ = σ(δ) > 0 be so small that g n ( ω ) + 2 / (β(ω,σ)) c B(p(ω),Λ) for all
ω G ̂ M (g) Let βi(<5) := ^ ε ί ^ m i n ί l ^ ί c ί / X δ ί / ) , / ) - 1 ^ 2 , ^ ^ } , where e(δ) is from
(1.3). Let Q > 0 be such that for all x G M and r > 0,

m(5(x,2r)) < ^ β min{l,D~2} (diam(5(x,r)))2. (•)

(a) If gN(z) is free, then by (2.5) and the condition ε < min{ε(^)JR
we have

V(z9N9ε) £ 7(z,JV,ιyρ) £ V(z9N9ε(δ)ρ)9

I ε ε ε Z)ε I
where η := max< - , - , - , — > and ρ(z) := min{l,ί/(z,^M(g))}. Also

diam(F(z,iV,ε)) < ^ i V | (g i V ) / (z)r 1 < βίJV exp(SN(0 + φ) (z)),

therefore
m(7(z,N,ε)) < βexp(2(5iV + SN(φ + φ) (z)).

(b) Since gN-"-fe(z) is free we have that 7(z,iV,ε) c 7(z,iV~n-fc,ε) £ F(z, JV-
). Hence, by (1.3), for ί :=N-n-k,f : 7(z,N-n-fc,ε(<5)ρ) -^B(ω,δ)
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is 1-1 and, by (2.6), KgO'MI > e x p ( - δ ί - \ St(φ + ψ) (z)) for all x <Ξ V(z,N-n-
k,ε(δ)ρ). Let

k

Bk := B(ω,δ) n f | g" l |- i(5(p(ω),Λ)).

Then, by the same arguments as in Lemma (2.5) and (8) in (2.5), we have

dmm(Bk) < (b-{A2Rγ/mλ~k/m < Dλ~k/m,

m(AknV(z9N9ε))oxp(-δt-^St(φ + φ)(z)) < J Kg')'(x)\dm(x)

AkΠV{z,N,ε)

< m(Bk) < Q0λ~2k/m{ω).

If g\z) G B(ω,σ), then the choice of εi((5) implies that V(z,N,e) cz V(z,N9ε\(δ)ρ)
and using (1.3) we get in particular (b). Suppose g\z) e B(ω,σ), then by the
definition of φ, φ and σ > 0, exp(Sn+k(φ + <p) (z)) > λ(ω)2k/m{ω\ and hence

m(Ak Π V(z, AT, ε)) > QQxp(2δt + SN(φ + φ) (z))

> Q Qxp(2δN + SN(φ + φ) (z)).

For (c) just aply (a). D

2.8. Corollary. There exists Q > 0 such that if V := π~ι(U), ε, φ and φ are as in
N-l

Lemma (2.7) then for any N > 0 and z e FJV := Π g " 1 ^ ) * w e ̂ a ^
i=0

m(F(z, AT,ε)) < QNexp(4δN + SN(φ + φ) (z)).

Proof. Consider the case (c) of (2.7). If (gπ(ω))/(g(ω)) φ 0 and δ0 > 0 is small
enough, then S*(φ + φ) (x) > 0 for all 0 < k < n(ω) and x e B(ω,δ0). Hence
SN(Φ + Φ) (̂ ) > SN-k(φ + φ) (z) and the inequality holds. If (gn(ω))r(g(ω)) = 0,

^ 1 ^ 1g » = κe *M(g), then - " ^ T 1 logî  > - ^ T 1 logî  and

{ω)-\ m(u)-ί\

m{u) Jm(ω)
) - l

21og|/'(r'z)|.
l
—n(u)

Thus if ($o > 0 is small enough R <C δo and 5^(0 + φ) (x) > 0 for 0 < k < n(ω)
and x e B(ω,δo), and then S^iφ + Φ) (z) > S^-idΦ + φ) (z) This complettes the
proof. D

2.9. Theorem. (Yomdim, Newhouse [11, 15]). Let M be a compact differentiable
manifold and f : M <-^> a map of class C°°. Then the entropy map Jί(f) —• [0, +oo[,
V H / I V ( [ ) is upper semi-continuous.

2.10.Corollary. For V : = ^ ( [ / ) ,

R+(V,g) < liminf sup {hv(g) + v(φδ + φδ)/v e Jί{g) Π
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Proof. By (2.3) and (2.8) we only need to see that the entropy map v ι—> hv(g) is
u.s.c. By (2.9) for / : C <^>, μ ι-> hμ(f) is u.s.c. For v G J?(g), let μ = π*(v) be
defined by μ(φ) := v(ψ o π) for any tp G C°(M). Let v e ^#(g) be ergodic but
v φ δp for any p G P(g) := {p(ω)/ω G ̂ M(g)} Then μ = π*v is ergodic and for
η > 0 small,

vj(x,0)€M/d(x, U
I V ωeQ{f) i=0

Pick (x,0) in this set. Then π is 1-1 on 5((x,0),?7) and

v(F(x,0),g,n,ε)) = (π*v)(F(x,/,n,ε))

for any 0 < ε < η. By Brin-Katok's theorem for a set of positive measure of such
(x,0), we have

hv(g)= lim — logv(7((x,0),g,n,ε))
n > + o o γi

= lim --log((π*v)(F(x,/,n,e))
n>+oo nn—> +oo

For the other ergodic measures in ^#(g), v = <5p(ω), ω G ^M(g), we have that
M#) = 0 = hπ*v(f). So that /*v(g) = hπ*v(f) for all v G ^erg(g) and since the
entropy map is aίϊine (cf. [13]), hv(g) = hπ*v(f) for all v G Jt(g). Let (vΠ) c ^ ( g ) ,
vn -> v, then μΠ := π*vn —> π*v = : μ and limsup hVn(g) = limsup hμn(f) <

D

Proof of Proposition (2.4). We can assume that c(f)—J(f) cz C—(/ because all the
invariant measures μ G ̂ ( / ) on <E—J(f) have Λμ(/) = 0 and —2 / log |/'|rfμ = 0
or +oo, and R+(U,f) < 0. Let m be the riemannian measure on <C and m be the
riemannian measure on M, then m(Λ) < m(π~ι(A)) < 2m(Λ) for any Borel set
A c <C. Hence R+(UJ,m) = K+(l/,g,m).

Let v G ̂ #(g) be ergodic and v =̂ δp(ω) for all ω G ̂ Λf(g)- Then by Birkhoff's

theorem there exist y G M — ^M(g) such that v ( ^ ) = lim - Snφs(y) and
n->+oo Π

v(ψ) = lim - Snψ(y)9 where ψ(z,α) = —2 log \f'(z)\. Let AT > 0 be the first time
n—> +oo W

that z := / N G0 frees and π(z) is outside (J /w(ω)(F(ω)). Then z = (x,0) and

v{φδ) = lim - Snφδ(x,0). If gΠ(x,O) is free then, by (2.6), SΠψ5(x,0) = Snψ(x,O)
n—» +oo n

and since the orbit of (x, 0) must have infinitely many free periods we_ have
v(φs) = v(ψ) = v(ψ o π) = (π*v) (ψ), where ψ(z) = —2 log |/'(z)|, for z e (t. For

2
v = (5p(ω), ω G ̂ M(g)> v(0^) = —— logΛ,(ω). Since the entropy map is affine

we can take the supremum in (2.10) only over ergodic measures. On (2.10) we
proved that hv(g) = hπ>v(f), thus by (2.6)

sup(Mg) + HΦδ + ψδ)h G MiS) n

max | β ( t / ) , ^ - logλ(ω)/ω G
I m(ω)
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where

Q(U) := sup{hμ(f) - 2 / log \f'\dμ/μ G Jί{f) Π P(U)} ,

e(<5) :=sup{v(B(2<5))/v G Jf(f)n0>(U)}9

B(2<5) := U β(ω,2<S).
ωe^ M (g)

Now we see that lim inf e(δ) = 0. If not, there exist sequences δn I 0, vn —• v in
<5—•()

Jt(f)Π0>(U) such that vn(B(2<5π)) > α > 0 for all n > 1. Fix JV > 1 and let 2δN+1 <
sN < 2δN b e s u c h t h a t v(dB(εN)) = 0 , t h e n v(B(εN)) < l i m i n f vn(B(2δn)) >a>0

for all JV > 1. But when N -> 0, B(εN) I <%M(g) and v(<gM(g)) = 0 because
otherwise the whole negative orbit of some critical point must have infinite
measure. This leads to a contradiction. Therefore

R+(UJ) < max(β(C/), ^ - \ogλ(ω)/ω
{ m(ω)

Let ω e ^(/), since ω e J(f) its negative orbit is dense in J{f). Thus there exist
z0 G β(p(ω),^) and JV > 0 such that fN(z0) = ω. Take ε > 0 such that £(zo,ε) c
B(p(ω),50), fN(B(z0,ε)) c B(ω,δo)9 /2(5(z0,ε)) > |zo|. Given M > 0 take n > M
and xM G B(p(ω),δo) such that /"(xM) = z0. Let j ; M := / " " M ( ^ M ) n 5(ω,δ0).
Then XM —> p(ω), }̂M —> ω when M —> +oo and if M is sufficiently large,
/-"-n(ω)(5(z0,ε)) c /^(^(zcε)) 3 ω is a topological ball which is sent into
fN(B(z0,ε)) by /"+«M+^. Then there exists a fixed point zM for /"+"(«)+* i n

.B(ω,̂ o) Let vM be the ergodic measure supported on the orbit of zM- Then
/zv(/) = 0andby (2.5)

-2 log/ log\f\dvM > - - — A —

where m := m(ω) and 4̂ := sup{|/'(z)|/z G C}. Since n = n(M) —> +oo when

M -^ +oo, sup{-2 / log\f\dvM/M > 1} > — logA(ω). Since ω G
m(ω)()

2
is arbitrary, Q(U) > —- logA(ω) for any ω G #(/) and hence R+(UJ)

m(ω)
D

Proof of Theorem A. Let v G «^(f) be ergodic and Supp(v) c J(f). The arguments

Γk{in (2.5) prove that for all x G J(f) - \J Γk{c(f)),

λ~(x) := lim inf - log\(fn)'(x)\ > 0.
«->+oo n

Since log |/'| is bounded from above, by Birkhoff's theorem λ~(x) = J log \f\dv
> 0 for v-a.e.x and hence log \f\ G gι(y). If Supp(v) c (C - J(/) and log |/'| ^
J^^v) then v must be supported on the orbit of a periodic critical point ω G c(f).
If orbit (ω) c C/, then JR(C/) = 0. If log |/'| G Jίf ̂ v) then since we only need to
consider ergodic measures, get from (1.5) one inequality of Theorem A.

If U does not contain critical points in C — J(f) then apply (2.4) and get the
other inequality of Theorem A. If ω G c(f) Π (<C — J(/)) ΠU =£ φ then the ω-limit
of ω is a parabolic or attracting periodic orbit Θ(p). If #(p) cz £7 then Θ(p) cz U
and #(£/) = 0. If 0(p) c ί7 then there exists JV > 0 such that fN(ω) £ Ό. Then
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_ N _

ω £ UN := Π f~k(U). Since R(U) = R(UN), we can assume ω <£ U and since

the number of critical points of / is finite, we can neglect this case. D
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