## **Generic Properties of Geodesic Flows**

Gonzalo Contreras

CIMAT Guanajuato, Mexico

International Congress of Mathematicians Hyderabad, India August 20, 2010

Generic geodesic flows

ヘロト ヘアト ヘビト ヘビト

ъ

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

## **Geodesic Flow**

M closed  $C^{\infty}$  manifold [compact connected,  $\partial M \neq 0$ ] $g = \langle , \rangle_X$  $C^{\infty}$  riemannian metric on M.unit tangent bundle = sphere bundle of (M, g)

$$SM = \{ (x, v) \in TM \mid \|v\|_x = 1 \}$$

ヘロト 人間 とくほとく ほとう

= 990

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

$$(x, v) \in SM$$
  
 $\gamma : \mathbb{R} \to M$   
geodesic s.t.  $\gamma(0) = x, \dot{\gamma}(0) = v$ 

"locally length minimizing curve with  $|\dot{\gamma}| \equiv$  1"

#### Geodesic Flow

$$\phi_t: egin{array}{ccc} \mathcal{SM} & \longrightarrow & \mathcal{SM} \ (x,v) & \longmapsto & (\gamma(t),\dot{\gamma}(t)) \end{array}$$

Generic geodesic flows

・ロト ・聞ト ・ヨト ・ヨト

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

#### **TOPOLOGICAL ENTROPY**

Measures the "complexity" of the orbit structure of the flow. Measures the difficulty in predicting the position of an orbit given an approximation of its initial state.

Dynamic ball:  $\theta \in SM$ ,  $\varepsilon$ , T > 0

$$\mathbb{B}(\theta,\varepsilon,T) := \{ \omega \in SM : d(\phi_t \theta, \phi_t \omega) \le \varepsilon, \forall t \in [0,T] \}$$

Points whose orbit stay near the orbit of  $\theta$  for times in [0, T].

$$\begin{split} N_{\varepsilon}(T) &:= \min\{\#\mathcal{C} \mid \ \mathcal{C} = \text{cover of } SM \text{ by } (\varepsilon, T) \text{-dynamic balls } \} \\ h_{top}(g) &:= \lim_{\varepsilon \to 0} \limsup_{T \to \infty} \frac{1}{T} \log N_{\varepsilon}(T). \\ N_{\varepsilon}(T) &\approx e^{h_{top} \cdot T}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity



イロン 不同 とくほ とくほ とう

ъ

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

#### 2 For $C^{\infty}$ riemannian metrics

Mañé 
$$h_{top}(g) = \lim_{T \to \infty} \frac{1}{T} \log \int_{M \times M} n_T(x, y) \, dx \, dy$$

 $n_T(x, y) := \# \{ \text{geod. arcs } x \to y \text{ of length} \leq T \}.$ 

 $h_{top} > 0 \implies$  positive measure of (x, y) s.t.  $n_T(x, y)$  is exponentially large.

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

TOPOLOGY  $\implies$  Some manifolds have always  $h_{top}(g) > 0$ .

• Dinaburg:

 $\begin{array}{l} \pi_1(M) \text{ exponential growth} \\ \Longrightarrow \quad h_{top} > 0. \end{array}$ 

[# of dynamic balls grows exponentially]

 $\lim_{R \to \infty} \frac{1}{R} \log \left( \operatorname{vol}(\widetilde{B}(x, R)) \right) > 0.$ Also if



ヘロン ヘアン ヘビン ヘビン

ъ

• Paternain-Petean: If  $H_*(\text{Loop space}(M), x)$ grows exponentially  $\implies \max \operatorname{arcs} x \mapsto y \in \tilde{\pi}^{-1}(x)$  $\implies h_{top} > 0.$ 

GEOMETRY

sectional curvatures  $K < 0 \Longrightarrow \phi_t$  Anosov  $\Longrightarrow h_{top} > 0$ .

K > 0 not clear.

### If the geodesic flow $\phi_t$ contains a "horseshoe" = a non-trivial hyperbolic basic set $\implies h_{top}(g) > 0.$

 $\exists \quad \begin{array}{l} \text{hyperbolic periodic orbit with} \\ \text{transversal homoclinic point} \\ \end{array} \quad \exists \quad \text{horseshoe.} \\ \end{array}$ 

Symbolic dynamics  $\implies$  the number of closed orbits grows exponentially with the period.

イロト イポト イヨト イヨト

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

#### Theorem

 $\begin{array}{l} \dim M \geq 2 \\ \exists \ \mathcal{U} \subset \mathcal{R}^2(M) \ open \ and \ dense \ s.t. \\ g \in \mathcal{U} \Longrightarrow \phi_t^g \ has \ a \ horseshoe. \end{array}$ 

#### Corollary

If  $g \in U$  then  $h_{top} > 0$  and the number of closed geodesics grows expo. with the length.

#### Application:

A. Delshams, R. de la Llave, T. Seará:

Initial system that allows Arnold's diffusion by perturbations with generic periodic potentials.

Generic geodesic flows

ヘロト 人間 ト ヘヨト ヘヨト

#### Comparison with other systems:

- General Hamiltonian systems.
- S. Newhouse:  $(M^{2n}, \omega)$  closed symplectic manifold

 $\exists \mathcal{H} \subset C^2(M, \mathbb{R})$  residual s.t.

# $h \in \mathcal{H} \Longrightarrow \operatorname{Hamiltonian}_{\operatorname{flow for } H} \left\{ egin{array}{l} \bullet \operatorname{Anosov or} \\ \bullet \operatorname{has a generic 1-elliptic periodic orbit} \end{array} ight.$

1-elliptic = 2 (elliptic) eigenvalues of modulus 1.

1 eigenvalue  $\lambda = 1$  (direction of Hamiltonian vector field).

1 eigenvalue  $\lambda = 1$  (  $\pitchfork$  direction to energy level).

2n - 4 hyperbolic eigenvalues.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

#### In the 1-elliptic case: Poincaré map restricted to energy level is twist map $\times$ normally hyperbolic





イロト イヨト イヨト イ



Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

Newhouse theorem uses the closing lemma.

The closing lemma is not known for geodesic flows. reason: Proof uses local perturbations.

Perturbations of riemannian metrics  $g_{ij}(x)$ are never local in phase space = *SM*.

Newhouse theorem for geodesic flows is only known for  $M = S^2$  and  $M = \mathbb{RP}^2$ . (Contreras - Oliveira ETDS 2004)

Generic geodesic flows

(日) (同) (国) (日)

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

#### Non-local perturbations



"the orbit to close could have passed through the cylinder before coming back"



ヘロト 人間 とくほとくほとう

æ

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

#### General Finsler metrics:

```
= norm \|\cdot\|_x on tangent spaces T_x M.
```

The unit sphere does not have to be symmetric or a level set of a quadratic form.





イロン イボン イヨン イヨン

ъ

- The closing lemma holds.
- The Newhouse theorem should hold.

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

## **Bumpy metrics**

 $M^{n+1}$ 

- $J_{s}^{k}(n) = \{ k \text{-jets of symplectic diffeos } f : (\mathbb{R}^{2n}, 0) \hookrightarrow \}$
- $Q \subset J_s^k(n)$  is *invariant* iff  $\sigma Q \sigma^{-1} = Q \quad \forall \sigma \in J_s^k(n)$ .

 $\mathcal{R}^{r}(M) = C^{\infty}$ -riemannian metrics on M with the  $C^{r}$  topology.

#### Theorem (Anosov, Klingenberg-Takens)

If  $Q \subset J_s^k(n)$  is open, dense and invariant then the set of metrics such that the Poincaré map of every closed geodesic is in Q contains a residual set in  $\mathcal{R}^r(M)$ .

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

1

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

## The Kupka-Smale theorem

#### Theorem

If  $Q \subset J_s^k(n)$  is residual and invariant

 $\implies \forall r \geq k+1 \quad \exists \mathcal{G} \subset \mathcal{R}^r(M) \text{ residual s.t. } \forall g \in \mathcal{G}:$ 

- [Anosov, Klingenberg-Takens] Poincaré maps of all periodic orbits of all periodic orbits for φ<sup>g</sup> are in Q.
- **(b)** All heteroclinic intersections for  $\phi^g$  are transversal.

ヘロト 人間 とくほとくほとう



- $W^s$  is lagangian in  $(T^*M, w_0)$ .
- Choose a place where  $W^s$  is locally a lagrangian graph.
- Deform  $W^s$  to another lagrangian graph (by adding a  $d_x f$ ).  $w_0 = dp \wedge dx$  fixed canonical sympectic form.
- Change the metric s.t.  $H(new W^s) \equiv 1$ .

 $\Rightarrow$  New  $W^s$  is invariant. (Hamilton-Jacobi thm)

Similar arguments can be used to perturb single orbits.

Generic geodesic flows

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

## Twist maps

#### Elliptic fixed points:

Symplectic diffeomorphism  $F : (\mathbb{R}^{2n}, 0) \leftrightarrow$ will be the Poincaré map of a closed geodesic

#### q-elliptic periodic point = non-degenerate + 2q eigenvalues of modulus 1.

 $\implies$   $\exists$  2q-dim central manifold which is normally hyperbolic.

ヘロト ヘ戸ト ヘヨト ヘヨト

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

We choose  $Q \subset J_s^3(n)$  3-Jets of symplectic  $C^{\infty}$  diffeos  $F : (\mathbb{R}^{2n}, 0) \leftrightarrow$ 

such that the map restricted to the central manifold is a "weakly monotonous" twist map, i.e.

- The map can be written in Birkhoff normal form (4-elementary condition).
- Twist condition for the Birkhoff normal form.

イロト 不得 とくほ とくほとう

Conditions on  $Q \subset J_s^3(n)$ :

• The elliptic eigenvalues  $\rho_1, \ldots, \rho_q$  and  $\overline{\rho}_1, \ldots, \overline{\rho}_q$  are 4-elementary:

$$1 \leq \sum_{i=1}^{q} |
u_i| \leq 4 \quad \Longrightarrow \quad \prod_{i=1}^{q} \rho_i^{
u_i} \neq 1.$$

• The Birkhoff normal form P(x, y) = (X, Y)

$$Z_k = e^{2\pi i \phi_k} z_k + g_k(z),$$
  
$$\phi_k(z) = a_k + \sum_{\ell=1}^q \beta_{k\ell} |z_\ell|^2,$$

where  $z_k = x_k + i y_k$ ,  $Z_k = X_k + i Y_k$ , and the 3-jet  $j^3 g_k(0) = 0$ , satisfies det $[\beta_{k\ell}] \neq 0$ .

ヘロト ヘ戸ト ヘヨト ヘヨト

ъ

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

Using techniques of J. Moser, M. Herman and M-C. Arnaud,

#### Theorem

If  $F : (\mathbb{R}^{2n}, 0) \leftrightarrow$  is a germ of s sympl. diffeo. such that 0 is an elliptic fixed point and  $j^3F(0) \in Q$ , then F has a 1-elliptic periodic point.

Such a 1-elliptic periodic point has a normally hyperbolic 2D central manifold where F is a twist map of the annulus.

In particular, if it is Kupka-Smale then *F* has a transversal homoclinic orbit.

イロト イポト イヨト イヨト

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

## Many closed geodesics

#### Theorem (Bangert, Hinston, Rademacher)

 $\exists \mathcal{D} \subset \mathcal{R}^k(M)$  residual set s.t.

 $g \in \mathcal{D} \Longrightarrow (M,g)$  has infinitely many closed geodesics.

In fact one can take D = metrics s.t. the arguments of the elliptic eigenvalues of Poincaré maps of closed orbits are algebraically independent.

イロト イポト イヨト イヨト

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

## Stable Hyperbolicity

Sp(n) := sympletic linear isomorphisms of  $\mathbb{R}^{2n}$ .  $T : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$  linear map is *hyperbolic* if it has no eigenvalue of modulus 1.

a sequence  $\xi: \mathbb{Z} \to Sp(n)$  is *periodic* if (will be the time 1 Poincaré map)  $\exists m \quad \xi_{i+m} = \xi_i$ 

A periodic sequence is *hyperbolic* if  $\prod_{i=1}^{m} \xi_i$  is hyperbolic.

A family of periodic sequences  $\{\xi^a\}_{\alpha \in \mathcal{A}}$ is *bounded* if  $\exists B > 0 ||\xi^a_i|| \leq B$ ,  $\forall i \in \mathbb{Z}, \forall \alpha \in \mathcal{A}$ . is *hyperbolic* if  $\xi^{\alpha}$  is hyperbolic  $\forall \alpha \in \mathcal{A}$ .

ヘロト 人間 とくほとくほとう

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

Families  $\xi = \{\xi^{\alpha}\}_{\alpha \in \mathcal{A}}, \eta = \{\eta^{\alpha}\}_{\alpha \in \mathcal{A}}$  are *periodically equivalent* iff  $\forall \alpha \quad \xi^{\alpha}, \eta^{\alpha}$  have same periods.

For period. equiv. families  $\xi = \{\xi^{\alpha}\}_{\alpha \in \mathcal{A}}, \eta = \{\eta^{\alpha}\}_{\alpha \in \mathcal{A}}$  define

$$\|\xi - \eta\| := \sup\{ \|\xi^{lpha} - \eta^{lpha}\| \ : \ lpha \in \mathcal{A}, \ \mathbf{n} \in \mathbb{Z} \}$$

This determines how to pertub: up to a fixed amount in each time 1 Poincaré map.

 $\implies \text{the following theorem will be useful} \\ \text{only in the } C^1 \text{ topology for flows} \\ = C^2 \text{ topology for riem. metrics (or Hamiltonians).}$ 

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

A family  $\xi$  is *stably hyperbolic* iff  $\exists \varepsilon > 0$  s.t. if  $\eta$  family period. equiv. to  $\xi$  &  $\|\eta - \xi\| < \varepsilon \implies \eta$  is hyperbolic.

A family  $\xi$  is *uniformy hyperbolic* iff  $\exists M > 0$  s.t.

$$\left\|\prod_{i=0}^{M}\xi_{i+j}^{\alpha}\right|_{E^{s}(\xi_{j}^{\alpha})}\right\| < \frac{1}{2}, \qquad \left\|\left[\prod_{i=0}^{M}\xi_{i+j}^{\alpha}\right]_{E^{u}(\xi_{j}^{\alpha})}\right]^{-1}\right\| < \frac{1}{2}$$
$$\forall \alpha \in \mathcal{A}, \qquad \forall j \in \mathbb{Z}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

#### Theorem

Let  $\xi$  be a bounded periodic family of symplectic linear maps: if  $\xi$  is stably hyperbolic  $\implies \xi$  is uniformly hyperbolic.

#### Remark:

- Families in Sp(n): stably hyperbolic  $\implies$  uniformly hyperbolic.
  - Families in GL(n): stably hyperbolic  $\implies$  dominated splitting, i.e.

$$\left\|\prod_{i=0}^{M}\xi_{i+j}^{\alpha}\right\|_{E^{\mathcal{S}}(\xi_{j}^{\alpha})}\left\|\cdot\left\|\left[\prod_{i=0}^{M}\xi_{i+j}^{\alpha}\right]_{E^{\mathcal{U}}(\xi_{j}^{\alpha})}\right]^{-1}\right\|<\frac{1}{2}.$$

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

## Perturbation Lemma ("Franks Lemma"

**Example:** Statement for diffeos  $f : M \rightarrow M$ .

$$\begin{aligned} \exists \varepsilon_0 > 0 \quad \forall \varepsilon \in ]0, \varepsilon_0] \quad \exists \delta > 0 \quad \text{s.t. if} \\ \mathcal{F} = \{ x_1, \dots, x_N \} \subset M \quad \text{any finite set} \\ \mathcal{U} \quad \text{any neighbourhood of } \mathcal{F} \\ A_i \in L(T_{x_i}M, T_{f(x_i)}M) \quad \text{``candidate for } Df(x_i)`' \\ \|Df(x_i) - A_i\| < \varepsilon \\ & \Longrightarrow \\ \exists g \in Diff(M) \quad \text{s.t.} \\ g|_{M \setminus U} = f|_{M \setminus U} \\ g(x_i) = f(x_i) \quad \forall x_i \in \mathcal{F} \quad \text{arbitrarily small support} \\ Dg(x_i) = A_i \\ \|f - g\|_{C^1} < \delta \end{aligned}$$

イロト 不得 とくほと くほとう

3

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

#### Example: In dimension 1.



Generic geodesic flows

ヘロト 人間 とくほとくほとう

æ

#### Analogous lemma for geodesic flows:

Realize any perturbation in Sp(n)in a fixed distance of the derivative of the Poincaré map at any geodesic segment of length 1.

- fixing the geodesic.
- with support in an arbitrarily narrow strip U.
- outside a neighbourhood of a given set of finitely many transversal segments.

By a metric which is  $C^2$  close.

◆□ > ◆□ > ◆豆 > ◆豆 > -

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity



Figure: Avoiding self-intersections.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

#### The perturbation is made in the neighbourhood of one point.

The following result allowed to pass from dim 2 to higher dimensions.

#### Theorem

 $\exists \mathcal{G} \subset \mathcal{R}^{\infty}(M) \text{ residual s.t} \\ \forall g \in \mathcal{G} \quad \forall \theta \in SM \quad \exists t_0 \in [0, \frac{1}{2}] \\ \text{s.t. the sectional curvature matrix}$ 

$${\it K}_{\it ij}( heta) = \langle {\it R}( heta, {\it e}_{\it i}) \, heta, {\it e}_{\it j} 
angle$$

has no repeated eigenvalues.

$$\begin{array}{c|c} & & \\ \hline \theta & & \\ \theta_{\tau} = \phi_{\tau}(\theta) \end{array}$$

イロト イポト イヨト イヨト

Topological entropy Kupka-Smale Twist maps Stable Hyperbolicity

#### The End

Generic geodesic flows

・ロト ・聞ト ・ヨト ・ヨト

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

The Perturbation Lemma

Derivative of the geodesic flow

 $\boldsymbol{d}\phi_t(\boldsymbol{J}(\boldsymbol{0}),\dot{\boldsymbol{J}}(\boldsymbol{0}))=(\boldsymbol{J}(t),\dot{\boldsymbol{J}}(t))$ 

J(t) = Jacobi field orthogonal to the geodesic  $\gamma(t) = \pi \circ \phi_t(\theta)$ .

Jacobi Equation: J'' + K(t) J = 0

$$K(u, v) = \langle R(u, \dot{\gamma}) v, \dot{\gamma} \rangle.$$

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation





 $e_0 = \dot{\gamma}, \quad e_1, \dots, e_n$  = parallel transport of orthonormal basis along  $\gamma$ .

$$F(t = x_0, x_1, \dots, x_n) = \exp\left(\sum_{i=1}^n x_i e_i(t)\right)$$

exp for a fixed initial metric  $g_0$ .

æ

ヘロン 人間 とくほ とくほ とう

э.

Our general perturbation of the metric  $g^0$  is

$$g_{00}(t,x) = [g^0(t,x)]_{00} + \sum_{i=1} \alpha_{ij} x_i x_j$$
$$g_{ij}(t,x) = [g^0(t,x)]_{ij} \quad \text{if } (i,j) \neq (0,0).$$

This perturbation:

- **1** Preserves the geodesic  $\gamma$ .
- 2 Preserves the metric along  $\gamma$ .

(orthogonal vector fields along  $\gamma$  are still orthogonal)

 $K(t) = K_0(t) - \alpha(t, x)$ 

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

#### If the perturbation term is

 $x^* \alpha x = \varphi(x) x^* P(t) x$ 

 $\varphi(x) = \text{bump function in } x_1, \ldots, x_n.$ 

and  $supp(\varphi)$  is sufficiently small

 $\implies \qquad \|\boldsymbol{x}^* \, \alpha \, \boldsymbol{x}\|_{C^2} \sim \|\boldsymbol{P}(t)\|_{C^0}$ 

Generic geodesic flows

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

イロン 不得 とくほ とくほ とうほ

We will use

$$x^* \alpha x = h(t) \varphi(x) x^* P(t) x$$

 $\varphi(x) =$  bump function in  $x_1, \dots x_n$ . h(t) = approximation of characteristic function of  $[0, 1] \setminus F^{-1}(\mathcal{F})$ .

#### $P(t) = a\,\delta(t) + b\,\delta'(t) + c\,\delta''(t) + d\,\delta'''(t)$

$$a, b, c, d \in \operatorname{Sym}(n \times n) =: \mathcal{S}(n) \qquad d_{ii} = 0 \qquad d \in \mathcal{S}^*(n)$$

$$\delta(t) =$$
 approximation of Dirac  $\delta$  at some point  $\tau$  near  $\frac{1}{2}$  where  $K(t)$  has no repeated eigenvalues:

$$\min_{i\neq j} |\lambda_i - \lambda_j| > \eta = \eta(\mathcal{U}) > 0.$$

 $\mathcal{U}$  neighbourhood of  $g_0$ .

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

## Estimate the perturbation in the solution of the Jacobi equation.

$$J'' + K(t) J = 0$$
$$\begin{bmatrix} J \\ J' \end{bmatrix}' = \underbrace{\begin{bmatrix} 0 & I \\ -K & 0 \end{bmatrix}}_{\mathbb{A}} \begin{bmatrix} J \\ J' \end{bmatrix}$$
$$X' = \mathbb{A} X, \qquad X \in \mathbb{R}^{n \times n}$$
$$X(0) = I \implies \qquad X(t) = d\phi_t$$

Fundamental solution

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Generic geodesic flows

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

ヘロト ヘ戸ト ヘヨト ヘヨト

$$X' = \mathbb{A} X, \qquad \mathbb{A} = \begin{bmatrix} 0 & I \\ -K & 0 \end{bmatrix}$$

#### Remarks:

- Can only perturb K not the whole matrix  $\mathbb{A}$ .
- Only perturbations  $K \mapsto K + \alpha$ . K,  $\alpha$  symmetric matrices (because the perturbation term was  $x^*Kx$ )

The solutions *X* are symplectic linear maps.

 $Sp(n) = \{ X \in \mathbb{R}^{n \times n} : X^*JX = J \}, \qquad J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}.$  $T_X Sp(n) = \{ XY : Y^*J + JY = 0 \},$  $= \{ XY : Y = \begin{bmatrix} \beta & \gamma \\ \alpha & -\beta^* \end{bmatrix} \alpha, \gamma \text{ symmetric } \beta \text{ arbitrary } \}.$ 

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

## Strategy:

Think on 1-parameter family of metrics  $s \mapsto g_s$ .

$$s \longmapsto K_s(t) = K(t) + s \alpha(t)$$
  
 $s \longmapsto X_s(t) = d\phi_t^{g_s}$ 

 $\alpha(t) = \alpha(t, E),$   $(a, b, c, d) \in \mathcal{S}(n)^3 \times \mathcal{S}^*(n)$ 

 $S(n) = \text{Sym}(n \times n), \quad S^*(n) = \text{Sym}(n \times n) \& \text{ diag } \equiv 0.$  $S(n)^3 \times S^*(n)$  has the same dimension as  $T_X Sp(n)$ .

Take the derivative

$$Z_s = \frac{d X_s}{ds} = \frac{d}{ds} \left( d\phi_t^s \right)$$

4

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

## Strategy:

#### Take the derivative

$$Z_s = rac{d X_s}{ds} = rac{d}{ds} \left( d\phi_t^s 
ight)$$

#### Prove that

$$\|Z_s(1)\| \ge k \|E\| \sim \|x^* \alpha x\|_{C^2}$$
  
with  $k = k(\mathcal{U})$ 

*k* uniform for every geodesic segment of length 1 and  $\forall g \in \mathcal{U}$ 

$$\implies \{ d\phi_1^g : g \in \mathcal{U} \}$$

covers a neighbourhood of the original linearized Poincaré map  $d\phi_1^{g_0}$  whose size depends only on the  $C^2$  norm of the perturbation.

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

#### The derivative of the Jacobi equation

$$X' = \mathbb{A}_{s} X_{s}$$

$$Z_{s} = \frac{dX_{s}}{ds}, \quad \mathbb{A}_{s} = \mathbb{A} + s \mathbb{B}, \quad \mathbb{B} = \begin{bmatrix} 0 & 0 \\ P(t) & 0 \end{bmatrix}$$

$$\stackrel{P(t) = a \delta(t) + b \delta'(t) + c \delta''(t) + d \delta'''(t).}{Z' = \mathbb{A} Z + \mathbb{B}}$$
"variation of parameters":  $Z = X Y$ 

$$X Y' = \mathbb{B} X$$

$$Y(t) = \int_{0}^{t} X^{-1} \mathbb{B} X$$

$$Z(1) = X(1) \int_{0}^{1} X^{-1} \mathbb{B}(t) X dt$$

Generic geodesic flows

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

$$Z(1) = X(1) \underbrace{\int_{0}^{1} X^{-1} \mathbb{B}(t) X \, dt}_{\text{want this to cover} \begin{bmatrix} \beta & \gamma \\ \alpha & -\beta^* \end{bmatrix}}_{\beta \text{ arbitrary}}$$

#### Integrating by parts:

 $\int_{0}^{1} X^{-1} \mathbb{B}(t) X \, dt \approx$   $\approx X_{\tau}^{-1} \left\{ \begin{bmatrix} a \end{bmatrix} + \begin{bmatrix} b \\ -b \end{bmatrix} + \begin{bmatrix} -(Kc + cK) \end{bmatrix}^{-2c} \right\}$  *b* is symmetric, not arbitrary.  $+ \begin{bmatrix} -Kd - 3dK \\ 3Kd + dK \end{bmatrix} \right\} X_{\tau}$ 

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

To solve

 $b - (Kd + 3dK) = \beta$ 

b symm d symm  $\beta$  is arbitrary

Is equivalent to solve

Ke-eK=f

e sym

f antisym

may not have solution unless *K* has no repeated eigenvalue.

Generic geodesic flows

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

イロン 不得 とくほ とくほ とうほ

A generic condition on the curvature

$$\theta \qquad \theta_{\tau} = \phi_{\tau}(\theta)$$

#### Theorem

 $\begin{array}{l} \exists \mathcal{G} \subset \mathcal{R}^{\infty}(M) \text{ residual s.t.} \\ \forall g \in \mathcal{G} \quad \forall \theta \in SM \quad \exists \tau \in [0, \frac{1}{2}] \quad \text{ s.t. the Jacobi matrix} \\ K_{ii}(\theta_{\tau}) = \langle R(\theta_{\tau}, \mathbf{e}_{i}) \theta_{\tau}, \mathbf{e}_{i} \rangle \end{array}$ 

has no repeated eigenvalue.

Generic geodesic flows

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

## Why do we need this theorem and not just a preliminary perturbation?



Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

## Strategy

Strategy: Use a transversality argument.

Know: can perturb the Jacobi matrix (curvature) at will.

 $\Sigma = \{ A \in Sym(n \times n) =: S(n) : A \text{ has repeated eigenvalues } \}$ 

it is an algebraic set with singularities.

$$A \in \Sigma \iff \det p_A(A) = \prod (\lambda_i - \lambda_j)^2 = 0.$$
  
 $p_A(x) := \det [xI - A]$ 

Enough to show that the geodesic vector field "crosses  $\Sigma$  transversally"

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

Enough to show that the geodesic vector field "crosses  $\Sigma$  transversally"



#### Example:

- Flow in  $\mathbb{R}^2$  without singularities.
- $\Sigma = S^1$ .
- Can ask that a chosen orbit segment is  $\pitchfork S^1$  but not all.
- Can ask that tangency is not of order 2.



(日)

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

#### If $\Sigma$ where a smooth manifold:

 $J^k \Sigma = k$ -jets of curves inside  $\Sigma$ . dim  $J^k \Sigma = (k + 1) \dim \Sigma$ .

> coefs of Taylor series in local chart

$$\begin{array}{l} t\mapsto a_0+a_1t+\cdots a_kt^k\\ a_i\in\mathbb{R}^{\sigma}, \quad \sigma=\dim\Sigma. \end{array}$$

$$\begin{split} \dim J^k \mathcal{S}(n) &= (k+1) \, \dim \mathcal{S}(n) \\ \operatorname{codim}_{\mathcal{S}(n)} \Sigma &= r \geq 1 \\ \operatorname{codim}_{J^k \mathcal{S}(n)} J^k \Sigma &= (k+1) \, r \longrightarrow \infty \\ & \text{when } k \to \infty \end{split}$$

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

$$\begin{array}{ccc} F: \mathcal{R}^{\infty}(M) \times SM \times ]0, 1[ & \longrightarrow & J^{k} \mathcal{S}(n) \\ (g, \theta, \tau) & \longmapsto & J^{k}_{\tau} \mathcal{K}(g, \phi_{\tau}\theta) & & \overset{K = \text{Jacobi matrix}}{J^{k}_{\pi} = k \cdot \text{jet at } t = \tau} \end{array}$$

If  $F \pitchfork J^k \Sigma$   $\Rightarrow \exists residual \mathcal{G} \subset \mathcal{R}^{\infty}(M) \text{ s.t.}$   $g \in \mathcal{G} \Rightarrow F(g, \cdot, \cdot) \pitchfork J^k \Sigma.$  *K* large  $\Rightarrow \operatorname{codim} J^k \Sigma > \operatorname{dim}(SM \times ]0, 1[)$   $\pitchfork \Rightarrow \operatorname{no} intersection.$   $+ \operatorname{compactness} \Rightarrow \operatorname{required bounds on eigenvalues.}$ use

$$\min_{\theta \in SM} \max_{t \in [0,1]} \prod_{i \neq j} |\lambda_i - \lambda_j|^2 > 0. \quad \text{when } h$$

Can change the Jacobi equation at will Estimate the perturbation in the solution of the Jacobi equation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

## But $\Sigma$ has singularities.

#### Algebraic Jet space

$$\mathcal{L}_{k}(\Sigma) = \text{polynomies } a_{0} + a_{1} t + \dots + a_{k} t^{k} = p(t)$$
  
s.t.  $f \circ p(t) \equiv 0 \pmod{t^{k+1}}$ 

#### Arc space

 $\mathcal{L}_{\infty}(\Sigma) = \text{formal power series } p(t) \quad \text{s.t.} \quad f \circ p \equiv 0.$ 

 $\pi_k : \mathcal{L}_{\infty}(\sigma) \to \mathcal{L}_k(\Sigma)$  truncation.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

## $\mathcal{L}_k(\Sigma)$ is an algebraic variety. $\pi_k(\mathcal{L}_{\infty}(\Sigma)) \subset \mathcal{L}_k(\sigma)$ is a finite union of algeraic subsets. (it is "constructible")

 $J^k \Sigma = k$ -jets of  $C^{\infty}$  curves in  $\Sigma$ .

$$\implies \qquad J^k\Sigma\subset \pi_k(\mathcal{L}_\infty(\Sigma))\subset \mathcal{L}_k(\Sigma).$$

Denef & Loeser:

#### $\dim \pi_k(\mathcal{L}_{\infty}(\Sigma)) \leq (k+1) \dim \Sigma.$

(same bound as in the smooth case).