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Geodesic Flow

M closed C∞ manifold [compact connected, ∂M 6= 0]

g = 〈 , 〉x C∞ riemannian metric on M.

unit tangent bundle = sphere bundle of (M,g)

SM = { (x , v) ∈ TM | ‖v‖x = 1 }

π : SM −→ M
(x , v) 7→ x
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(x , v) ∈ SM
γ : R→ M
geodesic s.t. γ(0) = x , γ̇(0) = v
“locally length minimizing curve with |γ̇| ≡ 1”

Geodesic Flow

φt : SM −→ SM
(x , v) 7−→ (γ(t), γ̇(t))
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TOPOLOGICAL ENTROPY

1 Measures the “complexity” of the orbit structure of the flow.
Measures the difficulty in predicting the position of an orbit
given an approximation of its initial state.

Dynamic ball: θ ∈ SM, ε, T > 0

B(θ, ε,T ) := {ω ∈ SM : d(φtθ, φtω) ≤ ε, ∀t ∈ [0,T ] }
Points whose orbit stay near the orbit of θ for times in [0, T ].

Nε(T ) := min{#C | C = cover of SM by (ε,T )-dynamic balls }
htop(g) := lim

ε→0
lim sup

T→∞

1
T log Nε(T ).

Nε(T ) ≈ ehtop·T .
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If htop > 0
some dynamic balls
must contract exponentially
at least in one direction.
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2 For C∞ riemannian metrics

Mañé htop(g) = lim
T→∞

1
T

log
∫

M×M
nT (x , y) dx dy

nT (x , y) := #{geod. arcs x → y of length ≤ T }.

htop > 0 =⇒ positive measure of (x , y) s.t.

nT (x , y) is exponentially large.
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TOPOLOGY =⇒ Some manifolds have always htop(g) > 0.

Dinaburg: π1(M) exponential growth
=⇒ htop > 0.
[# of dynamic balls grows exponentially]

Also if lim
R→∞

1
R log

(
vol(B̃(x ,R))

)
> 0.

“volume entropy”

Paternain-Petean: If H∗(Loop space(M), x)
grows exponentially
=⇒ many arcs x 7→ y ∈ eπ−1(x)

=⇒ htop > 0.

GEOMETRY
sectional curvatures K < 0 =⇒ φt Anosov =⇒ htop > 0.
K > 0 not clear.
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If the geodesic flow φt contains a “horseshoe”
= a non-trivial hyperbolic basic set
=⇒ htop(g) > 0.

∃ hyperbolic periodic orbit with
transversal homoclinic point

⇐⇒ ∃ horseshoe.

Symbolic dynamics =⇒
the number of closed orbits grows exponentially with the period.
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Theorem
dim M ≥ 2
∃ U ⊂ R2(M) open and dense s.t.

g ∈ U =⇒ φ
g
t has a horseshoe.

Corollary
If g ∈ U then htop > 0 and
the number of closed geodesics grows expo. with the length.

Application:
A. Delshams, R. de la Llave, T. Seará:
Initial system that allows Arnold’s diffusion by perturbations
with generic periodic potentials.
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Comparison with other systems:

General Hamiltonian systems.

S. Newhouse: (M2n, ω) closed symplectic manifold

∃ H ⊂ C2(M,R) residual s.t.

h ∈ H =⇒ Hamiltonian

flow for H

{
• Anosov or

• has a generic 1-elliptic periodic orbit

1-elliptic = 2 (elliptic) eigenvalues of modulus 1.

1 eigenvalue λ = 1 (direction of Hamiltonian vector field).

1 eigenvalue λ = 1 ( t direction to energy level).

2n − 4 hyperbolic eigenvalues.
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In the 1-elliptic case:
Poincaré map restricted to energy level is

twist map × normally hyperbolic

2-dim central manifold

=⇒ homoclinic orbits
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Newhouse theorem uses the closing lemma.

The closing lemma is not known for geodesic flows.

reason: Proof uses local perturbations.

Perturbations of riemannian metrics gij(x)

are never local in phase space = SM.

Newhouse theorem for geodesic flows is only known

for M = S2 and M = RP2. ( Contreras - Oliveira ETDS 2004)
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Non-local perturbations

“the orbit to close could have

passed through the cylinder

before coming back”
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General Finsler metrics:
= norm ‖·‖x on tangent spaces Tx M.

The unit sphere does not have to be symmetric or a level set of a quadratic form.

The closing lemma holds.
The Newhouse theorem should hold.
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Bumpy metrics

Mn+1

Jk
s (n) = { k -jets of symplectic diffeos f : (R2n,0)←↩ }

Q ⊂ Jk
s (n) is invariant iff σQσ−1 = Q ∀σ ∈ Jk

s (n).

Rr (M) = C∞-riemannian metrics on M with the Cr topology.

Theorem (Anosov, Klingenberg-Takens)

If Q ⊂ Jk
s (n) is open, dense and invariant then the set of

metrics such that the Poincaré map of every closed geodesic is
in Q contains a residual set in Rr (M).
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The Kupka-Smale theorem

Theorem

If Q ⊂ Jk
s (n) is residual and invariant

=⇒ ∀r ≥ k + 1 ∃G ⊂ Rr (M) residual s.t. ∀g ∈ G:
a [Anosov, Klingenberg-Takens]

Poincaré maps of all periodic orbits of all periodic orbits for
φg are in Q.

b All heteroclinic intersections for φg are transversal.
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Simple proof of (b):

(x , ω(x))

only depends
on the past

←−−−−−−

ω(x) + dx f only depends
on the future
−−−−−−−→

W s is lagangian in (T ∗M,w0).
Choose a place where W s is locally a lagrangian graph.
Deform W s to another lagrangian graph (by adding a dx f ).
w0 = dp ∧ dx fixed canonical sympectic form.
Change the metric s.t. H(new W s) ≡ 1.
=⇒ New W s is invariant. (Hamilton-Jacobi thm)

Similar arguments can be used to perturb single orbits.
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Twist maps

Elliptic fixed points:

Symplectic diffeomorphism F : (R2n,0)←↩
will be the Poincaré map of a closed geodesic

q-elliptic periodic point = non-degenerate
+ 2q eigenvalues of modulus 1.

=⇒ ∃ 2q-dim central manifold which is
normally hyperbolic.
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We choose Q ⊂ J3
s (n) 3-Jets of symplectic C∞ diffeos F : (R2n, 0)←↩

such that the map restricted to the central manifold
is a “weakly monotonous” twist map, i.e.

The map can be written in Birkhoff normal form
(4-elementary condition).

Twist condition for the Birkhoff normal form.
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Conditions on Q ⊂ J3
s (n):

The elliptic eigenvalues ρ1, . . . , ρq and ρ1, . . . , ρq are
4-elementary:

1 ≤
q∑

i=1

|νi | ≤ 4 =⇒
q∏

i=1

ρνi
i 6= 1.

The Birkhoff normal form P(x , y) = (X ,Y )

Zk = e2πiφk zk + gk (z),

φk (z) = ak +
q∑̀
=1
βk` |z`|2,

where zk = xk + i yk , Zk = Xk + i Yk , and the 3-jet
j3gk (0) = 0, satisfies det[βk`] 6= 0.
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Using techniques of J. Moser, M. Herman and M-C. Arnaud,

Theorem

If F : (R2n,0)←↩ is a germ of s sympl. diffeo. such that 0 is an
elliptic fixed point and j3F (0) ∈ Q, then F has a 1-elliptic
periodic point.

Such a 1-elliptic periodic point has a normally hyperbolic 2D
central manifold where F is a twist map of the annulus.

In particular, if it is Kupka-Smale then F has a transversal
homoclinic orbit.
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Many closed geodesics

Theorem (Bangert, Hinston, Rademacher)

∃D ⊂ Rk (M) residual set s.t.
g ∈ D =⇒ (M,g) has infinitely many closed geodesics.

In fact one can take D = metrics s.t. the arguments of the
elliptic eigenvalues of Poincaré maps of closed orbits are
algebraically independent.
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Stable Hyperbolicity

Sp(n) := sympletic linear isomorphisms of R2n.

T : R2n → R2n linear map is hyperbolic
if it has no eigenvalue of modulus 1.

a sequence ξ : Z→ Sp(n) is periodic if (will be the time 1 Poincaré map)

∃m ξi+m = ξi

A periodic sequence is hyperbolic if
∏m

i=1 ξi is hyperbolic.

A family of periodic sequences {ξa}α∈A
is bounded if ∃B > 0

∥∥ξa
i

∥∥ ≤ B, ∀i ∈ Z, ∀α ∈ A.

is hyperbolic if ξα is hyperbolic ∀α ∈ A.
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Families ξ = {ξα}α∈A, η = {ηα}α∈A are
periodically equivalent iff ∀α ξα, ηα have same periods.

For period. equiv. families ξ = {ξα}α∈A, η = {ηα}α∈A define

‖ξ − η‖ := sup{ ‖ξα − ηα‖ : α ∈ A, n ∈ Z }

This determines how to pertub: up to a fixed amount in each time 1 Poincaré map.

=⇒ the following theorem will be useful
only in the C1 topology for flows
= C2 topology for riem. metrics (or Hamiltonians).
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A family ξ is stably hyperbolic iff
∃ε > 0 s.t. if η family period. equiv. to ξ &
‖η − ξ‖ < ε =⇒ η is hyperbolic.

A family ξ is uniformy hyperbolic iff
∃M > 0 s.t.∥∥∥∥∥

M∏
i=0

ξαi+j

∣∣∣
Es(ξαj )

∥∥∥∥∥ < 1
2
,

∥∥∥∥∥∥
[

M∏
i=0

ξαi+j

∣∣∣
Eu(ξαj )

]−1
∥∥∥∥∥∥ < 1

2

∀α ∈ A, ∀j ∈ Z.
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Theorem
Let ξ be a bounded periodic family of symplectic linear maps:
if ξ is stably hyperbolic =⇒ ξ is uniformly hyperbolic.

Remark:
Families in Sp(n): stably hyperbolic =⇒ uniformly hyperbolic.

Families in GL(n): stably hyperbolic =⇒ dominated splitting, i.e.‚‚‚‚‚ MQ
i=0
ξα

i+j

˛̨̨
Es (ξα

j )

‚‚‚‚‚ ·
‚‚‚‚‚‚
"

MQ
i=0
ξα

i+j

˛̨̨
Eu (ξα

j )

#−1
‚‚‚‚‚‚ < 1

2 .
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Perturbation Lemma (“Franks Lemma”)

Example: Statement for diffeos f : M → M.

∃ε0 > 0 ∀ε ∈]0, ε0] ∃δ > 0 s.t. if
F = { x1, . . . , xN } ⊂ M any finite set
U any neighbourhood of F
Ai ∈ L(Txi M,Tf (xi )M) “candidate for Df (xi )”
‖Df (xi)− Ai‖ < ε

=⇒
∃g ∈ Diff (M) s.t.
g|M\U = f |M\U
g(xi) = f (xi) ∀xi ∈ F arbitrarily small support

Dg(xi) = Ai no size problem as in closing lemma

‖f − g‖C1 < δ
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Example: In dimension 1.

U arbitrarily small
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Analogous lemma for geodesic flows:

Realize any perturbation in Sp(n)
in a fixed distance of the derivative of the Poincaré map
at any geodesic segment of length 1.

fixing the geodesic.
with support in an arbitrarily narrow strip U.
outside a neighbourhood of a given set of finitely many
transversal segments.

By a metric which is C2 close.
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Figure: Avoiding self-intersections.
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The perturbation is made in the neighbourhood of one point.

The following result allowed to pass from dim 2 to higher
dimensions.

Theorem
∃G ⊂ R∞(M) residual s.t
∀g ∈ G ∀θ ∈ SM ∃t0 ∈ [0, 1

2 ]
s.t. the sectional curvature matrix

Kij(θ) = 〈R(θ,ei) θ,ej〉

has no repeated eigenvalues.
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The End
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The Perturbation Lemma

Derivative of the geodesic flow

dφt (J(0), J̇(0)) = (J(t), J̇(t))

J(t) = Jacobi field orthogonal to the geodesic γ(t) = π ◦ φt (θ).

Jacobi Equation: J ′′ + K (t) J = 0

K (u, v) = 〈R(u, γ̇) v , γ̇〉.
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1 Can change the Jacobi equation at will.

Use Fermi coordinates:

e0 = γ̇, e1, . . . ,en = parallel transport of
orthonormal basis along γ.

F (t = x0, x1, . . . , xn) = exp

(
n∑

i=1

xi ei (t)

)
exp for a fixed initail metric g0.
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Our general perturbation of the metric g0 is

g00(t , x) = [g0(t , x)]00 +
∑
i=1

αij xi xj

gij(t , x) = [g0(t , x)]ij if (i , j) 6= (0,0).

This perturbation:
1 Preserves the geodesic γ.
2 Preserves the metric along γ.

(orthogonal vector fields along γ are still orthogonal)

3 Changes the curvature along γ by

K (t) = K0(t)− α(t , x)
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4 If the perturbation term is

x∗ α x = ϕ(x) x∗P(t) x

ϕ(x) = bump function in x1, . . . , xn .

and supp(ϕ) is sufficiently small

=⇒ ‖x∗ α x‖C2 ∼ ‖P(t)‖C0
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We will use
x∗α x = h(t) ϕ(x) x∗P(t) x

ϕ(x) = bump function in x1, . . . xn.

h(t) =
approximation of characteristic
function of [0,1] \ F−1(F).

i.e. 0 ≤ h(t) ≤ 1, supp(h) ∩
(

intersecting

points

)
= ∅,

∫ 1

0
h ≥ 1− ε,

[ only ‖h‖C0 counts if supp(ϕ) is small ]
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P(t) = a δ(t) + b δ′(t) + c δ′′(t) + d δ′′′(t)

a,b, c,d ∈ Sym(n × n) =: S(n) dii = 0 d ∈ S∗(n)

δ(t) =
approximation of Dirac δ at some
point τ near 1

2 where K (t) has no
repeated eigenvalues:

min
i 6=j

∣∣λi − λj
∣∣ > η = η(U) > 0.

U neighbourhood of g0.
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2 Estimate the perturbation in the
solution of the Jacobi equation.

J ′′ + K (t) J = 0[
J
J ′

]′
=

[
0 I
−K 0

]
︸ ︷︷ ︸

A

[
J
J ′

]

X ′ = A X , X ∈ Rn×n

X (0) = I =⇒ X (t) = dφt

Fundamental solution
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X ′ = A X , A =

[
0 I
−K 0

]
Remarks:

Can only perturb K not the whole matrix A.

Only perturbations K 7→ K + α. K , α symmetric matrices

(because the perturbation term was x∗K x)

The solutions X are symplectic linear maps.

Sp(n) = {X ∈ Rn×n : X ∗J X = J }, J =

[
0 I
−I 0

]
.

TX Sp(n) = {XY : Y ∗J + JY = 0 },

=
{

XY : Y =
[
β γ
α −β∗

]
α, γ symmetric β arbitrary

}
.
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Strategy:

Think on 1-parameter family of metrics s 7→ gs.

s 7−→ Ks(t) = K (t) + s α(t)

s 7−→ Xs(t) = dφgs
t

α(t) = α(t ,E), (a,b, c,d) ∈ S(n)3 × S∗(n)
S(n) = Sym(n × n), S∗(n) = Sym(n × n) & diag ≡ 0.

S(n)3 × S∗(n) has the same dimension as TX Sp(n).

Take the derivative

Zs =
d Xs

ds
=

d
ds

(dφs
t )
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Strategy:

Take the derivative

Zs =
d Xs

ds
=

d
ds

(dφs
t )

Prove that

‖Zs(1)‖ ≥ k ‖E‖ ∼ ‖x∗α x‖C2

with k = k(U)

k uniform for every geodesic segment of length 1 and ∀g ∈ U

=⇒ {dφg
1 : g ∈ U }

covers a neighbourhood of the
original linearized Poincaré map
dφ

g0
1 whose size depends only on

the C2 norm of the perturbation.
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The derivative of the Jacobi equation

X ′ = As Xs

Zs =
dXs

ds
, As = A + s B, B =

[
0 0

P(t) 0

]
P(t) = a δ(t) + b δ′(t) + c δ′′(t) + d δ′′′(t).

Z ′ = A Z + B
“variation of parameters”: Z = X Y

X Y ′ = B X

Y (t) =

∫ t

0
X−1 B X

Z (1) = X (1)

∫ 1

0
X−1B(t)X dt︸ ︷︷ ︸
Generic geodesic flows
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Z (1) = X (1)

∫ 1

0
X−1B(t)X dt︸ ︷︷ ︸

want this to cover

24β γ

α −β∗

35 β arbitrary

Integrating by parts:∫ 1

0
X−1B(t)X dt ≈

≈ X−1
τ

{[
a

]
+

[
b
−b

]
+

[
−2c

−(Kc + cK )

]
b is symmetric, not arbitrary.

+

[
−Kd − 3dK

3Kd + dK

]}
Xτ

Generic geodesic flows



Generic hyperbolicity
The perturbation lemma

Can change the Jacobi equation at will
Estimate the perturbation in the solution of the Jacobi equation

To solve

b − (Kd + 3dK ) = β

b symm d symm β is arbitrary

Is equivalent to solve

K e − e K = f
e sym f antisym

may not have solution unless K has no repeated eigenvalue.
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A generic condition on the curvature

Theorem
∃G ⊂ R∞(M) residual s.t.
∀g ∈ G ∀θ ∈ SM ∃τ ∈ [0, 1

2 ] s.t. the Jacobi matrix

Kij(θτ ) = 〈R(θτ ,ei) θτ ,ej〉

has no repeated eigenvalue.
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Why do we need this theorem
and not just a preliminary perturbation?

Preliminary perturbation
to separate the eigenvalues −→

The Franks lemma depends on
the amount of separation of the
eigenvalues

g0 7−→ g1

Franks lemma on g1
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Strategy

Strategy: Use a transversality argument.

Know: can perturb the Jacobi matrix (curvature) at will.

Σ = {A ∈ Sym(n × n)=: S(n) : A has repeated eigenvalues }

it is an algebraic set with singularities.

A ∈ Σ ⇐⇒ det pA(A) =
∏

(λi − λj)
2 = 0.

pA(x) : = det
[
xI − A

]
Enough to show that the geodesic vector field
“crosses Σ transversally”
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Enough to show that the geodesic vector field
“crosses Σ transversally”

Example:
Flow in R2 without singularities.
Σ = S1.
Can ask that a chosen orbit segment is t S1 but not all.
Can ask that tangency is not of order 2.
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If Σ where a smooth manifold:

Jk Σ = k -jets of curves inside Σ.

dim Jk Σ = (k + 1) dim Σ.

coefs of Taylor series
in local chart

t 7→ a0 + a1t + · · · ak tk

ai ∈ Rσ , σ = dim Σ.

dim JkS(n) = (k + 1) dimS(n)

codimS(n) Σ = r ≥ 1

codimJkS(n) Jk Σ = (k + 1) r −→∞
when k →∞

Generic geodesic flows



Generic hyperbolicity
The perturbation lemma

Can change the Jacobi equation at will
Estimate the perturbation in the solution of the Jacobi equation

F : R∞(M)× SM×]0,1[ −→ JkS(n)

(g, θ, τ) 7−→ Jk
τ K (g, φτθ)

K = Jacobi matrix

Jk
τ = k -jet at t=τ

If F t Jk Σ
=⇒ ∃ residual G ⊂ R∞(M) s.t.

g ∈ G =⇒ F (g, ·, ·) t Jk Σ.

K large =⇒ codim Jk Σ > dim(SM×]0,1[)

t =⇒ no intersection.

+ compactness =⇒ required bounds on eigenvalues.

use

min
θ∈SM

max
t∈[0,1]

∏
i 6=j
|λi − λj |2 > 0. when t
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Estimate the perturbation in the solution of the Jacobi equation

But Σ has singularities.

Algebraic Jet space

Lk (Σ) = polynomies a0 + a1 t + · · ·+ ak tk = p(t)
s.t. f ◦ p(t) ≡ 0 ( mod tk+1)

Arc space

L∞(Σ) = formal power series p(t) s.t. f ◦ p ≡ 0.

πk : L∞(σ)→ Lk (Σ) truncation.
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Generic hyperbolicity
The perturbation lemma

Can change the Jacobi equation at will
Estimate the perturbation in the solution of the Jacobi equation

Lk (Σ) is an algebraic variety.

πk (L∞(Σ)) ⊂ Lk (σ) is a finite union of algeraic subsets.
(it is “constructible”)

Jk Σ = k -jets of C∞ curves in Σ.

=⇒ Jk Σ ⊂ πk (L∞(Σ)) ⊂ Lk (Σ).

Denef & Loeser:

dimπk (L∞(Σ)) ≤ (k + 1) dim Σ.

(same bound as in the smooth case).

Generic geodesic flows
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