On the creation of conjugate points for Hamiltonian systems

G Contreras†||, R Iturriaga‡ and H Sánchez-Morgado§

† Depto. de Matemática. PUC-Rio, R Marquês de São Vicente 225, 22453-900 Rio de Janeiro, Brazil

‡ CIMAT, AP 402, 3600, Guanajuato Gto, Mexico

§ Instituto de Matemáticas, UNAM Ciudad Universitaria CP 04510, Cd de Mexico, Mexico

Received 15 May 1997, in final form 7 November 1997 Recommended by V Lazutkin

Abstract. For a fixed Hamiltonian *H* on the cotangent bundle of a compact manifold *M* and a fixed energy level *e*, we prove that the set \mathcal{A}_e of potentials ϕ on *M* such that the Hamiltonian flow of $H + \phi$ is Anosov, is the interior in the C^2 topology of the set \mathcal{B}_e of potentials such that the flow has no conjugate points.

AMS classification scheme numbers: 58F05, 58F15

1. Introduction

Let *M* be a closed connected Riemannian manifold and T^*M its cotangent bundle. By a Hamiltonian on T^*M we shall mean a C^{∞} function $H : T^*M \to \mathbb{R}$ satisfying the following conditions.

(a) Convexity: for all $q \in M$, $p \in T_q^*M$, the Hessian matrix $(\partial^2 H/\partial p_i \partial p_j)(q, p)$ (calculated with respect to linear coordinates on T_q^*M) is positive definite.

(b) Superlinearity:

$$\lim_{p \to \infty} \frac{H(q, p)}{|p|} = +\infty.$$

The Hamiltonian equation for H is defined as

$$q' = H_p \qquad p' = -H_q \tag{1}$$

where H_q and H_p are the partial derivatives with respect to q and p. Observe that the Hamiltonian function H is constant along the solutions of (1). Its level sets $\Sigma_e = H^{-1}(e)$ are called *energy levels* of H. Then the compactness of M and the superlinearity hypothesis imply that the energy levels are compact. Since the Hamiltonian vector field (1) is Lipschitz, the solutions of (1) are defined on all \mathbb{R} . Denote by ψ_t the corresponding *Hamiltonian flow* on T^*M .

Let $\pi : T^*M \to M$ be the canonical projection and define the *vertical subspace* on $\theta \in T^*M$ by $\mathbb{V}(\theta) = \ker(\mathrm{d}\pi(\theta))$. Two points $\theta_1, \theta_2 \in T^*M$ are said to be *conjugate* if $\theta_2 = \psi_\tau(\theta_1)$ for some $\tau \neq 0$ and $d\psi_\tau(\mathbb{V}(\theta_1)) \cap \mathbb{V}(\theta_2) \neq \{0\}$.

|| Current address: CIMAT, AP 402, 3600, Guanajuato Gto, Mexico.

0951-7715/98/020355+07\$19.50 © 1998 IOP Publishing Ltd and LMS Publishing Ltd

We recall that a smooth flow ψ_t generated by the vector field X on a compact manifold N, is called *Anosov* if there exist continuous invariant sub-bundles E^u , E^s of TN and constants c > 0, a > 0, such that

(a) $TN = E^s \oplus E^u \oplus \mathbb{R}X$

(b) $|d\psi_t(v^s)| \leq ce^{-at}|v^s|$ for all $t > 0, v^s \in E^s$

 $|\mathrm{d}\psi_t(v^u)| \leq ce^{at}|v^u|$ for all $t < 0, v^u \in E^u$.

For $e \in \mathbb{R}$, let \mathcal{A}_e be the set of $\phi \in C^{\infty}(M)$ such that the flow of $H + \phi$ is Anosov in $(H + \phi)^{-1}(e)$ and let \mathcal{B}_e be the set of $\phi \in C^{\infty}(M)$ such that $(H + \phi)^{-1}(e)$ contains no conjugate points. As is well known \mathcal{A}_e is open in C^k topology and \mathcal{B}_e is closed. On the other hand Paternain and Paternain [Pa] have shown that \mathcal{A}_e is contained in \mathcal{B}_e . They also proved that if the flow is Anosov on the energy level Σ_e , then $e > \max\{H(q, 0) : q \in M\}$ and Σ_e is diffeomorphic to the unitary sphere bundle in T^*M . In the appendix of [An] Margulis proved that if a compact 3-manifold admits an Anosov flow, then its fundamental group has exponential growth. Therefore there is no Hamiltonian on T^*T^2 with Anosov energy levels. On the other hand the geodesic flow for the plane metric on T^2 has no conjugate points anywhere. Of course there is plenty of Hamiltonians with Anosov energy levels if M has a metric with negative curvature. The purpose of this paper is to prove the following

Theorem 1. The interior of \mathcal{B}_e in the C^2 topology is \mathcal{A}_e .

This theorem is an extension to the Hamiltonian setting of a result of Ruggiero [Ru] for the geodesic flow. Our main tools are the Green bundles, theorem 2 below describing A_e inside B_e , and the index form in the Lagrangian setting.

2. Green bundles and hyperbolicity

The Green bundles were constructed for the geodesic flow by Green in [Gr] using the Jacobi equation. For Hamiltonian systems they were constructed in [C-I], where proofs for the statements in this section can be found.

Suppose that the orbit of $\theta \in T^*M$ does not contain conjugate points and $H(\theta) = e$ is a regular value of H. Then there exist two $d\psi_t$ -invariant Lagrangian sub-bundles \mathbb{E} , $\mathbb{F} \subset T(T^*M)$ along the orbit of θ given by

$$\mathbb{E}(\theta) = \lim_{t \to +\infty} d\psi_{-t}(\mathbb{V}(\psi_t(\theta)))$$
$$\mathbb{F}(\theta) = \lim_{t \to +\infty} d\psi_t(\mathbb{V}(\psi_{-t}(\theta))).$$

Moreover, $\mathbb{E}(\theta) \cup \mathbb{F}(\theta) \subset T_{\theta} \Sigma$, $\mathbb{E}(\theta) \cap \mathbb{V}(\theta) = \mathbb{F}(\theta) \cap \mathbb{V}(\theta) = \{0\}$, $X(\theta) \in \mathbb{E}(\theta) \cap \mathbb{F}(\theta)$ and dim $\mathbb{E}(\theta) = \dim \mathbb{F}(\theta) = \dim M$, where $X(\theta) = (H_p, -H_q)$ is the Hamiltonian vector field and $\Sigma = H^{-1}\{e\}$.

Fix a Riemannian metric on M and the corresponding induced metric on T^*M . Then $T_{\theta}T^*M$ splits as a direct sum of two Lagrangian subspaces: the vertical subspace $\mathbb{V}(\theta) = \ker(\mathrm{d}\pi(\theta))$ and the horizontal subspace $\mathbb{H}(\theta)$ given by the kernel of the connection map. Using the isomorphism $K : T_{\theta}T^*M \to T_{\pi(\theta)}M \times T^*_{\pi(\theta)}M$, $\xi \mapsto (\mathrm{d}\pi(\theta)\xi, \nabla_{\pi\xi}\theta)$, we can identify $\mathbb{H}(\theta) \approx T_{\pi(\theta)}M \times \{0\}$ and $\mathbb{V}(\theta) \approx \{0\} \times T^*_{\pi(\theta)}M \approx T_{\pi(\theta)}M$. Let $E \subset T_{\theta}T^*M$ be an *n*-dimensional subspace such that $E \cap \mathbb{V}(\theta) = \{0\}$. Then *E* is the graph of some linear map $S : \mathbb{H}(\theta) \to \mathbb{V}(\theta)$. It can be verified that *E* is Lagrangian if and only if in symplectic coordinates *S* is symmetric. Take $\theta \in T^*M$ and $\xi \in T_{\theta}T^*M = \mathbb{H}(\theta) \oplus \mathbb{V}(\theta) \approx T_{\pi(\theta)}M \oplus T_{\pi(\theta)}M$. Writing $d\psi_t(\xi) = (h(t), v(t))$, we obtain the Hamiltonian Jacobi equations

$$\dot{h} = H_{pq}h + H_{pp}v \qquad \dot{v} = -H_{qq}h - H_{qp}v \tag{2}$$

where the covariant derivatives are evaluated along $\pi(\psi_t(\theta))$, and H_{qq} , H_{qp} , H_{pp} and H_{qq} are linear operators on $T_{\pi(\theta)}M$, that in local coordinates coincide with the matrices of partial derivatives $(\partial^2 H/\partial q_i \partial q_j)$, $(\partial^2 H/\partial q_i \partial p_j)$, $(\partial^2 H/\partial p_i \partial p_j)$ and $(\partial^2 H/\partial p_i \partial q_j)$. Moreover, since the Hamiltonian H is convex, then H_{pp} is positive definite.

Let *E* be a Lagrangian subspace of $T_{\theta}T^*M$. Suppose that for *t* in some interval $]-\varepsilon, \varepsilon[$ we have that $d\psi_t(E) \cap \mathbb{V}(\psi_t(\theta)) = \{0\}$. Then we can write $d\psi_t(E) = \operatorname{graph} S(t)$, where $S(t) : \mathbb{H}(\psi_t\theta) \to \mathbb{V}(\psi_t\theta)$ is a symmetric map. That is, if $\xi \in E$ then

$$d\psi_t(\xi) = (h(t), S(t)h(t)).$$

Using equation 2 we have that

$$\dot{S}h + S(H_{pq}h + H_{pp}Sh) = -H_{qq}h - H_{qp}Sh$$

Since this holds for all $h \in \mathbb{H}(\psi_t(\theta))$ we obtain the Hamiltonian version of the Riccati equation, which is well known in the Lagrangian setting (e.g. [Ge])

$$S + SH_{pp}S + SH_{pq} + H_{qp}S + H_{qq} = 0.$$
 (3)

Suppose there are no conjugate points in the interval [-T, T], we can construct matrix solutions $(Z_T(t), V_T(t)), (Z_{-T}(-t), V_{-T}(-t)), 0 \le t \le T$ to the Jacobi equation with $Z_{\pm T}(0) = I, Z_T(T) = Z_{-T}(-T) = 0$. Let $K_{\pm T}(t) = V_{\pm T}(t)Z_{\pm T}(t)^{-1}$ be the corresponding solutions to the Riccati equation. Let $E_T(\theta) = d\psi_{-T}(\mathbb{V}(\psi_T(\theta)))$ and $F_T(\theta) = d\psi_T(\mathbb{V}(\psi_{-T}(\theta)))$, then $d\psi_t(E_T(\theta)) = \operatorname{graph} K_T(t)$ and $d\psi_t(F_T(\theta)) =$ graph $K_{-T}(t)$. If there are no conjugate points along all the orbit we have that $K_T(0) \rightarrow$ $S(\theta)$, and $K_{-T}(0) \rightarrow U(\theta)$ as $T \rightarrow +\infty$; where $S(\theta), U(\theta)$ are the the symmetric solutions of the Riccati equation (3) corresponding to the Green bundles $\mathbb{E}(\theta) = \operatorname{graph}(S(\theta))$ and $\mathbb{F}(\theta) = \operatorname{graph}(U(\theta))$.

The following theorem relates the hyperbolicity of the flow ψ_t with the transversality of the Green bundles.

Theorem 2. Let $\Sigma = H^{-1}\{e\}$ be a regular energy level without conjugate points. Then the following statements are equivalent:

(a) $\psi_t|_{\Sigma}$ is Anosov, (b) for all $\theta \in \Sigma$, $\mathbb{E}(\theta)$ and $\mathbb{F}(\theta)$ are transversal in $T_{\theta}\Sigma$, (c) for all $\theta \in \Sigma$, $\mathbb{E}(\theta) \cap \mathbb{F}(\theta) = \mathbb{R}X(\theta)$, (d) if $\theta \in \Sigma$, $v \in T_{\theta}\Sigma$, $v \notin \mathbb{R}X(\theta)$ then $\sup_{t \in \mathbb{R}} |d\psi_t(\theta) \cdot v| = +\infty$.

3. The index form

The index form is more naturally defined in the Lagrangian setting. Since the Hamiltonian is convex in the fibres we can use the Legendre transform to obtain a Lagrangian $L: TM \to \mathbb{R}$ (see [Ar]). The Euler–Lagrange equations

$$\frac{\mathrm{d}}{\mathrm{d}t}x = v \qquad \frac{\mathrm{d}}{\mathrm{d}t}L_v = L_x \tag{4}$$

are equivalent to the Hamilton equations (1). We derive the Jacobi equation in this Lagrangian setting. Let $\gamma(t)$ be a solution of the Euler-Lagrange equation. Considering a

variation f(s, t) of $\gamma(t) = f(0, t)$ made of solutions $t \mapsto f(s, t)$ of the Euler-Lagrange equation and taking the covariant derivative $\frac{D}{ds}$, we obtain the *Jacobi equation*

$$\frac{\mathrm{D}}{\mathrm{d}t}(L_{vx}k + L_{vv}\dot{k}) = L_{xx}k + L_{xv}\dot{k}$$
(5)

where $k = \frac{\partial f}{\partial s}(0, t)$, $\dot{k} = \frac{D}{dt}\frac{\partial f}{\partial s}$ and the derivatives of *L* are evaluated on $\gamma(t) = f(0, t)$. Here we have used that $\frac{D}{ds}\frac{\partial F}{\partial t} = \frac{D}{dt}\frac{\partial F}{\partial s}$ for the variation map $F(s, t) = L_v(f(s, t), \frac{\partial f}{\partial s}(s, t)) \in T^*M$, where $\frac{D}{ds}$ and $\frac{D}{dt}$ are the covariant derivatives on the Riemannian manifold T^*M . The linear operators L_{xx} , L_{xv} , L_{vv} coincide with the corresponding matrices of partial derivatives in local coordinates. The solutions of (5) satisfy

$$D\varphi_t(k(0), \dot{k}(0)) = (k(t), \dot{k}(t)) \in T_{\gamma(t)}(TM)$$

where φ_t is the Lagrangian flow on TM.

Let Ω_T be the set of continuous piecewise C^2 vector fields along $\gamma_{[-T,T]}$. Define the *index form* on Ω_T by

$$I(\xi,\eta) = \int_{-T}^{T} (\dot{\xi} L_{vv} \dot{\eta} + \dot{\xi} L_{vx} \eta + \xi L_{xv} \dot{\eta} + \xi L_{xx} \eta) \,\mathrm{d}t \tag{6}$$

which is the second variation of the action functional for variations f(s, t) with $\frac{\partial f}{\partial s} \in \Omega_T$.

The following expression of the index form is taken from [C-I] and originally due to Clebsch [Cl]. Let $\theta \in T^*M$ and suppose that the orbit of θ , $\psi_t(\theta)$, $-T \leq t \leq T$ does not have conjugate points. Let Z(t), V(t) be a matrix solution of the Hamiltonian Jacobi equation (2) such that det $Z(t) \neq 0$. Let $\eta \in \Omega_T$ and define $\zeta \in \Omega_T$ by $\eta(t) = Z(t)\zeta(t)$. Then the integrand of $I(\eta, \eta)$ in (6) is $(Z\zeta)^*(H_{pp})^{-1}Z\zeta + [(Z\zeta)^*V\zeta]'$. Since η and ζ are continuous, we have that

$$I(\eta, \eta) = \int_{-T}^{T} (Z\dot{\zeta})^* (H_{pp})^{-1} Z\dot{\zeta} \, \mathrm{d}t + (Z\zeta)^* V\zeta|_{-T}^{T}.$$
(7)

Corollary 1. If $\theta \in T^*M$ and the segment $\{\psi_t(\theta) | t \in [-T, T]\}$ has no conjugate points then the index form is positive definite on

 $\Gamma_T = \{\xi : [-T, T] \to TM | \xi(t) \in T_{\pi\psi_t \theta} M, \xi \text{ is piecewise } C^2, \xi(-T) = 0, \xi(T) = 0\}.$

Proof. Let $\xi \in \Gamma_T$, $\xi \neq 0$. Write $\xi(t) = Z(t)\zeta(t)$. Since det $Z(t) \neq 0$ for all $t \in [-T, T]$, $\zeta(-T) = 0$, $\zeta(T) = 0$ and $\zeta \neq 0$, then $\zeta \neq 0$. Now use formula (7).

One can extend formula (7) using different solutions (Z_i, V_i) of the Jacobi equation on disjoint subintervals $\{]t_i, t_{i+1}[: i = 0, ..., N\}$ of [-T, T]. Then

$$I(\eta,\eta) = \sum_{i=0}^{N} \int_{t_i}^{t_{i+1}} (Z_i \dot{\zeta}_i)^* (H_{pp})^{-1} Z_i \dot{\zeta}_i \, \mathrm{d}t + \left[(Z_i \zeta_i)^* V_i \zeta_i \right]_{t_i^+}^{t_{i+1}^-} \tag{8}$$

where $\eta|_{]t_i,t_{i+1}[} = Z_i \zeta_i$.

4. Proof of theorem 1

The proof will proceed as follows. We take a system that has no conjugate points but is not Anosov, make a small perturbation in a neighbourhood of an orbit segment to end up with a system that has conjugate points. We will prove that the perturbed system has conjugate points by showing that the index form is not positive definite on that segment. Let $\varphi \in \mathcal{B}_e \setminus \mathcal{A}_e$ and $\varepsilon > 0$. We can assume that $\varphi = 0$. By theorem 2 there are $\theta \in \Sigma$, $v \in T_\theta \Sigma$ such that $v \in \mathbb{E}(\theta) \cap \mathbb{F}(\theta) \setminus \mathbb{R}X(\theta)$. Let $\gamma(t) = \pi \psi_t(\theta)$. Since $X(\theta) \in \mathbb{E}(\theta) \cap \mathbb{F}(\theta)$ and $\dot{\gamma}(0) = d\pi(X(\theta)) \neq 0$, we can assume that $|d\pi(v)| = 1$ and $\langle d\pi(v), \dot{\gamma}(0) \rangle = 0$. Let C > 0 be such that the segment $\gamma|_{[-C,C]}$ is injective, and let T > C.

Let $Z_{\pm T}(t)$, $V_{\pm T}(t)$, $K_{\pm T}(t)$, $0 \le t \le T$ and $E_T(\theta)$, $F_T(\theta)$ be as in section 2. Let $\zeta_T \in E_T(\theta)$, $\eta_T \in F_T(\theta)$ be such that $d\pi \zeta_T = d\pi \eta_T = d\pi v$. Define $\xi_T : [-T, T] \to TM$ by

$$\xi_T(t) = \begin{cases} d\pi d\psi_t(\eta_T) = Z_{-T}(t) d\pi(v) & \text{ for } t \in [-T, 0] \\ d\pi d\psi_t(\zeta_T) = Z_T(t) d\pi(v) & \text{ for } t \in [0, T]. \end{cases}$$
(9)

By (8)

$$I(\xi_T, \xi_T) = \xi_T(T)^* K_T(T) \xi_T(T) - \xi_T(-T)^* K_{-T}(-T) \xi_T(-T) + \xi_T(0)^* (K_{-T}(0) - K_T(0)) \xi_T(0) = d\pi(v)^* (K_{-T}(0) - K_T(0)) d\pi(v).$$
(10)

There exist $\lambda \in (0, C/2)$ and $T_0 > 0$ such that $|\bar{\xi}_T(t)|^2 > \frac{1}{2}$ for $|t| \leq \lambda$ and $T > T_0$, where $\bar{\xi}_T(t)$ is the component of $\xi(t)$ orthogonal to $\dot{\gamma}(t)$.

Since $K_T(0) \to S(\theta)$, $K_{-T}(0) \to U(\theta)$ as $T \to \infty$ and $v = (d\pi(v), S(\theta)d\pi(v)) = (d\pi(v), U(\theta)d\pi(v))$, we have that $|(K_{-T}(0) - K_T(0))d\pi(v)| \to 0$ as $T \to \infty$. Fix T sufficiently large to have $I(\xi_T, \xi_T) < \varepsilon \lambda/4$. Henceforth we omit the subscript T in ξ .

Choose coordinates $\bar{x} = (x_1, \ldots, x_n) : U \to [-C, C] \times \mathbb{R}^{n-1}$ on a tubular neighbourhood of $\gamma([-C, C])$ such that $\bar{x} \circ \gamma([-C, C]) = [-C, C] \times \{\mathbf{0}\}$ and $\left\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\right\}$ is an orthogonal frame over the points of $\gamma([-C, C])$.

Define $\tilde{H} = H + \phi$ with $\phi(x_1, ..., x_n) = \frac{1}{2}f(x_1/C)f(|\boldsymbol{x}|/\delta)\varepsilon|\boldsymbol{x}|^2$, where $\boldsymbol{x} = (x_2, x_3, ..., x_n)$ and $f : \mathbb{R} \to \mathbb{R}$ is a C^{∞} bump function with support in [-1, 1] which is 1 on $[-\frac{1}{2}, \frac{1}{2}]$. Thus $\tilde{H}_p = H_p$, $\tilde{L} = L - \phi$, $\tilde{L}_v = L_v$, $\tilde{L}_{vv} = L_{vv}$, $\tilde{L}_{vx} = L_{vx}$. Since

$$\phi_{x} = \frac{1}{2}\varepsilon(C^{-1}f'(x_{1}/C)f(|\mathbf{x}|/\delta)|\mathbf{x}|^{2}, f(x_{1}/C)[f'(|\mathbf{x}|/\delta)|\mathbf{x}|/\delta + 2f(|\mathbf{x}|/\delta)]\mathbf{x})$$

and $\phi_{xx} = \frac{1}{2}\varepsilon\begin{bmatrix}a(\bar{x}) & \mathbf{b}(\bar{x})\\\mathbf{b}(\bar{x})^{t} & A(\bar{x})\end{bmatrix}$ where
$$a = C^{-2}f''(x_{1}/C)f(|\mathbf{x}|/\delta)|\mathbf{x}|^{2} \qquad \mathbf{b} = C^{-1}f'(x_{1}/C)[f'(|\mathbf{x}|/\delta)|\mathbf{x}|/\delta + 2f(|\mathbf{x}|/\delta)]\mathbf{x}$$
$$A = f\left(\frac{x_{1}}{C}\right)([f''(|\mathbf{x}|/\delta)/\delta^{2} + (3/\delta|\mathbf{x}|)f'(|\mathbf{x}|/\delta)]\mathbf{x} \otimes \mathbf{x} + [f'(|\mathbf{x}|/\delta)|\mathbf{x}|/\delta + 2f(|\mathbf{x}|/\delta)]I)$$

we have $|\phi_x| \leq c\delta\varepsilon$, $|\phi_{xx}| \leq c\varepsilon$ and then

$$|\tilde{X}(\theta) - X(\theta)| \leq c\delta\varepsilon$$
 $|D\tilde{X}(\theta) - DX(\theta)| \leq c\varepsilon$

where c is a constant. Using (6), we have

$$\tilde{I}(\xi,\xi) = I(\xi,\xi) + \int_{-T}^{T} (\dot{\xi}(L_{vv}(\tilde{\psi}_{t}(\theta)) - L_{vv}(\psi_{t}(\theta)))\dot{\xi} + 2\dot{\xi}(L_{vx}(\tilde{\psi}_{t}(\theta)) - L_{vx}(\psi_{t}(\theta)))\xi) dt + \int_{-T}^{T} \xi(\tilde{L}_{xx}(\tilde{\psi}_{t}(\theta)) - \tilde{L}_{xx}(\psi_{t}(\theta)) + \tilde{L}_{xx}(\psi_{t}(\theta)) - L_{xx}(\psi_{t}(\theta)))\xi dt.$$
(11)

Since $\lim_{\delta \to 0} \tilde{\psi}_t(\theta) = \psi_t(\theta)$ uniformly on $t \in [-T, T]$, for $\delta > 0$ sufficiently small we have

$$\tilde{I}(\xi,\xi) \leqslant I(\xi,\xi) + \int_{-T}^{T} \xi(\tilde{L}_{xx}(\psi_t(\theta)) - L_{xx}(\psi_t(\theta)))\xi \,\mathrm{d}t + \varepsilon\lambda/4$$

360 G Contreras et al

Let
$$\Delta(t) = \xi(t)(\tilde{L}_{xx}(\psi_t(\theta)) - L_{xx}(\psi_t(\theta)))\xi(t)$$
. If $\gamma(t) \in \bar{x}^{-1}([-C, C] \times \{\mathbf{0}\}),$

$$\Delta(t) = -\xi(t)\phi_{xx}(\gamma(t))\xi(t) = -\varepsilon\xi(t) \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & f(x_1 \circ \gamma(t)/C) \end{bmatrix} \xi(t).$$
(12)

Then

$$\Delta(t) = \begin{cases} -\varepsilon f(x_1 \circ \gamma(t)/C) |\bar{\xi}|^2 & \text{if } \gamma(t) \in \bar{x}^{-1}([-C, C] \times \{\mathbf{0}\}) \\ 0 & \text{if } \gamma(t) \notin B(C, \delta) \end{cases}$$
(13)

where $B(C, \delta) = \{q \in M : \bar{x}(q) \in [-C, C] \times B_{\delta}(\mathbf{0})\}$. Therefore

$$\int_{-T}^{T} \Delta(t) \mathrm{d}t < -\varepsilon \lambda + \int_{D(T,C,\delta)} \Delta(t) \, \mathrm{d}t$$

where $D(T, C, \delta) = ([-T, T] \setminus [-C, C]) \cap \gamma^{-1}(B(C, \delta)).$

Lemma 1. If the orbit $\gamma(t)$ is not periodic

$$\lim_{\delta \to 0} \int_{D(T,C,\delta)} \Delta(t) \, \mathrm{d}t = 0$$

Proof. If the segment $\gamma|_{[-T,T]}$ is injective, then we can choose $\delta > 0$ sufficiently small to have $D(T, C, \delta) = \emptyset$ and hence the integral vanishes.

Suppose that $([-T, T] \setminus [-C, C]) \cap \gamma^{-1}(\gamma([-C, C])) = \{s_1, \ldots, s_N\}$. Let $t_1, \ldots, t_N \in [-C, C]$ with $\gamma(s_i) = \gamma(t_i)$. Let $\overline{\gamma}'_i$ be the component of $(\overline{x} \circ \gamma)'(s_i)$ orthogonal to $(\overline{x} \circ \gamma)'(t_i)$. Let r > 0 be such that $|\overline{\gamma}'_i| > 2r$ for $i = 1, \ldots, N$ and define $h_i(t) = \langle \overline{x} \circ \gamma(t), \overline{\gamma}'_i \rangle / |\overline{\gamma}'_i|$ for $|t - s_i|$ small. Then $\exists \alpha > 0$ such that $h'_i(t) > r$ and $|h_i(t)| > |t - s_i| r$ for $|t - s_i| < \alpha$. If δ is sufficiently small, then $\gamma(t) \notin B(C, \delta)$ if $\delta/r < |t - s_i|$ for any $i = 1, \ldots, N$ and so

$$\int_{D(T,C,\delta)} |\Delta(t)| \mathrm{d}t \leqslant \sum_{i=1}^{N} \int_{s_i - (\delta/r)}^{s_i + (\delta/r)} |\Delta(t)| \,\mathrm{d}t. \tag{14}$$
lows.

The lemma follows.

Lemma 2. If the orbit $\gamma(t)$ is periodic, then

$$\lim_{\delta \to 0} \int_{D(T,C,\delta)} \Delta(t) \, \mathrm{d}t \leqslant 0.$$

Proof. Let τ be the period of γ . Defining

$$D'(T, C, \delta) = ([-T, T] \setminus \bigcup_{m=0}^{\infty} [m\tau - C, m\tau + C]) \cap \gamma^{-1}(B(C, \delta))$$

for $k = [T + C/\tau]$ we have

$$\int_{D(T,C,\delta)} \Delta(t) dt = \int_{D'(T,C,\delta)} \Delta(t) dt + \sum_{m=1}^{k} \int_{m\tau-C}^{m\tau+C} \Delta(t) dt$$

As in lemma 1 one proves that $\lim_{\delta \to 0} \int_{D'(T,C,\delta)} \Delta(t) dt = 0.$ By (13) we have $\sum_{m=1}^{k} \int_{m\tau-C}^{m\tau+C} \Delta(t) dt \leq 0.$

Thus, for $\delta > 0$ sufficiently small we have $\tilde{I}(\xi, \xi) \leq I(\xi, \xi) - \varepsilon \lambda + \varepsilon \lambda/4 < 0$ and corollary 1 implies that $H + \phi$ has conjugate points in $(H + \phi)^{-1}(e)$.

Acknowledgments

GC was partially supported by CNPq-Brazil. RI was partially supported by Conacyt-Mexico, grant 0324P-E. H SM was partially supported by PAPIIT, grant IN-103795.

References

- [An] Anosov D V and Sinai Ya G 1967 Some smooth ergodic systems Russ. Math. Surv. 22 103-68
- [Ar] Arnold V I 1989 Mathematical Methods of Classical Mechanics (New York: Springer)
- [Cl] Clebsch A 1958 Über die reduktion der zweiten variation auf ihre einfachste form J. Reine Angew. Math. 55 254–76
- [C-I] Contreras G and Iturriaga R 1998 Convex Hamiltonians without conjugate points Ergod. Theor. Dynam. Syst. to appear. Preprint available at http://www.ma.utexas.edu/mp_arc
- [Ge] Gelfand I M and Fomin S V 1963 Calculus of Variations (Englewood Cliffs, NJ: Prentice-Hall)
- [Gr] Green L W 1958 A theorem of E Hopf Michigan Math. J. 5 31-4
- [Pa] Paternain G and Paternain M 1994 On Anosov energy levels of convex Hamiltonian systems Math. Z. 217 367–76
- [Ru] Ruggiero R O 1991 On the creation of conjugate points Math. Z. 208 41-55