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Abstract. For a fixed HamiltonianH on the cotangent bundle of a compact manifoldM and
a fixed energy levele, we prove that the setAe of potentialsφ onM such that the Hamiltonian
flow of H +φ is Anosov, is the interior in theC2 topology of the setBe of potentials such that
the flow has no conjugate points.
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1. Introduction

Let M be a closed connected Riemannian manifold andT ∗M its cotangent bundle. By a
Hamiltonian onT ∗M we shall mean aC∞ functionH : T ∗M → R satisfying the following
conditions.

(a) Convexity: for all q ∈ M, p ∈ T ∗q M, the Hessian matrix(∂2H/∂pi ∂pj )(q, p)

(calculated with respect to linear coordinates onT ∗q M) is positive definite.
(b) Superlinearity:

lim
|p|→∞

H(q, p)

|p| = +∞ .

The Hamiltonian equationfor H is defined as

q ′ = Hp p′ = −Hq (1)

whereHq andHp are the partial derivatives with respect toq and p. Observe that the
Hamiltonian functionH is constant along the solutions of (1). Its level sets6e = H−1(e)

are calledenergy levelsof H . Then the compactness ofM and the superlinearity hypothesis
imply that the energy levels are compact. Since the Hamiltonian vector field (1) is Lipschitz,
the solutions of (1) are defined on allR. Denote byψt the correspondingHamiltonian flow
on T ∗M.

Let π : T ∗M → M be the canonical projection and define thevertical subspaceon
θ ∈ T ∗M by V(θ) = ker(dπ(θ)). Two pointsθ1, θ2 ∈ T ∗M are said to beconjugateif
θ2 = ψτ (θ1) for someτ 6= 0 and dψτ (V(θ1)) ∩ V(θ2) 6= {0}.
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We recall that a smooth flowψt generated by the vector fieldX on a compact manifold
N , is called Anosov if there exist continuous invariant sub-bundlesEu,Es of TN and
constantsc > 0, a > 0, such that

(a) TN = Es ⊕ Eu ⊕ RX
(b) |dψt(vs)| 6 ce−at |vs | for all t > 0, vs ∈ Es
|dψt(vu)| 6 ceat |vu| for all t < 0, vu ∈ Eu.

For e ∈ R, let Ae be the set ofφ ∈ C∞(M) such that the flow ofH + φ is Anosov
in (H + φ)−1(e) and letBe be the set ofφ ∈ C∞(M) such that(H + φ)−1(e) contains no
conjugate points. As is well knownAe is open inCk topology andBe is closed. On the
other hand Paternain and Paternain [Pa] have shown thatAe is contained inBe. They also
proved that if the flow is Anosov on the energy level6e, thene > max{H(q, 0) : q ∈ M}
and6e is diffeomorphic to the unitary sphere bundle inT ∗M. In the appendix of [An]
Margulis proved that if a compact 3-manifold admits an Anosov flow, then its fundamental
group has exponential growth. Therefore there is no Hamiltonian onT ∗T 2 with Anosov
energy levels. On the other hand the geodesic flow for the plane metric onT 2 has no
conjugate points anywhere. Of course there is plenty of Hamiltonians with Anosov energy
levels ifM has a metric with negative curvature. The purpose of this paper is to prove the
following

Theorem 1. The interior ofBe in theC2 topology isAe.

This theorem is an extension to the Hamiltonian setting of a result of Ruggiero [Ru] for
the geodesic flow. Our main tools are the Green bundles, theorem 2 below describingAe
insideBe, and the index form in the Lagrangian setting.

2. Green bundles and hyperbolicity

The Green bundles were constructed for the geodesic flow by Green in [Gr] using the Jacobi
equation. For Hamiltonian systems they were constructed in [C-I], where proofs for the
statements in this section can be found.

Suppose that the orbit ofθ ∈ T ∗M does not contain conjugate points andH(θ) = e

is a regular value ofH . Then there exist two dψt -invariant Lagrangian sub-bundlesE,
F ⊂ T (T ∗M) along the orbit ofθ given by

E(θ) = lim
t→+∞dψ−t (V(ψt (θ)))

F(θ) = lim
t→+∞dψt(V(ψ−t (θ))).

Moreover,E(θ)∪F(θ) ⊂ Tθ6, E(θ)∩V(θ) = F(θ)∩V(θ) = {0}, X(θ) ∈ E(θ)∩F(θ) and
dimE(θ) = dimF(θ) = dimM, whereX(θ) = (Hp,−Hq) is the Hamiltonian vector field
and6 = H−1{e}.

Fix a Riemannian metric onM and the corresponding induced metric onT ∗M.
Then TθT ∗M splits as a direct sum of two Lagrangian subspaces: the vertical subspace
V(θ) = ker(dπ(θ)) and the horizontal subspaceH(θ) given by the kernel of the connection
map. Using the isomorphismK : TθT ∗M → Tπ(θ)M × T ∗π(θ)M, ξ 7→ (dπ(θ)ξ,∇πξ θ), we
can identifyH(θ) ≈ Tπ(θ)M×{0} andV(θ) ≈ {0}×T ∗π(θ)M ≈ Tπ(θ)M. LetE ⊂ TθT ∗M be
an n-dimensional subspace such thatE ∩ V(θ) = {0}. ThenE is the graph of some linear
mapS : H(θ)→ V(θ). It can be verified thatE is Lagrangian if and only if in symplectic
coordinatesS is symmetric.
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Take θ ∈ T ∗M and ξ ∈ TθT
∗M = H(θ) ⊕ V(θ) ≈ Tπ(θ)M ⊕ Tπ(θ)M. Writing

dψt(ξ) = (h(t), v(t)), we obtain the Hamiltonian Jacobi equations

ḣ = Hpqh+Hppv v̇ = −Hqqh−Hqpv (2)

where the covariant derivatives are evaluated alongπ(ψt(θ)), andHqq , Hqp, Hpp andHqq
are linear operators onTπ(θ)M, that in local coordinates coincide with the matrices of partial
derivatives(∂2H/∂qi∂qj ), (∂2H/∂qi∂pj ), (∂2H/∂pi∂pj ) and (∂2H/∂pi∂qj ). Moreover,
since the HamiltonianH is convex, thenHpp is positive definite.

Let E be a Lagrangian subspace ofTθT ∗M. Suppose that fort in some interval ]−ε, ε[
we have that dψt(E) ∩ V(ψt (θ)) = {0}. Then we can write dψt(E) = graphS(t), where
S(t) : H(ψtθ)→ V(ψtθ) is a symmetric map. That is, ifξ ∈ E then

dψt(ξ) = (h(t), S(t)h(t)).
Using equation 2 we have that

Ṡh+ S(Hpqh+HppSh) = −Hqqh−HqpSh.
Since this holds for allh ∈ H(ψt (θ)) we obtain the Hamiltonian version of the Riccati
equation, which is well known in the Lagrangian setting (e.g. [Ge])

Ṡ + SHppS + SHpq +HqpS +Hqq = 0. (3)

Suppose there are no conjugate points in the interval [−T , T ], we can construct
matrix solutions(ZT (t), VT (t)), (Z−T (−t), V−T (−t)), 0 6 t 6 T to the Jacobi equation
with Z±T (0) = I , ZT (T ) = Z−T (−T ) = 0. Let K±T (t) = V±T (t)Z±T (t)−1 be
the corresponding solutions to the Riccati equation. LetET (θ) = dψ−T (V(ψT (θ)))
and FT (θ) = dψT (V(ψ−T (θ))), then dψt(ET (θ)) = graphKT (t) and dψt(FT (θ)) =
graphK−T (t). If there are no conjugate points along all the orbit we have thatKT (0) →
S(θ), andK−T (0)→ U (θ) asT →+∞; whereS(θ),U (θ) are the the symmetric solutions
of the Riccati equation (3) corresponding to the Green bundlesE(θ) = graph(S(θ)) and
F(θ) = graph(U (θ)).

The following theorem relates the hyperbolicity of the flowψt with the transversality
of the Green bundles.

Theorem 2. Let6 = H−1{e} be a regular energy level without conjugate points. Then the
following statements are equivalent:

(a) ψt |6 is Anosov,
(b) for all θ ∈ 6, E(θ) andF(θ) are transversal inTθ6,
(c) for all θ ∈ 6, E(θ) ∩ F(θ) = RX(θ),
(d) if θ ∈ 6, v ∈ Tθ6, v /∈ RX(θ) thensup

t∈R
|dψt(θ) · v| = +∞.

3. The index form

The index form is more naturally defined in the Lagrangian setting. Since the Hamiltonian is
convex in the fibres we can use the Legendre transform to obtain a LagrangianL : TM → R
(see [Ar]). The Euler–Lagrange equations

d

dt
x = v d

dt
Lv = Lx (4)

are equivalent to the Hamilton equations (1). We derive the Jacobi equation in this
Lagrangian setting. Letγ (t) be a solution of the Euler–Lagrange equation. Considering a
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variation f (s, t) of γ (t) = f (0, t) made of solutionst 7→ f (s, t) of the Euler–Lagrange
equation and taking the covariant derivativeD

ds , we obtain theJacobi equation

D

dt
(Lvxk + Lvvk̇) = Lxxk + Lxvk̇ (5)

wherek = ∂f

∂s
(0, t), k̇ = D

dt
∂f

∂s
and the derivatives ofL are evaluated onγ (t) = f (0, t).

Here we have used thatD
ds
∂F
∂t
= D

dt
∂F
∂s

for the variation mapF(s, t) = Lv(f (s, t), ∂f∂s (s, t)) ∈
T ∗M, where D

ds and D
dt are the covariant derivatives on the Riemannian manifoldT ∗M. The

linear operatorsLxx , Lxv, Lvv coincide with the corresponding matrices of partial derivatives
in local coordinates. The solutions of (5) satisfy

Dϕt (k(0), k̇(0)) = (k(t), k̇(t)) ∈ Tγ (t)(TM)
whereϕt is the Lagrangian flow onTM.

Let �T be the set of continuous piecewiseC2 vector fields alongγ[−T ,T ] . Define the
index formon�T by

I (ξ, η) =
∫ T

−T
(ξ̇Lvvη̇ + ξ̇Lvxη + ξLxvη̇ + ξLxxη) dt (6)

which is the second variation of the action functional for variationsf (s, t) with ∂f

∂s
∈ �T .

The following expresion of the index form is taken from [C-I] and originally due to
Clebsch [Cl]. Letθ ∈ T ∗M and suppose that the orbit ofθ , ψt(θ), −T 6 t 6 T does
not have conjugate points. LetZ(t), V (t) be a matrix solution of the Hamiltonian Jacobi
equation (2) such that detZ(t) 6= 0. Let η ∈ �T and defineζ ∈ �T by η(t) = Z(t)ζ(t).
Then the integrand ofI (η, η) in (6) is (Zζ̇ )∗(Hpp)−1Zζ̇ + [(Zζ )∗V ζ ]′. Sinceη andζ are
continuous, we have that

I (η, η) =
∫ T

−T
(Zζ̇ )∗(Hpp)−1Zζ̇ dt + (Zζ )∗V ζ |T−T . (7)

Corollary 1. If θ ∈ T ∗M and the segment{ψt(θ)|t ∈ [−T , T ]} has no conjugate points then
the index form is positive definite on

0T = {ξ : [−T , T ] → TM|ξ(t) ∈ Tπψt θM, ξ is piecewiseC2, ξ(−T ) = 0, ξ(T ) = 0}.

Proof. Let ξ ∈ 0T , ξ 6= 0. Write ξ(t) = Z(t)ζ(t). Since detZ(t) 6= 0 for all t ∈ [−T , T ],
ζ(−T ) = 0, ζ(T ) = 0 andζ 6= 0, thenζ̇ 6= 0. Now use formula (7). �

One can extend formula (7) using different solutions(Zi, Vi) of the Jacobi equation on
disjoint subintervals{]ti , ti+1[: i = 0, . . . , N} of [−T , T ]. Then

I (η, η) =
N∑
i=0

∫ ti+1

ti

(Zi ζ̇i)
∗(Hpp)−1Ziζ̇i dt + [(Ziζi)

∗Viζi ]
t−i+1

t+i
(8)

whereη|]ti ,ti+1[ = Ziζi .

4. Proof of theorem 1

The proof will proceed as follows. We take a system that has no conjugate points but is not
Anosov, make a small perturbation in a neighbourhood of an orbit segment to end up with
a system that has conjugate points. We will prove that the perturbed system has conjugate
points by showing that the index form is not positive definite on that segment.
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Let ϕ ∈ Be \Ae andε > 0. We can assume thatϕ = 0. By theorem 2 there areθ ∈ 6,
v ∈ Tθ6 such thatv ∈ E(θ)∩F(θ)\RX(θ). Let γ (t) = πψt(θ). SinceX(θ) ∈ E(θ)∩F(θ)
and γ̇ (0) = dπ(X(θ)) 6= 0, we can assume that|dπ(v)| = 1 and〈dπ(v), γ̇ (0)〉 = 0. Let
C > 0 be such that the segmentγ |[−C,C] is injective, and letT > C.

Let Z±T (t), V±T (t),K±T (t), 06 t 6 T andET (θ), FT (θ) be as in section 2.
Let ζT ∈ ET (θ), ηT ∈ FT (θ) be such that dπζT = dπηT = dπv.
DefineξT : [−T , T ] → TM by

ξT (t) =
{

dπdψt(ηT ) = Z−T (t)dπ(v) for t ∈ [−T , 0]

dπdψt(ζT ) = ZT (t)dπ(v) for t ∈ [0, T ].
(9)

By (8)

I (ξT , ξT ) = ξT (T )∗KT (T )ξT (T )− ξT (−T )∗K−T (−T )ξT (−T )
+ξT (0)∗(K−T (0)−KT (0))ξT (0)
= dπ(v)∗(K−T (0)−KT (0)) dπ(v). (10)

There existλ ∈ (0, C/2) andT0 > 0 such that|ξ̄T (t)|2 > 1
2 for |t | 6 λ andT > T0,

whereξ̄T (t) is the component ofξ(t) orthogonal toγ̇ (t).
SinceKT (0) → S(θ), K−T (0) → U (θ) asT → ∞ and v = (dπ(v),S(θ)dπ(v)) =

(dπ(v),U (θ)dπ(v)), we have that|(K−T (0) − KT (0))dπ(v)| → 0 asT → ∞. Fix T
sufficiently large to haveI (ξT , ξT ) < ελ/4. Henceforth we omit the subscriptT in ξ .

Choose coordinates̄x = (x1, . . . , xn) : U → [−C,C] × Rn−1 on a tubular

neighbourhood ofγ ([−C,C]) such that̄x ◦ γ ([−C,C]) = [−C,C]×{0} and
{

∂
∂x1
, . . . , ∂

∂xn

}
is an orthogonal frame over the points ofγ ([−C,C]).

Define H̃ = H + φ with φ(x1, . . . , xn) = 1
2f (x1/C)f (|x|/δ)ε|x|2, where x =

(x2, x3, . . . , xn) and f : R → R is a C∞ bump function with support in [−1, 1] which
is 1 on [− 1

2,
1
2]. Thus H̃p = Hp, L̃ = L− φ, L̃v = Lv, L̃vv = Lvv, L̃vx = Lvx . Since

φx = 1
2ε(C

−1f ′(x1/C)f (|x|/δ)|x|2, f (x1/C)[f
′(|x|/δ)|x|/δ + 2f (|x|/δ)]x)

andφxx = 1

2
ε

[
a(x̄) b(x̄)
b(x̄)t A(x̄)

]
where

a = C−2f ′′(x1/C)f (|x|/δ)|x|2 b = C−1f ′(x1/C)[f
′(|x|/δ)|x|/δ + 2f (|x|/δ)]x

A = f
(x1

C

)
([f ′′(|x|/δ)/δ2+ (3/δ|x|)f ′(|x|/δ)]x⊗ x+ [f ′(|x|/δ)|x|/δ + 2f (|x|/δ)]I )

we have|φx | 6 cδε, |φxx | 6 cε and then

|X̃(θ)−X(θ)| 6 cδε |DX̃(θ)−DX(θ)| 6 cε
wherec is a constant. Using (6), we have

Ĩ (ξ, ξ) = I (ξ, ξ)+
∫ T

−T
(ξ̇ (Lvv(ψ̃t (θ))− Lvv(ψt (θ)))ξ̇+2ξ̇ (Lvx(ψ̃t (θ))− Lvx(ψt (θ)))ξ) dt

+
∫ T

−T
ξ(L̃xx(ψ̃t (θ))− L̃xx(ψt (θ))+ L̃xx(ψt (θ))− Lxx(ψt (θ)))ξ dt. (11)

Since limδ→0 ψ̃t (θ) = ψt(θ) uniformly on t ∈ [−T , T ], for δ > 0 sufficiently small we
have

Ĩ (ξ, ξ) 6 I (ξ, ξ)+
∫ T

−T
ξ(L̃xx(ψt (θ))− Lxx(ψt (θ)))ξ dt + ελ/4.
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Let 1(t) = ξ(t)(L̃xx(ψt (θ))− Lxx(ψt (θ)))ξ(t). If γ (t) ∈ x̄−1([−C,C] × {0}),

1(t) = −ξ(t)φxx(γ (t))ξ(t) = −εξ(t)
[

0 0
0 f (x1 ◦ γ (t)/C)

]
ξ(t). (12)

Then

1(t) =
{
−εf (x1 ◦ γ (t)/C)|ξ̄ |2 if γ (t) ∈ x̄−1([−C,C] × {0})
0 if γ (t) /∈ B(C, δ) (13)

whereB(C, δ) = {q ∈ M : x̄(q) ∈ [−C,C] × Bδ(0)}. Therefore∫ T

−T
1(t)dt < −ελ+

∫
D(T ,C,δ)

1(t) dt

whereD(T ,C, δ) = ([−T , T ] \ [−C,C]) ∩ γ−1(B(C, δ)).

Lemma 1. If the orbit γ (t) is not periodic

lim
δ→0

∫
D(T ,C,δ)

1(t) dt = 0.

Proof. If the segmentγ |[−T ,T ] is injective, then we can chooseδ > 0 sufficiently small to
haveD(T ,C, δ) = ∅ and hence the integral vanishes.

Suppose that([−T , T ] \ [−C,C]) ∩ γ−1(γ ([−C,C])) = {s1, . . . , sN }. Let t1, . . . , tN ∈
[−C,C] with γ (si) = γ (ti). Let γ̄ ′i be the component of(x̄ ◦ γ )′(si) orthogonal to
(x̄ ◦ γ )′(ti). Let r > 0 be such that|γ̄ ′i | > 2r for i = 1, . . . , N and definehi(t) =
〈x̄ ◦ γ (t), γ̄ ′i 〉/|γ̄ ′i | for |t− si | small. Then∃α > 0 such thath′i (t) > r and|hi(t)| > |t− si |r
for |t − si | < α. If δ is sufficiently small, thenγ (t) /∈ B(C, δ) if δ/r < |t − si | for any
i = 1, . . . , N and so∫

D(T ,C,δ)

|1(t)|dt 6
N∑
i=1

∫ si+(δ/r)

si−(δ/r)
|1(t)| dt. (14)

The lemma follows. �

Lemma 2. If the orbit γ (t) is periodic, then

lim
δ→0

∫
D(T ,C,δ)

1(t) dt 6 0.

Proof. Let τ be the period ofγ . Defining

D′(T , C, δ) = ([−T , T ] \
∞⋃
m=0

[mτ − C,mτ + C]) ∩ γ−1(B(C, δ))

for k = [T + C/τ ] we have∫
D(T ,C,δ)

1(t)dt =
∫
D′(T ,C,δ)

1(t)dt +
k∑

m=1

∫ mτ+C

mτ−C
1(t)dt.

As in lemma 1 one proves that limδ→0
∫
D′(T ,C,δ) 1(t) dt = 0.

By (13) we have
∑k

m=1

∫ mτ+C
mτ−C 1(t) dt 6 0. �

Thus, for δ > 0 sufficiently small we havẽI (ξ, ξ) 6 I (ξ, ξ) − ελ + ελ/4 < 0 and
corollary 1 implies thatH + φ has conjugate points in(H + φ)−1(e).
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