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Abstract. For a fixed HamiltoniarnH on the cotangent bundle of a compact manifétdand
a fixed energy levet, we prove that the sefl, of potentialsp on M such that the Hamiltonian
flow of H 4 ¢ is Anosov, is the interior in th€? topology of the sef3, of potentials such that
the flow has no conjugate points.
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1. Introduction

Let M be a closed connected Riemannian manifold @rid/ its cotangent bundle. By a
Hamiltonian onT*M we shall mean & function H : T*M — R satisfying the following
conditions.

(a) Convexity: for all ¢ € M, p € T/M, the Hessian matrixd2H /dp; opj)(q, p)
(calculated with respect to linear coordinatesn/) is positive definite.

(b) Superlinearity:

H(g,p) _
Ipl=oc|p|
The Hamiltonian equationfor H is defined as

q =H, p'=-H, (1)

where H, and H, are the partial derivatives with respect goand p. Observe that the
Hamiltonian functionH is constant along the solutions of (1). Its level sEts= H ()
are calledenergy levelof H. Then the compactness #f and the superlinearity hypothesis
imply that the energy levels are compact. Since the Hamiltonian vector field (1) is Lipschitz,
the solutions of (1) are defined on &l Denote byy, the correspondinglamiltonian flow
onT*M.

Letw : T*M — M be the canonical projection and define thestical subspaceon
0 € T*M by V(9) = ker(dr (9)). Two pointsfy, 6, € T*M are said to beconjugateif
02 = Y. (61) for somer £ 0 and di, (V(61)) NV (6,) # {0}.
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We recall that a smooth flow, generated by the vector field on a compact manifold
N, is called Anosovif there exist continuous invariant sub-bundl&$, E* of TN and
constants > 0, a > 0, such that

(@ TN =E° @ E" ®RX

(b) |dyr, (v*)| < ce ™ |v¥| for all t > 0, v* € E®

|y, (v*)] < ce® v for all 1 < 0, v* € E™.

Fore € R, let A, be the set ofp € C*°(M) such that the flow ofH + ¢ is Anosov
in (H + ¢)(e) and let3, be the set ofp € C®(M) such that(H + ¢) 1(e) contains no
conjugate points. As is well knowr, is open inC* topology andB, is closed. On the
other hand Paternain and Paternain [Pa] have shown4h& contained in3,. They also
proved that if the flow is Anosov on the energy lew&l, thene > max{H (q,0) : ¢ € M}
and X, is diffeomorphic to the unitary sphere bundle ItiM. In the appendix of [An]
Margulis proved that if a compact 3-manifold admits an Anosov flow, then its fundamental
group has exponential growth. Therefore there is no Hamiltoniafd af? with Anosov
energy levels. On the other hand the geodesic flow for the plane metric?dms no
conjugate points anywhere. Of course there is plenty of Hamiltonians with Anosov energy
levels if M has a metric with negative curvature. The purpose of this paper is to prove the
following

Theorem 1. The interior of3, in the C? topology is.A,.

This theorem is an extension to the Hamiltonian setting of a result of Ruggiero [Ru] for
the geodesic flow. Our main tools are the Green bundles, theorem 2 below desgtibing
inside 53,, and the index form in the Lagrangian setting.

2. Green bundles and hyperbolicity

The Green bundles were constructed for the geodesic flow by Green in [Gr] using the Jacobi
equation. For Hamiltonian systems they were constructed in [C-1], where proofs for the
statements in this section can be found.

Suppose that the orbit @¢f € T*M does not contain conjugate points afdf) = e
is a regular value off. Then there exist two i -invariant Lagrangian sub-bundlé&
F c T(T*M) along the orbit o given by

E©) = lim_dy_(V(y(9))
F(©) = lim_dy,(V(y-©0).

Moreover,E(0) UF () c T,T, E@)NV(©) =F©®)NV®) = {0}, X(6) € E@®)NF@®H) and
dimE@®) = dimF() = dimM, whereX () = (H,, —H,) is the Hamiltonian vector field
andT = H e).

Fix a Riemannian metric onM and the corresponding induced metric @M.
Then T, T*M splits as a direct sum of two Lagrangian subspaces: the vertical subspace
V(0) = ker(dr (6)) and the horizontal subspat&0) given by the kernel of the connection
map. Using the isomorphisik : TyT*M — T,/ M % TigM, & — (dr (0)&, V5:0), we
can identifyH(0) ~ T, M x {0} andV(0) =~ {0} x T;gM =~ TroM. LetE C T,T*M be
an n-dimensional subspace such tiatn V() = {0}. ThenE is the graph of some linear
map S : H(®) — V(0). It can be verified thak is Lagrangian if and only if in symplectic
coordinatesS is symmetric.
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Take§ € T*M and%' e TyT*M = H(@) & V() ~ TH(Q)M D TH(Q)M. ertlng
dy, (&) = (h(1), v(t)), we obtain the Hamiltonian Jacobi equations

h = Hpyh + Hypv U = —Hy,h — Hypv (2

where the covariant derivatives are evaluated atotg; (6)), andH,,, H,,, H,, and H,,
are linear operators ofi; )M, that in local coordinates coincide with the matrices of partial
derivatives (02H /dq;dq;), (3°H /dq;dp;), (3°H /dp;dp;) and (9%H /dp;dq;). Moreover,
since the Hamiltoniarfl is convex, thenH,,, is positive definite.

Let E be a Lagrangian subspace®fl *M. Suppose that farin some interval }¢, [
we have that ¢, (E) N V(y,(0)) = {0}. Then we can write @,(E) = graphS(¢), where

S(t) : H(y,0) — V(y,0) is a symmetric map. That is, € E then
dy (§) = (h(1), S(OHA(@)).

Using equation 2 we have that
Sh + S(Hp,h + H,,Sh) = —H,,h — H,,Sh.

Since this holds for alk € H(y,(0)) we obtain the Hamiltonian version of the Riccati
equation, which is well known in the Lagrangian setting (e.g. [Ge])

S+ SH,,S + SH,, + H,,S + H,, = 0. (3)

Suppose there are no conjugate points in the intervdl,['], we can construct
matrix solutions(Zz(¢), Vr(t)), (Z_r(—t), V_r(—1)), 0 < ¢t < T to the Jacobi equation
with Zo7(0) = I, Zy(T) = Z_¢(-T) = 0. Let Kir(t) = Var()Zir(t)™! be
the corresponding solutions to the Riccati equation. Egt®) = dy_r(V(¥r(0)))
and Fr(0) = dyr(V(y_r(9))), then di,(Er(®)) = graphKr(t) and d,(Fr(0)) =
graphK_7(¢). If there are no conjugate points along all the orbit we have &ai0) —
S(0),andK_7(0) — U (0) asT — +oo; whereS(9), U (9) are the the symmetric solutions
of the Riccati equation (3) corresponding to the Green bunél@s = graphS()) and
F(0) = graphU (9)).

The following theorem relates the hyperbolicity of the flaw with the transversality
of the Green bundles.

Theorem 2. Let = = H'{e} be a regular energy level without conjugate points. Then the
following statements are equivalent:
(a) ¥, |x is Anosov,
(b) for all 6 € =, E(0) andF(9) are transversal inl; X,
(c)forallo € =, E@) NF®H) = RX(6),
(d)ifo e ,ve X, v¢ RX(O) thensup|dy,(0) - v] = +o0.
teR

3. The index form

The index form is more naturally defined in the Lagrangian setting. Since the Hamiltonian is
convex in the fibres we can use the Legendre transform to obtain a Lagrdngibnd — R
(see [Ar]). The Euler—-Lagrange equations

d d

—x = —L,=1L 4
e 3L X 4)

are equivalent to the Hamilton equations (1). We derive the Jacobi equation in this
Lagrangian setting. Lep(¢) be a solution of the Euler—Lagrange equation. Considering a
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variation f (s, t) of y(t) = f(0,t) made of solutions — f(s,t) of the Euler—Lagrange
equation and taking the covariant derivatigye we obtain theJacobi equation

D . .
E(vak + vak) = Lxxk + vak (5)

wherek = g—{j(o, 1, k = 5‘3—{ and the derivatives of. are evaluated oy (1) = f(0, t).
Here we have used th§2f = D2F for the variation magF (s, 1) = L,(f (s, 1), 2(s,1)) €
T*M, Where% and% are the covariant derivatives on the Riemannian manifsig. The
linear operatord.,,, L.,, L,, coincide with the corresponding matrices of partial derivatives

in local coordinates. The solutions of (5) satisfy
Dy, (k(0), k(0) = (k(1), k(1)) € Ty, (T M)

whereg; is the Lagrangian flow ol M.
Let Q7 be the set of continuous piecewi& vector fields along/_r 7). Define the
index formon Q7 by

T
1) = /T(émeéLvm ELyi + ELyn) ®)

which is the second variation of the action functional for variatigiis, r) with % € Qr.

The following expresion of the index form is taken from [C-I] and originally due to
Clebsch [CI]. Letd € T*M and suppose that the orbit 6f v, (0), —T <t < T does
not have conjugate points. Let(r), V(¢) be a matrix solution of the Hamiltonian Jacobi
equation (2) such that d&tr) # 0. Letn € Qr and define; € Q7 by n(t) = Z(@)¢(2).
Then the integrand of (, n) in (6) is (Z¢)*(H,,)"1Z¢ + [(Z¢)*V¢]'. Sincen and¢ are
continuous, we have that

T
1. m) = / 2y 2E b+ (20 VT %

Corollary 1. If 6 € T*M and the segmeniy, (6)|t € [—T, T]} has no conjugate points then
the index form is positive definite on

Iy ={§:[-T,T] > TM|6(t) € Try,oM, & is piecewiseC?, £(~T) = 0, £(T) = 0}.

Proof. Let& € 'y, & # 0. Write £(¢t) = Z(¢)¢(¢). Since deZ(¢r) A0 forallt € [T, T],
(=T)=0,¢(T) =0 and¢ # 0, then¢ # 0. Now use formula (7). a

One can extend formula (7) using different soluti@¢&s, V;) of the Jacobi equation on
disjoint subintervald]s;, ;41[: i =0, ..., N} of [-T, T]. Then

N fiy1 . . -
I(n,n) = Z/ (Zi&))*(Hpp) 1 Zi i dt + [(ZiCi)*ViCi]?fl (8)
— t i
Wherenl]t,',t,url[ = Zi;i'

4. Proof of theorem 1

The proof will proceed as follows. We take a system that has no conjugate points but is not
Anosov, make a small perturbation in a neighbourhood of an orbit segment to end up with
a system that has conjugate points. We will prove that the perturbed system has conjugate
points by showing that the index form is not positive definite on that segment.
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Lety € B.\ A, ande > 0. We can assume that= 0. By theorem 2 there ate =,
v € T, T such thaw € E(@)NF©H)\RX (0). Lety(r) = my,(6). SinceX () € E®)NF(®H)
andy (0) = dn (X (9)) # 0, we can assume thédz (v)| = 1 and(dz (v), y(0)) = 0. Let
C > 0 be such that the segmepl_c ¢ is injective, and lel’ > C.

Let Zir(2), Var (), Ko7 (2), 0<t < T and Er(0), Fr(0) be as in section 2.

Let ir € Er(9), nr € Fr(9) be such that:dé'T = d7TT)T =dnv.

Defineéy : [-T,T] — TM by

drdy,(nr) = Z_r(t)dr(v) fort e [T, 0]

ET(I) = dﬂdlﬂz(CT) — ZT(l)dﬂ(v) f0r t e [O, T] (9)

By (8)
I1Gr,ér) =&r(T)* K (T)ér(T) — & (=T) K_r (=T)ér(=T)
+&7(0)*(K_7(0) — K7(0))é7(0)
= dz(v)*(K_7(0) — K7(0)) dr (v). (10)

There exist» € (0,C/2) and T, > 0 such thaté; ()| >  for |¢| < » andT > To,
whereé (1) is the component of () orthogonal toy (¢).

SinceK7(0) — S@©), K_7(0) - U®) asT — oo andv = (d7(v), S@)dr (v)) =
(drz (v), U(@®)dr (v)), we have that(K_7r(0) — K7 (0))dn(v)] — 0 asT — oo. Fix T

sufficiently large to havd (&7, ér) < eA/4. Henceforth we omit the subscriftin &.
Choose coordinates = (xq,..., x,) U — [-C,C] x R"! on a tubular

neighbourhood of ([—C, C]) such thak o y ([—C, C]) = [-C, C]x{0} and{%, . %}
is an orthogonal frame over the pointsjofl—C, C]).

Define H = H + ¢ with ¢(xq, ..., X)) = %f(xl/C)f(|w|/8)8|:l:|2, where x =
(x2, x3, ..., xy,) and f 1 R — R is a C* bump function with support in{1, 1] which
islon[3 1. ThusH,=H, L=L—¢, L, =Ly, Lyy = Ly, Lyx = L,,. Since
or = %8(C_1f/(X1/C)f(I€BI/3)lez, f e /OLf (/8] /8 + 2f (x| /8)]x)

_ 1 lak) b
andg.. = 3¢ [b(ic)f A
a=C2f"(x1/C)f(|x|/8)|z|? b=Cf'(x1/OLf (l/8)||/8 + 2f (|| /8)]x
A=f (%) (" (21/8)/8 + (3/8|z]) f' (|12l /)] @ = + [ f'(|2|/8) || /8 + 2 (|| /8)]])
we have|¢,| < cde, ¢ | < ce and then
1X(0) — X(©®)] < cde IDX () — DX(0)| < ce

wherec is a constant. Using (6), we have

] where

T
1.8 =1E6)+ / T(é(Lw(&,w)) — Loy (W (0)))E+2E (L (¥, (8)) — Loy (¥:(6)))€) Ot

T
+ / E(Lox(1(0)) — Loy (W, (9)) + Ly (Y (0)) — Lix (Y (0)))Ede.  (11)
-T

Since limy_g 1/7,(9) = 9,(0) uniformly ont € [T, T], for § > 0 sufficiently small we
have

T
[(,8) <I(E 8+ f ) E(Lyx (Y1) — Loy (Y:(0)))E df + er/4.
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Let A(t) = E() (Lo (W1 (0)) — Lox (W (O))E@). If v (1) € xH[-cC, ] x {op,
0 0

A(t) = —E@) ¢ (Y ()E(1) = —£&(1) [O flxro y(t)/C):| §(). (12)

Then
- o £|2 i (i
At = { ef (x10 y(1)/C)IE| l.f y(®) e x([—C,C] x {0}) (13)
0 if y(t) ¢ B(C,J)

whereB(C,8) ={qg € M : x(q) € [-C, C] x Bs(0)}. Therefore

T
/ A@M)dr < —gA +/ A(t) dt

T D(T,C,$)
where D(T, C, 8) = ([—-T, T]\ [-C, C]) Ny X(B(C, 9)).
Lemma 1. If the orbit y () is not periodic

lim / A(t)dr =0.
=0/ p(r.C.8)

Proof. If the segmenty|_r 7] is injective, then we can chooge> 0 sufficiently small to
have D(T, C, §) = ¢ and hence the integral vanishes.

Suppose that[—7, T]\ [-C, C) Ny (¥ ([—=C,C]) = {s1,...,sy}. Letty, ..., ty €
[-C,C] with y(s;) = y(5). Let y/ be the component ofx o y)'(s;) orthogonal to
(Xxo y)'(#;). Letr > 0 be such thaiy/| > 2r for i = 1,..., N and defineh;(r) =
(xoy@),y))/ly!/| for |t —s;| small. TherHe > 0 such that:;(¢) > r and|h; ()| > [t —s;|r
for |t —s;| < a. If § is sufficiently small, theny(¢) ¢ B(C,$) if §/r < |t — s;| for any
i=1,...,N and so

si+(8/r)

N
o AW 14
/Da,c,g)' Oldr < ) [ s "

i —(8/7)
The lemma follows. O

Lemma 2. If the orbit y (¢) is periodic, then

lim / A()dr <O0.
=0/ p(r.C.8)

Proof. Let t be the period ofs. Defining

D'(T.C.8) = (-T.T]\ | JImt — C.m7 + C)) Ny ™(B(C. )

m=0
for k = [T + C/t] we have

mt+C

k
/ A(t)dt :/ A(t)dt—i—Z/ A()dt.
D(T,C,$) D/(T,C,8) mr—C

m=1
As in lemma 1 one proves that ljmg fD/(T’Cﬁ) A(t)dr = 0.
By (13) we have} ¥ _, [ A(r)dr < 0. O

mt—C

Thus, foré > 0 sufficiently small we havd (£,&) < I1(€,&) — el + er/4 < 0 and
corollary 1 implies thatd + ¢ has conjugate points i(H + ¢) 1(e).
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