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The Derivatives of Equilibrium States

Gonzalo Contreras

— To the memory of Ricardo Mané.

Abstract. We find some estimates for the derivatives of equilibrium states of subshifts
of finite type. We prove the differentiability (with respect to the potential) of integrals
of certain discontinuous functions for the equilibrium state of a potential.

Introduction
In this paper we are interested in certain singular integrals with respect
to equilibrium states of a subshift of finite type.

Let ¢ : ¥ « be a topologically transitive subshift of finite type
endowed with one usual metric (e.g. diameter(n-cylinder) = 27"), let
¢ : ¥ — R be a Holder continuous function and let u4 be its equilibrium
state.

Let K C X be a compact subset such that p14(e-neighbourhood of K)
< Ae®, A, o > 0. Consider a measurable function L : ¥ — R having
a singular set K of order |L(z)| < B |logd(z, K)|, where B > 0 is a
constant and d(-,-) is the distance in . Then, using the condition on
ty and K, one can prove that L is pg-integrable. On the other hand,
it is known that the map C?(Z,R) 3 ¢ — Ue € (CB(E,R))* is real
analytic. We will prove (theorem B) that, if moreover, L has local
Holder constants D(z), |L(z) — L(y)| < D(z) d(z,y)”, such that D(z) <
Cd(z,K)~%, C,~, § >0, then the map CP(Z,R) 3 ¢ — [ Lduy € Ris
.

In order to prove theorem B, one has to show that Dg(p4(L)) exists.

Received 12 December 1994.
research supported by CNPq, Brazil



212 GONZALO CONTRERAS

For this we need estimates on the derivative Dy(us(1c,)), where 1, is
the characteristic function of an n-cylinder. Observe that one can not
expect to have a bound

[{(Dg 1 (Cr)) ()] = 1(Dyg 1) (#) - Lon| < A llooll |16(Cn)]

(where the first equality is proven in (6)), because for ¢; = ¢g + t ¢, we
would have an estimate

19, (Cu)| < exp(A ]| £) 1o (Cr),

implying the absolute continuity pg, < g, which is false. The Theorem
A below is the following estimate for n-cylinders Cy,:

| (D5 o(C)) (2,5 0) | < ® ol A, ) (o)

where || || is the a-Holder norm. We show here two applications of
theorem B.

a. One dimensional dynamics.

The first application is in 1-dimensional dynamics. Consider the map
fi=L1 < f(z)=1— 222. This map is conjugated to the Tent map
g:[-1,1 <, g(y) = 1—2 |y|. The conjugacy h : [-1,1] — [-1,1], foh =
hog is given by h(y) = sin(§y). The full 2-shift is semiconjugated
to the Tent map by an a-Hdélder semiconjugacy k : Yo — [—1,1], for
some 0 < a < 1. The function F : [--1,1] — R, F(p) = log|f'(p)|
has at p = 0 a singularity of order |F(z)|~ — log|z|, and has local
Lipschitz constants of order ~F’(z)~1/|z|. Since h is Lipschitz, if we
choose K = k‘l{()}, L: %9 — R, L{z) = F(hok(z)), then L has a
singularity at K of order L(zx)~ — logd(z, K)*~ — logd(z, K) and local
a-Holder constants of order ~1/d(z, K)®. In particular the pair (K, L)
satisfies the hypothesis of theorem B. If ¢ : [—1,1] — R is a-Holder,
then ¢ = pohok : L9 — [—1,1], is B-Holder for some § = F(«x), and the
map C%(Zq,R) — CP(29,R) : ¢ — ¢ is real analytic. We get that the
Lyapunov exponents of equilibrium states of f depend smoothly with
respect to the potential ¢, i.e.

C*(L1LR) 3 ¢ Ay i= [ log|f ()] dus(p)
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THE DERIVATIVES OF EQUILIBRIUM STATES 213

is C*°, where p is the equilibrium state for (¢, f).

b. Average linking numbers.

The second application is to average linking numbers for hyperbolic
flows. Let A C S3 be a hyperbolic basic set of a flow @ in 83, Let
PO(t) be the set of periodic orbits of 4|4 with period < t. Denote by
(7, n) the linking number of the knots v and 7 in $3. Define

L(s,t) =Y {l(y,n)|y € PO(s),n€ PO(t), v#n}
In [3] we proved that identifying S3 ~ R3 U {o0}, with oo ¢ A, we
have that

L) tm L0 = [ L) dax i,y

where 1 is the measure of maximal entropy of ¢4, and
I Fa)xFy) (z-y)
vol($3) e =yl g -y

]L(l‘, y) =

where x is the vector product in R =~ §% — {00}, - is the inner product
in R? and F is the vectorfield of ¢ We show now that there exists a
neighbourhood U of F with the C® metric such that the map U 3 G —
L(Ag) € Ris C*, where Ag is the continuation of A for the vectorfield G.
Using the Taylor expansion of F' one can see that the factor
F(z) x F(y)
Iz -l

is bounded in a neighbourhood of the diagonal z = y, therefore L(z,y)
has order 1/|lz — y|| near the diagonal. By dimension arguments, it is
seen in [3] that L(z,y) € £1(u x p).

Using a Markov partition, it is shown in [2] that there exists a semi-
conjugacy 7 of a suspension S(, 7r) of a subshift of finite type ¥ onto A,
where 7 : ¥ —]0, +0o[ is Holder continuous and S(X, 77) is the quotient
space

SE, ) ={(z,t)|zcn,0<t<7{(z)}/_

with the equivalence relation (z,7(z)) = (o(z),0), where o : ¥ + is
the shift map. The lift of the measure of maximal entropy p to the
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214 GONZALO CONTRERAS

suspension is (7*u) = ([ 77 dv)_l v X X where X is the Lebesgue mea-

sure on [0, +oo[ and v is the equilibrium state of the function ¢r(z) =

hiop(F) Tr(x), where hiop(F) is the topological entropy of ¢|4.
Define £: ¥ x ¥ — R, by

Tp(m) Tp(y)
Uz,y) = /O /0 L (pa(r 2), e(my)) dsdi

then
1

( f TF dl/)2

It can be proved (cf. [3b]) that the function £(z,y) has order
—log d(z,y) near the diagonal z = y on ¥ x ¥ and has local Lipschitz
constants of order 1/d(x,y). The structural stability for hyperbolic ba-

L(A) = [ tew) dwr xvr)

sic sets and the topological invariance of the linking number yields that
when we change the vectorfield on a neighbourhood of F, the new aver-
age linking can be calculated using the same shift and the same function
£. The corresponding orbits under the topological equivalence will have
- the same linking numbers but their periods will be different. In general
the new measures v will be singular with respect to vp.

In [4] it is proven that if ¢/ is a small neighbourhood of the vector-
field Fy endowed with the C2-metric, then the maps U > F — ¢p €
C*(Z,R), and U > F +— [7rdvp, are real analytic. So we need to see
that

UBF!——)f gd(?/p)(?/p)
PIND

is C®. Here we apply theorem B to K = {(z,y) € & X Z|z =y} and
the function ¢. For this we observe that the product map o x ¢ : T x
Y, (0 x o)(z,y) = (o(z),a(y)) is also a subshift of finite type, the
measure vg X vp is the equilibrium state of Yp(z,y) == ¢r(z) + or(y)
for the product shift. Moreover since the measure vp satisfies a uniform
estimate vp(e-neighbourhood of K)~e® with 3 > 0, one gets that (v %
vr)(e-neighbourhood of K )~€?. Finally, if one constructs the Markov
partition using small embedded differentiable transverse sections to the
flows, the projection of ¢, J(p,q) := £(z,y), where mx = p, 7y = g,
p,q €(smooth transversal), is differentiable on the transversal sections
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THE DERIVATIVES OF EQUILIBRIUM STATES 215

and |J| ~—log|lp — ql|, ||D J|| N“P%ET. This gives the required conditions

on theorem B.
I want to thank the referee for the detailed suggestions of improve-
ments in the exposition.

Statements of the Results.

Given a matrix 4 € {O,I}ZX“’Z such that for all 0 < 4,j < / there
exists M = M(¢,j) > 0 such that Af—‘j([ > 0, consider the (topologi-
cally transitive) subshift of finite type o: % « (resp. o4:%7 «) where

(0(x))i = Tiy1,
Si={r= @), €{l... . | Ay, miq1) =1, VieZ}
shi={z = ()5 e{1,... . 0% |Als, wi41) =1, VieN}

Endow ¥ (resp. %71) with the metric d(z,y) = b®¥ for some fixed
0 < b <1 and where

(z,y): = max({0} U {k|z¢ =, V]i| < k}).
For z €  (resp. =) let C,,(z) be the n—cylinder containing z:
Cr(z):={y € ¥|xi = y;,V|i] < n}, {resp. 0 <i<n).
For 0 < a < 1 let C¥Z,R) (resp. C*(£T,R)) be the Banach space
of a—Halder continuous functions on % (resp. ©1).
CHER):={¢: X = R|IK > 0,]¢(x) — ¢(y)| < Kd(z,y)*}
with the norm ||@[: = |¢|p + |@|a, Where
Slo=sup 6@, [olac= sup P PW]
zey dzgy)20 AT, Y)

It is known (cf. [6]) that the map ¢ — py from C%(Z,R) into
the dual space (C*(Z,R))* (with the dual norm) is real analytic. For
peEX, n>0,let 1o (p) be the characteristic function of Cy,(p). Since
1¢,(p) Is —Holder continuous, it follows that the map C%(X) — R: ¢ —
s {Cn(p)) is real analytic.

Theorem A.
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216 GONZALO CONTRERAS

(a) Let © be a topologically transitive two-sided subshift of finite type,
and let a > 0, ¢pg € C(X,R). Then there exists a neighbourhood U
of ¢g and D = D(U) > 0 such that

(O 1, 01 (1) | < 7K DL ] -

- lpwll g (Cu(p))

foralln>0,k>0,peX, o el and p1,...,p0r € C*X,R), where
lo|l is the B—Hdélder norm of ¢.
(b) The same estimate holds for one-sided topologically transitive sub-
shifts of finite type.
Theorem A will be proven at the end of the paper. In the following
theorem we can think on @, as Qn:= U,cx Cn(z), where K € ¥ is a
subset of measure 0.

Theorem B. Let 3 be a topologically transitive two sided subshift of finite
type. Let ¢ € C*(E,R), o > 0, and let pgy be the equilibrium state for ¢.
Let (Qn)n>0 be a collection of subsets of ¥ such that Vn > 0, Qny1 C Qn;
Qn 18 a (disjoint) union of n—cylinders Cy(z) and

{a) Yimsup % log p1¢(Qn) < 0
Let L: (EHC}? )y = R, K C ), Qn, be a function such that there exist
A, B > 0 and v > 0 which satisfy

(b) [L(z)| < Bn ifz ¢ Qn

(c) |L(z) — L(y)| £ A%d(z, )" if 2,y € £\ @n.
Then there exists a neighbourhood U of ¢ in C*(%,R) such that for all
@ € U the integral py(L):= [ Ldp, exists and the mappingUd — R: o +—
po(L) is C.

Proof of Theorem B
Here we prove theorem B using theorem A. We need the following result.

1. Proposition. Let ¥ be a two-sided subshift of finite type. Suppose that
we have

(a) A a probability on .

(b) px € (C*(Z,R))* such that there exists k > 0 and D(k) > 0 such
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THE DERIVATIVES OF EQUILIBRIUM STATES 217

that
VP ET, VN0 |m(lg, )| < Dik) nFA(Calp))
(c) A subset K C ¥ such that z'f Qn:=Ugek Cn(x) then

lim sup — log A@n) £ —c <.

n——+oo
(d) L: (Z\K) — [0, +00[ a non-negative function such that there exist
A, B > 1 such that

L)< Bn iz ¢ Qn
|L@) ~ Ly)| < A" d(z,y)" ifz,y €T\ Q.

Then there exists a sequence (gp) of simple non-negative functions which
are locally constant on n-cylinders, such that

Zgn T L outside ﬂQm > K
m

> uk(gn)| < D(k) G(k),

n
with G(k) > 0, in particular Y, |1x(gn)] < .
Proof. For simplicity we prove the proposition only for B = 1. Observe
that p is not necessarily positive and that it can only be applied to
Holder continuous functions. Let Dy = Cn(p) be an N-cylinder in

Qn-1\Qn. Let M
log
R: = 1
(—7 log b> "

and choose n = n(N) € N such that

( log4 )N<n§RN
—~vlogh

so that ANP™ < 1. Let
D .
gn (@) =Y (mm L(z)) 15, (z),
zcFEn

En
where the sum is over all the n-cylinders E, such that £, C Dy. In-

ductively, for m > 0 let

Dy :
Fntm+1"= Z ( min L) 1B, iy — Zgn+r

E
Epym41CDy \TEMAL
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218 GONZALO CONTRERAS

where the sum in on all the (n +m — 1)—cylinders E,,4,,+1 C Dy. The

Dy,

gm'"’s are simple functions of the form

gmN = Z ar lEfn-

E;’.;?/CDN

(where a, > 0 and the E], are m—cylinders) and hence y—Holder con-
tinuous. Therefore

D
pr(gn) = > ar p(lgr).
E’TT},CDN

Since for ¢ € Dy, L(z) < N, we have that

(g, 5| S D) Y. NnFAER) < Dby BENFHADN). (1)
EnCDN

Let E,qmm-1 C Dy be an '(n +m — 1)-cylinder in Dy. Since

var L < AN 67(n+m‘1),
Eptm—1

we have that
oIV () < ANBEmD) | wp e Dy, Ymo> L.
and then

D n4m-—
k(g 2%)| < D) AN pr(tm=1) X mt ) MEn)
EnymCDN

< D) b B™ (m + n)* M(Dw)

because ANV < 1. Since

oo n O
ST mAn)f =Y B (m+ )t + Z bI™ (m + n)*

writing S(k): = Yee_; 57 mF, we have that

> }uk(gf(%)m)l < D(k) (1—17_%) 2% (R¥ N* 1 S(k)) MDn).
m=1
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From this and (1) we get

> b= A
5 Jur(ar ] < DO (5 ) @RIF () + 2N A D)
m=0 .

For each N > 1 consider a partition P of Qy_1 \ @n into N-cylinders

Dy and the corresponding (g we get

Dy )
n{N)+m m>0’

>, Z’Mk ’_

DneP i>n(N)
cal ) @R (S(k) + 2 N1 AQn-1\ Q)

107

<Dk (
Define

gi = S v,

N with n(N)<i

Since > n A(@n-1\Qn) < A(X) =1 and M(Qn_1\ Qn) < A(@Qn-1), We
have that

S luxtol < DK (5

b~ "
_;) (@R (S(k-) + 2ZN’”“>\<QN_1>> ;@)
N

where the series
F(k):=2) N IA\Qn-1)
N
is convergent by hypothesis (c).0
Given ¢ € C%(2, R), let P(¢) be its topological pressure (cf. [7]).

Proof of theorem B

It is enough to prove theorem B for B = 1 and L non-negative. There
are constants Ag, Bp > 0, uniform on a neighbourhood of Uy of ¢ (cf.
[1]) such that for any n-cylinder Cy,(p) in ¥ and all ¢ € Uy, we have

1 (Cn(p)) € [Ag, Bol exp(—2n P(1) + Spt(p)) (3
where

Snib(z) = > (¥ (@)

k=-n
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It is easy to see from the definition of pressure that |[P(¢ + ¢) — P(¢)| <
lolg- For ¢ = ¢ + ¢ € Uy, we have

0 < pigto(Cr(p)) < Bg exp(—2n P(¢) + Sno(p)) exp(4 ||y n)
< AO By exp 4‘@‘0 ) 11 (Cr(p))-

Since Q),, is a disjoint union of n-cylinders, we have

1
lim sup — log phg40(Qn) < 2]plg + lim sup — log He(Qn) <

n—+oo N n—-+oo

if |¢|q is sufficiently small. Choose a neighbourhood U of ¢ and ¢ > 0
such that

lim sup — log pop(@n) < —c <0 (4)

n——too T
for all ¢ € U;.
Using Theorem A(a) and (4), we can apply Proposition 1 to L,
A = pg, and py = (D® pg) (1, o) (with D(k) = KL DU)® [lionl] -
- llokll), and a neighbourhood Uy C U;. Tt follows that there exists a
decomposition L = Y g, and for any r > 0 a number H(r) > 0,
constant on Uy and so that

bD

n

for all ¢1,...,¢, in C*(,R) and ¢ € Us.
Now we prove that for all £ > 0, one has

DY upers- 0090 = (DFnolon) ) (o1 o0 (©

(D)1, s 0) 90| SHO) lrll-ller] - (5)

Observe that if (p)>0 € (C*(Z,R))" and w = th_l_’)r(l) p¢ in the dual
a—Hoélder norm on (C“(%,R))*, then for all g € C*(X,R) we have that
w(g) = %E% pi(g). For k = 0, (6) is trivial. Suppose by induction that
(6) is true for k > 0, then

(O D ug) e, - prrn)] (9m) =

1
= lim > [(Dé’fﬁwkﬂum )P ek) - DO pe)er, . on)] (gn)
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but since g, is a—Hdlder, we have

1
= }%E{(Déﬁzt¢ﬂ¢+t¢k+l)(<ﬁla k) (gn) — (Dék)uqs)(m,--- ,<pk>(gn)]

and by the induction hypothesis

1
= }E%g{ (Déﬁzt@“cﬁ—i—tw(gn)) (P15 k) — (Dék)w(gn)) (@1, ,tpk)]

= (Dékﬂ)uqs(gn)) (@15 s Prt1)-

Moreover, for &£ > 0,we can write
(DY) s (g1, -, on) = (D pygad) 1, 00)
+ (DS Vo)1, ks f)

1
w5 (D8 noton) 1o on £ prds (1)

From proposition 1 we get that py(L) = 3, py(gn) is finite. Equa-
tion (7) for k = 0 and equations (5) and (6) for 7 = 0, 1,2, prove the
continuity and differentiability of 9 — (L) in Up. By induction we
assume that 9 ~ py (L) is k-times differentiable, k > 1, and that

(Dfp’“)(#w(L)))(wl,..‘ Q) = Z(fo)w(gn))(m,.-- s Pk)-

n
Then (7), (5) and (6) for r = k,k + 1,k + 2, prove that ¥ — py(L) is
(k + 1)-times differentiable in 1 € U/.0
Observe that since S(k) and F(k) in proposition 1 have order k!, the
estimate (2) in proposition 1 is not enough to prove the analyticity of
¢ — [ Ldug.

Proof of Theorem A.

In order to prove Theorem A we need some estimates. Let 7 be a
topologically transitive one-sided subshift of finite type. From now on
fix B =a/2 >0, ¢g € CAET.R), p € &+ and n > 0. Consider the
B—Hoélder norm, || ||, in C4(xF,R), we have that

1f-9lg < |flolalg +1flglglos
If =gl <1 f1 lgll-

Bol. Soc. Bras. Mat., Vol. 26, N. 2, 1995
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Given ¢ € CP(ST,R) let P(¢) be its topological pressure (cf. [7]).

2. Lemma. For all ¢ € CB(ZT R) there exists A(¢) > 0, constant on
a neighbourhood of ¢q, such that for all ¢ € CP(Z1,R) and all n > 0,
k>0 we have

DY exp(—P@)n)en,... x| <
< 0P kLA exp(~P(@)n) 1]l el -

Proof. We know that (cf. [6] 5.27) the map C?(2T,R) — R; ¢ — P(¢)
is analytic. Hence the coefficients of its Taylor series can grow at most
exponentially. Therefore there exists B(¢) > 0 such that, for all k > 0,
1
k!
Moreover, B(¢) can be chosen constant on a neighbourhood of ¢. Since

D p(g)

b < B(9)*.

the map ¢ — exp(—P(¢) n) is also analytic, we have that

DY (exp(—P(@)n)) (1, - 1) =

- (#41)
= Z Z exp(—P(¢)n)(—1)°n’ <D¢ ! P> (pi)icay -

S=1 A1+"'+A52Nk

#Aizl
A
-+ (DEFIP) (erdseas
where Ng := {1,2,...,k} and + denotes the disjoint union of sets.

Therefore

DY (exp(~P(¢)n)) (e, oow)| <
gzkj Y. exp(=P(@)n) nf (#Ay)! -
- (#AN B o1l Il
> il exp(~P(@)n) n KLB()* fig] - ol

< n*kkt B(¢)* exp(—P(#)n) |1l - lloxll -
Now let A(¢p) =2 B(¢). O
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Let f, be the branch of the inverse of o7} which sends f,: Cop(o7} (p))
— Cp(p). For ¢ € COESH,R), n >0, p € =T, write Spp:= Spe o fn,
Snp: Co(oTp) — R, where Spip(2): = Sizp w(of (2). Let ||| ||l be the
B-Hélder norm in CP(Cy(o7(p))), i-e
Il =R+ g ., Wlo= sup [|¢(z)]

£€Co (o7 ()

4_ [ (x) — ¥(y)|
[Vlg = sup { iz )P

Since d(fn(z), fu(y)) < b"d(z,y), we have that

z,y € Co(o(p) , d(z,y) # 0} :

oo fulll < llell for all p € C*(=T, R). (8)

3. Lemma. The map CO(51,R) — CP(Co(o™ (), R): ¢ — exp(Spd) is
analytic.

Moreover, there exist B(¢) > 0 and E(¢) > 0, constant on a neigh-
bourhood of ¢g, such that for all ¢ € CP(T,R) and k > 0 we have

@) || PR er, )| < HEGF ol el

n® (1| - [kl exp(Snd(p))

©) || esoGutior... o0 <B@)

Proof. The estimate (8) shows that the map CP(ZT R) —
cPh (Co(ai(p),R), Y — 1o f, is a bounded linear map. Since the map
CP(ZH,R) —: ¢ — hg is analytic, we get that ¢ — ﬁ¢ = hg o fn is
analytic. This implies the existence of E(¢) > 0.

We have that

|5 < gﬂlwooi)ofnr(( :gnwofn_km <n g .

Therefore S, is a bounded linear operator S, : CA(ET R) —
CP(Cy(c™(p)), R) and hence analytic. We have that

<D{@exp<5n¢>)<sol,...,wk) (exD 5 ) (Snp1) - (Snioh) »

e ¢ Jexp(Sn))er, - o)l < IlexpEnd)lln* fleall - Il
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If z,w € Co(cl(p)) and z:= fn(2), y: = fn(w), we have that

n—1
826(2) = Snd(w)| < 3 |6(cha) - dloh )]
k=0
n—1 n—1
<lglg D dlohz,dky) <lgly > b d(z, )’
k=0 k=0

< |¢lg Bod(z,w)° < Bo ¢l ,
where By: = (b=# — 1)~1. Thus, taking z = ol (p) we obtain

[exp 5n0) o < (exp Snd(p)) exp(Bo | bls)

exp 8 (2) — exb Snd(w)] = |exp Sn(2)| |1 — exp(Sn(w) — Sud(2))]
< (exp Sné(p)) exp(By |¢l5) Ao Bo |8l d(z, w)”

where
Ap: = exp(Byp |¢]g) > sup {}%ezlzo : [zo| < By |¢|@} :
And then
Il exp Sadlll < (Ao + A5 Bollg) exp(Sad(p)).
Therefore

Hl(Dé’“) exp(5n®)) (@1, - - -, @w)ll] < B@)n* llo1]l - - Ikl exp(Snd(®))

where B(¢): = Ag + A%BO Iqﬁlﬂ. We can choose B(¢) = B(¢g) + 1 for all
¢ on a small neighbourhood of ¢g. O
Let L£4: CP(=1,R) « be the Perron-Frobenius operator:

(Lop)(@)i= Y. @) exp(¢(y)).

yeo~1(z)
We use the following notation from Ruelle’s theorem ([1] (1.7)):
Lolhs) = Aohs /h¢ dug=1 , Xy=el®.
Lyve) =Apve » pg=hgvs.
A proof that the maps C#(ZT,R) — R : ¢ + P(¢), CP(zT,R) —

(CP(ST,R))" : ¢ = g, ¢+ vg and CO(ST,R) — CH(ET,R): ¢ — hy
are real analytic can be found in [5].
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Define

(@) = A L3 - 10, ())(2)
exp(—P(P)n + Spd(x)) he(x) i 0z = z,2 € Cu(p)
:{o if 2 ¢ Co(o7tp)
Thus the measure of a one-sided cylinder.is given by

#6(Cn(P)) = v4(ho 10,(p) = 5" Vo (LG (ho 10, () = / Jg dvg .
Co(op)
Given p € ¥1, n > 0, denote by f,, the branch of the inverse of o
sending fr : Co(07.(p)) — Ch(p). Given ¢ € CP(TT,R), let
hy = hg o fn € CP(Co(a(p)),R) ,
jg := exp(—P(¢)n + SHQS) f~7,

4. Lemma. The map CP(£t,R) — CP(Co(o%(p),R) : ¢ — JT is
analytic and there exists Do(¢) > 0, constant on a neighbourhood of ¢,
such that for all p € CP(£T R) we have

Ill DE I 1, o)l <
< k! Do(@)* n* exp(=P(@)n + Snd®)) llenll- - oxll -

Proof. We have that

(PP73) 1= X ((F exn(=P@m)) (paduca)

A+B+C=N,,

(@ exp(anb))(sob)beB) ((D;#C>ﬁ¢><%)c€c>
By lemmas 2 and 3 we have that

@57 ool < 3 @A) w4 A@)*4 exp(—P(o)n)

A+B+C=N,
- 11 lleall B(¢) n™E exp(Snd(®)) 1 llwll
acA beB

- (#O)! E(¢)*C LT lleell -

0L 33001, 00| < b ' (Dot o~ + Supip)
Nl llopwll
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where Do(¢): = max{ A(¢), B(¢), E(¢),2}.0

Proof of Theorem A(b). Let Ep be the O-cylinder Eyp:= Cp(o’}(p)).
Consider the map R: C#(Ey,R) — CP(xF,R) given by R(p)(2):= p(2)
if z € By, R(p)(2):=0if z ¢ Ey. We claim that for ¢ € CP(Ey,R), we
have

1R < (@ +577) ] -

Indeed, clearly |R(y)|y = . Now, if z, y € Eg, then

[R(e)(@) — R(e) )] = le(@) — el < [¢lpd(z,y)”.

If z, y ¢ Ep, then |R(p)(z) ~ R(p)(y)| = 0. If x € Ey, y ¢ Ep, then
d(z,y) =b and

IR(p)(@) = R(@) ()| = |R(p)@)| < [elo = [plo b d(z, )"

Therefore |R(p)] 5 < b= [lo.

We have that pgs(1c, ) = vs(J3) = y¢(R(:]g)). Since the map
(CP(=1,R))" x CP(Eg,R) — R: (v, J) > v(R(J)) is bilinear, we have
that

(D 6 Anr))) @15 - i00) =
= > ((D(#) )(%)aEA> R((Dé#B)jg)(%)beB>

A+B=N,

Since ¢ — vy € (Cﬁ(E“L, R))* is analytic, there exists C(¢) > 0, constant
on a neighbourhood of ¢g, such that

1D ve)(r, - sl <7 C@ el el

where || |, is the dual norm in (C¥(ST,R))". Therefore, by lemma 4,
we have that

‘D¢ Hg 1Cn(p))((p15-- : 790k>‘ <

< 3 o ar By || (DD (e

A+B=N,

< k! nF Dy(¢)*(1 + b7 Py exp(—P(@)n + Snd(®)) llorll--- Nkl , (9
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where D1(¢) = (1 + b%) max{ C(¢), Do(¢)}. Part (b) of Theorem A
follows from (9) and recalling (cf. [1]) that there are constants A, B > 0,
uniform on a neighbourhood of ¢, such that

11¢(Cn(p)) € [A, Blexp(—P($)n + Sng(p)). O

In order to prove part (a) of Theorem A we need some definitions.
We say that two functions ¢, ¢ € CP(Z,R) are homologous if there
exists h € CP(2,R) such that ¢ = ¢ + h oo — h. Homologous func-
tions have the same pressure and the same equilibrium state. There
is a natural embedding C#(x+,R) < CP(Z,R): ¢ — ¢ by considering
&(z) := ¢(xg, 1, --.). The proof of the following lemma appears in pg.
11 of [1].

5. Lemma. There exists a continuous linear map A:C*(Z,R) —
CP(xt,R), B8 = o/2, such that A(y) is homologous to . In partic-
ular A*:CP(ZT R)* — C*(,R)*, (A*u)(p) = u(Ap) is a continuous
linear map.

Proof of Therorem A(a). We first claim that there exists E(¢) > 0,
constant on a neighbourhood of ¢q such that for alln >0,k >0, p € %,
we have

(DS oy o)) @15 - o)) <
< Kt (2n)" B(@) exp(—2n P(®) + Sue(®) o1l lloxll,  (10)
where
Snpp) = ) p(o*p).
k=-mn
The proof of this claim consists on using (9) (for 1-sided subshifts)
and observing that us(Cr(p)) = /L%— (67"Cr(p)), where a~™(Cy(p)) is
considered as a cylinder in £t and ug is the equilibrium state for ¢: =
A(¢) € C*?(zt R) which is homologous to ¢ on X. In particular
Psy+(6) = Ps(9) and |Sng(p) — Sn(p)| < 2|ul, where g = ¢ +uo0 —0.
This introduces a factor exp(2 |u|) in the constant E(¢).
The corollary follows from (10) and recalling the Gibbs Property,
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stated in formula (3). O
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