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1905 Tr. AMS. H. Poincaré claims:
Any convex surface in R3 has an
elliptic or degenerate simple closed geoodesic.

1979 A.I. Grjuntal: Counterexample.
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Geodesics

M riemannian surface.

Geodesic = curve that locally minimizes length.

D
dt

γ̇ = 0

curve with
no aceleration

“ inside the surface”.
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EXAMPLE:
Embedded surface M ⊂ R3

γ ⊂ M geodesic ⇐⇒ γ̈ ⊥ TγM

∀(x , v) ∈ TM ∃ geodesic γ

γ(0) = x

γ̇(0) = v
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Geodesic Flow

ϕt : TM → TM

ϕt (x , v) = (γ(t), γ̇(t))
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γ geodesic =⇒ ‖γ̇(t)‖ constant.
=⇒ unit tangent bundle.

SM = { (x , v) ∈ TM | ‖v‖ = 1 }
is invariant under ϕt : SM → SM.

On [‖v‖ = a], a 6= 1, ϕt is a reparametrization of ϕt |SM .

dim M = 2 =⇒ dim SM = 3.
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γ closed geodesic ←→ Γ = (γ, γ̇)
periodic orbit

for geodesic flow
1st return map = “Poincaré map”

P : Σ→ Σ

dθP : TθΣ→ TθΣ

preserves area

=⇒ eigenvalues λ, 1
λ

dim SM = 3
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γ or Γ is degenerate ⇐⇒ dθP has an eigenvalue 1.

hyperbolic ⇐⇒ dθP has no eigenvalue of modulus 1.

elliptic ⇐⇒ dθP has eigenvalues of modulus 1.
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Poincaré on homoclinic points

In 3rd vol. of New Methods of Celestial Mechanics (1899)
Poincaré exclaimed, “If one attempts to imagine the figure
formed by these two curves and their infinitely many
intersections, each of which corresponds to a doubly
asymptotic solution, these intersections form something like a
lattice or fabric or a net with infinitely tight loops. None of these
loops can intersect itself, but it must wind around itself in a very
complicated fashion in order to intersect all the other loops of
the net infinitely many times. One is struck by the complexity of
this figure, which I shall not even attempt to draw. Nothing gives
us a better idea of the complicated nature of the three-body
problem and the problems of dynamics in general, in which
there is no unique integral and in which the Bohlin series
diverge.”
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ELLIPTIC CLOSED GEODESIC:

If it is generic:

Poincaré map is a generic twist map
(r , θ) 7−→ (R,Θ)

∂Θ

∂r
> 0
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GENERIC TWIST MAP =⇒
1 KAM theorem =⇒
∃ +ve measure set of invariant circles
where the Poincaré map is conjugated to a rotation.

2 Between invariant circles

periodic orbits

{
elliptic
hyperbolic with t intersections
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3 Separation of phase space =⇒ non ergodicity
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Idea of Poincaré

1 Study bifurcations of/by simple closed geodesics
& show that HAS GAPS

# elliptic - # hyperbolic = constant.
2 Ellipsoid

3 simple closed geodesics

2 elliptic
1 hyperbolic

}
2− 1 = 1 6= 0.

THE PROBLEM IN K 6> 0 : Blue sky catastrophe.
A (simple) closed geodesic may disappear (or appear)
when its period→ +∞.
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(SKIP) REMARKS ON THE BIFURCATION APPROACH

Topogonov Thm =⇒ in bounded K > 0 length of simple
closed geodesics is bounded.
A geodesic can not touch itself

=⇒ continuation of simple closed geod. are simple.
Anosov: Proves that under bifurcations (in K > 0)
#(simple closed geod.) remains odd.
∃ metrics on S2 with simple geodesics with
arbitrary large length: large simple closed curve in R2 +
Gauss lemma argument + S2 = R2 ∪ {∞}.

Gauss Lemma

Blue sky catastrophe =⇒ No way to follow these
arguments in K 6> 0 case.
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Comparison with other theorems

1988 V. Donnay
Burns, Donnay, C∞

∃ C∞ riemannian metric
on S2 whose geodesic flow
is ergodic
and has +ve metric entropy.

All closed geod. but finite (3)
(which are degenerate) are
hyperbolic.

NOT KNOWN:
Donnay’s thm in +ve curvature K>0.
If ∃ C∞ riem. metric on S2 with all closed geod. hyperbolic.
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Theorem

Any riemannian metric on S2 or RP2 can be C2 approximated
by a C∞ metric with an elliptic closed geodesic.

=⇒ ∃ open and dense set of riemannian metrics in S2 or RP2

(in C2 topology) whose geodesic flow has an elliptic closed
geodesic.

2000 IMPA Michel Herman
announced this theorem when K > 0.
conjectured it for arbitrary K .

Ballmann, Thorbergsson, Ziller
Pinching conditions on K > 0 to have an
elliptic closed geodesic on Sn.
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1977 Newhouse Theorem
H : (M, ω)→ R smooth hamiltonian on a symplectic manifold.
If the energy level H−1{0} is compact
=⇒ ∃ C2 perturbation H1 of H

s.t. its hamiltonian flow either
is Anosov.
has a 1-elliptic closed orbit.

RMKS:
Newhouse Thm uses the C2 Closing Lemma
(not known for geodesic flows).
Corresponds to stability conjecture for hamiltonian flows.
Main Thm above is a version of Newhouse Thm for geod.
flows in S2 or RP2 because
6 ∃ Anosov geodesic flow on S2 [or RP2].
Newhouse thm is not known in any other compact mfld.
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6 ∃ Anosov geodesic flow on S2 [or RP2].

2 proofs:

1 Anosov flow on N = T 1S2 = RP3

=⇒ π1(N) has exponential growth. (⇒⇐)

2 Anosov geodesic flow for M
=⇒ (Klingenberg) =⇒ No conjugate points

=⇒ M̃ = Rn

but S̃2 = S2 6≈ R2 re (⇒⇐)
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Klingenberg-Takens-Anosov Theorem

Given a closed geodesic one can perturb the riemannian metric
in the C∞ topology s.t.

1 does not move the closed geodesic.
2 makes any k-jet of the Poincaré map generic.

Klingenberg-Takens: perturbation for a single periodic orbit.
Anosov: Bumpy metric theorem & =⇒ countable periodic orbits.
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Applications of the Main Theorem

1 Make the Poincaré map of the elliptic geodesic C4 generic

=⇒ KAM Thm (Moser) =⇒

∃ invariant circle which separates the phase space

∴ ∃ C2-dense set of (C∞) riemannian metrics on S2 or RP2

such that the geodesic flow is not ergodic.
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2 Recall Lazutkin:
A billiard map in the interior of
a C∞ embedded curve in R2

with +ve curvature
is not ergodic.
In higher dimensions:

Kobachev & Popov:

Billiard map in a strictly convex domain in Rn with C∞ boundary
has a set of positive measure of invariant quasi-epriodic tori
provided that the geodesic flow on the boundary has an
elliptic periodic geodesic which is k-elementary, k ≥ 5,
(in particular the billiard is not ergodic).

Main Thm =⇒ For M ≈ S2 ⊆ R3, (n = 3),
this condition is C2 generic.
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Case K > 0

∃ a simple closed geodesic. proof

Birkhoff section

F (x , θ) = (x ′, θ′)
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vol(ϕ[0,ε](A)) = area(A)

F : return map is smooth
and preserves area.

int(A) t geodesic vector field.
∂A = Γ ∪ (−Γ), Γ = (γ, γ̇).
any orbit 6= {Γ,−Γ} intersects A.
return times uniformly bounded 0 < T (x , θ) < T0.
(can extend F to ∂A by θ 7→ 2nd conjugate pt. to θ)
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∃ simple closed geodesic on S2

e.g. Birkhofff minimax closed geodesic.

Family of closed curves covering the sphere.
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γ : [0,1]→ S2

E(γ) :=
∫ 1

0 |γ̇|
2 dt

c := inf
F

max
s∈[0,1]

E(F (·, s)) > 0

c is a critical value of the energy

functional with a critical point γ

called the Birkhoff minimax geodesic.
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H2(S2) := {C2 riem. metrics on S2 without elliptic closed geodesics }

F2(S2) := intC2(H2(S2))

JDG 2002: G. Paternain & G. Contreras

g ∈ F2(S2)
g ∈ C4

}
=⇒ Per(g) is uniformly hyperbolic. def

sketch:

Prove perturb. (“Franks”) lemma for geod. flows in dim2.
The periodic orbits are stably hyperbolic.
Use Mañé-Liao theory on dominated splittings

=⇒ Per(g) has dominated splitting.
Preserves area =⇒ [dom. splitting =⇒ uniform hyp.]
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Uniform Hyperbolicity

N = T 1S2

φt : Λ→ Λ invariant subset, is hyperbolic

if TΛN = Es ⊕ 〈X〉 ⊕ Eu, ∃ C, λ > 0

‖dφt |Es‖ < C e−λt , t > 0.

‖dφt |Eu‖ < C e−λt , t > 0.
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H2(S2) := {C2 riem. metrics on S2 without elliptic closed geodesics }

F2(S2) := intC2(H2(S2))

g ∈ F2(S2)
g ∈ C4

}
JDG 2002
=⇒ Per(g) is uniformly hyperbolic. def

want F2(S2) = ∅.
Assume 6= ∅, take g ∈ F2(S2).

F2(S2) is open =⇒


can assume g ∈ C∞,
can assume g is Kupka-Smale,

[also in JDG 2002].
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Bangert + Franks: Any riem. metric on S2 has
∞-many closed geodesics.

+ Smale Spectral Decomposition Thm.

=⇒ Per(g)
contains a non-trivial
hyperbolic basic set.

Λ:= homoclinic class = hyperbolic basic set.

g ∈ C3 =⇒ F : A←↩ is C3

=⇒
Bowen

{
F Anosov =⇒ g Anosov (⇒⇐)

Λ has measure 0.

Poincaré recurrence =⇒ meas[W s(Λ) \ Λ] = 0
similarly W u

=⇒ meas[W s(Λ) ∩W u(Λ)] = 0.
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Prove using the hyperbolicity:

B small closed ball,
◦
B ∩ Λ 6= ∅

Q := W s(Λ) ∩W u(Λ)

=⇒ Q ∩ B ⊂ Q.

Take a “hole” D of Q in B, i.e. :

D = a connected compo. of A \Q contained in B.

meas(D) > 0

Poincaré recurrence ∃N > 0 F N(D) ∩ D 6= 0.

but

{
Q invariant
D compo. of A \Q

}
=⇒ F N(D) ⊂ D.
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Brower Translation Theorem

f : R2 → R2 homeo. without fixed points

=⇒ it has a “translation domain”,

(i.e. it is semiconjugate to a translation in R).
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BUT

F N(D) = D ≈ R2, F preserves finite measure
=⇒ (Poincaré recurrence) =⇒ no translation domain
=⇒ F N : D ←↩ has fixed pt. x
which is not in Q = W s(Λ) ∩W u(Λ).

Uniform hyperbolicity
=⇒W s(Λ), W u(Λ)

are large.

=⇒ x ∈ homo. class Λ ∩ D.

[ (⇒⇐) D ⊂ A \ D ]

∴ F2(S2) = intC2H2(S2) = ∅.

�
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GENERAL CASE

Want the same for local transversal sections.

PROBLEMS:
1 Return time is C0 only locally: it may tend to∞.
2 Return map may be discontinuous.

3 Some wandering orbits may tend to some
unkown wild strange set.
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HOFER - WYSOCKI - ZEHNDER theory will say that

non-returning points can only go to periodic orbits

[i.e. they must be in W s(periodic)]
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END OF PART I
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HOFER - WYSOCKI - ZEHNDER : Theory for
tight contact forms in S3.

dim M = 2n + 1.
λ: contact 1-form in M: if λ ∧ (dλ)n is volume form.

X : Reeb vector field for λ:

{
iX (dλ) ≡ 0
λ(X ) ≡ 1

ϕt : Reeb flow preserves λ.

Geodesic case: λ(x ,v) = 〈v ,dx〉x Liouville form on T 1M.

geodesic flow ≡ Reeb flow of λ.
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2 KINDS OF CONTACT FORMS IN S3:

1 Overtwisted.

2 Tight: Canonical contact form in S3:

η|S3 = 1
2 [x dy − y dx ]|S3

S3 ⊂ R4 = R2 × R2 3 (x , y)

θ is tight ⇐⇒ θ = f (x , y) · η
some f : S3 → R.
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FROM S2, RP2 TO S3

TS2 = RP3 2×←−−− S3 double cover
RP2 2×←−−− S2

canonical
contact form

on S3
=⇒

Reeb flow =
Hopf fibration

of S3

2×−−−→

T 1S2

geod. flow of
“round sphere”
K = constant

+ all riemannian metrics on S2

are conformally equivalent (Beltrami eqs.)

=⇒ Liouville forms of any riemannian metric on S2

lift to tight contact forms on S3.
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Hofer - Wysocki - Zehnder theory
is for “generic” tight contact forms in S3.

“generic” = all per. orbits non-degenerate
(i.e. no eigenvalue 1).

True for C∞ generic geodesic flows by Anosov
(Bumpy metric Thm).
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Hofer - Wysocki - Zehnder:

∃ kind of “open book decomposition” of S3

by “surfaces of section” t Reeb flow.

Each surface Σ ≈ S2 \ { finite points }.

∂Σ ⊂ { finite periodic orbits } = Biding orbits =: B.

dλ-area of each surface is finite.

∃ finite set of those surfaces (“rigid surfaces”) which
intersect all orbits except those in B.
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SKETCH OF PROOF: GENERAL CASE.

As before Per(g) uniformly hyperbolic.
Λ = homoclinic class = hyperbolic basic set.
Σ finite set of surfaces of section.
D = small hole in Σ \Q, Q = W s(Λ) ∪W u(Λ).
F : Σ→ Σ return map where well defined.
Poincaré recurrence F N(D) ∩ D 6= ∅.

1
If F N well defined

on whole D =⇒ F N(D) = D =⇒
Brower

Translation
Thm ....

2 If not =⇒ disconinuity of F N

=⇒W s(biding orbits) ∩ D 6= ∅.
(biding orbits = ∂Σ)
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LEMMA:
A return of an arbitrarily small
piece of W u(biding orbit)
must be large [diam > a].

B a connected compo. of
D ∩ [τN < +∞]

But B connected
B ∩Q = ∅, Q conn., invar.
Q = W s(Λ) ∪W u(Λ)

=⇒ F N(B) ⊂ D (⇒⇐)
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LEMMA: A return of an arbitrarily small piece
of W u(biding orbit) must be large.

PROOF:
1 Return of W s is W u.

Return of a small transversal
to W s accumulates on
whole compo. of W u
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2 If it is 1st return.

2.a Return circle contains
a hole (biding orbit) in ∂Σ
=⇒ Large.

Σ ≈ S2 \ (finit . pts.)
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2.b Return does not contain holes of Σ:

Stokes

0 =

∫
cylinder

dλ =

∫
per. orbit︸ ︷︷ ︸λ −

∫
return to Σ︸ ︷︷ ︸λx

W u lagrangian

or
{

iX dλ = 0
X ∈ TW u

} ‖
period

integral is large
=⇒ return large
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3 Following returns always accumulate on
a complete 1st return =⇒ Large!
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