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Abstract. We prove a perturbation lemma for the derivative of geodesic flows in high

dimension. This implies that a C2 generic riemannian metric has a non-trivial hyperbolic

basic set in its geodesic flow.

1. Introduction

Let Mn+1 be a closed (compact without boundary) manifold of dimension n+ 1, n ≥ 1,
endowed with a C∞ riemannian metric g and let φt = φg

t be the geodesic flow of g on
the unit tangent bundle SgM . The simplest invariant which measures the complexity of
the flow φg

t is its topological entropy which we denote by htop(g). The topological entropy
measures the difficulty in predicting the position of an orbit given an approximation of its
initial state. Namely, if θ ∈ SgM is a unit vector and T, δ > 0 define the (δ, T )-dynamic
ball about θ as

B(θ, δ, T ) = {ϑ ∈ SgM : d(φg
t (ϑ), φg

t (θ)) < δ },

where d is the distance function in SgM . Let Nδ(T ) be the minimal quantity of (δ, T )-
dynamic balls needed to cover SgM . The topological entropy is the limit on δ of the
exponential growth rate of Nδ(T ):

(1) htop(g) := lim
δ→0

lim sup
T→+∞

1
T

logNδ(T ).

Thus, if htop(g) > 0, some dynamic balls must contract exponentially at least in one direc-
tion. R. Mañé [23] showed that

(2) htop(g) = lim
T→+∞

1
T

log
∫

M×M
nT (x, y) dx dy,

where nT (x, y) is the number of geodesic arcs of length ≤ T joining x ∈ M to y ∈ M and
the integral is with respect to the volume on M ×M .

Some manifolds have all their riemannian metrics with positive entropy. For example,
if the fundamental group of M has exponential growth (see Dinaburg [9], Manning [24]),
using the definition (1) of the topological entropy, or when the homology of the loop space
of M growths exponentially (see Paternain and Petean [28]), using (2).
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1



2 GONZALO CONTRERAS

A way of obtaining positive topological entropy is by showing that the flow has a non-
trivial hyperbolic basic set. A locally maximal invariant set is a compact subset Λ ⊂ SgM

such that φg
t (Λ) = Λ for all t ∈ R and there is a neighbourhood U of Λ such that

Λ =
⋂
t∈R

φg
t (U).

A hyperbolic set is a compact φg
t -invariant subset Λ ⊂ SgM such that the restriction of the

tangent bundle of SgM to Λ has a splitting

TΛS
gM = Es ⊕ 〈X〉 ⊕ Eu,

where 〈X〉 is the subspace generated by the vector fieldX of φg
t , E

s and Eu are dφg
t invariant

sub-bundles and there are constants C, λ > 0 such that

(i) |dφg
t (ξ)| ≤ C e−λt |ξ| for all t > 0, ξ ∈ Es;

(ii)
∣∣dφg

−t(ξ)
∣∣ ≤ C e−λt |ξ| for all t > 0, ξ ∈ Eu.

A non-trivial hyperbolic basic set is a locally maximal compact invariant subset Λ ⊂ SgM

which is hyperbolic, has a dense orbit and which is not a single periodic orbit.

Using symbolic dynamics one shows that if a flow contains a non-trivial hyperbolic basic
set then it has positive topological entropy. It also has infinitely many periodic orbits and
their number growths exponentially with their period, namely

htop(g) ≥ htop(φg|Λ) = lim
T→+∞

1
T

logP (T ) > 0,

where P (T ) is the number of periodic orbits in Λ with period ≤ T .

If a manifold has negative sectional curvature, its geodesic flow is Anosov and hence it
contains a non-trivial hyperbolic basic set. On manifolds with positive curvature it is not
so clear that one can perturb the metric to obtain positive topological entropy. In this work
we prove

Theorem A.
On any closed manifold M with dimM ≥ 2 the set of C∞ riemannian metrics whose

geodesic flow contains a non-trivial hyperbolic basic set is open and dense in the C2 topology.

Corollary B.

Let M be a closed manifold with dimM 6= 1. There is a set G of C∞ riemannian metrics
on M such that G is open and dense in the C2 topology and if g ∈ G, htop(g) > 0 and

lim
T→+∞

1
T

logP (T ) > 0,

where P (T ) is the number of closed geodesics of length ≤ T .

G. Knieper and H. Weiss [20] prove Theorem A for surfaces in the C∞ topology. Their
methods are restricted to dimension 2. G. Paternain and the author proved Theorem A
for surfaces in [6]. This paper generalize their methods. For general hamiltonian flows S.
Newhouse [27] proves a stronger result: C2-generically the hamiltonian flow is either Anosov
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or it has a generic 1-elliptic periodic orbit. In both cases the flow contains a hyperbolic basic
set. The Newhouse Theorem was proved for riemannian metrics on S2 or RP2 in Contreras
& Oliveira [5]. The techniques of this paper are not enough to prove it for general manifolds
because of the lack of closing lemma for geodesic flows.

If instead of riemannian metrics we were considering Finsler metrics then the same tech-
niques as in [27] would prove the Newhouse Theorem and in particular Theorem A. However,
perturbation results within the set of riemannian metrics are harder, due to the fact that
when we change the metric in a neighbourhood of a point of the manifold we affect all the
geodesics leaving from those points; in other words, even if the size of the neighbourhood in
the manifold is small, the effect of the perturbation in the unit sphere bundle is necessarily
large. This is the main reason why the closing lemma is not known for geodesic flows (see
Pugh & Robinson [30]), even though there is a closing lemma for Finsler metrics.

An application of this paper is that the metrics obtained in Theorem A satisfy the
conditions H1, H2, (a periodic orbit with a transversal homoclinic point) required in a recent
paper by A. Delshams, R. de la Llave and T. Seara [7] to obtain orbits with unbounded
energy (Arnold’s diffusion type phenomenon) for perturbation of geodesic flows by quasi-
periodic potentials. See also section 2 in [7] for a discussion on the abundance of this
situation.

We show how to obtain Theorem A from the results proved in the following sections.
A closed geodesic is said degenerate if its linearized Poincaré map has an eigenvalue which
is a root of unity. A riemannian metric is said bumpy if all its closed geodesics are non-
degenerate. A closed geodesic is hyperbolic if it has no eigenvalue of modulus 1 and it is
elliptic if it is non-degenerate and non-hyperbolic. An elliptic geodesic is q-elliptic if it has
precisely 2q eigenvalues of modulus 1.

If γ and η are hyperbolic periodic orbits for φg
t a heteroclinic orbit from η to γ is an orbit

φg
R(θ) such that

lim
t→−∞

d(φg
t (θ), η) = 0 and lim

t→+∞
d(φg

t (θ), γ) = 0.

The orbit φg
R(θ) is said to be homoclinic if η = γ. The weak stable and weak unstable

manifolds of a hyperbolic periodic orbit γ are

W s(γ) : =
{
θ ∈ SgM : lim

t→+∞
d(φg

t (θ), γ) = 0
}
,

W u(γ) : =
{
θ ∈ SgM : lim

t→−∞
d(φg

t (θ), γ) = 0
}
.

The sets W s(γ) and W u(γ) are (n + 1)-dimensional invariant immersed submanifolds of
SgM . Then a heteroclinic orbit is an orbit in the intersection W s(γ) ∩W u(η). If W s(γ)
and W u(η) are transversal at φg

R(θ) we say that the heteroclinic orbit is transverse. A

standard argument in dynamical systems (see [16, §6.5.d] for diffeomorphisms1) shows that

1Note that for geodesic flows the closed orbits never reduce to fixed points.
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if a flow contains a transversal homoclinic orbit then it contains a non-trivial hyperbolic
basic set. Therefore for Theorem A it is enough to look for a homoclinic orbit.

Denote by Rk(M) the set of Ck riemannian metrics in M provided with the Ck topology.
In section 2 we recall the Kupka-Smale theorem 2.1 for geodesic flows, which was proven
in [6] using results of Anosov [2] and Klingenberg and Takens [19]. In particular, it says
that for a generic riemannian metric in Rk(M), k ≥ 2, all heteroclinic orbits are transverse.

In section 3 we prove the following

Theorem C. There is a subset G0 ⊂ R2(M) such that

(i) For all 4 ≤ k ≤ ∞, G0 contains a residual set in Rk(M).
(ii) If the geodesic flow of a metric g ∈ G0 contains a non-hyperbolic orbit, then it

contains a non-trivial hyperbolic basic set.

This is obtained by showing that such a metric g contains a generic elliptic geodesic. Using
the Birkhoff normal form one obtains a region nearby the elliptic periodic orbit where the
Poincaré map is conjugate to a Kupka-Smale twist map on Tn × Rn, n = dimM − 1. In
Theorem 4.1, using arguments of M-C. Arnaud and M. Herman we prove that such twist
maps have a generic 1-elliptic periodic orbit.

The restriction of the Poincaré map of this 1-elliptic orbit to its central manifold is a
twist map of the annulus S1 × R. Such Kupka-Smale twist maps have homoclinic orbits.
Since the central manifold is normally hyperbolic, the homoclinic orbit for the twist map
is a homoclinic orbit for the whole Poincaré map, and it is transverse by the Kupka-Smale
condition on the Poincaré map.

Theorem C can be used to obtain density of hyperbolicity in the C∞ topology when a
non-hyperbolic geodesic is known to exist. Interesting cases are obtained in W. Ballman,
G. Thorgbersson and W. Ziller [4], where they give conditions under which the existence of
a closed non-hyperbolic geodesic is guaranted (see specially Theorem B). Combining this
result with Theorem C one obtains that any 1/4-pinched metric in Sn may be approximated
in the C∞ topology by a metric with a non-trivial hyperbolic basic set.

Having a non-trivial basic set for φg is an open condition on the C2 topology on g (this is,
the C1 topology on φg), because basic sets can be analytically continued (cf. [29, Th. 5.1]).
Therefore Theorem C covers the case in Theorem A when a metric can be C2 approximated
by one with an elliptic periodic orbit.

The remaining case is covered by the following Theorem D. Let

P(g) := { γ : γ periodic orbit for g },

Per(g) :=
⋃

γ∈P(g)

γ(R),

H(M) := { g ∈ R∞(M) | ∀ γ ∈ P(g) : γ is hyperbolic },

F2(M) := intC2 H(M).
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Theorem D.
There is a set D ⊂ R2(M) such that

(i) For all 2 ≤ k ≤ ∞, D ∩Rk(M) is residual in Rk(M).

(ii) If g ∈ D ∩ F2(M), then Λ = Per(g) contains a non-trivial hyperbolic basic set.

This finishes the proof of Theorem A because F2(M) is the open set in the C2 topology
of C∞ metrics which can not be C2-approximated by a metric with an elliptic periodic orbit
and the set D is C2-dense in F2(M).

When dimM = 2 Theorem D was proven in Contreras & Paternain [6]. The proof of
Theorem D appears in section 9 and follows from Rademacher’s theorem [31] (which says
that a generic riemannian metric has infinitely many closed geodesics), Smale’s spectral
decomposition theorem for hyperbolic sets and the following Theorem E, also proved in
section 9:

Given a set A ⊂ SM , define

P(g,A) := { γ ∈ P(g) : γ(R) ⊂ A },

Per(g,A) :=
⋃

γ∈P(g,A)

γ(R),

H(A) := { g ∈ R∞(M) | ∀ γ ∈ P(g,A) : γ is hyperbolic },

F2(A) := intC2 H(A).

Theorem E.
There is a set G1 ⊂ R2(M) such that

(i) G1 is open in R2(M) and G1 ∩R∞(M) is dense in R∞(M).

(ii) If g ∈ G1 ∩ F2(A), then Λ = Per(g,A) is a hyperbolic set.

Theorem E is proved in section 9 by adapting R. Mañé’s theory of stable hyperbolicity,
developed for the stability conjecture in [22], to the case of geodesic flows. One first considers
the linearized Poincaré maps of small segments of the closed geodesics in the set A. These
are periodic sequences of symplectic matrices in R2n. Denote by Sp(n) the set of symplectic
linear maps in R2n. In Theorem 8.1 we prove that if these sequences are stably hyperbolic
under uniform perturbations in Sp(n), then they are uniformly hyperbolic. Such uniform

hyperbolicity is inherited by the closure Per(g,A).

In order to reduce the problem to sequences of symplectic matrices we need a perturbation
lemma, proved in Theorem 7.1, which is the main technical difficulty in the paper. One has
to perturb the linearized Poincaré map on any orbit segment, in an arbitrary direction in
Sp(n), on an arbitrarily small neighbourhood of the segment, without moving neither the
orbit segment nor the possible self-intersections with the remaining of the periodic orbit,
without changing the metric above the segment and covering a perturbation size on Sp(n)
which is uniform for all orbit segments of a given length, say 1, but possibly depending on
the riemannian metric g.
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Such a perturbation had been done by Klingenberg and Takens [19] and Anosov [2] but
not with the uniform estimate. We prove the perturbation lemma only for a special set
of metrics G1 ⊂ R∞(M): those such that every geodesic segment of length 1

2 has a point
whose curvature matrix has all its eigenvalues distinct and separated by a uniform bound.

In Theorem 6.1 we prove that such set G1 is open and dense in Rk(M) for all k ≥ 2. The
use of the set G1 is the main difference with the perturbation lemma in dimension 2, proved
in [6], which only needs the riemannian metric to be C4. We only prove the density of G1

for C∞ metrics.
The lengths 1 and 1

2 above are chosen for simplicity of the exposition and they can be
any number smaller than the injectivity radius ` of the metric. In their application in the
proof of Theorem E in section 9.1, we use 1

2 ≤ 1 = 2 · 1
2 <

1
4 `. Multiplying the riemannian

metrics by a constant, without loss of generality we can assume that all the metrics in this
work have injectivity radius larger than 4.

Finally, in section 5 we introduce the Fermi coordinate system and the kind of perturba-
tions of the metrics that are used in Theorem 6.1 and Theorem 7.1

The author wishes to thank Carolina Araújo and Xavier Gómez-Mont for useful conver-
sations.

2. The Kupka-Smale theorem.

Let Mn+1 be a closed manifold of dimension n + 1. Let φg
t be the geodesic flow of a

riemannian metric g acting on SM , the unit sphere bundle of M . Let π : SM →M be the
canonical projection. Non-trivial closed geodesics on M are in one-to-one correspondence
with the periodic orbits of φg

t . Given a closed orbit γ = {φg
t (θ) | t ∈ [0, a] } of period

a > 0, define the Poincaré map Pg(Σ, θ) as follows: Choose a local hypersurface Σ in SM

containing θ and transversal to γ. Then there are open neighbourhoods Σ0 and Σa of θ
and a differentiable function δ : Σ0 → R such that the map Pg(Σ, θ) : Σ0 → Σa given by
ϑ 7→ φg

δ(ϑ)(ϑ) is a diffeomorphism.

Recall (c.f. Klingenberg [18]) that there is a canonical splitting of the tangent bundle
T (TM) = H ⊕ V , where the vertical subspace V = ker dπ is tangent to the fibers of π and
the horizontal subspace H is the kernel of the connection map K : T (TM) → TM . There
is a natural identification TθTM = H(θ) ⊕ V (θ) ↔ TθM ⊕ TθM given by ζ = (h, v) ↔
(dθπ(ζ),K(ζ)). Under this identification the tangent space to the unit tangent bundle is
TθSM = H(θ) ⊕ N(θ), where N(θ) = {ϑ ∈ TM | 〈ϑ, θ〉π(θ) = 0 }. The geodesic flow
preserves the canonical contact form λ(ζ) = 〈θ, h〉π(θ) = 〈θ, dπ(ζ)〉π(θ) and hence its kernel

N (θ) := kerλ ∩ TθSM = N(θ)⊕N(θ) ⊂ H(θ)⊕ V (θ)

defines an invariant codimension 1 subspace in TθSM , transversal to the geodesic flow. The
canonical symplectic form ω := dλ is invariant under the geodesic flow and non-degenerate
on N (θ). We choose the local hypersurface Σ above such that TθΣ = N (θ). The linearized
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Poincaré map Pg(θ) := dθPg(Σ, θ) is an ω-symplectic linear map on N (θ) and

Pg(J(0), J̇(0)) = (J(a), J̇(a)),

where J is a normal Jacobi field along the geodesic π ◦ γ and J̇ denotes the covariant
derivative along the geodesic. After choosing a symplectic linear basis for N we can identify
the group of ω-symplectic linear maps on N with the symplectic linear group Sp(n) on
Rn×Rn. Although the distribution N is not integrable, the symplectic form ω is still non-
degenerate in TϑΣ for ϑ in a neighbourhood of θ and the Poincaré map Pg(Σ, ϑ) preserves
ω|Σ.

Let Jk
s (n) be the set of k-jets of Ck symplectic automorphisms of Rn ×Rn which fix the

origin. One can identify J1
s (n) with Sp(n). A set Q ⊂ Jk

s (n) is said to be invariant if for
all σ ∈ Jk

s (n), σQσ−1 = Q. In this case, the property that says that the Poincaré map
Pg(Σ, θ) belongs to Q is independent of the section Σ.

A closed orbit is said to be hyperbolic if its linearized Poincaré map has no eigenvalues
of modulus 1. If γ is a hyperbolic closed orbit and θ = γ(0), define the strong stable and
strong unstable manifolds of γ at θ by

W ss(θ) = {ϑ ∈ SM | lim
t→+∞

d
(
φg

t (ϑ), φg
t (θ)

)
= 0 },

W uu(θ) = {ϑ ∈ SM | lim
t→−∞

d
(
φg

t (ϑ), φg
t (θ)

)
= 0 }.

Define the weak stable and weak unstable manifolds by

W s(γ) :=
⋃
t∈R

φg
t

(
W ss(θ)

)
, W u(γ) :=

⋃
t∈R

φg
t

(
W uu(θ)

)
.

It turns out that they are immersed submanifolds of dimension

dimW s(γ) = dimW u(γ) = dimM = n+ 1.

A heteroclinic point is a point in the intersection W s(γ)∩W u(η) for two hyperbolic closed
orbits γ and η. We say that θ ∈ SM is a transversal heteroclinic point if θ ∈W s(γ)∩W u(η),
and TθW

s(γ) + TθW
u(η) = TθSM .

Let Rk(M) be the Banach manifold of Ck riemannian metrics on M endowed with the
Ck topology. Using results from Anosov [2] and Klingenberg & Takens [19], in [6, Theorem
2.5] we proved the following analogous to the Kupka-Smale theorem for geodesic flows:

2.1. Theorem.

Let Q ⊂ Jk
s (n) be open, dense and invariant. Then there exists a residual subset O ⊂

Rk+1(M) such that for all g ∈ O:

• The k-jet of the Poincaré map of every closed geodesic of g belongs to Q.
• All heteroclinic points of hyperbolic closed geodesics of g are transversal.
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Since countable intersections of residual subsets are residual, in theorem 2.1 we can
replace Q by a residual invariant subset in Jk

s (n). Also, using the natural projection π :
Jk+1

s (n)→ Jk
s (n) by truncation, in Theorem 2.1 one obtains a residual subset O ⊂ Rr(M)

for any r ≥ k + 1.

3. Elliptic closed geodesics.

We say that a periodic orbit is q-elliptic if its linearized Poincaré map has 2q eigenvalues
of modulus 1 and that it is elliptic if it is q-elliptic for some q > 0.

Suppose that θ is a q-elliptic periodic point, q ≤ n. Let P = dθP(Σ, θ) be its linearized
Poincaré map. Let TθΣ = Es ⊕ Eu ⊕ Ec be the decomposition into the stable, unstable
and center subspaces for P . This is, Es, Eu and Ec are invariant under P and P |Es has
only eigenvalues ρ of modulus |ρ| < 1, P |Eu has only eigenvalues ρ of modulus |ρ| > 1
and P |Ec has only eigenvalues ρ of modulus |ρ| = 1. Then there are local embeddings
W s : (Rp, 0) → (Σ, θ), W u : (Rp, 0) → (Σ, θ), p = n − q and W c : (R2q, 0) → (Σ, θ), such
that TθW

s = Es, TθW
u = Eu, TθW

c = Ec which are locally invariant under P = P(Σ, θ),
i.e. PW s, PW u, PW c are locally equal to W s, W u, W c respectively, see Hirsch, Pugh,
Shub [17]. They are called stable, unstable and center manifolds for (Σ, θ). The stable and
unstable manifolds are unique, but the center manifold may not be unique. If P is of class
Ck (resp. C∞) then W s, W u, are Ck (resp. C∞). If P is of class Ck (resp. C∞) then W c

can be chosen Ck (resp. Cr, with r arbitrarily large) on a sufficiently small neighbourhood
of θ. The submanifolds W s, W u are isotropic with respect to the canonical symplectic form
ω (i.e. ω|W s ≡ 0 and ω|W u ≡ 0) because P preserves ω and dP (resp. dP−1) asymptotically
contracts tangent vectors in W s (resp. W u). The restriction ω|Ec is non-degenerate (see
Robinson [32]) and hence P|W c is a symplectic map on a sufficiently small neighbourhood
of θ.

Let ρ1, . . . ρq; ρ1, . . . , ρq be the eigenvalues of P with modulus 1. We say that θ is 4-
elementary if

(3)
q∏

i=1

ρνi
i 6= 1 whenever 1 ≤

q∑
i=1

|νi| ≤ 4.

In this case there are symplectic coordinates (x1, . . . , xq; y1, . . . , yq) in W c such that ω|W c =∑q
i=1 dyi ∧ dxi and P|W c is written in Birkhoff normal form P(x, y) = (X,Y ), where

Zk = e2πi φk zk + gk(z),(4)

φk(z) = ak +
q∑̀
=1

βk` |z`|2

z = x + iy, Z = X + iY , ρi = e2π i ak and g(z) = g(x, y) has vanishing derivatives up to
order 3 at the origin. We say that θ is weakly monotonous if the matrix βk` is non-singular.
The property detβk` 6= 0 is independent of the particular choice of normal form. In these
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coordinates, the matrix βk` can be detected from the 3-jet of P at θ = (0, 0) and it can be
seen that the property { (3) and detβk` 6= 0 } is open and dense in the jet space J3

s (q).

Consider the following maps

(x, y) −−−−→ (θ, ρ) −−−−→ (θ, ρ2/ε) = (θ, r)

D∗ P−−−−→ Tq × Rq
+

R−−−−→ Tq × Rq
+

f

y yFε

D∗ P−−−−→ Tq × Rq
+

R−−−−→ Tq × Rq
+

where D = { (x, y) ∈ Rq × Rq : |x|2 + |y|2 < 1 }, D∗ = D \ {(0, 0)}, f = P|W c in the
above coordinates, Tq = Rq/Zq and P−1 is given by xi = ρi cos(2πθi), yi = ρi sin(2πθi).
Since the coordinates in Birkhoff normal form are symplectic, the map f preserves the form
ω :=

∑
i dxi ∧ dyi = dx ∧ dy. Let Q = R ◦ P : D∗ → Tq × Rq

+ be given by Q(x, y) = (θ, r),

ri = ρ2
i /ε. Then Q∗(r dθ) = 1

2πε(x dy−y dx) =: λε. Since D is simply connected, f∗(λε)−λε

is exact. Therefore F ∗ε (r dθ)− r dθ is exact.

Let Gε(θ, r) := (θ+ a+ ε β r, r) be the symplectic diffeomorphism given by the first term
in (4) in the coordinates (θ, r). Its N -th iterate is given by GN

ε (θ, r) := (θ+Na+εNβ r, r).
This is a totally integrable (c.f. Arnaud [3, p. 11]) weakly monotonous (i.e. det(εNβ) 6= 0)
twist map of Tq × Rq

+. Let Bδ := { r ∈ Rq
+ :

∑
i(ri −

1
2q )2 < δ2 }. In [26] (see also Moser’s

appendix 3.3 in [18] or Arnaud [3, chap. 8]) J. Moser proves that given η > 0 there exist
δ > 0, N ∈ N and ε > 0 such that

(i)
∥∥FN

ε −GN
ε

∥∥
C1 < η in Tq × Bδ.

(ii) There exists a torus T q radially transformed by FN
ε in Tq×Bδ, i.e. T q = { (θ, r(θ)) :

θ ∈ Tq } ⊂ Tq × Bδ such that FN
ε (θ, r(θ)) = (θ,R(θ)) for some R : Tq → Rq

+.

Let SN be a generating function for FN
ε , i.e. a function SN : Tq × Bδ → R such that

dSN =
(
FN

ε

)∗ (r dθ)− r dθ. On the radially transformed torus T q we have that

dSN (θ, r(θ)) =
(
R(θ)− r(θ)

)
dθ.

Then critical points of dSN |T q correspond to fixed points of FN
ε in T q. Therefore FN

ε has
at least q − 1 = cup length(T q) fixed points on T q. If SN is a Morse function then FN

ε has
at least 2q fixed points.

Let Q ⊂ J3
s (n) be the set of 3-jets of C3 symplectic automorphisms T of Rn ×Rn which

fix the origin and such that

(i) The eigenvalues of d0T are all different.
(ii) The eigenvalues of modulus 1 satisfy the 4-elementary condition (3).
(iii) The coefficients of the Birkhoff normal form (4) satisfy the weakly monotonous

condition detβk` 6= 0.
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Theorem C. Let G0 be the set of C4 riemannian metrics on M such that

• The k-jet of the Poincaré map of every closed geodesic of g (and its multiples)
belongs to Q.
• All heteroclinic points of hyperbolic closed geodesics of g are transversal.

Then

(i) G0 contains a residual set in Rk(M) for all k ≥ 4.
(ii) If the geodesic flow of a metric g ∈ G0 contains a non-hyperbolic periodic orbit then

it contains a non-trivial hyperbolic set, in particular htop(g) > 0.

Proof: Since Q is residual and invariant in all J `
s(n), ` ≥ 3, by theorem 2.1 the set G0

contains a residual subset in Rk(M), k ≥ 4. Now suppose that g ∈ G0 contains a non-
hyperbolic periodic point θ ∈ SgM . We will prove that arbitrarily near to θ there is a
hyperbolic periodic orbit with a transversal homoclinic point. Then (see e.g. [16, pg. 276])
there is a hyperbolic horseshoe containing the homoclinic point.

Observe that it is enough to find a 1-elliptic periodic point. For in that case the Poincaré
map restricted to the 2-dimensional central manifold W c will be a Kupka-Smale twist map
which has hyperbolic orbits with homoclinic points2 (see Le Calvez [21, Remarques p. 34]).
This hyperbolic periodic orbit will be hyperbolic in the Poincaré section (c.f. Arnaud [3,
lemme 8.6]). A homoclinic point in the central manifold is also a homoclinic point in the
Poincaré section, and it must be transversal by the Kupka-Smale condition on G0.

Now suppose that there is a q-elliptic periodic point θ with q > 1. As stated above,
Moser proves that there is a subset Tq×Bδ near θ and an iterate N ∈ N such that the N -th
iterate FN

ε of the Poincaré map F = P|W c is a weakly monotonous twist map with fixed
points which is C1-near to a totally integrable twist map GN

ε . In this case Theorem 4.1
below says that F has a 1-elliptic periodic point θ. Since the central manifold is normally
hyperbolic, by lemma 8.6 in Arnaud [3], the periodic point θ will also be 1-elliptic for the
whole Poincaré map P : Σ→ Σ.

�

4. Symplectic twist maps on Tn × Rn.

In this section we use the techniques developed by Arnaud and Herman in [3]. Let
Tn = Rn/Zn with its inherited addition. On Tn×Rn we use the coordinates (θ, r) ∈ Tn×Rn.
Let λ = r dθ =

∑
i ri dθi be the Liouville 1-form on Tn × Rn = T ∗Tn. The symplectic form

on Tn × Rn is ω = dλ = dr∧ dθ. Under the natural identification T(θ,r)Tn × Rn = Rn×Rn,

the symplectic form is written as ω(x, y) = x∗Jy, where J =
[

0 I
−I 0

]
. A C1 diffeomorphism

F : Tn × Rn → Tn × Rn is symplectic if F ∗ω = ω. This is equivalent to (dF )∗J(dF ) = J .
It is exact symplectic if F ∗λ− λ is an exact form. It is weakly monotonous if when writing
F (θ, r) = (Θ, R), we have that det ∂Θ

∂r 6= 0.

2In fact for such a twist map all hyperbolic periodic orbits have homoclinic points, see Mather [25] or
Franks & Le Calvez [12].
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The torsion of F is b := ∂Θ
∂r . The torsion is not necessarily symmetric and its symmetriza-

tion b + b∗ may be singular. We say that the torsion is positive definite, negative definite,
of signature (p, q) if b + b∗ is positive definite, negative definite, of signature (p, q). Here
signature (p, q) means p negative eigenvalues, q positive eigenvalues and n − (p + q) zero
eigenvalues.

A C1 diffeomorphism G : Tn × Rn → Tn × Rn is completely integrable if it has the form
G(θ, r) = (θ + β(r), r) for some β ∈ C1(Rn,Rn) with β(0) = 0. If furthermore G is

symplectic then its torsion ∂β
∂r is symmetric. In this case G∗λ − λ = r dβ is exact because

it is a closed form in Rn.
Through this section F will denote a weakly monotonous exact symplectic Cr diffeomor-

phism, r ≥ 1 which is C1 near to a totally integrable symplectic map G.

Observe that for the totally integrable map G, the zero section Tn × {0} consist of fixed
points. We look for fixed points of F near Tn × {0}:

1. First we construct a radially transformed torus T = Graph(η) by solving

F (θ, η(θ)) = (θ, ∗).

This can be done using the implicit function theorem applied to the equation

Θ(θ, η(θ), F ) = θ,

where F (θ, r) = (Θ, R), continuing the solution ηG ≡ 0 for G because by the weakly
monotonous condition det

[
∂Θ
∂r

]
6= 0. The function η is Cr if F is Cr.

2. Since F is exact symplectic, there is a generating function S : Tn × Rn → R such
that

dS = F ∗λ− λ = R dΘ− r dθ.
On the radially transformed torus T we have

dS|T = (R− r) dθ.

Therefore a fixed point of F is a critical point for S in T. We define the radial
function ϕ = L(F ) : Tn → R as

(5) ϕ(θ) = S(θ, η(θ)).

Since ϕ is C1, F has at least n + 1 = cup length(Tn) fixed points. If ϕ is a Morse
function then F has at least 2n fixed points.

Let Q ⊂ J3
s (n) be the subset defined by conditions (i), (ii), (iii) in section 3. We say that

the diffeomorphism F : Tn × Rn ←↩ is Kupka-Smale if

(i) If z is a periodic point of F with period3 m then DFm(z) ∈ Q.
(ii) All the heteroclinic intersections of hyperbolic periodic points are transversal.

3 The integer m is not necessarily the minimal period of z.
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4.1. Theorem.
If F : Tn × Rn → Tn × Rn is a C4 Kupka-Smale weakly monotonous exact symplectic

diffeomorphism which is C1 near to a symplectic completely integrable diffeomorphism G,
then F has a 1-elliptic periodic point near Tn × {0}.

In particular, there is a non-trivial hyperbolic set for F near Tn × {0} and htop(F ) 6= 0.

4.2. Lemma. [M. Herman]

Let M =
[

a b
c d

]
∈ R2n×2n be a symplectic matrix with a, b, c, d ∈ Rn×n and det(b) 6= 0.

For λ ∈ C, let
Mλ := b−1 a+ d b−1 − λ b−1 − λ−1(b−1)∗.

Then
rank (λ I −M) = n+ rankMλ.

In particular λ is an eigenvalue of M iff detMλ = 0.

Proof:
Since M is symplectic, M∗JM = J . Therefore a∗c = c∗a, b∗d = d∗b and a∗d − c∗b = I.
This implies that

(6) −(b−1)∗ = c− d b−1a.

Let P =
[

I 0
d b−1 I

]
, then

N := P−1M P =
[
a+ b d b−1 b
−(b−1)∗ 0

]
.

If (v1, v2) is an eigenvector of N with eigenvalue λ, then v2 = −λ−1 (b−1)∗v1 and

(b−1a+ d b−1 − λ−1 (b−1)∗ − λ b−1) v1 = 0.

�

A periodic point z for F of period p is said non-degenerate if 1 is not an eigenvalue of
DF p(z). Observe that if F is Kupka-Smale then all its periodic points are non-degenerate.

4.3. Lemma. Let ϕ = L(F ) be the radial function (5) on the radially transformed torus T.
At a fixed point (θ, η(θ)) for F on T, writing M = DF (θ, η(θ)), we have that

Mλ = D2ϕ(θ) + (1− λ) b−1 + (1− λ−1) (b−1)∗.

If the fixed points of F are non-degenerate then ϕ = L(F ) is a Morse function.

Proof: From the equation Θ(θ, η(θ)) = θ for T we get that Dη(θ) = b−1 (I − a).
We have that Dϕ(θ) = dS|T = R(θ, η(θ))− η(θ). Therefore, using (6),

(7) D2ϕ(θ) = c+ d b−1(I − a)− b−1(I − a) = b−1a+ d b−1 − b−1 − (b−1)∗.

This implies the formula.

If λ = 1 is not an eigenvalue of M , by lemma 4.2, Mλ=1 = D2ϕ(θ) is non-singular. �
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4.4. Lemma.
If z ∈ T is a fixed point of F then there is a polynomial P ∈ R[x] of degree n such that λ

is an eigenvalue of DF (z) iff P (2− λ− λ−1) = 0.

The leading coefficient of P is an = det b−1, where b = ∂Θ
∂r is the torsion at z and the

independent term of P is a0 = detD2ϕ(θ).

Proof: From lemma 4.3, det(Mλ) is a polynomial on x = (1 − λ) and y = (1 − λ−1) with
maximal exponent n. SinceM1/λ = M∗

λ , this polynomial is symmetric on x and y. Therefore

it can be written as a degree n polynomial on the variables x+ y = xy = 2− λ− λ−1.

Write w = 2 − λ − λ−1. Then w = 0 iff λ = 1. Since P (2 − λ − λ−1) = det(Mλ), from
lemma 4.3, a0 = P (w = 0) = detD2ϕ(θ).

Since w = (1− λ)(1− λ−1), we have that

Mλ

w
=
D2ϕ(θ)
w

+
b−1

1− λ−1
+

(b−1)∗

1− λ
.

The leading coefficient of P is

an = lim
w→+∞

P (w)
wn

= lim
λ→−∞

det
(Mλ

w

)
= det b−1.

�

Proof of Theorem 4.1.
If n = 1 then F is a twist map of the annulus S1×R. which is Kupka-Smale. Those maps

have 1-elliptic periodic orbits (which are minimax critical points of the generating function)
and also hyperbolic points with transversal homoclinic intersections (see Le Calvez [21,
Remarques p. 34]).

Assume that n ≥ 2. We shall prove that F contains a fixed point z0 of elliptic×hyperbolic
type, i.e. a q0-elliptic point with 1 ≤ q0 < n. Using the Birkhoff normal form about
that point and Moser’s theorem as in section 3 we obtain a new map Fq0 : Tq0 × Rq0 ←↩
satisfying the hypothesis of theorem 4.1. Then Fq0 has a fixed point z1 which is q1-elliptic
with 1 ≤ q1 < q0. The map Fq0 is conjugate to an iterate of F on a piece of the central
manifold of z0 which is normally hyperbolic (see Arnaud [3, lemme 8.6]). Therefore z1 is a
q1-elliptic periodic point for F . Inductively obtain a sequence z0, . . . , zm of periodic points
for F , where zi is qi-elliptic and n > q0 > q1 > · · · > qm = 1. The point zm is a 1-elliptic
periodic point for F . Applying the case n = 1 to its central manifold which is normally
hyperbolic one obtains a totally hyperbolic periodic orbit for F with a homoclinic orbit.
The homoclinic intersection is transversal by the Kupka-Smale hypothesis on F .
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Write w = 2− λ− λ−1. Observe that
λ = 1 iff w = 0,

λ ∈ S1 iff w ∈ [0, 4],

λ ∈ R iff w ∈ R\]0, 4[,

λ ∈ C \ (R ∪ S1) iff w ∈ C \ R,

where S1 = {w ∈ C : |w| = 1 }. The completely integrable map G has all its fixed points
degenerate, with λ = 1 and w = 0. Since we are assuming that F is C1 near to G the
eigenvalues λ of DF at the fixed points in T are near to 1 and w is near to 0. From now on
we can assume that |w| < 4.

Let z ∈ T be a fixed point of F . Let λ1, λ
−1
1 , . . . , λn, λ

−1
n be the eigenvalues of DF (z).

Let wi = 2− λi − λ−1
i , 1 ≤ i ≤ n. By lemma 4.4

(8) (−1)n (det b) detD2ϕ(θ) = w1 · · ·wn.

If some wi ∈ C \ R then the complex conjugate wi = wj for some j 6= i. Since wiwi =
|wi|2 > 0, if the product in (8) is negative then there are at least two (real) hyperbolic
eigenvalues for DF (z).

Since the completely integrable map G is symplectic, its torsion b0 := ∂β
∂r is symmetric.

Therefore b−1
0 + (b−1

0 )∗ = 2 b−1
0 is non-singular. Since F is C1 near G, we can assume that

b−1 + (b−1)∗ is non-singular.

For the completely integrable map G we have that ηG ≡ 0, ϕG ≡ 0, cG = ∂R
∂θ = 0,

aG = ∂Θ
∂θ = I. Since F is C1 near G, from (7) we have that D2ϕ(θ) is near 0. Therefore we

can assume that ‖D2ϕ(θ)‖ is so small that

(9) D2ϕ(θ) + 2 [ b−1 + (b−1)∗]

has the same signature as [ b−1 + (b−1)∗ ], where b = ∂Θ
∂r is the torsion for F .

Since ϕ is a Morse function on Tn, for any 0 ≤ p ≤ n there are ( n
p ) critical points θ

of ϕ where D2ϕ(θ) has signature (p, n − p). Suppose that the signature of b−1 + (b−1)∗ is

(q, n − q) and the signature of D2ϕ(θ) is (p, n − p). Consider the map [0, π] 3 α N7−→ Meiα

corresponding to λ = eiα ∈ S1. Observe that

N(α) = Meiα = D2ϕ(θ) + (1− eiα) b−1 + (1− e−iα) (b−1)∗

is an hermitian matrix and then its has real eigenvalues. By lemma 4.3,

N(0) = Mλ=1 = D2ϕ(θ) has signature (p, n− p),

By the hypothesis in (9),

N(π) = Mλ=−1 = D2ϕ(θ) + 2 [ b−1 + (b−1)∗] has signature (q, n− q).

Therefore there are at least |p− q| values of λ = eiα, α ∈ [0, π] where detMλ = 0, counting
multiplicities (by dim kerMλ). Thus DF (z) has at least 2 |p− q| eigenvalues of modulus 1,
considering the complex conjugates λ = e−iα, −α ∈ [−π, 0].
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Let σ := sign
[
(−1)n det b

]
. If

(10) sign
[
(−1)n (det b) detD2ϕ(θ)

]
= σ (−1)p < 0,

by (8) there are at least two (real) hyperbolic eigenvalues for DF (z).

Therefore if (10) holds and |p− q| ≥ 1, the fixed point z is of elliptic×hyperbolic type.
These conditions are satisfied in the following cases:

(a) If σ < 0, for (10) we want p even:
If q 6= 0, take p = 0;
If q = 0, since n ≥ 2, take p = 2.

(b) If σ > 0, for (10) we want p odd:
If q 6= 1, take p = 1;
If q = 1 and n ≥ 3, take p = 3.

In the case σ > 0, q = 1 and n = 2 take p = 1. Then from (8) and (10) we have that
w1w2 < 0. Then w1, w2 ∈ R because otherwise they would be complex conjugates. Say
w1 < 0, which gives two hyperbolic eigenvalues, and w2 > 0. But then 0 < w2 < 4 because
we are assuming that F is C1 close to G. This gives two elliptic eigenvalues and hence z is
of elliptic×hyperbolic type.

�

5. Coordinates and General Perturbations.

Let Mn+1 be a closed manifold of dimension n+ 1. Given a riemannian metric g for M ,
denote by π : SgM → M its unit tangent bundle, by φg

t : SgM → SgM its geodesic flow
and by Xg the vector field of φg. Fix a C∞ riemannian metric g and denote by SM its unit
tangent bundle, which we call the sphere bundle. For any riemannian metric g, the map
SM → SgM , θ 7→ θ/|θ|g is a diffeomorphism. Without loss of generality we shall assume
that all the riemannian metrics in the paper have injectivity radius larger than 4.

Denote by Rk(M), k ∈ N ∪ {+∞} the Banach manifold of Ck riemannian metrics with
the Ck topology. Let Xk(SM) be the set of Ck vector fields on the sphere bundle SM with
the Ck topology and Fk(SM) the set of Ck flows on SM with the Ck topology.

In a local coordinate chart, the geodesic equations read

ẍk =
∑
ij

Γk
ij xi xj ,

where the Christoffel symbols

Γk
ij(x) = 1

2

∑
`

gk`

(
∂g`j

∂xi
+
∂gi`

∂xj
− ∂gij

∂x`

)
, [gk`] = [gk`]−1

depend only on the 1-jet of the riemannian metric g. Thus the map R2(M) → X1(SM),
g 7→ Xg is continuous. This implies that the mapR2(M) 3 g 7→ φg ∈ F1(SM) is continuous.
In particular, the derivative of the geodesic flow dθφ

g
t depends continuously on g ∈ R2(M).
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Fix a riemannian metric g0 on M and assume that the injectivity radius of g0 is larger
than 4. We now introduce Fermi coordinates along a geodesic arc c(t), t ∈ [−1, 1] with
unit speed. All the facts that we will use about Fermi coordinates can be found in [13, 18].
Take an orthonormal frame { c′(0), e1, . . . , en} for Tc(0)M . Let ei(t) denote the parallel
translation of ei along c. Consider the differentiable map Φ : [−1, 1]× Rn →M given by

Φ(t, x) = expc(t)

[ n∑
i=1

xi ei(t)
]
.

This map has maximal rank at (t, 0), t ∈ [−1, 1]. Since c(t) has no self intersections on
t ∈ [−1, 1], there exists a neighbourhood V of [−1, 1]×{0} in which Φ|V is a diffeomorphism.

Let [g0(t, x)]ij denote the components of the metric g0 in the chart (Φ, V ). Let S(n) ⊂
Rn×n be the manifold of symmetric matrices. Let α : [−1, 1]×Rn → S(n) be a C∞ function
with support in a neighbourhood of [−1, 1]× {0}. We can define a new riemannian metric
g by setting

(11)

g00(t, x) = [g0(t, x)]00 +
n∑

i,j=1
αij(t, x)xi xj ;

g0j(t, x) = [g0(t, x)]0j , 1 ≤ j ≤ n;

gij(t, x) = [g0(t, x)]ij , 1 ≤ i, j ≤ n;

where we index the coordinates by x0 = t and (x1, . . . , xn) = x.

For any such metric g we have that (cf. [13, 18]):

gij(t, 0) = gij(t, 0) = δij , 0 ≤ i, j ≤ n;

∂k g
ij(t, 0) = ∂k gij(t, 0) = 0, 0 ≤ i, j, k ≤ n;

where [gij ] is the inverse matrix of [gij ].

We need the differential equations for the geodesic flow φt in hamiltonian form. It is well
known that the geodesic flow is conjugate to the hamiltonian flow of the function

H(x, y) =
1
2

∑
i,j

gij(x) yi yj .

Hamilton’s equations are
d
dt xi = Hyi =

∑
j

gij(x) yj ,

d
dt yk = −Hxk

= −1
2

∑
i,j

∂
∂xk

gij(x) yi yj .

Observe that for all such metrics g the curve c(t) is a geodesic and the orbit γ(t) = (c(t), ċ(t))
is given by the coordinates x0 = t, x = 0, y0 = 1, y = 0.

Using the identity d
dt (dφt) = (dX ◦φt) ·dφt, with X = d

dtφt

∣∣
t=0

, we obtain the differential
equation for the linearized hamiltonian flow, on the orbit γ(t), which we call the Jacobi
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equation:

(12)
d

dt

∣∣∣∣
(t,x=0)

[
a
b

]
=
[

Hyx Hyy

−Hxx −Hxy

] [
a
b

]
=
[

0 I
0 0
0 −K 0

] [
a
b

]
,

where K(t) ∈ Rn×n is a symmetric matrix given by

(13) K(t)ij = 1
2

∂ 2

∂xi∂xj g
00(t, 0) = −1

2
∂ 2

∂xi∂xj g00(t, 0).

Let
K0(t) := 1

2
∂ 2

∂x2 g
00
0 (t, 0) ∈ S(n).

It is easy to check that

(14) K(t) = K0(t)− α(t, 0).

By comparison with the usual Jacobi equation we get that

(15) K(t)ij = 〈Rg

(
ċ(t), ei(t)

)
ċ(t), ej(t)〉g,

where Rg is the curvature tensor for the metric g. We call K(0) the Jacobi matrix or the
matrix of sectional curvatures of the orthonormal frame {ċ(0), e1, . . . , en}.

If we change the frame {ċ(0), e1, . . . , en} to another orthonormal frame {ċ(0), u1, . . . , un}
with ui =

∑
j qij ej , the matrix Q = [qij ]n×n is orthogonal and the matrix K(t) changes

to QK(t)Q∗. Therefore we have a well defined map Kg : SgM → S(n)/O(n), Kg(ċ(0)) =
[K(0)], from the unit tangent bundle for g to the conjugacy classes of S(n) by the orthogonal
group. In particular, the set of eigenvalues of Kg(ċ(0)) is well defined.

6. A generic condition on the curvature.

In order to make the perturbation lemma in section 7 we need to choose a metric in
which every geodesic segment of length 1

2 has a point in which the Jacobi matrix (15) has
no repeated eigenvalues. In this section we prove that such condition is generic.

Recall that R2(M) is the manifold of C2 riemannian metrics on M endowed with the
C2 topology. Given g ∈ R2(M), define as in section 5 the map Kg : SgM → S(n)/O(n) by
Kg(θ) = [K] where

Kij = 〈Rg(θ, ei) θ, ej〉π(θ),

where {θ, e1, . . . , en} is any orthonormal basis for Tπ(θ)M . Let h : S(n)/O(n) → [0,+∞[ be
the function

(16) h([K]) :=
∏

1≤i<j≤n

(λi − λj)2,

where λ1, . . . , λn are the eigenvalues of K. Let H : R2(M)→ [0,+∞[ be

(17) H(g) := min
θ∈SgM

max
t∈[0, 1

2
]
h(Kg(φ

g
t (θ))).

In this section we prove the following
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6.1. Theorem. The function H : R2(M)→ [0,+∞[ is continuous and the set

G1 :=
{
g ∈ R2(M) | H(g) > 0

}
is open in R2(M) and G1 ∩R∞(M) is dense in R∞(M).

Proof:
Define the function h : S(n)/O(n) → R by h([A]) := (−1)m det[DpA(A)], where pA(x) =

det(xI − A) is the characteristic polynomial of a representative A ∈ S(n), DpA is its

derivative and m =
(

n
2

)
= n(n−1)

2 . It is easy to see that h is well defined and, by calculating
its value on a diagonal representative of [A] in S(n)/O(n), that

h([A]) := (−1)m det[DpA(A)] =
∏

1≤i<j≤n

(λi − λj)2,

where the λi’s are the eigenvalues of the class [A]. Moreover, the function h is continuous.

In a coordinate chart, the curvature tensor

R( ∂
∂xi
, ∂

∂xj
) ∂

∂xk
=
∑
ijk

R`
ijk

∂
∂x`

,

Rs
ijk =

∑
`

Γ`
ik Γs

j` −
∑

`

Γ`
jk Γs

i` + ∂Γs
ik

∂xj
− ∂Γs

jk

∂xi
,

depends only on the 2-jet of the riemannian metric. Thus the Jacobi matrix Kg(θ) depends
continuously on g ∈ R2(M).

Define the map K : R2(M)× SM × [0, 1
2 ]→ S(n)/O(n), by

(18) K(g, θ, t) := Kg

[
φg

t (
θ
|θ|g )

]
.

Since both h and K are continuous and SM is compact, the function H : R2(M)→ [0,+∞[
defined in (17) is continuous. Hence G1 = H−1(R+) is open in R2(M).

Let FM →M be the frame bundle over M :

FM = {Θ = (θ0, θ1, . . . , θn) ∈ (TxM)n+1 |x ∈M, Θ is a g-orthonormal basis }.

Let JkS(n) be the k-jet bundle of curves in S(n), i.e. JkS(n) is the set of equivalence
classes of smooth curves a :]− ε, ε[→ S(n) under the relation a1 ∼ a2 iff there is a smooth
chart ψ : U → Rd for S(n) about a1(0) such that Dj(ψ ◦ a1)(0) = Dj(ψ ◦ a2)(0) for all

j = 0, 1, . . . , k, where d := dimS(n) = n(n+1)
2 . Then JkS(n) is a smooth bundle over S(n)

whose fiber is the set Pk,d of polynomials p : R→ Rd of degree ≤ k with p(0) = 0. Therefore

(19) dim JkS(n) = dimS(n) + dimPk,d = d+ k d = (k + 1) d.

Consider the map K : R∞(M)× FM × R→ S(n) defined by

K(g,Θ, t)ij :=
〈
Rg(θ

g
0(t), θ

g
i (t)) θ

g
0(t), θ

g
j (t)

〉
g
,
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where Θg = (θg
0, θ

g
1, . . . , θ

g
n) is the g-orthonormal frame obtained from Θ by the Gram-

Schmidt process and Θg(t) is its g-parallel transport along the g-geodesic c(t) = π(φg
t (θ

g
0)).

Let K : R∞(M) × FM → JkS(n) be the jet extension of K, i.e. K(g,Θ) = Jka(0) is the
k-jet of the curve a(t) := K(g,Θ, t) at t = 0.

The perturbation given in section 5 and formula (14) show that any smooth path a(t)
on S(n) or JkS(n) with a(0) = K(g,Θ, 0) can be realized by a smooth perturbation of the
metric g which preserves the geodesic at θg

0. Therefore the map K is a submersion for any
k ≥ 0.

Now consider the set Σ ⊂ S(n) of symmetric matrices with a repeated eigenvalue. It
is an algebraic subset of S(n) ≈ Rd because it is the set of zeroes of the polynomial map
h : S(n) → R, h(A) = (−1)m det[DpA(A)]. Since the polynomial h is non-constant, Σ
has positive codimension r > 0 in S(n). This is, since Σ is an algebraic set, it has a
Whitney stratification by submanifolds of S(n), whose maximal dimension is d − r. Let
JkΣ ⊂ JkS(n) be the set of k-jets of C∞ curves in S(n) whose image is in Σ.

Define the arc space L(Σ) of Σ as the set of formal power series `(t) =
∑∞

i=0 ai t
i, with

ai ∈ S(n) and one parameter t, such that h(`(t)) ≡ 0. For k ∈ N, let Lk(Σ) be the set of

polynomials p(t) =
∑k

i=0 ai t
i of degree ≤ k in S(n) such that h(p(t)) = 0 mod tk+1. We

have a natural projection πk : L(Σ) → Lk(Σ) given by truncation. We also have a natural
injection JkΣ ↪→ πk(L(Σ)) given by the Taylor expansion of the curves up to order k. Thus
we have the inclusions JkΣ ⊂ πk(L(Σ)) ⊂ Lk(Σ) ⊂ JkS(n).

The set Lk(Σ) is algebraic because it is the set of zeroes of finitely many polynomials.
The set πk(L(Σ)) is constructible (cf. Denef & Loeser [8, p. 202]), i.e. it is obtained by
unions and subtractions of finitely many algebraic sets. Each of those algebraic sets has a
Whitney stratification, therefore πk(L(Σ)) is a union of countably many submanifolds of
JkS(n). The dimension of πk(L(Σ)) is the maximal dimension of those submanifolds. By
lemma4 4.3 in Denef & Loeser [8], dimπk(L(Σ)) ≤ (k + 1) dim Σ ≤ (k + 1)(d− r). Also in
proposition A.1 in the appendix, we prove that dim JkΣ ≤ (k + 1) dim Σ, which is enough
for our argument. Therefore, from (19), the codimension of πk(L(Σ)) in JkS(n) satisfies

lim
k→+∞

codimJkS(n) πk(L(Σ)) = +∞.

Since the function K is a submersion, it is transversal to each stratum T of πk(L(Σ)).
By theorem 19.1 in [1] there is a residual set DT ⊂ R∞(M) such that for all g ∈ DT , the
maps K(g, ·) : FM → JkS(n) are transversal to T . Since codimJkS(n) πk(L(Σ)) ≥ k + 1, if

k + 1 > dimFM and g ∈ DT , then the image of K(g, ·) does not intersect T . Since there
is a countable number of strata, intersecting all those residual subsets we get a residual set
D0 ⊂ R∞(M) such that for g ∈ D0, the image of K(g, ·) is disjoint from πk(L(Σ)) and also
from JkΣ.

4This estimate on the dimension may not be satisfied for Lk(Σ), at least for small k, see examples in
Veys [34].
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SinceR∞(M) is a complete metric space, the residual set D0 is dense inR∞(M). We now
prove that H > 0 on D0. Then G1 contains a dense set in R∞(M). Let g ∈ D0. Suppose
that H(g) = 0. Observe that both, the maximum and minimum in (17) are attained. Since
the function h in (16) is non-negative, there exists θ ∈ SgM such that h(Kg(φ

g
t (θ))) ≡ 0

for all t ∈ [0, 1
2 ]. Let θ0 ∈ SM be such that θ0/|θ0|g = θ, and let Θ ∈ FM be a frame

whose first vector is θ0. Then the C∞ curve c(t) := K(g,Θ, t) ∈ Σ for all t ∈ [0, 1
2 ]. Hence

K(g,Θ) = Jkc(0) ∈ JkΣ. This contradicts the choice of g ∈ D0.

�

7. Franks’ lemma for geodesic flows.

Let γ = {φg
t (v) | t ∈ [0, 1]} be a piece of an orbit of length 1 of the geodesic flow φg

t of the
metric g ∈ R∞(M). Let Σ0 and Σt be transverse sections to φg at v and φg

t (v) respectively.
We have a Poincaré map Pg(Σ0,Σt, γ) going from Σ0 to Σt. One can choose Σ0 and Σt

such that the linearized Poincaré map

Pg(γ)(t)
def= dvPg(Σ0,Σt, γ)

is a linear symplectic map from N0 := N(v)⊕N(v) to Nt := N(φg
t (v))⊕N(φg

t (v)) and

Pg(γ)(t)(J(0), J̇(0)) = (J(t), J̇(t)),

where J is an orthogonal Jacobi field along the geodesic π ◦ γ and J̇ denotes the covariant
derivative along the geodesic. Fix a set of Fermi coordinates along π ◦ γ. Then we can
identify the set of all linear symplectic maps from N0 to Nt with the symplectic group

Sp(n) := {X ∈ Rn×n |X∗JX = J },

where J =
[

0 I
−I 0

]
.

Suppose that the geodesic arc π ◦ γ(t), t ∈ [0, 1], does not have any self intersection and
let W be a tubular neighbourhood of it. We denote by R∞(γ, g,W ) the set of metrics
ḡ ∈ R∞(M) for which γ is a piece of orbit of length 1, ḡ = g on γ([0, 1]) and such that the
support of ḡ − g lies in W .

When we apply the following theorem 7.1 to a piece of a closed geodesic we may have
self intersections of the whole geodesic. Given any finite set of non-self intersecting geodesic
segments F = {η1, . . . , ηm}, defined on [0, 1], with the following properties:

1. The endpoints of ηi are not contained in W ;
2. The segment π ◦ γ|[0,1] intersects each ηi transversally;

denote by R∞(γ, g,W,F) the set of metrics g ∈ R∞(γ, g,W ) such that g = g in a small
neighbourhood of W ∩ ∪m

i=1ηi([0, 1]).

Consider the map S : R∞(γ, g,W ) → Sp(n) given by S(ḡ) = Pḡ(γ)(1). The following
result is the analogue for geodesic flows of the infinitesimal part of Franks’ lemma [11, lem.



GEODESIC FLOWS WITH POSITIVE TOPOLOGICAL ENTROPY 21

Figure 1. Avoiding self-intersections.

1.1] (whose proof for general diffeomorphisms is quite simple). A difference with the case of
surfaces in [6] is that here we ask the original metric g0 to be in the residual set G1 obtained
in theorem 6.1.

7.1. Theorem. Let g0 ∈ G1 ∩ Rr(M), 4 ≤ r ≤ ∞. Given U ⊂ R2(M) a neighbourhood of
g0, there exists δ = δ(g0,U) > 0 such that given g ∈ U , γ, W and F as above, the image of
U ∩ G1 ∩Rr(γ, g,W,F) under the map S contains the ball of radius δ centered at S(g0).

The time 1 in the preceding statement was chosen to simplify the exposition and the
same result holds for any time τ chosen in a closed interval [a, b] ⊂]0,+∞[; now with
δ = δ(g0,U , a, b) > 0. In order to fix the setting, take [a, b] = [12 , 1] and assume that the
injectivity radius of M is larger than 4. This implies that there are no periodic orbits
with period smaller than 8 and that any periodic orbit can be cut into non self-intersecting
geodesic segments of length τ with τ ∈ [12 , 1]. We shall apply theorem 7.1 to such segments
of a periodic orbit choosing the supporting neighbourhoods carefully as we now describe.

A closed geodesic is prime if it is not the iterate of a shorter closed geodesic. Given
g ∈ Rr(M) and γ a prime periodic orbit of g let τ ∈ [12 , 1] be such that mτ = period(γ)
with m ∈ N. For 0 ≤ k < m, let γk(t) := γ(t + kτ) with t ∈ [0, τ ]. Given a tubular
neighbourhood W of π ◦ γ and 0 ≤ k < m let Sk : Rr(γ, g,W ) → Sp(n) be the map
Sk(g) = Pg(γk)(τ).

Let W0 be a small tubular neighbourhood of γ0 contained in W . Let F0 = {η0
1, . . . , η

0
m0
}

be the set of geodesic segments η given by those subsegments of γ of length τ whose
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endpoints are outside W0 and which intersect γ0 transversally at η(τ/2) (see Figure 1).
We now apply Theorem 7.1 to γ0, W0 and F0. The proof of this theorem also selects a
neighbourhood U0 of W0 ∩ ∪m0

i=1η
0
i ([0, τ ]). We now consider γ1 and we choose a tubular

neighbourhood W1 of γ1 small enough so that if γ1 intersects γ0 transversally, then W1

intersected with W0 is contained in U0 (see Figure 1). By continuing in this fashion we
select recursively tubular neighbourhoods W0, . . . ,Wm−1, all contained in W , to which we
successively apply Theorem 7.1. This choice of neighbourhoods ensures that there is no
interference between one perturbation and the next. In the end we obtain the following:

7.2. Corollary.

Let g0 ∈ G1 ∩ Rr(M), 4 ≤ r ≤ ∞. Given a neighbourhood U of g0 in R2(M), there
exists δ = δ(g0,U) > 0 such that if g ∈ U , γ is a prime closed orbit of φg and W is a
tubular neighbourhood of c = π ◦ γ, then the image of U ∩G1 ∩Rr(γ, g0,W )→ Πm−1

k=0 Sp(n),
under the map (S0, . . . , Sm−1), contains the product of balls of radius δ centered at Sk(g0)
for 0 ≤ k < m.

The arguments below can be used to show that g−g can be supported not only outside a
finite number of intersecting segments but outside any given compact set5 of measure zero
in γ. This is done by adjusting the choice of the function h in (30).

The nature of these results (i.e. the independence on the size of the neighbourhood W )
forces us to use the C1 topology on the perturbation of the geodesic flow, thus the C2

topology on the metric. The size δ(g0,U) > 0 in theorem 7.1 and corollary 7.2 depends on
the C4-norm of g0 and the value of H(g0) from Theorem 6.1.

The remaining of the section is devoted to the

Proof of Theorem 7.1:
We first describe the strategy used in the proof. At the beginning we fix most of the

constants and bump functions that are needed. We show that the map S is a submersion
when restricted to a suitable submanifold of the set of perturbations. To obtain a size δ
that depends only on g0 and U and that works for all g ∈ U , γ and W we find a uniform
lower bound for the norm of the derivative of S using the constants and the bump functions
that we fixed before. This uniform estimate can only be obtained in the C2 topology.

The technicalities of the proof can be summarized as follows. To obtain a C2 perturbation
of the metric preserving the geodesic segment c = π ◦ γ one needs a perturbation of the
form (32), with α(t, x) = ϕε(x) p(t), where ϕε(x) is a bump function supported in an ε-
neighbourhood in the transversal direction to c and p(t) is given by formula (33). The
second factor in (33) is used to make the derivative of S surjective. The function δ(t) is
an approximation to a Dirac delta at a point t = τ where h(K(g0, θ, τ)) > 1

2 H(g0), where
H is from Theorem 6.1. This is done in order to solve equation (38), which is trivial when
dimM = 2 (and β ∈ R). The first factor h(t) is an approximation of a characteristic function

5But to use this argument to support g− g outside a given infinite set of geodesic segments of length ≥ 1
2

one needs to bound from below their angle of intersection with c.
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used to support the perturbation outside a neighbourhood of the intersecting segments in
F = {η1, . . . , ηm}. Then inequality (27) shows that if the neighbourhood W of c is taken
small enough, then the C2 norm of the perturbation is essentially bounded by only the C0

norm of p(t). In order to bound the C2 norm of p(t) from (33) in equation (27), we use the
C4 norm of g0 to have a bound for the second derivative of the sectional curvature K0(t, 0)
of g0 along the geodesic c.

Since G1 is open in the C2 topology, we can assume that U is small enough so that

U ∩Rr(γ, g,W,F) ⊂ U ∩ G1 ∩Rr(γ, g,W,F).

By shrinking U if necessary, we can assume that there is k0 = k0(U) > 0 such that the
Jacobi matrices, given in (18), satisfy

(20) ‖K(g, θ, t)‖ ≤ k0 for all (g, θ, t) ∈ U × SM × [0, 1].

Let k1 = k1(U) > 1 be such that if g ∈ U and φt is the geodesic flow of g, then

(21) ‖dθφt‖ ≤ k1 and ‖dθφ
−1
t ‖ ≤ k1 for all t ∈ [0, 1]

and all θ ∈ S1
gM . Given 0 < λ� 1

8 let k2 = k2(U , λ) > 0 be such that lim
λ→0

k2(λ) = 0 and

(22) ‖dθφs − dθφt‖ ≤ k2 and ‖dθφ
−1
s − dθφ

−1
t ‖ ≤ k2 for all |s− t| < λ,

s, t ∈ [0, 1], all g ∈ U and all θ ∈ S1
gM . Choose λ = λ(U) > 0 small enough such that

(23) k−2
1 − 2 k1 k2 > 0.

Since g0 ∈ G1, there is a0 > 0 such that H(g0) > 2 a2
0, where H is from (17). Consider

the map H2 : R2(M) × SM × [0, 1] → R given by H2(g, θ, t) = h(K(g, θ, t)), where h is
from (16) and K(g, θ, t) is from (18). Then H2 is continuous. Let

A0 :=
{

(θ, t) ∈ SM × [0, 1]
∣∣ H2(g0, θ, t) ≥ 2 a2

0

}
.

Then A0 ⊂ SM × [0, 1] is compact and since H(g0) > 2 a2
0,

A0 ∩
(
{θ} × [14 ,

3
4 ]
)
6= ∅ for all θ ∈ SM.

Since H2 is continuous, there is a neighbourhood U0 ⊂ U of g0 in R2(M) such that

H2(g, θ, t) > a2
0 for all (g, θ, t) ∈ U0 ×A0.

Let v := γ(0) and fix τ = τ(v,U0) ∈ [14 ,
3
4 ] such that (v, τ) ∈ A0. Then, if i 6= j,

(2 k0)2(m−1) |λi − λj |2 ≥
(
2 ‖K(g, v, τ)‖

)2(m−1) |λi − λj |2 ≥
∏
i6=j

(λi − λj)2 > a2
0,

for all g ∈ U0, where m =
(

n
2

)
= n(n−1)

2 and {λ1, . . . , λn} are the eigenvalues of K(g, θ, t).
Therefore

(24) min
i6=j
|λi − λj | >

a0

(2k0)m−1
=: k3.
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Let

(25) k4 := max
{
k−1

3 , 1 + 4 k0 k
−1
3 , 1, k0

}
.

Let δ : [0, 1] → [0,+∞[ be a C∞ function such that δ(s) = 0 if |s − τ | ≥ λ and∫ 1
0 δ(s) ds = 1, where λ = λ(U) is from (23). The C5-norm of δ depends only on U

and does not depend on τ = τ(v).

By (23) there exists ρ = ρ(U) > 0 such that

(26) k5 :=
k−2

1 − 2 k1k2 − ρ k2
1 ‖δ‖C0

k1 k4
> 0.

Given ε > 0, let ϕε : Rn → [0, 1] be a C∞ function such that ϕε(x) = 1 if x ∈ [− ε
4 ,

ε
4 ]n

and ϕε(x) = 0 if x /∈ [− ε
2 ,

ε
2 ]n. In lemma 7.6 we prove that ϕε(x) can be chosen such that

(27) ‖ϕε(x) x∗p(t)x‖C2 ≤ k6 ‖p‖C0 + ε k6 ‖p‖C1 + ε2 k6 ‖p‖C2

for some fixed k6 > 0 (independent of ε) and any p : [0, 1]→ Rn×n of class C2.

Let η = η(g0,U0) > 0 be such that

(28) 4 η k−1
5 k6 ‖δ‖C3 < 1

2 ε0.

Let ε0 = ε0(g0,U0) > 0 be such that

(29) ‖g − g0‖C2 < ε0 =⇒ g ∈ U0.

So far, the constants chosen above, excepting τ , do not depend on γ or F. We shall prove
that the image of U0 by S contains the ball in Sp(n) of center S(g0) and radius η = η(g0,U).

Let h : [0, 1]→ [0, 1] be a C∞ function with support outside the intersecting points

supp(h) ⊂ ]0, 1[ \ (π ◦ γ)−1
[
∪m

i=1 ηi

]
and such that

(30)
∫ 1

0

(
1− h(s)

)
ds < ρ.

From (28), there is ε1 = ε1(g0,U0, γ,F) > 0 such that

(31) k−1
5 η

(
4 k6 ‖δ‖C3 + 8 k6 ε1 ‖h‖C1 ‖δ‖C4 + 16 k6 ε

2
1 ‖h‖C2 ‖δ‖C5

)
< ε0.

Fix a Fermi coordinate chart (Φ, V ) along the geodesic segment c := π ◦ γ for the metric
g0 as in section 5. Choose

ε1 > ε2 = ε2(g0,U0, γ,F,W ) > 0

such that the segments ηi do not intersect the points with coordinates (t, x) with |x| < ε2
and t ∈ supp(h) and such that [0, 1]× [−ε2, ε2]n ⊂ V and Φ([0, 1]× [−ε2, ε2]n) ⊂W .

Let S(n) ≈ R
n(n+1)

2 be the set of real n×n symmetric matrices. Let α(t, x) denote a C∞

function α : [0, 1]× [−ε2, ε2]n → S(n) with support contained in V \Φ−1(∪m
i=1ηi). Let F be
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the set of Cr riemannian metrics given by (11) endowed with the C2 topology. One easily
checks that F ⊂ Rr(γ, g0,W,F). Let

V0 := F ∩ U0.

The Jacobi equation for the linearized geodesic flow on γ for the metrics on F is given
by (12), where K(t) is given by (13). Its solutions

(
a(t), b(t)

)
satisfy ḃ0(t) = 0 and a0(t) =

a0(0) + t b0(t). Observe from (11) that the conditions

a0(t) =
n∑

i=1

g0i(t, 0) ai(t) ≡ 0,

b0(t) = ȧ0(t) ≡ 0,

are invariant among the metrics g ∈ F and satisfy (12). These solutions correspond to
Jacobi fields which are orthogonal to ċ(t). In particular, the subspaces

Nt =
{
(a, b) ∈ Tc(t)TM | a0 = b0 = 0

}
≈ Rn × Rn

are invariant under (12) for all g ∈ F . From now on we reduce the Jacobi equation (12) to
the subspaces Nt.

We need uniform estimates for all g ∈ V0. Fix g ∈ V0 and write

At = Ag
t =

[
0 I

−K(t, 0) 0

]
2n×2n

,

where K(t, 0) is from (13). Let Xt = Xg
t = dφg

t |N0 : N0 → Nt be the fundamental solution
of the Jacobi equation (12) for g:

Ẋt = AtXt.

The time 1 map X1 is a symplectic linear isomorphism: X∗
1 JX1 = J, where J =

[
0 I
−I 0

]
.

Differentiating this equation we get the tangent space of the symplectic isomorphisms Sp(n)
at X1: TX1 =

{
Y ∈ R2n×2n | X∗

1 JY is symmetric
}
. Observe that, since X1 is symplectic,

TX1 = X1 · TI ,

and that TI is the space of 2n × 2n matrices of the form Y =
[

β γ
α −β∗

]
, where α, γ ∈ S(n)

are symmetric n×n matrices and β ∈ Rn×n is an arbitrary n×n matrix. Since Xτ ∈ Sp(n)
is symplectic, the map W 7→ X−1

τ WXτ is a linear automorphism of TI .
Write

S(n) :=
{
a ∈ Rn×n | a∗ = a

}
,

S∗(n) :=
{
d ∈ S(n) | dii = 0, ∀i = 1, . . . , n

}
,

AS(n) :=
{
e ∈ Rn×n | e∗ = −e

}
.
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7.3. Proposition. Let F : S(n)3 × S∗(n) → Sp(n) be the map F (ω) := Xg
1 = dvφ

g
1|N0,

where ω = (a, b, c; d) ∈ S(n)3 × S∗(n),

g = gω = g0 +
n∑

i,j=1

αij xi xj dx0 ⊗ dx0,(32)

α(t, x) = p(t)ϕε(x),

p(t) = h(t)
[
a δ(t) + b δ′(t) + c δ′′(t) + d δ′′′(t)

]
.(33)

Then if gω ∈ V0,

‖dωF · ζ‖ ≥ k5 ‖ζ‖ for all ζ ∈ S(n)3 × S∗(n) ≈ R2n2+n.

Proof: Observe that the map ω 7→ gω is affine. Write g := gω and gr := gω+rζ , ζ =
(a, b, c; d), r ∈ R. The Jacobi equation for gr along γ is

(34) Ẋr = Ar Xr,

where Ar =
[

0 I
−Kr 0

]
, Kr = K + r p(t) and p(t) is from (33). Differentiating this equation

with respect to r, we get the differential equation for Zt := dXr(t)
dr

∣∣∣
r=0

:

(35) Ż = AZ + BX,

where A =
[

0 I
−K 0

]
and B =

[
0 0

p(t) 0

]
. Here Z1 = dωF · ζ.

Write Zt = Xt Yt, then from (34) and (35) we get that

X Ẏ = BX.

Since Xr(0) ≡ I, we have that Z(0) = 0 and Y (0) = 0. Therefore

Y (t) =
∫ t

0
X−1

s BsXs ds.

Write

B =
[
0 0
b 0

]
, C =

[
0 0
c 0

]
, D =

[
0 0
d 0

]
.

Integrating by parts and using (34), we have that∫ 1

0
X−1

s δ′(s)BXs ds =
∫ 1

0
δ(s)

[
X−1

s ẊsX
−1
s BXs −X−1

s BAXs

]
ds

=
∫ 1

0
δ(s)X−1

s

[
AB −BA

]
Xs ds

=
∫ 1

0
δ(s)X−1

s

[
b 0
0 −b

]
Xs ds.
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0
X−1

s δ′′(s)CXs ds =
∫ 1

0
δ′(s)X−1

s

[
c 0
0 −c

]
Xs ds

=
∫ 1

0
δ(s)X−1

s

(
A
[

c 0
0 −c

]
−
[

c 0
0 −c

]
A
)
Xs ds

=
∫ 1

0
δ(s)X−1

s

[
0 −2c

−(Kc+cK) 0

]
Xs ds.∫ 1

0
X−1

s δ′′′(s)DXs ds =
∫ 1

0
δ′(s)X−1

s

[
0 −2d

−(Kd+dK) 0

]
Xs ds

=
∫ 1

0
δ(s)X−1

s

(
A
[

0 −2d
−(Kd+dK) 0

]
−
[

0 −2d
−(Kd+dK) 0

]
A
)
Xs ds

=
∫ 1

0
δ(s)X−1

s

[
−Kd−3dK 0

0 3Kd+dK

]
Xs ds.

Write

(36) W1 :=
∫ 1

0
X−1

s

Bs

h(s)
Xs ds =

∫ 1

0
δ(s)X−1

s

[
β γ
α −β∗

]
Xs ds.

Then we have that
α = a− (Kc+ cK),

γ = −2c ,(37)

β = b−Kd− 3dK.

We want to solve this system at s = τ for a, b, c ∈ S(n) and d ∈ S∗(n), where α, γ ∈ S(n)
and β ∈ Rn×n is arbitrary. We start by separating β into a sum of a symmetric and an
antisymmetric matrix. Thus

(38) Kd− dK =
β − β∗

2
.

Since k3 > 0 in (24), the next lemma 7.4 shows that equation (38) has a solution d ∈ S∗(n).

7.4. Lemma. Let K be a symmetric matrix and let LK : S∗(n) → AS(n) be given by
LK(d) := K d−dK. Suppose that the eigenvalues λi of K are all distinct. For all e ∈ AS(n)
there exists d ∈ S∗(n) such that LK d = e and

‖d‖ ≤ ‖e‖
mini6=j |λi − λj |

.

Proof: Let Q be an orthogonal matrix such that K = QDQ∗, where D = diag(λ1, . . . , λn)
is a diagonal matrix. Define FQ : Rn×n ←↩ by FQ(a) := Q∗ aQ. Observe that FQ preserves
both S(n) and AS(n).

Moreover, we have that

LK d = e ⇐⇒ LD(FQ d) = FQ e.
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Thus

(39) LK = FQ∗ LD FQ.

Since Q is orthogonal, FQ is an isometry. Hence, from (39), it is enough to prove that LD

restricted to S∗(n) is a linear isomorphism and that∥∥∥LD|S∗(n)
−1
∥∥∥ ≤ 1

mini6=j |λi − λj |
.

But writing the equation LD w = h in coordinates, we have that

λiwij − wij λj = hij , ∀i, j = 1, . . . , n;

which has the symmetric solution

wij =
1

λi − λj
hij , wii = 0,

for any antisymmetric h.
�

The rest of the solution to the system (37) is given by

b = 1
2 (β + β∗) + 2 (Kd+ dK),(40)

c = −1
2 γ,(41)

a = α− 1
2 (Kγ + γK).(42)

Consider the map T : S(n)3 × S∗(n)→ TI ,

T (a, b, c; d) =
[
β γ
α −β∗

]
given by the system (37). We want to estimate

∥∥T−1
∥∥. Observe that

‖β‖ = sup
|u|=|v|=1

〈β u, v〉 = sup
|u|=|v|=1

〈u, β∗ v〉 = ‖β∗‖ .

From (38), lemma 7.4, (24) and (25),

(43) ‖d‖ ≤
∥∥β−β∗

2

∥∥
min
i6=j
|λi − λj |

≤ ‖β‖
k3
≤ k4 ‖β‖ .

From (40), (20), (43) and (25),

‖b‖ ≤ ‖β‖+ 4 k0 ‖d‖ ≤
(
1 + 4 k0 k

−1
3

)
‖β‖ ≤ k4 ‖β‖ .

Also, from (41), (25) and (42),

‖c‖ ≤ ‖γ‖ ≤ k4 ‖γ‖ ,

‖a‖ ≤ ‖α‖+ k0 ‖γ‖ ≤ k4 max{‖α‖ , ‖γ‖}.
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Write

D :=
[
β γ
α −β∗

]
= T (ζ).

Since
‖D‖ ≥ max{‖α‖ , ‖β‖ , ‖γ‖},

we get that
‖ζ‖ := max{‖a‖ , ‖b‖ , ‖c‖ , ‖d‖} ≤ k4 ‖T (ζ)‖ .

Thus

(44) ‖D‖ = ‖T (ζ)‖ ≥ 1
k4
‖ζ‖ .

Write

W1 :=
∫ 1

0
δ(s)X−1

s DXs ds,

Q(s) := X−1
s DXs and P (s) := δ(s) X−1

s DXs.

Given a continuous map f : [0, 1]→ R2n×2n, define

Oλ(f, τ) := sup
|s−τ |≤λ

|f(s)− f(τ)|.

Observe that
Oλ(fg, τ) ≤ ‖f‖0 Oλ(g, τ) +Oλ(f, τ) |g(τ)|,

where ‖f‖0 := sups∈[0,1] |f(s)|. We have that

Oλ(Q, τ) = Oλ(X−1
s DXs, τ) ≤

∥∥X−1
s

∥∥
0
Oλ(DXs, τ) +Oλ(X−1

s , τ) ‖D‖ ‖Xτ‖

≤
∥∥X−1

s

∥∥
0
‖D‖ Oλ(Xs, τ) +Oλ(X−1

s , τ) ‖D‖ ‖Xτ‖

≤ 2 k1k2 ‖D‖ .

‖W1 −Q(τ)‖ =
∥∥∥∥∫ 1

0
δ(s)

[
Q(s)−Q(τ)

]
ds

∥∥∥∥ ≤ Oλ(Q, τ) ≤ 2 k1k2 ‖D‖ .

‖Y1 −W1‖ ≤
∥∥∥∥∫ 1

0

[
h(s)− 1

]
P (s) ds

∥∥∥∥ ≤ ‖P‖0 ∫ 1

0
|1− h(s)| ds ≤ ρ ‖P‖0

≤ ρ k2
1 ‖δ‖0 ‖D‖ .

‖Q(τ)‖ =
∥∥X−1

τ DXτ

∥∥ ≥ 1
k2
1
‖D‖ .

Therefore
‖Y1‖ ≥ ‖Q(τ)‖ − ‖W1 −Q(τ)‖ − ‖Y1 −W1‖

≥
(

1
k2
1
− 2k1 k2 − ρ k2

1 ‖δ‖0
)
‖D‖ .

Using (44),

‖Z1‖ = ‖X1 Y1‖ ≥ k−1
1 ‖Y1‖ ≥

k−2
1 − 2k1 k2 − ρ k2

1 ‖δ‖0
k1 k4

‖ζ‖ = k5 ‖ζ‖ .
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�

7.5. Lemma.
Let N be a smooth connected riemannian m-manifold and let F : Rm → N be a smooth

map such that

(45) |dxF (v)| ≥ a > 0 for all (x, v) ∈ TRm with |v| = 1 and |x| ≤ r.

Then for all 0 < b < a r,{
w ∈ N | d

(
w,F (0)

)
< b

}
⊆ F

{
x ∈ Rm | |x| < b

a

}
.

Proof: Let w ∈ N with d
(
w,F (0)

)
< b. Let β : [0, 1] → N be a differentiable curve with

β(0) = F (0), β(1) = w and |β̇| < b. Let τ = sup(A), where A ⊂ [0, 1] is the set of t ∈ [0, 1]
such that there exist a unique C1 curve α : [0, t]→ Rm such that α(0) = 0, |α(s)| < r and
F (α(s)) = β(s) for all s ∈ [0, t]. By the inverse function theorem τ > 0, A is open in [0, 1]
and there exist a unique α : [0, τ [→ Rm such that F ◦ α = β. By (45),

(46)
∣∣β̇(s)

∣∣ = ∥∥dα(s)F
∥∥ · |α̇(s)| ≥ a |α̇(s)| , for all s ∈ [0, τ [.

Thus, |α̇| ≤ 1
a max0≤t≤1

∣∣β̇(t)
∣∣ < b

a . This implies that α is Lipschitz and hence it can be
extended continuously to [0, τ ]. Observe that |α(τ)| < r, for if |α(τ)| ≥ r, then

b ≥ b τ ≥
∫ τ

0

∣∣β̇(s)
∣∣ ds ≥ a ∫ τ

0
|α̇(s)| ds ≥ a r,

contradicting the hypothesis b < ar. This implies that the set A is also closed in [0, 1].
Thus A = [0, 1] and τ = 1. From (46), writing x = α(1) ∈ F−1{w},

|x| ≤ length(α) =
∫ 1

0
|α̇(t)| dt ≤ 1

a

∫ 1

0
|β̇(t)| dt < b

a
.

�

Let G : R2n2+n → Rr(M) be the map G(ω) = gω, where gω is from (32). The following
diagram commutes

R2n2+n ⊃ B(0, k−1
5 η) Rr(M)

Sp(n)

-G

H
HHHH

HHj
F

?

S

By proposition 7.3 and lemma 7.5, in Sp(n) the ball B(S(g0), η) ⊂ F
(
B(0, k−1

5 η). It is

enough to prove that G
(
B(0, k−1

5 η)
)
⊂ U0, for then S(V0) ⊃ B(S(g0), η).

If f : [0, 1]→ R, write

‖f‖Cr :=
r∑

s=0

sup
x∈[0,1]

|Dsf(x)|.
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Observe that

‖fg‖Cr ≤ 2r ‖f‖Cr ‖g‖Cr .

If ω < k−1
5 η and p(t) is from (33) and in ϕε(x), ε < ε1, then, by lemma 7.6,

‖gω − g0‖C2 = ‖ϕε(x) x∗p(t)x‖C2

≤ k6 ‖p‖C0 + k6 ε ‖p‖C1 + k6 ε
2 ‖p‖C2

≤ k6 4 k−1
5 η ‖δ‖C3 + k6 ε1 4 k−1

5 η (2 ‖h‖C1 ‖δ‖C4) + k6 ε
2
1 4 k−1

5 η (22 ‖h‖C2 ‖δ‖C5)

< ε0,

where the last inequality is from (31). Then, by (29), gω ∈ U0 ∩ F = V0.

Bump functions

7.6. Lemma. There exist k6 > 0 and a family of C∞ functions ϕε : [−ε, ε]n → [0, 1]

such that ϕε(x) ≡ 1 if x ∈ [− ε
4 ,

ε
4 ]n, ϕε(x) ≡ 0 if x 6∈ [− ε

2 ,
ε
2 ]n and for any C2 map

B : [0, 1]→ Rn×n the function α(t, x) := ϕε(x) x∗B(t)x satisfies,

‖α‖C2 ≤ k6 ‖B‖C0 + ε k6 ‖B‖C1 + ε2 ‖B‖C2 ,

with k6 independent of 0 < ε < 1.

Proof: Let ψ : [−1, 1]→ [0, 1] be a C∞ function such that ψ(x) ≡ 1 for |x| ≤ 1
4 and ψ(x) ≡

0 for |x| ≥ 1
2 . Given ε > 0 let ϕ = ϕε : [−ε, ε]n → [0, 1] be defined by ϕ(x) =

∏n
i=1 ψ

(
xi
ε

)
.

Let B ∈ Rn×n and let β(x) = ϕ(x)x∗Bx. Then

‖β‖0 ≤ ε
2 ‖B‖(47)

dxβ = (dxϕ) x∗Bx+ ϕ(x) x∗(B +B∗)

∂ϕ
∂xi

= 1
ε ψ

′ (xi
ε

) n∏
k 6=i

ψ(xk
ε )

‖dxϕ‖ ≤ 1
ε ‖dψ‖0(48)

‖dxβ‖ ≤ 3 ε ‖B‖ ‖ψ‖C1(49)

d2
xβ = (d2

xϕ) x∗Bx+ 2 (dxϕ) x∗ (B +B∗) + ϕ(x) (B +B∗)

∂2ϕ
∂xi ∂xj

= 1
ε2 ψ

′′(xi
ε

) ∏
k 6=i

ψ
(

xk
ε

)
δij + 1

ε2 ψ
′(xi

ε

)
ψ′
(xj

ε

) ∏
k 6=i,j

ψ
(

xk
ε

)
(1− δij).∥∥d2

xϕ
∥∥ ≤ 1

ε2 max
{ ∥∥d2ψ

∥∥
0
, ‖dψ‖20

}
≤ 1

ε2 ‖ψ‖2C2 .∥∥d2
xβ
∥∥ ≤ ‖ψ‖2C2 ‖B‖ (1 + 4 + 2)

≤ 7 ‖ψ‖2C2 ‖B‖ .(50)
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Let k6 := 4 + 3 ‖ψ‖C1 + 7 ‖ψ‖2C2 . Then from (47), (49) and (50), we have that

(51) ‖β‖C2 ≤ k6 ‖B‖ .

Now let α(t, x) := ϕ(x)x∗B(t)x. Observe that

‖α‖C2 ≤ sup
t
‖α(t, ·)‖C2 + sup

x
‖α(·, x)‖C2 + 2

∥∥∥ ∂2 α
∂x ∂t

∥∥∥
0
.

≤ ‖β‖C2 + ε2 ‖B‖C2 + 2
∥∥∥ ∂2 α

∂x ∂t

∥∥∥
0
.

But, using (48),
∂2 α
∂x ∂t = dxϕ · x∗B′(t)x+ ϕ(x) x∗

[
B′(t) +B′(t)∗

]
∥∥∥ ∂2 α

∂x ∂t

∥∥∥ ≤ ε ‖ψ‖C1 ‖B′ ‖0 + 2 ε ‖B′ ‖0

≤ 1
2 k6 ε ‖B‖C1 .

Hence, using (51),

‖α‖C2 ≤ k6 ‖B‖C0 + k6 ε ‖B‖C1 + ε2 ‖B‖C2 .

�

8. Stable hyperbolicity.

In this section we prove, in Theorem 8.1, a symplectic version of R. Mañé’s Lemma II.3
in [22]. In contrast to the general case in GL(n,R), where one obtains uniform domination;
in the symplectic case the result is uniform hyperbolicity.

We say that a linear map T : R2n → R2n is hyperbolic if it has no eigenvalue of modulus 1.
Equivalently, T is hyperbolic if there is a splitting R2n = Es ⊕ Eu and an iterate M ∈ Z+

such that T (Es) = Es, T (Eu) = Eu and∥∥TM |Es

∥∥ < 1
2 and

∥∥(T |Eu)−M
∥∥ < 1

2 .

The subspaces Es and Eu are called the stable subspace and unstable subspace of T .

Let Sp(n) be the group of symplectic linear isomorphisms of R2n. We say that a sequence
ξ : Z→ Sp(n) is periodic if there exists m ≥ 1 such that ξi+m = ξi for all i ∈ Z. We say that
a periodic sequence ξ is hyperbolic if the linear map

∏m
i=1 ξi is hyperbolic. In this case the

stable and unstable subspaces of
∏m−1

i=0 ξi+j are denoted by Es
j (ξ) and Eu

j (ξ) respectively.

We say that a family ξ = { ξα }α∈A of sequences in Sp(n) is bounded if there exists Q > 0
such that ‖ξα

i ‖ < Q for all α ∈ A and i ∈ Z. Given two families of periodic sequences
in Sp(n), ξ = { ξα }α∈A and η = { ηα }α∈A, we say that they are periodically equivalent if
they have the same indexing set A and for all α ∈ A the periods of ξα and ηα coincide.
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Given two periodically equivalent families of periodic sequences in Sp(n), ξ = { ξα }α∈A and
η = { ηα }α∈A, define

d(ξ, η) = sup
{
‖ξα

n − ηα
n‖ : α ∈ A, n ∈ Z

}
.

We say that a family ξ is hyperbolic if for all α ∈ A, the periodic sequence ξα is
hyperbolic. We say that a hyperbolic periodic family ξ is stably hyperbolic if there exists
ε > 0 such that any periodically equivalent family η satisfying d(η, ξ) < ε is also hyperbolic.

Finally, we say that a family of periodic sequences ξ is uniformly hyperbolic if there exists
a constant iterate M ∈ Z+ and subspaces Es

i (ξ
α), Eu

i (ξα), α ∈ A, i ∈ Z, such that

ξj(Eτ
j (ξα)) = Eτ

j+1(ξ
α), for all α ∈ A, j ∈ Z, τ ∈ {s, u}

and ∥∥∥ M∏
i=0

ξα
i+j

∣∣∣
Es

j (ξα)

∥∥∥ < 1
2 and

∥∥∥( M∏
i=0

ξα
i+j

∣∣∣
Eu

j (ξα)

)−1∥∥∥ < 1
2 , for all α ∈ A, j ∈ Z.

Equivalently, if there exist K > 0, 0 < λ < 1 and invariant subspaces Es
i (ξ

α), Eu
i (ξa),

α ∈ A, i ∈ Z, such that∥∥∥m−1∏
i=0

ξα
i+j

∣∣∣
Es

j (ξα)

∥∥∥ < K λm and
∥∥∥(m−1∏

i=0

ξα
i+j

∣∣∣
Eu

j (ξα)

)−1∥∥∥ < K λm,

for all α ∈ A, j ∈ Z, m ∈ N. Observe that in this case the sequence ξ is hyperbolic and
the subspaces Es

i (ξ
α), Eu

i (ξα) necessarily coincide with the stable and unstable subspaces

of the map
∏m−1

j=0 ξα
i+j .

The remaining of the section is devoted to the proof of the following

8.1. Theorem.

If ξα is a stably hyperbolic family of periodic sequences of bounded symplectic linear maps
then it is uniformly hyperbolic.

Let Ω =
∑n

i=1 dxi ∧ dxi+n be the canonical symplectic form on R2n and J ∈ Sp(n) be
J(x, y) := (−y, x) for (x, y) ∈ Rn × Rn. The matrix of J in the canonical basis is

J = [Jij ] =
[

0 I
−I 0

]
.

Then Ω(x, y) = 〈x, Jy〉 = x∗Jy, where 〈x, y〉 =
∑n

i=1 xi yi. Observe that A ∈ Sp(n) iff

(52) A∗JA = J.

We say that a basis B = (v1, . . . , v2n) is symplectic if Ω(vi, vj) = Jij . If T : R2n → R2n is
a linear map with matrix A in a symplectic basis B, then T ∈ Sp(n) iff (52) holds.

We say that a linear subspace E ⊆ R2n is lagrangian if Ω|E ≡ 0 and dimE = n.
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8.2. Lemma.

(i) A subspace E ⊆ R2n is lagrangian if and only if JE = E⊥

(ii) If T ∈ Sp(n) is a hyperbolic symplectic linear map, then its stable and unstable
subspaces Es(T ), Eu(T ) are lagrangian.

(iii) If T ∈ GL(R2n) has matrix D in a symplectic basis B = (v1, . . . , v2n) and the
lagrangian subspace E = span{v1, . . . vn} satisfies T (E) ⊂ E, then T ∈ Sp(n) iff

D =
[
A B
0 C

]
,

where C = (A∗)−1 and A−1B is symmetric.

(iv) If E ⊂ R2n is a lagrangian subspace and B = (v1, . . . , vn) is an orthonormal basis for

E, then (B, JB) = (v1, . . . , vn, Jv1, . . . Jvn) is a symplectic basis for R2n = E ⊕ JE.

Proof:

i. Observe that JE = E⊥ if and only if dimE = 2n − dimE and Ω(x, y) = 〈x, Jy〉 = 0
for all x, y ∈ E.

ii. Let u, v ∈ Es(ξ). Since T preserves the symplectic form Ω, we have that

Ω(u, v) = lim
m→+∞

Ω(Tmu, Tmv) = 0.

Therefore JEs ⊂ (Es)⊥ and hence dimEs(T ) ≤ n. Similarly, Ω(u, v) = 0 if u, v ∈ Eu(T ).
Therefore dimEs(T ) = dimEu(T ) = n.

iii.iv. Item (iii) follows from formula (52). Item (iv) is a direct calculation.

�

8.3. Lemma. If {ξα}α∈A is a bounded stably hyperbolic family of maps in Sp(n), then there
exist ε > 0 and K > 0 such that if {ηα}α∈A is a periodically equivalent family of maps in
Sp(n) with d(ξ, η) ≤ ε, then the family η is hyperbolic and

∀α ∈ A, ∀ i ∈ Z,

∥∥∥∥∥m−1∏
j=0

ηα
i+j

∣∣∣
Es

i (ηα)

∥∥∥∥∥ < K, m = Per(ηα),

where m is the minimal period of ηα.

Proof: Suppose the lemma is false. Then for all ε > 0 and K > 0 there exist a periodi-
cally equivalent family {ηα}α∈A with d(η, ξ) ≤ ε, α0 ∈ A, i0 ∈ Z and an orthonormal basis

B for Es
i0

(ηα0) such that in that basis
∏m−1

j=0 ηα0
i0+j has an entry b = bk` with |b| ≥ K, where

m = Per(ηα0).
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For simplicity assume that i0 = 1. Let A = [aij ] ∈ Rn×n be the matrix given by aij = 0
if (i, j) 6= (`, k) and a`k = δ, where

δ =
3n
K
.

In the basis (B, JB) for Es
1(η

α0)⊕ JEs
1(η

α0) write

m∏
i=1

ηα0
i =

[
B C
0 (B∗)−1

]
, Ds =

[
I + sA 0

0 (I + sA∗)−1

]
.

Observe that Ds ∈ Sp(n) and | trB| < n. We claim that

(53) ‖I − Ds‖ ≤ | 2 δs| .

Indeed, if k 6= ` then (I + sA∗)−1 = I − sA∗ and (53) holds. If k = ` then I − Ds has only

two non-zero entries, which are sδ and 1− 1
1+sδ ≤ sδ.

Let {ζα(s)}α∈A, s ∈ [0, 1] be the families given by ζi(s) = ηα
i if α 6= α0 or i 6= 1, and

ζα0
1 (s) = ηα0

1 Ds. Then Es
1(η

α0) is an invariant subspace under
∏m

i=1 ζ
α0
i (s) for all s ∈ [0, 1].

But

tr
[

m∏
i=1

ζα0
i

∣∣∣
Es

1(ηα0 )

]
= trB(I +A) = trB + b δ

≥ b δ − n ≥ n.

Therefore there is s ∈ [0, 1] such that
∏m

i=1 ζ
α0
i (s) has an eigenvalue of modulus 1.

We have that

‖ζα0
1 − η

α0
1 ‖ ≤ ‖η

α0
1 ‖ |2 δ| ≤ ‖η

α0
1 ‖ 6n

K .

d(ξ, ζ) ≤ d(ξ, η) + d(η, ζ)

≤ ε+
(
‖ξα0

1 ‖+ ε
)

6n
K .

Since d(ξ, ζ)→ 0 when ε→ 0 and K → +∞, this contradicts the stable hyperbolicity of ξ.

�

8.4. Lemma. If {ξα}α∈A is a bounded stably hyperbolic family of maps in Sp(n), then there
exist ε > 0, K > 0 and 0 < λ < 1 such that if {ηα}α∈A is a periodically equivalent family
of maps in Sp(n) with d(ξ, η) ≤ ε, then

∀α ∈ A, ∀ i ∈ Z,

∥∥∥∥∥m−1∏
j=0

ηα
i+j

∣∣∣
Es

i (ηα)

∥∥∥∥∥ < K λm, m = Per(ηα),

where m is the minimal period of ηα.
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Proof: By Lemma 8.3 there exist ε1 > 0, K1 > 0 such that if η is a family in Sp(n),
periodically equivalent to ξ with d(η, ξ) ≤ ε1, then η is hyperbolic and

∀α ∈ A, ∀ i ∈ Z,

∥∥∥∥∥m−1∏
j=0

ηα
i+j

∣∣∣
Es

i (ηα)

∥∥∥∥∥ < K1, m = Per(ηα).

Let ε := ε1
2 . Suppose that η is a periodically equivalent family with d(η, ξ) ≤ ε = ε1

2 . On

the splitting Es
i (η

α)⊕ JEs
i (η

α) write

ηα
i =

[
Aα,i Cα,i

0 (A∗α,i)
−1

]
, Dα,i(δ) =

[
(1 + δ) I 0

0 (1 + δ)−1I

]
.

For all i ∈ Z let ζα
i = ζα

i (δ) := ηα
i · Dα,i(δ) and let δ > 0 be such that

max{ δ, 1− (1 + δ)−1 } ·
[
sup
α,i
‖ξα

i ‖+
ε1
2

]
<
ε1
2
.

Then

(54) d(ζ, ξ) < ε1.

Therefore the family ζ is hyperbolic and we claim that

Es
i (ζ

α) = Es
i (η

α) for all α ∈ A, i ∈ Z.

For, observe that Es
i (η

α) is invariant under
∏m−1

j=0 ζα
i+j , where m = Per(ηα). If for some

α ∈ A and i ∈ Z, Es
i (ζ

α) 6= Es
i (η

α), then there exists 0 < δ1 ≤ δ such that ζα(δ1) has an
eigenvalue of modulus 1. This contradicts (54).

We have that

(1 + δ)m

∥∥∥∥∥m−1∏
j=0

ηα
i+j

∣∣∣
Es

i (ηα)

∥∥∥∥∥ =

∥∥∥∥∥m−1∏
j=0

ζα
i+j

∣∣∣
Es

i (ζα)

∥∥∥∥∥ ≤ K1.

This gives the lemma for λ = (1 + δ)−1 and K = K1.

�

We shall need the following definition of angle between linear subspaces. Given a linear
decomposition Rd = E ⊕ F define

�(E,F ) = ‖L‖−1 ,

where L : E⊥ → E is the linear map such that F = {x + Lx | x ∈ E⊥ }, and

E⊥ := { y ∈ Rd | 〈y, x〉 = 0, ∀x ∈ E } is the orthogonal complement of E in Rd.



GEODESIC FLOWS WITH POSITIVE TOPOLOGICAL ENTROPY 37

8.5. Lemma. If {ξα}α∈A is a bounded stably hyperbolic family of maps in Sp(n) then there
exist ε > 0, γ > 0 and N0 ∈ Z+ such that if {ηα}α∈A is a periodically equivalent family of
maps in Sp(n) with d(η, ξ) ≤ ε, then η is hyperbolic and

�
(
Es

i (η
α), Eu

i (ηα)
)
> γ

for all α ∈ A with minimal period > N0 and all i ∈ Z.

Proof: Suppose it is false. Then there exists a periodic sequence η : Z → Sp(n) with
period m arbitrarily large, periodically equivalent to a sequence ξα of the family ξ, with
supj∈Z ‖ηj−ξα

j ‖ arbitrarily small and some i ∈ Z with �(Es
i (η

α), Eu
i (ηα)) arbitrarily small.

Shifting the sequence we can assume that i = 1.

By lemma 8.2, JEs
1(η) = Es

1(η)
⊥. Consider the matrix of

∏m
i=1 ηi in the decomposition

R2n = JEs
1(η)⊕ Es

1(η):
m∏

i=1

ηi =
[
A 0
P B

]
=
[
(B∗)−1 0
P B

]
.

Since it is symplectic, choosing an orthonormal basis adapted to the decomposition, we
have that A = (B∗)−1 and that B−1P is symmetric. By Lemma 8.4,

(55) ‖B‖ =
∥∥A−1

∥∥ < K λm.

Let L : JEs
1(η) → Es

1(η) be such that Eu
1 (η) = { v ⊕ Lv | v ∈ JEs

1(η) }. Since Eu
1 (η) is

invariant,
LA = P +BL.

Thus L = PA−1 +BLA−1 and

‖L‖ ≤
∥∥PA−1

∥∥+ ‖L‖ K2 λ2m.

If the period m is large enough, then K2 λ2m ≤ 1
2 and thus

1
2

∥∥PA−1
∥∥−1 ≤ ‖L‖−1 = �

(
Es

1(η), E
u
1 (η)

)
.

The number
∥∥PA−1

∥∥−1 is arbitrarily small because the angle �(Es
1(η), E

u
1 (η)) is arbitrarily

small.

Define the sequence ζ : Z→ Sp(n) by ζi := ηi for 1 < i ≤ m and

ζ1 := η1

[
I C
0 I

]
in the splitting R2n = JEs

1(η) ⊕ Es
1(η). This map ζ1 is symplectic if the matrix C is

symmetric. Then
m∏

i=1

ζi =
[
A 0
P B

] [
I C
0 I

]
=
[
A AC
P PC +B

]
.
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If we find a symmetric matrix C with arbitrarily small norm ‖C‖ such that the last matrix
has an eigenvalue 1, then we shall obtain a contradiction with the stable hyperbolicity of ξ.

For, consider the system

Ax+ AC y = x,

Px+(PC +B) y = y.

Then x = (I −A)−1ACy, and thus

y = (I −B)−1P
[
I +A (I −A)−1

]
C y.

Since I +A (I −A)−1 = −A−1 (I −A−1)−1, we have that

−(I −B)−1P A−1(I −A−1)−1C y = y.

Take v ∈ Rn such that |v| =
∥∥PA−1

∥∥−1 and |PA−1v| = 1. Let y = −(I − B)−1PA−1v.

From (55) we can assume that ‖I −B‖ ≤ 2. Hence |y|−1 ≤ 2. Now take w such that

(I − A−1)−1w = v. From (55),
∥∥I −A−1

∥∥ ≤ 2, so that |w| ≤ 2 |v|. Take a symmetric
matrix C such that

Cy = w and ‖C‖ =
|w|
|y|
.

Then ‖C‖ ≤ 4 |v| = 4
∥∥PA−1

∥∥−1, which is arbitrarily small.

�

8.6. Lemma.

Let R2n = E ⊕ F , where E, F are lagrangian subspaces such that �(E,F ) > γ. Then
there exists K = K(γ) > 0 and a symplectic basis {e1, . . . , en; f1, . . . , fn}, ei ∈ E, fj ∈ F ,
such that the norm ∥∥∥ n∑

i=1

xiei + yifi

∥∥∥2
:=

n∑
i=1

x2
i + y2

i

satisfies
1
K |z| ≤ ‖z‖ ≤ K |z|,

where | · | is the euclidean norm in R2n.

Proof: Define the following inner product in R2n:

[x1 ⊕ y1, x2 ⊕ y2] := 〈x1, x2〉+ 〈y1, y2〉,

where xi ⊕ yi ∈ E ⊕ F and 〈·, ·〉 is the euclidean inner product in R2n. We first show that
the norm J · K associated to [·, ·] is equivalent to the euclidean norm.
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If x⊕ y ∈ E ⊕ F , then

|x+ y|2 = |x|2 + |y|2 + 2 〈x, y〉

≤ |x|2 + |y|2 +
(
|x|2 + |y|2

)
≤ 2 Jx⊕ yK2.

Let L : E⊥ → E be a linear map such that F = { z ⊕ Lz | z ∈ E⊥ }. Then ‖L‖ < γ−1, in

the euclidean norm. Let z ∈ E⊥ be such that y = z ⊕ Lz. Then

|y|2 = |z|2 + |Lz|2 ≤ (1 + γ−2) |z|2.

Hence

|z|2 ≥ 1
1 + γ−2

|y|2.

The last two equations imply that

|Lz|2 ≤ |y|2 − |z|2 ≤
(

1− 1
1 + γ−2

)
|y|2 =

γ−2

1 + γ−2
|y|2.

Since 〈x, y〉 = 〈x, z ⊕ Lz〉 = 〈x, Lz〉, have that

|x+ y|2 = |x|2 + |y|2 + 2〈x, y〉

≥ |x|2 + |y|2 − 2 |x| γ−1√
1 + γ−2

|y|

≥

(
1− γ−1√

1 + γ−2

)
(|x|2 + |y|2), ∀x⊕ y ∈ E ⊕ F.

Writing A(γ) := max
{√

2,
(
1− γ−1√

1+γ−2

)− 1
2
}
, we have that

1
A(γ) |x+ y| ≤ Jx⊕ yK ≤ A(γ) |x+ y| , ∀x⊕ y ∈ E ⊕ F.

Now, let K : R2n ←↩ be the linear isomorphism defined by

[x,Ky] = Ω(x, y), x, y ∈ R2n;

where Ω is the canonical symplectic form in R2n. Observe that F is the orthogonal comple-
ment of E with respect to [·, ·]. Since E is lagrangian, we have that [x,Ky] = 0 if x, y ∈ E.
Thus K(E) = F and similarly K(F ) = E.

Let e1, . . . , en be an orthonormal basis for E and let fi := K−1ei, i = 1, . . . , n. Then

Ω(ei, fj) = [ei,Kfj ] = [ei, ej ] = δij .

This implies that the basis {e1, . . . , fn} is symplectic.

Observe that if y ∈ R2n, then

JKyK2 = [Ky,Ky] = Ω(Ky, y) ≤ |Ky| |y| ≤ A(γ)2 JKyK JyK.
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So that

JKyK ≤ A(γ)2 JyK for all y ∈ R2n.

Let x ∈ R2n and let y := Jx ∈ R2n. Then |Jx| = |x| and Ω(Jx, x) = |x|2. Therefore

JJxK JKxK ≥ [Jx,Kx] = Ω(Jx, x) = |x|2 = |Jx| |x| ≥ 1
A(γ)2

JJxK JxK.

Thus

JKxK ≥ 1
A(γ)2

JxK for all x ∈ R2n.

Finally, we have that

r n∑
i=1

xiei + yifi

z2
=

n∑
i=1

x2
i +

r n∑
i=1

yifi

z2

=
n∑

i=1

x2
i +

r
K−1

( n∑
i=1

yiei

)z2

≤
n∑

i=1

x2
i +A(γ)4

r n∑
i=1

yiei

z2

≤ A(γ)4
n∑

i=1

(x2
i + y2

i ).

Similarly,

r n∑
i=1

xiei + yifi

z2
≥

n∑
i=1

x2
i +

1
A(γ)4

r n∑
i=1

yiei

z2

≥ 1
A(γ)4

n∑
i=1

(x2
i + y2

i ).

Hence the lemma holds for K(γ) := A(γ)2. �
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Figure 2. sketch of theorem 8.1: Once we know the angles are uni-
formly bounded below for any perturbation, we can assume Es and Eu are
orthogonal. If a sequence does not uniformly contract Es (

∥∥Πk
1ξi|Es

∥∥ ≥ 1
2)

multiply its stable component by (1 + ε)m and its unstable component by
(1 + ε)−m so that at some iterate, say k, it expands Es and contracts Eu.
Then the perturbation of only ξ1 and ξm shown in the figure obtains a small
angle �(Es, Eu) at the k-th iterate, which is a contradiction.

Proof of Theorem 8.1:

We first prove that there is M1 > 0 such that

(56)

∥∥∥∥∥M1−1∏
j=0

ξα
i+j

∣∣∣
Es

i (ξα)

∥∥∥∥∥ < 1
2
, ∀α ∈ A, ∀ i ∈ Z.

Since the family ξ is bounded, it is enough to prove that

(57) ∃N > 0 : ∀α ∈ A , ∀ i ∈ Z , ∃ 0 < n ≤ N :

∥∥∥∥∥n−1∏
j=0

ξα
i+j

∣∣∣
Es

i (ξα)

∥∥∥∥∥ < 1
2
.

For take m > 0 such that

(58)
1

2m

(
sup
α,i
‖ξα

i ‖
)N

<
1
2
,

and let M1 := (m+ 1)N . Writing M1 = n1 + n2 + · · ·+ nk + r, where the n` ≤ N are such
that (57) holds for i = n1 + · · ·+ n`−1 and 0 ≤ r < N we have that k ≥ m and by (58), we
obtain that (56) holds.

If (57) were not true, then

(59) ∀N > 0 , ∃αN ∈ A , ∃ iN ∈ Z , ∀ 0 < n ≤ N :

∥∥∥∥∥n−1∏
j=0

ξαN
iN+j

∣∣∣
Es

iN
(ξαN )

∥∥∥∥∥ ≥ 1
2
.



42 GONZALO CONTRERAS

case i: Suppose that the periods of the sequences ξαN are bounded.

Taking subsequences of αN we can assume that

• iN ≡ i0 is constant.
• Per(ξαN ) = m is constant.
• ∀ j ∈ Z, ∃ ηj = lim

N
ξαN
i0+j .

• ∀ j ∈ Z, ∃E+
j = lim

N
Es

i0+j(ξ
αN ).

• ∀ j ∈ Z, ∃E−j = lim
N
Eu

i0+j(ξ
αN ).

Observe that the subspaces E+
j , E−j are m-periodic and invariant under

∏m−1
i=0 ηj+i.

From (59) we have that

(60)

∥∥∥∥∥n−1∏
j=0

ηj

∣∣∣
E+

0

∥∥∥∥∥ ≥ 1
2
, for all n ∈ N+.

The stable hyperbolicity of the family ξ implies that the sequence η is hyperbolic.

Then
∏m−1

i=0 ηi is a hyperbolic matrix which is limit of the sequence of hyperbolic ma-

trices
∏m−1

j=0 ξαN
i0+j . This implies that E+

0 = limN Es
i0

(ξαN ), E−0 = limN Eu
i0

(ξαN ) are the

stable and unstable subspaces of
∏m−1

j=0 ηj . But this contradicts (60).

case ii: Suppose that the periods of the sequences ξαN are unbounded.

Let ε, K, λ be from Lemma 8.4. Let N1 > 0 and ε0 > 0 be such that

(61) K λn1 (1 + ε0)n1 < 1
2 , ∀n1 ≥ N1.

Let N0 and γ be from Lemma 8.5. Taking a subsequence of αN we can assume that all the
periods satisfy

(62) Per(ξαN ) > max{N0, N1}.

If we extend the family ξ to the family of all the shifted sequences j 7→ ξα
i+j for all α ∈ A,

i ∈ Z, then the new family is also stably hyperbolic. Using this extended family if necessary,
we can assume that iN = 1 in inequality (59).

We shall perturb the symplectic linear maps ξα
i so that the angle �(Es

N+1(ξ
αN ), Eu

N+1(ξ
αN ))

becomes arbitrarily small, contradicting Lemma 8.5.

In the decomposition Es(ξαN )⊕ Eu(ξαN ), for m = Per(ξαN ), write

N∏
i=1

ξαN
i =

[
B 0
0 (B∗)−1

]
,

m∏
i=1

ξαN
i =

[
A 0
0 (A∗)−1

]
.
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By Lemma 8.4, (62) and (61),

(63) ‖A‖ ≤ K λm < 1
2 .

Then from (59) we have that m > N .

By Lemma 8.6 and (62), it is equivalent to measure the norms of linear maps in the decom-
positions Es(ξαN ) ⊕ Eu(ξαN ). Without loss of generality we may assume that
K(γ) = 1 in Lemma 8.6.

Define a perturbation η of ξαN by

η1 : =
[
(1 + ε) I 0

0 (1 + ε)−1I

]
ξαN
1

[
I C
0 I

]
,

ηi : =
[
(1 + ε) I 0

0 (1 + ε)−1I

]
ξαN
i , 1 < i < m,

ηm : =
[
I D
0 I

]
ξαN
m

[
(1 + ε) I 0

0 (1 + ε)−1I

]
;

where C and D are small symmetric matrices defined as follows.

Observe that by (59), ‖B∗‖ = ‖B‖ ≥ 1
2 . Let u, v ∈ Rn be such that |B∗u| = 1, |v| = 1,

|B∗ u| ≥ 1
2 |u| and |B v| ≥ 1

2 |v|.

Let C be a symmetric matrix such that

C (B∗u) = ε |B∗u| v and ‖C‖ = ε.

Let D be the symmetric matrix

D = −(1 + ε)2m AC A∗.

From (63), (62) and (61), if 0 < ε < ε0 then

‖D‖ ≤ K2 λ2m (1 + ε)2m ‖C‖ < ‖C‖ = ε.

Therefore, since the family ξ is bounded,

lim
ε→0

d(η, ξαN ) = 0 uniformly on N .

Observe that with this definition of D, we have that

m∏
i=1

ηi =
[
(1 + ε)m A 0

0 (1 + ε)−m (A∗)−1

]
.

In particular, ∥∥∥∥( m∏
i=1

ηi

∣∣∣
Eu

1 (ξαN )

)−1
∥∥∥∥ =

∥∥∥∥ m∏
i=1

ηi

∣∣∣
Es

1(ξαN )

∥∥∥∥ ≤ K λm (1 + ε)m < 1.

Thus the sequence η is hyperbolic and has the same subspaces Es
1, E

u
1 as the sequence ξαN .
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Observe that
N∏

i=1

ηi =
[
(1 + ε)NB 0

0 (1 + ε)−N (B∗)−1

] [
I C
0 I

]

=

(1 + ε)NB (1 + ε)N BC

0 (1 + ε)−N (B∗)−1

 .
The unstable subspace Eu

N+1 at time N , is Eu
N+1(η) = (

∏N
i=1 ηi)(Eu

1 (ξαN )). Therefore

Eu
N+1(η) = { z ⊕ Lz ∈ Eu

N+1(ξ
αN )⊕ Es

N+1(ξ
αN ) | z ∈ Eu

N+1(ξ
αN ) },

where L : Eu
N+1(ξ

αN )→ Es
N+1(ξ

αN ) is given by

L = (1 + ε)2N BC B∗.

The stable subspace is Es
N+1(η) = Es

N+1(ξ
αN ).

We have that

|Lu| = (1 + ε)2N |BCB∗u| = (1 + ε)2N |Bv| ε |B∗u|

≥ 1
4 ε (1 + ε)2N |u|.

Under the inner product [·, ·] of Lemma 8.6, Eu
N+1(ξ

αN ) =
(
Es

N+1(ξ
αN )
)⊥. Thus

�
(
Es

N+1(η), E
u
N+1(η)

)
= ‖L‖−1 ≤ 4

ε (1 + ε)2N
,

which is arbitrarily small if N is large enough. This finishes the proof of (56).

It remains to prove that there is M2 > 0 such that

(64)

∥∥∥∥∥(M2−1∏
j=0

ξα
i+j

∣∣∣
Eu

i (ξα)

)−1
∥∥∥∥∥ < 1

2
, ∀α ∈ A, ∀ i ∈ Z.

Let N0 and γ be from Lemma 8.5 for ξ. Let

A0 := {α ∈ A | Per(ξα) > N0 }.

In the splitting Es
i (ξ

α)⊕ Eu
i (ξα) we have that

M1−1∏
j=0

ξα
i+j =

[
F 0
0 (F ∗)−1

]
,

with ‖F‖ < 1
2 by (56). Using the equivalent norm from Lemma 8.6, we have that∥∥∥∥∥(M1−1∏

j=0
ξα
i+j

∣∣∣
Eu

i (ξα)

)−1
∥∥∥∥∥ =

∥∥∥∥∥M1−1∏
j=0

ξα
i+j

∣∣∣
Es

i (ξα)

∥∥∥∥∥ < 1
2
, ∀α ∈ A0, ∀ i ∈ Z.
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This finishes the proof if A0 = A. If not, by repeating sequences in A1 := A\A0 we can
assume that A1 is infinite. Since the periods of the sequences in A1 are bounded by N0,
the same argument as in case i above gives M3 > 0 such that∥∥∥∥∥(M3−1∏

j=0
ξα
i+j

∣∣∣
Eu

i (ξα)

)−1
∥∥∥∥∥ < 1

2
∀α ∈ A1, ∀ i ∈ Z.

Then for (64) take M2 = M1 ·M3. In order to get (56) and (64) with the same M , take
M = M1 ·M2.

�

9. Hyperbolicity.

Given a subset A ⊂ SM and g ∈ R∞(M) let P(g,A) be the set of closed orbits γ for φg

such that γ(R) ⊂ A. Define

Per(g,A) :=
⋃

γ∈P(g,A)

γ(R),

H(A) := { g ∈ R∞(M) | ∀γ ∈ P(g,A), γ is hyperbolic },

F2(A) := intC2 H(A).

Let G1 be as in Theorem 6.1,

Theorem E.

If g ∈ G1 ∩ F2(A), then Λ := Per(g,A) is a hyperbolic set for φg.

Proof: Let ` be the injectivity radius of g. For each α ∈ A := P(g,A) let T = T (α) be the

period of α and choose 0 = t0 < t1 < t2 < · · · < tm = T (α) such that ti+1 − ti ∈ [14`,
1
2`].

Then α|[ti,ti+1] is injective. Let

(65) N (i, α) := { v ∈ Tα(i)SM | 〈v, α̇(ti)〉g = 0 }.

Choose an orthonormal symplectic basis B(i, α) for N (i, α). Let ξα : Z → Sp(n) be the
periodic sequence of period m such that ξα

i is the matrix of dφg
ti+1−ti

: N (i, α)→ N (i+1, α)

in the basis B(i, α) and B(i+ 1, α). We use the following

9.1. Lemma. The family ξ = { ξα }α∈A is stably hyperbolic.

Then, from theorem 8.1 we obtain a hyperbolic splitting on P(g,A). The hyperbolicity
condition implies the continuity of the splitting in Per(g,A) (see [16, prop. 6.4.4] for diffeo-

morphisms). Then the splitting extends continuously to the closure Λ = Per(g,A) and the
extension is also hyperbolic.

�
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Proof of Lemma 9.1: If ξ is not stably hyperbolic, then there is a periodically equivalent
family η with d(η, ξ) arbitrarily small which is not hyperbolic. Modifying η if necessary,
we can assume that {α ∈ A | ηα 6= ξα } = {α0 } is a single sequence and ηα0 is not
hyperbolic. Since g ∈ G1 and d(ξα0 , ηα0) is arbitrarily small, by theorem 7.1 there is a metric

g1 ∈ R∞(M), which is C∞, such that g1 is C2 arbitrarily near g (and hence g1 ∈ H(A)),
the same α0 is a periodic orbit for g1, g1 = g on α(R) (hence the same subspaces N (i, a)
satisfy (65) for g1), and ηα0

i = dφg1
ti+1−ti

: N (i, α0) → N (i + 1, α0) for all 0 ≤ i < m(α0).

Since ηα0 is not hyperbolic and α0(R) ⊂ A, this contradicts the fact g1 ∈ H(A).

�

The linearized Poincaré map Pc of a prime closed geodesic c is a symplectic map. If c
is not hyperbolic denote by zj = ± exp(2πλj), λj ∈ [0, 1

2 ], j = 1, . . . , ` ≤ n the eigenvalues

of Pc with norm 1. The numbers 0 ≤ λ1 < · · · < λ` ≤ 1
2 are called Poincaré exponents of

c. Following Rademacher [31], we say that a riemannian metric is strongly bumpy if all the
eigenvalues of the linearized Poincaré map of every prime closed geodesic are simple and if
any finite set of the disjoint union of the Poincaré exponents of the prime closed geodesics
is algebraically independent.

For 2 ≤ k ≤ ∞, let Bk be the set of strongly bumpy metrics in Rk(M).

9.2. Rademacher’s theorem. [31] For any 2 ≤ k ≤ ∞:

(i) Bk is residual in Rk(M).
(ii) If g ∈ Bk then g has infinitely many geometrically distinct closed geodesics.

Let K be the set of metrics g in R2(M) such that

• The metric g is strongly bumpy: g ∈ B2.
• All heteroclinic points of hyperbolic closed geodesics of g are transversal.

By theorems 9.2 and 2.1, for any 2 ≤ k ≤ ∞, the set K ∩Rk(M) is residual in Rk(M).

Given a continuous flow φt on a topological space X a point x ∈ X is said wandering if
there is an open neighbourhood U of x and T > 0 such that φt(U) ∩ U = ∅ for all t > T .
Denote by Ω(φt|X) the set of non-wandering points for (X,φt). Recall

9.3. Smale’s spectral decomposition theorem for flows. [33, 16]

If Λ is a locally maximal hyperbolic set for a flow φt, then there exists a finite collection
of basic sets Λ1, . . .ΛN such that the non-wandering set of the restriction φt

∣∣
Λ

satisfies

Ω
(
φt

∣∣
Λ

)
=

N⋃
i=1

Λi.

Now let D := K ∩ G1, where G1 is from Theorem 6.1,
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Theorem D.

If g ∈ D ∩ F2(M), then Λ = Per(g) contains a non-trivial hyperbolic basic set.

Proof: Since D ⊂ G1, applying Theorem E to A = M we get that Λ is a hyperbolic set.
By proposition 6.4.6 in [16], there exists an open neighbourhood U of Λ such that the set

ΛU :=
⋂

t∈R
φg

t (U)

is hyperbolic. Since Λ = Per(g), its non-wandering set is Ω(φt|Λ) = Λ. By the definition of
ΛU , Λ ⊆ ΛU and hence Λ = Ω(φt|Λ) ⊆ Ω(φt|ΛU

). By corollary 6.4.20 in [16], the periodic
orbits are dense in the non-wandering set Ω(φt|ΛU

) of the locally maximal hyperbolic set

ΛU . Thus Λ ⊆ Ω(φt|ΛU
) ⊆ Per(g) = Λ. By theorem 9.3, the set Λ = Ω(φt|ΛU

) decomposes
into a finite collection of basic sets. Since the number of periodic orbits in Λ is infinite, at
least one of the basic sets Λi is not a single periodic orbit, i.e. it is non-trivial.

�

Appendix A. Arc Spaces.

Let X be an algebraic variety on RN . Define the path space on X as

C(X) := { (an)n∈N ∈
∏

n∈N RN
∣∣ ∃γ ∈ C∞(R,RN ), γ(R) ⊂ X, 1

n!γ
(n)(0) = an,∀n ∈ N }

Let F = (f1, . . . , fq) be generators of the ideal I(X) = { f ∈ R[x1, . . . , xN ] | f |X ≡ 0 }.
Recall that the arc space L(X) is

L(X) := { (an)n∈N ∈
∏

n∈N RN
∣∣ F (

∑n
k=0 akt

k) ≡ 0 },

where the equality ≡ is as formal power series. The jet space Ln(X) is

Ln(X) :=
{

(ak)k∈N ∈
∏n

k=0 RN
∣∣ F (

∑n
k=0 akt

k) = 0 (mod tn+1)
}
.

Then Ln(X) is an algebraic variety. Let πn : L(X) → Ln(X) be the projection
(ak)k∈N 7→ (ak)n

k=0. Then πn(L(X)) is a constructible set in Ln(X) (see [8, p. 202]).

Let πn(C(X)) be the Zariski closure of πn(C(X)).

A.1. Proposition.

(i) dimπn(C(X)) ≤ (n+ 1) dimX.
(ii) The fibers of πn+1(C(X))→ πn(C(X)) have dimension ≤ dimX.

Proof:

By Lemma A.2 it is enough to proof the proposition for an algebraic variety X in CN .
Observe that item (ii) implies item (i). We prove item (ii).

Fix a = (a0, . . . , an) ∈ πn(C(X)). Define

Zn+1 :=
{

(t, x) ∈ C× CN
∣∣ F (a0 + · · ·+ ant

n + tn+1x) = 0
}
.
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For t ∈ C, let

Zn+1(t) := { x ∈ CN | (t, x) ∈ Zn+1 }.

Let Fa := θ−1
n (a) be the fiber of θn : πn+1(C(X)) → πn(C(X)) over a. The limit Wn+1 at

t = 0 of the 1-parameter family of varieties Zn+1(t) exists (see [10, pp. 71–72]):

Wn+1 := lim
t→0

Zn+1(t),

i.e. if Z∗n+1 := { (t, x) ∈ Zn+1 | t 6= 0 }, then Z∗n+1 ∪Wn+1 is the Zariski closure of Z∗n+1.

Claim 1: Fa ⊂Wn+1.

Indeed, let an+1 ∈ Fa. Since (a0, . . . , an, an+1) ∈ πn+1(C(X)) there is γ ∈ C∞(R,RN )
such that F ◦ γ ≡ 0 and

γ(t) = a0 + · · ·+ ant
n + an+1t

n+1 +O(tn+2), t ∈ R.

Let xt := 1
tn

[
γ(t)−

∑n
k=0 akt

k
]

= an+1 +O(t) ∈ Zn+1(t). This implies that an+1 ∈Wn+1.

The following claim finishes the proof:

Claim 2: dimWn+1 ≤ dimX.

For t 6= 0, we have that the variety Zn+1(t) is isomorphic to X by the invertible change

of variables Zn+1(t) 3 z ←→ x ∈ X: x = a0 + a1t + · · · + ant
n + tn+1z. Therefore

dimZn+1(t) = dimX, when t 6= 0.

Consider CN = CN × {1} ⊂ CPN = CN ∪ CPN−1 and the corresponding projective

varieties Zn+1(t), Z∗n+1 = ∪t6=0 Zn+1(t), W = limt→0 Zn+1(t). Then Wn+1 = Wn+1 ∩ CN .

Claim 2 follows form the fact that Zn+1 = Z∗n+1 ∪Wn+1 is a flat family (see [10, prop.

II-29]) and the fact that the dimension of the fibers of a flat family is constant (e.g. [15, pp.
256 – 257]). Another proof is the following:

Since for a generic fiber t 6= 0, dim Zn+1(t) = dimX, we have that dim Z∗n+1 = dimX+1.
If dimWn+1 > dimX, then dim Wn+1 ≥ dimWn+1 ≥ dimX + 1. Therefore Wn+1 con-

tains an irreducible component of Z∗n+1. This is incompatible with Wn+1 = limt→0 Zn+1(t)

(see [10, prop. II-2, p. 75 – 76] 6.

�

A.2. Lemma. Let X ⊂ RN be an algebraic variety an let X ⊂ CN be the algebraic variety
defined by the same polynomials as X. Then dim R(X) ≤ dim C(X).

Proof: Let T be a stratum of X and T := T ∩ Rd. Then T is a complex submanifold of
CN . In particular, its tangent spaces are closed under multiplication by

√
−1. Then the

6 Observe that a priori Wn+1 could have all its irreducible components of maximal dimension in the
hyperplane at infinity CPN−1 and then dim Wn+1 < dim Wn+1. Since the function f(t) := dim Zn+1(t) is
upper semi-continuous (see [14, p. 139]), dim Wn+1 ≥ lim supt→0 dim Zn+1(t) = dim X. Then the argument
above also shows that dim Wn+1 = dim X.
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2-form Ω(u,v) = Im(〈〈u,v〉〉) is non-degenerate on T, because Ω(u,u
√
−1) = −

∑
|uj |2 6= 0

if u 6= 0. Let x ∈ T ⊂ T. Since the tangent space TxT ⊂ Rd, Ω|TxT ≡ 0, i.e. TxT is an

isotropic subspace for Ω. Therefore dim R TxT ≤ 1
2 dim R TxT = dim C TxT.

�
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