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Abstract

We prove a perturbation lemma for the derivative of geodesic flows in high
dimension. This implies that a C 2 generic riemannian metric has a nontrivial
hyperbolic basic set in its geodesic flow.

1. Introduction

Let M nC1 be a closed (compact without boundary) manifold of dimension
n C 1, n � 1, endowed with a C1 riemannian metric g and let �t D �

g
t be

the geodesic flow of g on the unit tangent bundle SgM . The simplest invariant
which measures the complexity of the flow �

g
t is its topological entropy which we

denote by htop.g/. The topological entropy measures the difficulty in predicting the
position of an orbit given an approximation of its initial state. Namely, if � 2 SgM
is a unit vector and T; ı > 0, define the .ı; T /-dynamic ball about � as

B.�; ı; T /D f# 2 SgM W d.�
g
t .#/; �

g
t .�// < ı g;

where d is the distance function in SgM . Let Nı.T / be the minimal quantity of
.ı; T /-dynamic balls needed to cover SgM . The topological entropy is the limit
on ı of the exponential growth rate of Nı.T /:

(1) htop.g/ WD lim
ı!0

lim sup
T!C1

1

T
logNı.T /:

Thus, if htop.g/ > 0, some dynamic balls must contract exponentially at least in
one direction. R. Mañé [25] showed that

(2) htop.g/D lim
T!C1

1

T
log

Z
M�M

nT .x; y/ dx dy;

where nT .x; y/ is the number of geodesic arcs of length � T joining x 2M to
y 2M and the integral is with respect to the volume on M �M .
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Some manifolds have all their riemannian metrics with positive entropy. For
example, when the fundamental group of M has exponential growth (see Dinaburg
[11], Manning [26]), by the definition (1) of the topological entropy, or when the ho-
mology of the loop space ofM grows exponentially (see Paternain and Petean [30]),
by (2).

A way of obtaining positive topological entropy is by showing that the flow
has a nontrivial hyperbolic basic set. A locally maximal invariant set is a compact
subset ƒ� SgM such that �gt .ƒ/Dƒ for all t 2 R and there is a neighborhood
U of ƒ such that

ƒD
\
t2R

�
g
t .U /:

A hyperbolic set is a compact �gt -invariant subset ƒ� SgM such that the restric-
tion of the tangent bundle of SgM to ƒ has a splitting

TƒS
gM DEs˚hXi˚Eu;

where hXi is the subspace generated by the vector field X of �gt , Es and Eu are
d�

g
t invariant sub-bundles and there are constants C; � > 0 such that

(i)
ˇ̌
d�

g
t .�/

ˇ̌
� C e��t j�j for all t > 0, � 2Es;

(ii)
ˇ̌
d�

g
�t .�/

ˇ̌
� C e��t j�j for all t > 0, � 2Eu.

A nontrivial hyperbolic basic set is a locally maximal compact invariant subset
ƒ� SgM which is hyperbolic, has a dense orbit and which is not a single periodic
orbit.

Using symbolic dynamics one shows that if a flow contains a nontrivial hyper-
bolic basic set then it has positive topological entropy. It also has infinitely many
periodic orbits and their number grows exponentially with their period, namely

htop.g/� htop.�
g
jƒ/D lim

T!C1

1

T
logP.T / > 0;

where P.T / is the number of periodic orbits in ƒ with period � T .
If a manifold has negative sectional curvature, its geodesic flow is Anosov

and hence it contains a nontrivial hyperbolic basic set. On manifolds with posi-
tive curvature it is not so clear that one can perturb the metric to obtain positive
topological entropy. In this work we prove

THEOREM A. On any closed manifold M with dimM � 2 the set of C1

riemannian metrics whose geodesic flow contains a nontrivial hyperbolic basic set
is open and dense in the C 2 topology.

COROLLARY B. Let M be a closed manifold with dimM ¤ 1. There is a
set G of C1 riemannian metrics on M such that G is open and dense in the C 2

topology and if g 2 G, htop.g/ > 0 and

lim
T!C1

1

T
logP.T / > 0;

where P.T / is the number of closed geodesics of length � T .
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G. Knieper and H. Weiss [22] prove Theorem A for surfaces in the C1 topol-
ogy. Their methods are restricted to dimension 2. G. Paternain and the author
proved Theorem A for surfaces in [8]. This paper generalize their methods. For
general hamiltonian flows S. Newhouse [29] proves a stronger result: C 2 generi-
cally the hamiltonian flow is either Anosov or it has a generic 1-elliptic periodic or-
bit. In both cases the flow contains a hyperbolic basic set. The Newhouse Theorem
was proved for riemannian metrics on S2 or RP2 in Contreras and Oliveira [7]. The
techniques of this paper are not enough to prove it for general manifolds because
of the lack of a closing lemma for geodesic flows.

If instead of riemannian metrics we were considering Finsler metrics then the
same techniques as in [29] would prove the Newhouse Theorem and in particular
Theorem A. However, perturbation results within the set of riemannian metrics
are harder, due to the fact that when we change the metric in a neighborhood of
a point of the manifold we affect all the geodesics leaving from those points; in
other words, even if the size of the neighborhood in the manifold is small, the
effect of the perturbation in the unit sphere bundle is necessarily large. This is the
main reason why the closing lemma is not known for geodesic flows (see Pugh and
Robinson [32]), even though there is a closing lemma for Finsler metrics.

An application of this paper is that the metrics obtained in Theorem A sat-
isfy the conditions H1, H2, (a periodic orbit with a transversal homoclinic point)
required in a recent paper by A. Delshams, R. de la Llave and T. Seara [9] to
obtain orbits with unbounded energy (Arnold’s diffusion type phenomenon) for
perturbation of geodesic flows by quasi-periodic potentials. See also Section 2
in [9] for a discussion on the abundance of this situation.

We show how to obtain Theorem A from the results proved in the following
sections. A closed geodesic is called degenerate if its linearized Poincaré map has
an eigenvalue which is a root of unity. A riemannian metric is called bumpy if all
its closed geodesics are nondegenerate. A closed geodesic is hyperbolic if it has no
eigenvalue of modulus 1 and it is elliptic if it is nondegenerate and nonhyperbolic.
An elliptic geodesic is q-elliptic if it has precisely 2q eigenvalues of modulus 1.

If 
 and � are hyperbolic periodic orbits for �gt a heteroclinic orbit from � to

 is an orbit �gR .�/ such that

lim
t!�1

d.�
g
t .�/; �/D 0 and lim

t!C1
d.�

g
t .�/; 
/D 0:

The orbit �gR .�/ is said to be homoclinic if � D 
 . The weak stable and weak
unstable manifolds of a hyperbolic periodic orbit 
 are

W s.
/ W D
˚
� 2 SgM W lim

t!C1
d.�

g
t .�/; 
/D 0

	
;

W u.
/ W D
˚
� 2 SgM W lim

t!�1
d.�

g
t .�/; 
/D 0

	
:

The sets W s.
/ and W u.
/ are .nC 1/-dimensional invariant immersed subman-
ifolds of SgM . Then a heteroclinic orbit is an orbit in the intersection W s.
/\

W u.�/. If W s.
/ and W u.�/ are transversal at �gR .�/ we say that the heteroclinic
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orbit is transverse. A standard argument in dynamical systems (see [19, �6.5.d]
for diffeomorphisms1) shows that if a flow contains a transversal homoclinic orbit
then it contains a nontrivial hyperbolic basic set. Therefore for Theorem A it is
enough to look for a homoclinic orbit.

Denote by Rk.M/ the set of C k riemannian metrics in M provided with the
C k topology. In Section 2 we recall the Kupka-Smale Theorem 2.1 for geodesic
flows, which was proven in [8] using results of Anosov [2] and Klingenberg and
Takens [21]. In particular, it says that for a generic riemannian metric in Rk.M/,
k � 2, all heteroclinic orbits are transverse.

In Section 3 we prove the following:

THEOREM C. There is a subset G0 �R2.M/ such that
(i) For all 4� k �1, G0 contains a residual set in Rk.M/.

(ii) If the geodesic flow of a metric g 2 G0 contains a nonhyperbolic orbit, then it
contains a nontrivial hyperbolic basic set.

This is obtained by showing that such a metric g contains a generic elliptic
geodesic. Using the Birkhoff normal form one obtains a region nearby the elliptic
periodic orbit where the Poincaré map is conjugate to a Kupka-Smale twist map
on Tn �Rn, nD dimM � 1. In Theorem 4.1, using arguments of M-C. Arnaud
and M. Herman we prove that such twist maps have a generic 1-elliptic periodic
orbit.

The restriction of the Poincaré map of this 1-elliptic orbit to its central man-
ifold is a twist map of the annulus S1 �R. Such Kupka-Smale twist maps have
homoclinic orbits. Since the central manifold is normally hyperbolic, the homo-
clinic orbit for the twist map is a homoclinic orbit for the whole Poincaré map, and
it is transverse by the Kupka-Smale condition on the Poincaré map.

Theorem C can be used to obtain density of hyperbolicity in the C1 topology
when a nonhyperbolic geodesic is known to exist. Interesting cases are obtained
in W. Ballman, G. Thorbergsson and W. Ziller [4], where they give conditions
under which the existence of a closed nonhyperbolic geodesic is guaranteed (see
especially Theorem B in [5]). Combining this result with Theorem C one obtains
that any 1/4-pinched metric in Sn may be approximated in the C1 topology by a
metric with a nontrivial hyperbolic basic set.

Having a nontrivial basic set for �g is an open condition on the C 2 topology
on g (this is, the C 1 topology on �g ), because basic sets can be analytically contin-
ued (cf. [31, Th. 5.1]). Therefore Theorem C covers the case in Theorem A when
a metric can be C 2 approximated by one with an elliptic periodic orbit.

The remaining case is covered by the following Theorem D. Let

P.g/ WD f 
 W 
 periodic orbit for g g;

Per.g/ WD
S


2P.g/


.R/;

1Note that for geodesic flows the closed orbits never reduce to fixed points.
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H.M/ WD fg 2R1.M/ j 8 
 2 P.g/ W 
 is hyperbolic g;

F2.M/ WD intC2 H.M/:

THEOREM D. There is a set D�R2.M/ such that

(i) For all 2� k �1, D\Rk.M/ is residual in Rk.M/.

(ii) If g 2 D\F2.M/, then ƒ D Per.g/ contains a nontrivial hyperbolic basic
set.

This finishes the proof of Theorem A because F2.M/ is the open set in the
C 2 topology of C1 metrics which cannot be C 2 approximated by a metric with
an elliptic periodic orbit and the set D is C 2 dense in F2.M/.

When dimM D 2 Theorem D was proven in Contreras and Paternain [8].
The proof of Theorem D appears in Section 9 and follows from Rademacher’s
theorem [33] (which says that a generic riemannian metric has infinitely many
closed geodesics), Smale’s spectral decomposition theorem for hyperbolic sets and
the following Theorem E, also proved in Section 9:

Given a set A� SM , define

P.g; A/ WD f 
 2 P.g/ W 
.R/� A g;

Per.g; A/ WD
S


2P.g;A/


.R/;

H.A/ WD fg 2R1.M/ j 8 
 2 P.g; A/ W 
 is hyperbolic g;

F2.A/ WD intC2 H.A/:

THEOREM E. There is a set G1 � R2.M/ such that G1 is open in R2.M/,
G1\R1.M/ is dense in R1.M/ and:

If g 2 G1\F2.A/, then ƒD Per.g; A/ is a hyperbolic set.

Theorem E is proved in Section 9 by adapting R. Mañé’s theory of stable
hyperbolicity, developed for the stability conjecture in [24], to the case of geodesic
flows. One first considers the linearized Poincaré maps of small segments of the
closed geodesics in the set A. These are periodic sequences of symplectic matrices
in R2n. Denote by Sp.n/ the set of symplectic linear maps in R2n. In Theorem
8.1 we prove that if these sequences are stably hyperbolic under uniform perturba-
tions in Sp.n/, then they are uniformly hyperbolic. Such uniform hyperbolicity is
inherited by the closure Per.g; A/.

In order to reduce the problem to sequences of symplectic matrices we need a
perturbation lemma, proved in Theorem 7.1, which is the main technical difficulty
in the paper. One has to perturb the linearized Poincaré map on any orbit segment,
in an arbitrary direction in Sp.n/, on an arbitrarily small neighborhood of the seg-
ment, without moving either the orbit segment or the possible self-intersections
with the remainder of the periodic orbit, without changing the metric above the
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segment and covering a perturbation size on Sp.n/ which is uniform for all or-
bit segments of a given length, say 1, but possibly depending on the riemannian
metric g.

Such a perturbation had been done by Klingenberg and Takens [21] and Anosov
[2] but not with the uniform estimate. We prove the perturbation lemma only for
a special set of metrics G1 � R1.M/: those such that every geodesic segment
of length 1

2
has a point whose curvature matrix has all its eigenvalues distinct and

separated by a uniform bound.
In Theorem 6.1 we prove that such a set G1 is open and dense in Rk.M/ for

all k � 2. The use of the set G1 is the main difference with the perturbation lemma
in dimension 2, proved in [8], which only needs the riemannian metric to be C 4.
We only prove the density of G1 for C1 metrics.

The lengths 1 and 1
2

above are chosen for simplicity of the exposition and
they can be any number smaller than the injectivity radius ` of the metric. In their
application in the proof of Theorem E in Lemma 9.1, we use 1

2
� 1D 2 � 1

2
< 1
4
`.

Multiplying the riemannian metrics by a constant, without loss of generality we
can assume that all the metrics in this work have injectivity radius larger than 4.

Finally, in Section 5 we introduce the Fermi coordinate system and the kind
of perturbations of the metrics that are used in Theorem 6.1 and Theorem 7.1

The author wishes to thank Carolina Araújo and Xavier Gómez-Mont for use-
ful conversations.

2. The Kupka-Smale theorem

Let M nC1 be a closed manifold of dimension nC 1. Let �gt be the geodesic
flow of a riemannian metric g acting on SM , the unit sphere bundle of M . Let
� W SM !M be the canonical projection. Nontrivial closed geodesics on M are
in one-to-one correspondence with the periodic orbits of �gt . Given a closed orbit

 D f�

g
t .�/ j t 2 Œ0; a� g of period a > 0, define the Poincaré map Pg.†; �/ as

follows: Choose a local hypersurface † in SM containing � and transversal to 
 .
Then there are open neighborhoods †0 and †a of � and a differentiable function
ı W †0! R such that the map Pg.†; �/ W †0! †a given by # 7! �

g

ı.#/
.#/ is a

diffeomorphism.
Recall (cf. Klingenberg [20]) that there is a canonical splitting of the tangent

bundle T .TM/DH ˚V , where the vertical subspace V D ker d� is tangent to
the fibers of � and the horizontal subspace H is the kernel of the connection map
K W T .TM/! TM . There is a natural identification T�TM DH.�/˚ V.�/$
T�M ˚ T�M given by � D .h; v/$ .d��.�/;K.�//. Under this identification
the tangent space to the unit tangent bundle is T�SM D H.�/˚ N.�/, where
N.�/ D f# 2 TM j h#; �i�.�/ D 0 g. The geodesic flow preserves the canonical
contact form �.�/D h�; hi�.�/ D h�; d�.�/i�.�/ and hence its kernel

N.�/ WD ker�\T�SM DN.�/˚N.�/�H.�/˚V.�/
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defines an invariant codimension 1 subspace in T�SM , transversal to the geodesic
flow. The canonical symplectic form ! WD d� is invariant under the geodesic
flow and nondegenerate on N.�/. We choose the local hypersurface † above
such that T�† D N.�/. The linearized Poincaré map Pg.�/ WD d�Pg.†; �/ is
an !-symplectic linear map on N.�/ and

Pg.J.0/; PJ .0//D .J.a/; PJ .a//;

where J is a normal Jacobi field along the geodesic � ı 
 and PJ denotes the
covariant derivative along the geodesic. After choosing a symplectic linear basis for
N we can identify the group of !-symplectic linear maps on N with the symplectic
linear group Sp.n/ on Rn �Rn. Although the distribution N is not integrable, the
symplectic form ! is still nondegenerate in T#† for # in a neighborhood of � and
the Poincaré map Pg.†; #/ preserves !j†.

Let J ks .n/ be the set of k-jets of C k symplectic automorphisms of Rn �Rn

which fix the origin. One can identify J 1s .n/ with Sp.n/. A set Q � J ks .n/ is said
to be invariant if for all � 2 J ks .n/, �Q�

�1 DQ. In this case, the property that
says that the Poincaré map Pg.†; �/ belongs to Q is independent of the section †.

A closed orbit is said to be hyperbolic if its linearized Poincaré map has no
eigenvalues of modulus 1. If 
 is a hyperbolic closed orbit and � D 
.0/, define
the strong stable and strong unstable manifolds of 
 at � by

W ss.�/D f# 2 SM j lim
t!C1

d
�
�
g
t .#/; �

g
t .�/

�
D 0 g;

W uu.�/D f# 2 SM j lim
t!�1

d
�
�
g
t .#/; �

g
t .�/

�
D 0 g:

Define the weak stable and weak unstable manifolds by

W s.
/ WD
[
t2R

�
g
t

�
W ss.�/

�
; W u.
/ WD

[
t2R

�
g
t

�
W uu.�/

�
:

It turns out that they are immersed submanifolds of dimension

dimW s.
/D dimW u.
/D dimM D nC 1:

A heteroclinic point is a point in the intersectionW s.
/\W u.�/ for two hyperbolic
closed orbits 
 and �. We say that � 2 SM is a transversal heteroclinic point if
� 2W s.
/\W u.�/, and T�W s.
/CT�W

u.�/D T�SM .
Let Rk.M/ be the Banach manifold of C k riemannian metrics onM endowed

with the C k topology. Using results from Anosov [2] and Klingenberg-Takens [21],
in [8, Th. 2.5] we proved the following analogous to the Kupka-Smale theorem for
geodesic flows:

THEOREM 2.1. Let Q � J ks .n/ be open, dense and invariant. Then there
exists a residual subset O�RkC1.M/ such that for all g 2 O:

� The k-jet of the Poincaré map of every closed geodesic of g belongs to Q.
� All heteroclinic points of hyperbolic closed geodesics of g are transversal.
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Since countable intersections of residual subsets are residual, in Theorem 2.1
we can replace Q by a residual invariant subset in J ks .n/. Also, using the natural
projection � W J kC1s .n/ ! J ks .n/ by truncation, in Theorem 2.1 one obtains a
residual subset O�Rr.M/ for any r � kC 1.

3. Elliptic closed geodesics

We say that a periodic orbit is q-elliptic if its linearized Poincaré map has 2q
eigenvalues of modulus 1 and is elliptic if it is q-elliptic for some q > 0.

Suppose that � is a q-elliptic periodic point, q � n. Let P D d�P.†; �/ be its
linearized Poincaré map. Let T�†DEs˚Eu˚Ec be the decomposition into the
stable, unstable and center subspaces for P . This is, Es , Eu and Ec are invariant
under P and P jEs has only eigenvalues � of modulus j�j < 1, P jEu has only
eigenvalues � of modulus j�j > 1 and P jEc has only eigenvalues � of modulus
j�j D 1. Then there are local embeddings W s W .Rp; 0/! .†; �/, W u W .Rp; 0/!

.†; �/, pDn�q andW c W .R2q; 0/! .†; �/, such that T�W sDEs , T�W uDEu,
T�W

c D Ec which are locally invariant under P D P.†; �/, i.e. PW s , PW u,
PW c are locally equal to W s , W u, W c respectively; see Hirsch, Pugh, Shub [18].
They are called stable, unstable and center manifolds for .†; �/. The stable and
unstable manifolds are unique, but the center manifold may not be unique. If P is
of class C k (resp. C1) then W s , W u, are C k (resp. C1). If P is of class C k

(resp. C1) then W c can be chosen C k (resp. C r , with r arbitrarily large) on a
sufficiently small neighborhood of � . The submanifolds W s , W u are isotropic with
respect to the canonical symplectic form ! (i.e. !jW s � 0 and !jW u � 0) because
P preserves ! and dP (resp. dP�1) asymptotically contracts tangent vectors in
W s (resp. W u). The restriction !jEc is nondegenerate (see Robinson [34]) and
hence PjW c is a symplectic map on a sufficiently small neighborhood of � .

Let �1; : : : ; �qI �1; : : : ; �q be the eigenvalues of P with modulus 1. We say
that � is 4-elementary if

(3)
qY
iD1

�
�i
i ¤ 1 whenever 1�

qX
iD1

j�i j � 4:

In this case there are symplectic coordinates .x1; : : : ; xqIy1; : : : ; yq/ in W c such
that!jW cD

Pq
iD1 dyi^dxi and PjW c is written in Birkhoff normal form P.x; y/D

.X; Y /, where

(4) Zk D e
2�i �k zkCgk.z/; �k.z/D akC

qP̀
D1

ˇk` jz`j
2;

zDxCiy, ZDXCiY , �i D e2� i ak and g.z/Dg.x; y/ has vanishing derivatives
up to order 3 at the origin. We say that � is weakly monotonous if the matrix ˇk`
is nonsingular. The property detˇk` ¤ 0 is independent of the particular choice of
normal form. In these coordinates, the matrix ˇk` can be detected from the 3-jet
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of P at � D .0; 0/ and it can be seen that the property f(3) and detˇk` ¤ 0 g is
open and dense in the jet space J 3s .q/.

Consider the following maps

.x; y/ ����! .�; �/ ����! .�; �2="/D .�; r/

D�
P
����! Tq �R

q
C

R
����! Tq �R

q
C

f

??y ??yF"
D�

P
����! Tq �R

q
C

R
����! Tq �R

q
C

where DD f .x; y/ 2 Rq �Rq W jxj2C jyj2 < 1 g, D� D D n f.0; 0/g, f D PjW c

in the above coordinates, Tq D Rq=Zq and P�1 is given by xi D �i cos.2��i /,
yi D �i sin.2��i /. Since the coordinates in Birkhoff normal form are symplectic,
the map f preserves the form ! WD

P
i dxi ^ dyi D dx ^ dy. Let Q D R ıP W

D� ! Tq � R
q
C

be given by Q.x; y/ D .�; r/, ri D �2i =". Then Q�.r d�/ D
1
2�"

.x dy � y dx/ DW �". Since D is simply connected, f �.�"/ � �" is exact.
Therefore F �" .r d�/� r d� is exact.

Let G".�; r/ WD .� C aC " ˇ r; r/ be the symplectic diffeomorphism given
by the first term in (4) in the coordinates .�; r/. Its N -th iterate is given by
GN" .�; r/ WD .� C Na C "Nˇ r; r/. This is a totally integrable (cf. Arnaud [3,
p. 11]) weakly monotonous (i.e. det."Nˇ/ ¤ 0) twist map of Tq � R

q
C

. Let
Bı WD f r 2 R

q
C
W
P
i .ri �

1
2q
/2 < ı2 g. In [28] (see also Moser’s Appendix

3.3 in [20] or Arnaud [3, Chap. 8]) J. Moser proves that given � > 0 there exist
ı > 0, N 2 N and " > 0 such that

(i)


FN" �GN" 

C1 < � in Tq �Bı .

(ii) There exists a torus Tq radially transformed by FN" in Tq �Bı , i.e. Tq D

f .�; r.�// W � 2 Tq g � Tq �Bı such that FN" .�; r.�//D .�; R.�// for some
R W Tq! R

q
C

.

Let SN be a generating function for FN" , i.e. a function SN W Tq �Bı ! R

such that dSN D
�
FN"

��
.r d�/� r d� . On the radially transformed torus Tq we

have that

dSN .�; r.�//D
�
R.�/� r.�/

�
d�:

Then critical points of dSN jTq correspond to fixed points of FN" in Tq . Therefore
FN" has at least q � 1 D cup length.Tq/ fixed points on Tq . If SN is a Morse
function then FN" has at least 2q fixed points.

Let Q � J 3s .n/ be the set of 3-jets of C 3 symplectic automorphisms T of
Rn �Rn which fix the origin and are such that

(i) The eigenvalues of d0T are all different.

(ii) The eigenvalues of modulus 1 satisfy the 4-elementary condition (3).
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(iii) The coefficients of the Birkhoff normal form (4) satisfy the weakly monoto-
nous condition detˇk` ¤ 0.

Theorem C. Let G0 be the set of C 4 riemannian metrics on M such that

� The k-jet of the Poincaré map of every closed geodesic of g (and its multiples)
belongs to Q.

� All heteroclinic points of hyperbolic closed geodesics of g are transversal.

Then

(i) G0 contains a residual set in Rk.M/ for all k � 4.

(ii) If the geodesic flow of a metric g 2 G0 contains a nonhyperbolic periodic orbit
then it contains a nontrivial hyperbolic set; in particular htop.g/ > 0.

Proof. Since Q is residual and invariant in all J `s .n/, ` � 3, by Theorem
2.1 the set G0 contains a residual subset in Rk.M/, k � 4. Now suppose that
g 2 G0 contains a nonhyperbolic periodic point � 2 SgM . We will prove that arbi-
trarily near to � there is a hyperbolic periodic orbit with a transversal homoclinic
point. Then (see e.g. [19, p. 276]) there is a hyperbolic horseshoe containing the
homoclinic point.

Observe that it is enough to find a 1-elliptic periodic point. For in that case
the Poincaré map restricted to the 2-dimensional central manifold W c will be a
Kupka-Smale twist map which has hyperbolic orbits with homoclinic points (see
Le Calvez [23, Rems. p. 34]).2 This hyperbolic periodic orbit will be hyperbolic
in the Poincaré section (cf. Arnaud [3, lemme 8.6]). A homoclinic point in the
central manifold is also a homoclinic point in the Poincaré section, and it must be
transversal by the Kupka-Smale condition on G0.

Now suppose that there is a q-elliptic periodic point � with q > 1. As stated
above, Moser proves that there is a subset Tq�Bı near � and an iterate N 2N such
that the N -th iterate FN" of the Poincaré map F DPjW c is a weakly monotonous
twist map with fixed points which is C 1 near to a totally integrable twist map
GN" . In this case Theorem 4.1 below says that F has a 1-elliptic periodic point � .
Since the central manifold is normally hyperbolic, by lemme 8.6 in Arnaud [3], the
periodic point � will also be 1-elliptic for the whole Poincaré map P W†!†. �

4. Symplectic twist maps on Tn �Rn

In this section we use the techniques developed by Arnaud and Herman in [3].
Let Tn D Rn=Zn with its inherited addition. On Tn �Rn we use the coordinates
.�; r/ 2 Tn�Rn. Let �D r d� D

P
i ri d�i be the Liouville 1-form on Tn�Rn D

T �Tn. The symplectic form on Tn �Rn is ! D d�D dr ^ d� . Under the natural
identification T.�;r/Tn �RnDRn�Rn, the symplectic form is written as !.x; y/D

2In fact for such a twist map all hyperbolic periodic orbits have homoclinic points; see
Mather [27] or Franks and Le Calvez [14].
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x�Jy, where J D
�
0 I
�I 0

�
. A C 1 diffeomorphism F W Tn �Rn ! Tn �Rn is

symplectic if F �! D !. This is equivalent to .dF /�J.dF / D J . It is exact
symplectic if F ���� is an exact form. It is weakly monotonous if when writing
F.�; r/D .‚;R/, we have that det @‚

@r
¤ 0.

The torsion of F is b WD @‚
@r

. The torsion is not necessarily symmetric and its
symmetrization bC b� may be singular. We say that the torsion is positive definite,
negative definite, of signature .p; q/ if bC b� is positive definite, negative definite,
of signature .p; q/. Here signature .p; q/ means p negative eigenvalues, q positive
eigenvalues and n� .pC q/ zero eigenvalues.

A C 1 diffeomorphism G W Tn �Rn! Tn �Rn is completely integrable if it
has the form G.�; r/ D .� C ˇ.r/; r/ for some ˇ 2 C 1.Rn;Rn/ with ˇ.0/ D 0.
If furthermore G is symplectic then its torsion @ˇ

@r
is symmetric. In this case

G����D r dˇ is exact because it is a closed form in Rn.
Throughout this section, F will denote a weakly monotonous, exact, symplec-

tic C r diffeomorphism, r � 1 which is C 1 near a totally integrable, symplectic
map G.

Observe that for the totally integrable map G, the zero section Tn�f0g consist
of fixed points. We look for fixed points of F near Tn � f0g:

1. First we construct a radially transformed torus TD Graph.�/ by solving

F.�; �.�//D .�;�/:

We can do this using the implicit function theorem applied to the equation

‚.�; �.�/; F /D �;

where F.�; r/D .‚;R/; we can continue the solution �G � 0 for G because
of the weakly monotonous condition det

�
@‚
@r

�
¤ 0. The function � is C r if F

is C r .

2. Since F is exact symplectic, there is a generating function S W Tn �Rn! R

such that
dS D F ����DR d‚� r d�:

On the radially transformed torus T,

dS jT D .R� r/ d�:

Therefore a fixed point of F is a critical point for S in T. We define the radial
function ' D L.F / W Tn! R as

(5) '.�/D S.�; �.�//:

Since ' is C 1, F has at least nC 1D cup length.Tn/ fixed points. If ' is a
Morse function then F has at least 2n fixed points.

Let Q � J 3s .n/ be the subset defined by conditions (i), (ii), (iii) in Section 3.
We say that the diffeomorphism F W Tn �Rn - is Kupka-Smale if
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(i) If z is a periodic point of F with period3 m then DFm.z/ 2Q.

(ii) All the heteroclinic intersections of hyperbolic periodic points are transversal.

THEOREM 4.1. If F W Tn �Rn ! Tn �Rn is a C 4 Kupka-Smale weakly
monotonous exact symplectic diffeomorphism which is C 1 near a symplectic com-
pletely integrable diffeomorphism G, then F has a 1-elliptic periodic point near
Tn � f0g. In particular, there is a nontrivial hyperbolic set for F near Tn � f0g

and htop.F /¤ 0.

LEMMA 4.2 (M. Herman). Let M D
�
a b
c d

�
2 R2n�2n be a symplectic matrix

with a; b; c; d 2 Rn�n and det.b/¤ 0. For � 2 C, let

M� WD b
�1 aC d b�1�� b�1���1.b�1/�:

Then
rank .� I �M/D nC rankM�:

In particular � is an eigenvalue of M iff detM� D 0.

Proof. Since M is symplectic, M �JM D J . Therefore a�c D c�a, b�d D
d�b and a�d � c�b D I . This implies that

(6) �.b�1/� D c � d b�1a:

When P D
�

I 0

d b�1 I

�
,

N WD P�1M P D

�
aC b d b�1 b

�.b�1/� 0

�
:

If .v1; v2/ is an eigenvector of N with eigenvalue �, then v2 D ���1 .b�1/�v1
and

.b�1aC d b�1���1 .b�1/��� b�1/ v1 D 0: �
A periodic point z for F of period p is said to be nondegenerate if 1 is not

an eigenvalue of DF p.z/. Observe that if F is Kupka-Smale then all its periodic
points are nondegenerate.

LEMMA 4.3. Let ' D L.F / be the radial function (5) on the radially trans-
formed torus T. At a fixed point .�; �.�// for F on T, with M DDF.�; �.�//,

M� DD
2'.�/C .1��/ b�1C .1���1/ .b�1/�:

If the fixed points of F are nondegenerate then ' D L.F / is a Morse function.

Proof. From the equation ‚.�; �.�//D � for T we get D�.�/D b�1 .I � a/.
Now, D'.�/D dS jT DR.�; �.�//� �.�/. Therefore, by (6),

(7) D2'.�/D cCd b�1.I �a/�b�1.I �a/D b�1aCd b�1�b�1� .b�1/�:

This implies the formula.

3 The integer m is not necessarily the minimal period of z.
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If � D 1 is not an eigenvalue of M , by Lemma 4.2, M�D1 D D2'.�/ is
nonsingular. �

LEMMA 4.4. If z 2T is a fixed point of F then there is a polynomial P 2RŒx�

of degree n such that � is an eigenvalue of DF.z/ iff P.2�����1/D 0.
The leading coefficient of P is an D det b�1, where b D @‚

@r
is the torsion at

z and the independent term of P is a0 D detD2'.�/.

Proof. From Lemma 4.3, det.M�/ is a polynomial on x D .1 � �/ and
y D .1���1/ with maximal exponent n. Since M1=� DM

�
�

, this polynomial is
symmetric on x and y. Therefore it can be written as a degree n polynomial on
the variables xCy D xy D 2�����1.

WritewD2�����1. ThenwD0 iff �D1. Since P.2�����1/Ddet.M�/,
from Lemma 4.3, a0 D P.w D 0/D detD2'.�/.

Since w D .1��/.1���1/,

M�

w
D
D2'.�/

w
C

b�1

1���1
C
.b�1/�

1��
:

The leading coefficient of P is

an D lim
w!C1

P.w/

wn
D lim
�!�1

det
�M�

w

�
D det b�1: �

Proof of Theorem 4.1. If nD1 then F is a twist map of the annulus S1�R,
which is Kupka-Smale. These maps have 1-elliptic periodic orbits (which are min-
imax critical points of the generating function) and also hyperbolic points with
transversal homoclinic intersections (see Le Calvez [23, Rems. p. 34]).

Assume that n� 2. We shall prove that F contains a fixed point z0 of ellip-
tic� hyperbolic type, i.e. a q0-elliptic point with 1� q0 < n. Using the Birkhoff
normal form about that point and Moser’s theorem as in Section 3, we obtain a new
map Fq0 W T

q0 �Rq0  - satisfying the hypothesis of Theorem 4.1. Then Fq0 has a
fixed point z1 which is q1-elliptic with 1� q1<q0. The map Fq0 is conjugate to an
iterate of F on a piece of the central manifold of z0 which is normally hyperbolic
(see Arnaud [3, lemme 8.6]). Therefore z1 is a q1-elliptic periodic point for F .
Inductively obtain a sequence z0; : : : ; zm of periodic points for F , where zi is qi -
elliptic and n > q0 > q1 > � � �> qm D 1. The point zm is a 1-elliptic periodic point
for F . Applying the case nD 1 to its central manifold which is normally hyperbolic
one obtains a totally hyperbolic periodic orbit for F with a homoclinic orbit. The
homoclinic intersection is transversal by the Kupka-Smale hypothesis on F .

Write w D 2�����1. Observe that

�D 1 iff w D 0;

� 2 S1 iff w 2 Œ0; 4�;

� 2 R iff w 2 Rn�0; 4Œ;

� 2 C n .R[S1/ iff w 2 C nR;
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where S1 D fw 2C W jwj D 1 g. The completely integrable map G has all its fixed
points degenerate, with � D 1 and w D 0. Since we are assuming that F is C 1

near G the eigenvalues � of DF at the fixed points in T are near 1 and w is near 0.
From now on we can assume that jwj< 4.

Let z 2 T be a fixed point of F . Let �1; ��11 ; : : : ; �n; �
�1
n be the eigenvalues

of DF.z/. Let wi D 2��i ���1i , 1� i � n. By Lemma 4.4

(8) .�1/n .det b/ detD2'.�/D w1 � � �wn:

If some wi 2 C nR then the complex conjugate wi D wj for some j ¤ i . Since
wi wi D jwi j

2 > 0, if the product in (8) is negative then there are at least two (real)
hyperbolic eigenvalues for DF.z/.

Since the completely integrable map G is symplectic, its torsion b0 WD
@ˇ
@r

is
symmetric. Therefore b�10 C .b

�1
0 /� D 2 b�10 is nonsingular. Since F is C 1 near

G, we can assume that b�1C .b�1/� is nonsingular.
For the completely integrable map G we have that �G � 0, 'G � 0, cG D

@R
@�
D 0, aG D @‚

@�
D I . Since F is C 1 near G, from (7) we have that D2'.�/ is

near 0. Therefore we can assume that kD2'.�/k is so small that

(9) D2'.�/C 2 Œ b�1C .b�1/��

has the same signature as Œ b�1C .b�1/� �, where b D @‚
@r

is the torsion for F .
Since ' is a Morse function on Tn, for any 0� p � n there are

�
n
p

�
critical

points � of ' where D2'.�/ has signature .p; n�p/. Suppose that the signature
of b�1C .b�1/� is .q; n� q/ and the signature of D2'.�/ is .p; n�p/. Consider

the map Œ0; �� 3 ˛
N
7�!Mei˛ corresponding to �D ei˛ 2 S1. Observe that

N.˛/DMei˛ DD
2'.�/C .1� ei˛/ b�1C .1� e�i˛/ .b�1/�

is an hermitian matrix and that it has real eigenvalues. By Lemma 4.3,

N.0/DM�D1 DD
2'.�/ has signature .p; n�p/;

By the hypothesis in (9),

N.�/DM�D�1 DD
2'.�/C 2 Œ b�1C .b�1/�� has signature .q; n� q/:

Therefore there are at least jp�qj values of �D ei˛ , ˛ 2 Œ0; �� where detM� D 0,
counting multiplicities (by dim kerM�). Thus DF.z/ has at least 2 jp� qj eigen-
values of modulus 1, considering the complex conjugates �D e�i˛ , �˛ 2 Œ��; 0�.

Let � WD sign
�
.�1/n det b

�
. If

(10) sign
�
.�1/n .det b/ detD2'.�/

�
D � .�1/p < 0;

by (8) there are at least two (real) hyperbolic eigenvalues for DF.z/. Therefore if
(10) holds and jp� qj � 1, the fixed point z is of elliptic� hyperbolic type. These
conditions are satisfied in the following cases:
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(a) If � < 0, for (10) we want p even:

If q ¤ 0, take p D 0;
If q D 0, since n� 2, take p D 2.

(b) If � > 0, for (10) we want p odd:

If q ¤ 1, take p D 1;
If q D 1 and n� 3, take p D 3.

In the case � > 0, q D 1 and n D 2 take p D 1. Then from (8) and (10) we
have that w1w2 < 0. Then w1; w2 2 R because otherwise they would be complex
conjugates. Say w1 < 0, which gives two hyperbolic eigenvalues, and w2 > 0. But
then 0 < w2 < 4 because we are assuming that F is C 1 close to G. This gives two
elliptic eigenvalues and hence z is of elliptic� hyperbolic type. �

5. Coordinates and general perturbations

Let M nC1 be a closed manifold of dimension nC 1. Given a riemannian
metric g for M , denote by � W SgM !M its unit tangent bundle, by �gt W S

gM !

SgM its geodesic flow and by Xg the vector field of �g . Fix a C1 riemannian
metric g and denote by SM its unit tangent bundle, which we call the sphere
bundle. For any riemannian metric g, the map SM ! SgM , � 7! �=j� jg is a
diffeomorphism. Without loss of generality we shall assume that all the riemannian
metrics in the paper have injectivity radius larger than 4.

Denote by Rk.M/, k 2 N[ fC1g the Banach manifold of C k riemannian
metrics with the C k topology. Let Xk.SM/ be the set of C k vector fields on the
sphere bundle SM with the C k topology and Fk.SM/ the set of C k flows on SM
with the C k topology.

In a local coordinate chart, the geodesic equations read

Rxk D
X
ij

�kij xi xj ;

where the Christoffel symbols

�kij .x/D
1
2

X
`

gk`
�
@g j̀

@xi
C
@gi`

@xj
�
@gij

@x`

�
; Œgk`�D Œgk`�

�1

depend only on the 1-jet of the riemannian metric g. Thus the map R2.M/!

X1.SM/, g 7!Xg is continuous. This implies that the map R2.M/ 3 g 7! �g 2

F1.SM/ is continuous. In particular, the derivative of the geodesic flow d��
g
t

depends continuously on g 2R2.M/.
Fix a riemannian metric g0 on M and assume that the injectivity radius of g0

is larger than 4. We now introduce Fermi coordinates along a geodesic arc c.t/, t 2
Œ�1; 1� with unit speed. All the facts that we will use about Fermi coordinates can
be found in [15], [20]. Take an orthonormal frame f c0.0/; e1; : : : ; eng for Tc.0/M .
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Let ei .t/ denote the parallel translation of ei along c. Consider the differentiable
map ˆ W Œ�1; 1��Rn!M given by

ˆ.t; x/D expc.t/
h nX
iD1

xi ei .t/
i
:

This map has maximal rank at .t; 0/, t 2 Œ�1; 1�. Since c.t/ has no self-intersections
on t 2 Œ�1; 1�, there exists a neighborhood V of Œ�1; 1�� f0g in which ˆjV is a
diffeomorphism.

Let Œg0.t; x/�ij denote the components of the metric g0 in the chart .ˆ; V /.
Let S.n/� Rn�n be the manifold of symmetric matrices. Let ˛ W Œ�1; 1��Rn!

S.n/ be a C1 function with support in a neighborhood of Œ�1; 1�� f0g. We can
define a new riemannian metric g by setting

(11)

g00.t; x/D Œg0.t; x/�00C
nP

i;jD1

˛ij .t; x/ xi xj I

g0j .t; x/D Œg0.t; x/�0j ; 1� j � nI

gij .t; x/D Œg0.t; x/�ij ; 1� i; j � n;

where we index the coordinates by x0 D t and .x1; : : : ; xn/D x.
For any such metric g we have that (cf. [15], [20]):

gij .t; 0/D gij .t; 0/ D ıij ; 0� i; j � nI

@k g
ij .t; 0/D @k gij .t; 0/D 0; 0� i; j; k � nI

where Œgij � is the inverse matrix of Œgij �.
We need the differential equations for the geodesic flow �t in hamiltonian

form. It is well known that the geodesic flow is conjugate to the hamiltonian flow
of the function

H.x; y/D
1

2

X
i;j

gij .x/ yi yj :

Hamilton’s equations are

d
dt
xi DHyi D

X
j

gij .x/ yj ;
d
dt
yk D�Hxk D�

1
2

X
i;j

@
@xk

gij .x/ yi yj :

Observe that for all such metrics g the curve c.t/ is a geodesic and the orbit 
.t/D
.c.t/; Pc.t// is given by the coordinates x0 D t , x D 0, y0 D 1, y D 0.

Using the identity d
dt
.d�t / D .dX ı �t / � d�t , with X D d

dt
�t
ˇ̌
tD0

, we ob-
tain the differential equation for the linearized hamiltonian flow, on the orbit 
.t/,
which we call the Jacobi equation:

(12)
d

dt

ˇ̌̌̌
.t;xD0/

�
a

b

�
D

�
Hyx Hyy
�Hxx �Hxy

� �
a

b

�
D

�
0 I

0 0
0 �K 0

� �
a

b

�
;
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where K.t/ 2 Rn�n is a symmetric matrix given by

(13) K.t/ij D
1
2

@ 2

@xi@xj
g00.t; 0/D�1

2
@ 2

@xi@xj
g00.t; 0/:

Let
K0.t/ WD

1
2
@ 2

@x2
g000 .t; 0/ 2 S.n/:

It is easy to check that

(14) K.t/DK0.t/�˛.t; 0/:

By comparison with the usual Jacobi equation we get that

(15) K.t/ij D hRg
�
Pc.t/; ei .t/

�
Pc.t/; ej .t/ig ;

where Rg is the curvature tensor for the metric g. We call K.0/ the Jacobi matrix
or the matrix of sectional curvatures of the orthonormal frame f Pc.0/; e1; : : : ; eng.

If we change the frame f Pc.0/; e1; : : : ; eng to another orthonormal frame

f Pc.0/; u1; : : : ; ung

with ui D
P
j qij ej , the matrix Q D Œqij �n�n is orthogonal and the matrix K.t/

changes to QK.t/Q�. Therefore we have a well-defined map Kg W SgM !
S.n/=O.n/, Kg. Pc.0//D ŒK.0/�, from the unit tangent bundle for g to the conjugacy
classes of S.n/ by the orthogonal group. In particular, the set of eigenvalues of
Kg. Pc.0// is well-defined.

6. A generic condition on the curvature

In order to state the perturbation lemma in Section 7 we need to choose a
metric in which every geodesic segment of length 1

2
has a point in which the Jacobi

matrix (15) has no repeated eigenvalues. In this section we prove that such a
condition is generic.

Recall that R2.M/ is the manifold of C 2 riemannian metrics on M endowed
with the C 2 topology. Given g 2 R2.M/, define as in Section 5 the map Kg W
SgM ! S.n/=O.n/ by Kg.�/D ŒK� where

Kij D hRg.�; ei / �; ej i�.�/;

where f�; e1; : : : ; eng is any orthonormal basis for T�.�/M . Let h W S.n/=O.n/!
Œ0;C1Œ be the function

(16) h.ŒK�/ WD
Y

1�i<j�n

.�i ��j /
2;

where �1; : : : ; �n are the eigenvalues of K. Let H WR2.M/! Œ0;C1Œ be

(17) H.g/ WD min
�2SgM

max
t2Œ0; 1

2
�

h.Kg.�
g
t .�///:

In this section we prove the following:
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THEOREM 6.1. The function H WR2.M/! Œ0;C1Œ is continuous and the set

G1 WD
˚
g 2R2.M/ jH.g/ > 0

	
is open in R2.M/ and G1\R1.M/ is dense in R1.M/.

Proof. Define the function h WS.n/=O.n/!R by h.ŒA�/ WD.�1/m detŒDpA.A/�,
where pA.x/ D det.xI �A/ is the characteristic polynomial of a representative
A 2 S.n/, DpA is its derivative and m D

�
n
2

�
D

n.n�1/
2

. It is easy to see that h
is well defined and, by calculating its value on a diagonal representative of ŒA� in
S.n/=O.n/, that

h.ŒA�/ WD .�1/m detŒDpA.A/�D
Y

1�i<j�n

.�i ��j /
2;

where the �i ’s are the eigenvalues of the class ŒA�. Moreover, the function h is
continuous.

In a coordinate chart, the curvature tensor

R
�
@
@xi
; @
@xj

�
@
@xk
D

X
ijk

R`ijk
@
@x`

;

Rsijk D
X
`

�`ik �
s
j`�

X
`

�`jk �
s
i`C

@�s
ik

@xj
�
@�s
jk

@xi
;

depends only on the 2-jet of the riemannian metric. Thus the Jacobi matrix Kg.�/
depends continuously on g 2R2.M/.

Define the map K WR2.M/�SM � Œ0; 1
2
�! S.n/=O.n/, by

(18) K.g; �; t/ WDKg
�
�
g
t .

�
j� jg

/
�
:

Since both h and K are continuous and SM is compact, the functionH WR2.M/!

Œ0;C1Œ defined in (17) is continuous. Hence G1 DH
�1.RC/ is open in R2.M/.

Let FM !M be the frame bundle over M :

FM Df‚D .�0; �1; : : : ; �n/2 .TxM/nC1 j x 2M; ‚ is a g-orthonormal basis g:

Let J kS.n/ be the k-jet bundle of curves in S.n/, i.e. J kS.n/ is the set
of equivalence classes of smooth curves a W� � "; "Œ! S.n/ under the relation
a1 � a2 iff there is a smooth chart  W U ! Rd for S.n/ about a1.0/ such that
Dj . ı a1/.0/DD

j . ı a2/.0/ for all j D 0; 1; : : : ; k, where d WD dim S.n/D
n.nC1/
2

. Then J kS.n/ is a smooth bundle over S.n/ whose fiber is the set Pk;d of
polynomials p W R! Rd of degree � k with p.0/D 0. Therefore

(19) dimJ kS.n/D dim S.n/C dimPk;d D d C k d D .kC 1/ d:

Consider the map K WR1.M/�FM �R! S.n/ defined by

K.g;‚; t/ij WD
˝
Rg.�

g
0 .t/; �

g
i .t// �

g
0 .t/; �

g
j .t/

˛
g
;

where ‚g D .�g0 ; �
g
1 ; : : : ; �

g
n / is the g-orthonormal frame obtained from ‚ by the

Gram-Schmidt process and ‚g.t/ is its g-parallel transport along the g-geodesic
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c.t/D �.�
g
t .�

g
0 //. Let K WR1.M/�FM ! J kS.n/ be the jet extension of K,

i.e. K.g;‚/D J ka.0/ is the k-jet of the curve a.t/ WDK.g;‚; t/ at t D 0.
The perturbation given in Section 5 and formula (14) show that any smooth

path a.t/ on S.n/ or J kS.n/ with a.0/DK.g;‚; 0/ can be realized by a smooth
perturbation of the metric g which preserves the geodesic at �g0 . Therefore the
map K is a submersion for any k � 0.

Now consider the set †� S.n/ of symmetric matrices with a repeated eigen-
value. It is an algebraic subset of S.n/� Rd because it is the set of zeroes of the
polynomial map h W S.n/! R, h.A/D .�1/m detŒDpA.A/�. Since the polynomial
h is nonconstant, † has positive codimension r > 0 in S.n/. This is, since † is
an algebraic set, it has a Whitney stratification by submanifolds of S.n/, whose
maximal dimension is d �r . Let J k†� J kS.n/ be the set of k-jets of C1 curves
in S.n/ whose image is in †.

Define the arc space L.†/ of † as the set of formal power series `.t/ DP1
iD0 ai t

i , with ai 2 S.n/ and one parameter t , such that h.`.t//� 0. For k 2N,
let Lk.†/ be the set of polynomials p.t/D

Pk
iD0 ai t

i of degree � k in S.n/ such
that h.p.t// D 0 mod tkC1. We have a natural projection �k W L.†/! Lk.†/

given by truncation. We also have a natural injection J k† ,! �k.L.†// given
by the Taylor expansion of the curves up to order k. Thus we have the inclusions
J k†� �k.L.†//� Lk.†/� J

kS.n/.
The set Lk.†/ is algebraic because it is the set of zeroes of finitely many

polynomials. The set �k.L.†// is constructible (cf. Denef and Loeser [10, p.
202]); i.e., it is obtained by unions and subtractions of finitely many algebraic sets.
Each of those algebraic sets has a Whitney stratification, therefore �k.L.†// is a
union of countably many submanifolds of J kS.n/. The dimension of �k.L.†//
is the maximal dimension of those submanifolds. By Lemma 4.34 in Denef and
Loeser [10], dim�k.L.†//� .kC1/ dim†� .kC1/.d � r/. Also in Proposition
A.1 in the appendix, we prove that dimJ k† � .kC 1/ dim†, which is enough
for our argument. Therefore, from (19), the codimension of �k.L.†// in J kS.n/

satisfies

lim
k!C1

codimJkS.n/ �k.L.†//DC1:

Since the function K is a submersion, it is transversal to each stratum T of
�k.L.†//. By Theorem 19.1 in [1] there is a residual set DT � R1.M/ such
that for all g 2 DT , the maps K.g; �/ W FM ! J kS.n/ are transversal to T . Since
codimJkS.n/ �k.L.†//� kC 1, if kC 1 > dimFM and g 2 DT , then the image
of K.g; �/ does not intersect T . Since there is a countable number of strata, inter-
secting all those residual subsets we get a residual set D0 �R1.M/ such that for
g 2 D0, the image of K.g; �/ is disjoint from �k.L.†// and also from J k†.

4This estimate on the dimension may not be satisfied for Lk.†/, at least for small k; see examples
in Veys [36].
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Since R1.M/ is a complete metric space, the residual set D0 is dense in
R1.M/. We now prove that H > 0 on D0. Then G1 contains a dense set in
R1.M/. Let g 2 D0. Suppose that H.g/D 0. Observe that both, the maximum
and minimum in (17) are attained. Since the function h in (16) is nonnegative, there
exists � 2SgM such that h.Kg.�

g
t .�///�0 for all t 2 Œ0; 1

2
�. Let �0 2SM be such

that �0=j�0jg D � , and let ‚ 2 FM be a frame whose first vector is �0. Then the
C1 curve c.t/ WDK.g;‚; t/2† for all t 2 Œ0; 1

2
�. Hence K.g;‚/DJ kc.0/2J k†.

This contradicts the choice of g 2 D0. �

7. Franks’ lemma for geodesic flows

Let 
 D f�gt .v/ j t 2 Œ0; 1�g be a piece of an orbit of length 1 of the geodesic
flow �

g
t of the metric g 2R1.M/. Let †0 and †t be transverse sections to �g

at v and �gt .v/ respectively. We have a Poincaré map Pg.†0; †t ; 
/ going from
†0 to †t . One can choose †0 and †t such that the linearized Poincaré map

Pg.
/.t/
def
D dvPg.†0; †t ; 
/

is a linear symplectic map from N0 WDN.v/˚N.v/ to Nt WDN.�
g
t .v//˚N.�

g
t .v//

and
Pg.
/.t/.J.0/; PJ .0//D .J.t/; PJ .t//;

where J is an orthogonal Jacobi field along the geodesic � ı 
 and PJ denotes the
covariant derivative along the geodesic. Fix a set of Fermi coordinates along � ı 
 .
Then we can identify the set of all linear symplectic maps from N0 to Nt with the
symplectic group

Sp.n/ WD fX 2 Rn�n jX�JX D J g;

where JD
�

0 I
�I 0

�
.

Suppose that the geodesic arc � ı 
.t/, t 2 Œ0; 1�, does not have any self-
intersection and let W be a tubular neighborhood of it. We denote by R1.
; g;W /

the set of metrics Ng 2R1.M/ for which 
 is a piece of orbit of length 1, Ng D g
on 
.Œ0; 1�/ and such that the support of Ng�g lies in W .

When we apply the following Theorem 7.1 to a piece of a closed geodesic
we may have self-intersections of the whole geodesic. Given any finite set of non-
self-intersecting geodesic segments FD f�1; : : : ; �mg, defined on Œ0; 1�, with the
following properties:

1. The endpoints of �i are not contained in W ;

2. The segment � ı 
 jŒ0;1� intersects each �i transversally,

denote by R1.
; g;W;F/ the set of metrics xg 2R1.
; g;W / such that xg D g in
a small neighborhood of W \[miD1�i .Œ0; 1�/.

Consider the map S W R1.
; g;W / ! Sp.n/ given by S. Ng/ D P Ng.
/.1/.
The following result is the analogue for geodesic flows of the infinitesimal part
of Franks’ lemma [13, Lemma 1.1] (whose proof for general diffeomorphisms is
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Figure 1. Avoiding self-intersections.

quite simple). A difference with the case of surfaces in [8] is that here we ask the
original metric g0 to be in the residual set G1 obtained in Theorem 6.1.

THEOREM 7.1. Let g0 2 G1 \Rr.M/, 4 � r � 1. Given U � R2.M/ a
neighborhood of g0, there exists ı D ı.g0;U/ > 0 such that given g 2 U, 
 , W
and F as above, the image of U\G1 \Rr.
; g;W;F/ under the map S contains
the ball of radius ı centered at S.g0/.

The time 1 in the preceding statement was chosen to simplify the exposition
and the same result holds for any time � chosen in a closed interval Œa; b�� �0;C1Œ,
now with ı D ı.g0;U; a; b/ > 0. In order to fix the setting, take Œa; b�D Œ1

2
; 1� and

assume that the injectivity radius of M is larger than 4. This implies that there are
no periodic orbits with period smaller than 8 and that any periodic orbit can be cut
into non-self-intersecting geodesic segments of length � with � 2 Œ1

2
; 1�. We shall

apply Theorem 7.1 to such segments of a periodic orbit choosing the supporting
neighborhoods carefully as we now describe.

A closed geodesic is prime if it is not the iterate of a shorter closed geodesic.
Given g 2 Rr.M/ and 
 a prime periodic orbit of g let � 2 Œ1

2
; 1� be such that

m� D period.
/ with m 2N. For 0� k <m, let 
k.t/ WD 
.tCk�/ with t 2 Œ0; ��.
Given a tubular neighborhood W of � ı 
 and 0� k < m let Sk WRr.
; g;W /!

Sp.n/ be the map Sk.xg/D Pxg.
k/.�/.
Let W0 be a small tubular neighborhood of 
0 contained in W . Let F0 D

f�01; : : : ; �
0
m0
g be the set of geodesic segments � given by those subsegments of 


of length � whose endpoints are outside W0 and which intersect 
0 transversally
at �.�=2/ (see �1). We now apply Theorem 7.1 to 
0, W0 and F0. The proof
of this theorem also selects a neighborhood U0 of W0\[

m0
iD1�

0
i .Œ0; ��/. We now
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consider 
1 and we choose a tubular neighborhood W1 of 
1 small enough so that
if 
1 intersects 
0 transversally, then W1 intersected with W0 is contained in U0
(see �1). By continuing in this fashion we select recursively tubular neighborhoods
W0; : : : ; Wm�1, all contained in W , to which we successively apply Theorem 7.1.
This choice of neighborhoods ensures that there is no interference between one
perturbation and the next. In the end we obtain the following:

COROLLARY 7.2. Let g0 2 G1\Rr.M/, 4� r �1. Given a neighborhood
U of g0 in R2.M/, there exists ı D ı.g0;U/ > 0 such that if g 2U, 
 is a prime
closed orbit of �g and W is a tubular neighborhood of c D � ı
 , then the image of
U\G1\Rr.
; g0; W /!…m�1

kD0
Sp.n/, under the map .S0; : : : ; Sm�1/, contains

the product of balls of radius ı centered at Sk.g0/ for 0� k < m.

The arguments below can be used to show that xg�g can be supported not only
outside a finite number of intersecting segments but outside any given compact set5

of measure zero in 
 . This is done by adjusting the choice of the function h in (30).
The nature of these results (i.e. the independence from the size of the neigh-

borhood W ) forces us to use the C 1 topology on the perturbation of the geodesic
flow, thus the C 2 topology on the metric. The size ı.g0;U/ > 0 in Theorem 7.1
and Corollary 7.2 depends on the C 4 norm of g0 and the value of H.g0/ from
Theorem 6.1.

The remainder of the section is devoted to the

Proof of Theorem 7.1. We first describe the strategy used in the proof. At the
beginning we fix most of the constants and bump functions that are needed. We
show that the map S is a submersion when restricted to a suitable submanifold of
the set of perturbations. To obtain a size ı that depends only on g0 and U and
that works for all g 2U, 
 and W we find a uniform lower bound for the norm of
the derivative of S using the constants and the bump functions fixed before. This
uniform estimate can only be obtained in the C 2 topology.

The technicalities of the proof can be summarized as follows. To obtain a
C 2 perturbation of the metric preserving the geodesic segment c D � ı 
 one
needs a perturbation of the form (32), with ˛.t; x/ D '".x/ p.t/ and '".x/ is a
bump function supported in an "-neighborhood in the transversal direction to c
and p.t/ is given by formula (33). The second factor in (33) is used to make the
derivative of S surjective. The function ı.t/ is an approximation to a Dirac delta
at a point t D � where h.K.g0; �; �// > 1

2
H.g0/ and H is from Theorem 6.1.

This is done in order to solve equation (38), which is trivial when dimM D 2 (and
ˇ 2 R). The first factor h.t/ is an approximation of a characteristic function used
to support the perturbation outside a neighborhood of the intersecting segments in
FD f�1; : : : ; �mg. Then inequality (27) shows that if the neighborhood W of c is
taken small enough, then the C 2 norm of the perturbation is essentially bounded

5But to use this argument to support xg � g outside a given infinite set of geodesic segments of
length � 1

2 one needs to bound from below their angle of intersection with c.
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by only the C 0 norm of p.t/. In order to bound the C 2 norm of p.t/ from (33) in
equation (27), we use the C 4 norm of g0 to have a bound for the second derivative
of the sectional curvature K0.t; 0/ of g0 along the geodesic c.

Since G1 is open in the C 2 topology, we can assume that U is small enough
so that

U\Rr.
; g;W;F/�U\G1\Rr.
; g;W;F/:

By shrinking U if necessary, we can assume that there is k0 D k0.U/ > 0 such that
the Jacobi matrices, given in (18), satisfy

(20) kK.g; �; t/k � k0 for all .g; �; t/ 2U�SM � Œ0; 1�:

Let k1 D k1.U/ > 1 be such that if g 2U and �t is the geodesic flow of g, then

(21) kd��tk � k1 and kd��
�1
t k � k1 for all t 2 Œ0; 1�

and all � 2 S1gM . Given 0 < �� 1
8

let k2 D k2.U; �/ > 0 be such that lim
�!0

k2.�/

D 0 and

(22) kd��s � d��tk� k2 and kd��
�1
s �d��

�1
t k� k2 for all js� t j<�;

s; t 2 Œ0; 1�, all g 2U and all � 2 S1gM . Choose �D �.U/ > 0 small enough such
that

(23) k�21 � 2 k1 k2 > 0:

Since g0 2 G1, there is a0 > 0 such that H.g0/ > 2 a20, where H is from (17). Con-
sider the mapH2 WR2.M/�SM � Œ0; 1�!R given byH2.g; �; t/D h.K.g; �; t//,
where h is from (16) and K.g; �; t/ is from (18). Then H2 is continuous. Let

A0 WD
˚
.�; t/ 2 SM � Œ0; 1�

ˇ̌
H2.g0; �; t/� 2 a

2
0

	
:

Then A0 � SM � Œ0; 1� is compact and since H.g0/ > 2 a20,

A0\
�
f�g � Œ1

4
; 3
4
�
�
¤∅ for all � 2 SM:

Since H2 is continuous, there is a neighborhood U0 � U of g0 in R2.M/ such
that

H2.g; �; t/ > a
2
0 for all .g; �; t/ 2U0 �A0:

Let v WD 
.0/ and fix � D �.v;U0/ 2 Œ
1
4
; 3
4
� such that .v; �/ 2 A0. Then, if i ¤ j ,

.2 k0/
2.m�1/

j�i��j j
2
�
�
2 kK.g; v; �/k

�2.m�1/
j�i��j j

2
�

Y
i¤j

.�i��j /
2>a20;

for all g 2U0, where mD
�
n
2

�
D

n.n�1/
2

and f�1; : : : ; �ng are the eigenvalues of
K.g; �; t/. Therefore

(24) min
i¤j
j�i ��j j>

a0

.2k0/m�1
DW k3:
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Let

(25) k4 WDmax
˚
k�13 ; 1C 4 k0 k

�1
3 ; 1; k0

	
:

Let ı W Œ0; 1�! Œ0;C1Œ be a C1 function such that ı.s/D 0 if js � � j � �
and

R 1
0 ı.s/ dsD 1, where �D �.U/ is from (23). The C 5 norm of ı depends only

on U and does not depend on � D �.v/.
By (23) there exists �D �.U/ > 0 such that

(26) k5 WD
k�21 � 2 k1k2� � k

2
1 kıkC0

k1 k4
> 0:

Given " > 0, let '" W Rn ! Œ0; 1� be a C1 function such that '".x/ D 1 if
x 2 Œ� "

4
; "
4
�n and '".x/D 0 if x … Œ� "

2
; "
2
�n. In Lemma 7.6 we prove that '".x/

can be chosen such that

(27)


'".x/ x�p.t/ x

C2 � k6 kpkC0 C " k6 kpkC1 C "2 k6 kpkC2

for some fixed k6 > 0 (independent of ") and any p W Œ0; 1�! Rn�n of class C 2.
Let �D �.g0;U0/ > 0 be such that

(28) 4 � k�15 k6 kıkC3 <
1
2
"0:

Let "0 D "0.g0;U0/ > 0 be such that

(29) kg�g0kC2 < "0 H) g 2U0:

So far, the constants chosen above, excepting � , do not depend on 
 or F. We
shall prove that the image of U0 by S contains the ball in Sp.n/ of center S.g0/
and radius �D �.g0;U/.

Let h W Œ0; 1�! Œ0; 1� be a C1 function with support outside the intersecting
points

supp.h/� �0; 1Œ n .� ı 
/�1
�
[
m
iD1 �i

�
and such that

(30)
Z 1

0

�
1� h.s/

�
ds < �:

From (28), there is "1 D "1.g0;U0; 
;F/ > 0 such that

(31) k�15 �
�
4 k6 kıkC3 C 8 k6 "1 khkC1 kıkC4 C 16 k6 "

2
1 khkC2 kıkC5

�
< "0:

Fix a Fermi coordinate chart .ˆ; V / along the geodesic segment c WD � ı 

for the metric g0 as in Section 5. Choose

"1 > "2 D "2.g0;U0; 
;F; W / > 0

such that the segments �i do not intersect the points with coordinates .t; x/ where
jxj < "2 and t 2 supp.h/ and such that Œ0; 1� � Œ�"2; "2�n � V and ˆ.Œ0; 1� �
Œ�"2; "2�

n/�W .
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Let S.n/� R
n.nC1/
2 be the set of real n�n symmetric matrices. Let ˛.t; x/

denote a C1 function ˛ W Œ0; 1� � Œ�"2; "2�n ! S.n/ with support contained in
V nˆ�1.[miD1�i /. Let F be the set of C r riemannian metrics given by (11) en-
dowed with the C 2 topology. One easily checks that F�Rr.
; g0; W;F/. Let

V0 WD F\U0:

The Jacobi equation for the linearized geodesic flow on 
 for the metrics on
F is given by (12), where K.t/ is given by (13). Its solutions

�
a.t/; b.t/

�
satisfy

Pb0.t/D 0 and a0.t/D a0.0/C t b0.t/. Observe from (11) that the conditions

a0.t/D

nX
iD1

g0i .t; 0/ ai .t/� 0; b0.t/D Pa0.t/� 0;

are invariant among the metrics g 2F and satisfy (12). These solutions correspond
to Jacobi fields which are orthogonal to Pc.t/. In particular, the subspaces

Nt D
˚
.a; b/ 2 Tc.t/TM j a0 D b0 D 0

	
� Rn �Rn

are invariant under (12) for all g 2 F. From now on we reduce the Jacobi equation
(12) to the subspaces Nt .

We need uniform estimates for all g 2 V0. Fix g 2 V0 and write

At D A
g
t D

�
0 I

�K.t; 0/ 0

�
2n�2n

;

where K.t; 0/ is from (13). Let Xt DX
g
t D d�

g
t jN0 WN0!Nt be the fundamental

solution of the Jacobi equation (12) for g:

PXt D At Xt :

The time 1 map X1 is a symplectic linear isomorphism: X�1 JX1 D J, where JD�
0 I
�I 0

�
. Differentiating this equation we get the tangent space of the symplectic

isomorphisms Sp.n/ atX1: TX1D
˚
Y 2R2n�2n jX�1 JY is symmetric

	
. Observe

that, since X1 is symplectic, TX1 DX1 �TI , and that TI is the space of 2n� 2n

matrices of the form Y D
h
ˇ 

˛ �ˇ�

i
, where ˛; 
 2S.n/ are symmetric n�nmatrices

and ˇ 2 Rn�n is an arbitrary n� n matrix. Since X� 2 Sp.n/ is symplectic, the
map W 7!X�1� WX� is a linear automorphism of TI .

Write

S.n/ WD
˚
a 2 Rn�n j a� D a

	
;

S�.n/ WD
˚
d 2 S.n/ j di i D 0; 8i D 1; : : : ; n

	
;

AS.n/ WD
˚
e 2 Rn�n j e� D�e

	
:
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PROPOSITION 7.3. Let F W S.n/3 � S�.n/ ! Sp.n/ be the map F.!/ WD
X
g
1 D dv�

g
1 jN0 , where ! D .a; b; cI d/ 2 S.n/3 �S�.n/,

g D g! D g0C

nX
i;jD1

˛ij xi xj dx0˝ dx0;(32)

˛.t; x/D p.t/ '".x/;

p.t/D h.t/
�
a ı.t/C b ı0.t/C c ı00.t/C d ı000.t/

�
:(33)

Then if g! 2 V0,

kd!F � �k � k5 k�k for all � 2 S.n/3 �S�.n/� R2n
2Cn:

Proof. Observe that the map ! 7!g! is affine. Write g WDg! and gr WDg!Cr� ,
� D .a; b; cI d/, r 2 R. The Jacobi equation for gr along 
 is

(34) PXr D Ar Xr ;

where Ar D
�

0 I
�Kr 0

�
, Kr DKC r p.t/ and p.t/ is from (33). Differentiating this

equation with respect to r , we get the differential equation for Zt WD
dXr .t/
dr

ˇ̌
rD0

:

(35) PZ D AZCBX;

where AD
�
0 I
�K 0

�
and BD

�
0 0
p.t/ 0

�
. Here Z1 D d!F � �.

Write Zt DXt Yt ; then from (34) and (35),

X PY D BX:

Since Xr.0/� I , we have that Z.0/D 0 and Y.0/D 0. Therefore

Y.t/D

Z t

0

X�1s Bs Xs ds:

Write

B D

�
0 0

b 0

�
; C D

�
0 0

c 0

�
; D D

�
0 0

d 0

�
:

Integrating by parts and using (34), we haveZ 1

0

X�1s ı0.s/ BXs ds D

Z 1

0

ı.s/
�
X�1s

PXs X
�1
s B Xs �X

�1
s B AXs

�
ds

D

Z 1

0

ı.s/X�1s
�
AB �BA

�
Xs ds

D

Z 1

0

ı.s/X�1s
�
b 0
0 �b

�
Xs ds:
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0

X�1s ı00.s/ CXs ds D

Z 1

0

ı0.s/X�1s
�
c 0
0 �c

�
Xs ds

D

Z 1

0

ı.s/X�1s

�
A
�
c 0
0 �c

�
�
�
c 0
0 �c

�
A

�
Xs ds

D

Z 1

0

ı.s/X�1s

h
0 �2c

�.KcCcK/ 0

i
Xs ds:Z 1

0

X�1s ı000.s/DXs ds D

Z 1

0

ı0.s/X�1s

h
0 �2d

�.KdCdK/ 0

i
Xs ds

D

Z 1

0

ı.s/X�1s

�
A

h
0 �2d

�.KdCdK/ 0

i
�

h
0 �2d

�.KdCdK/ 0

i
A

�
Xs ds

D

Z 1

0

ı.s/X�1s

h
�Kd�3dK 0

0 3KdCdK

i
Xs ds:

Now,

(36) W1 WD

Z 1

0

X�1s
Bs

h.s/
Xs ds D

Z 1

0

ı.s/X�1s

�
ˇ 


˛ �ˇ�

�
Xs ds:

Then we have

(37) ˛ D a� .KcC cK/; 
 D�2c; ˇ D b�Kd � 3dK:

We want to solve this system at s D � for a; b; c 2 S.n/ and d 2 S�.n/, where
˛; 
 2 S.n/ and ˇ 2 Rn�n is arbitrary. We start by separating ˇ into a sum of a
symmetric and an antisymmetric matrix. Thus

(38) Kd � dK D
ˇ�ˇ�

2
:

Since k3 > 0 in (24), the next Lemma 7.4 shows that equation (38) has a solution
d 2 S�.n/.

LEMMA 7.4. Let K be a symmetric matrix and let LK W S�.n/ ! AS.n/

be given by LK.d/ WD K d � d K. Suppose that the eigenvalues �i of K are all
distinct. For all e 2AS.n/ there exists d 2 S�.n/ such that LK d D e and

kdk �
kek

mini¤j j�i ��j j
:

Proof. Let Q be an orthogonal matrix such that K DQDQ�, where D D
diag.�1; : : : ; �n/ is a diagonal matrix. Define FQ WRn�n - by FQ.a/ WDQ� aQ.
Observe that FQ preserves both S.n/ and AS.n/.

Moreover, we have that

LK d D e ” LD.FQ d/D FQ e:
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Thus

(39) LK D FQ� LD FQ:

Since Q is orthogonal, FQ is an isometry. Hence, from (39), it is enough to prove
that LD restricted to S�.n/ is a linear isomorphism and that


LDjS�.n/�1


� 1

mini¤j j�i ��j j
:

But writing the equation LD w D h in coordinates, we have that

�i wij �wij �j D hij ; 8i; j D 1; : : : ; n;

which has the symmetric solution

wij D
1

�i ��j
hij ; wi i D 0;

for any antisymmetric h. �

The rest of the solution to the system (37) is given by

b D 1
2
.ˇCˇ�/C 2 .Kd C dK/;(40)

c D�1
2

;(41)

aD ˛� 1
2
.K
 C 
K/:(42)

Consider the map T W S.n/3 �S�.n/! TI ,

T .a; b; cI d/D

�
ˇ 


˛ �ˇ�

�
given by the system (37). We want to estimate



T �1

. Observe that

kˇk D sup
jujDjvjD1

hˇ u; vi D sup
jujDjvjD1

hu; ˇ� vi D


ˇ�

 :

From (38), Lemma 7.4, (24) and (25),

(43) kdk �



ˇ�ˇ�
2




min
i¤j
j�i ��j j

�
kˇk

k3
� k4 kˇk :

From (40), (20), (43) and (25),

kbk � kˇkC 4 k0 kdk �
�
1C 4 k0 k

�1
3

�
kˇk � k4 kˇk :

Also, from (41), (25) and (42),

kck � k
k � k4 k
k ; kak � k˛kC k0 k
k � k4 maxfk˛k ; k
kg:

Write

D WD

�
ˇ 


˛ �ˇ�

�
D T .�/:
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Since
kDk �maxfk˛k ; kˇk ; k
kg;

we get
k�k WDmaxfkak ; kbk ; kck ; kdkg � k4 kT .�/k :

Thus

(44) kDk D kT .�/k � 1
k4
k�k :

Write

W1 WD

Z 1

0

ı.s/X�1s DXs ds;

Q.s/ WDX�1s DXs and P.s/ WD ı.s/ X�1s DXs:

Given a continuous map f W Œ0; 1�! R2n�2n, define

O�.f; �/ WD sup
js�� j��

jf .s/�f .�/j:

Observe that

O�.fg; �/� kf k0 O�.g; �/CO�.f; �/ jg.�/j;

where kf k0 WD sups2Œ0;1� jf .s/j. We have that

O�.Q; �/D O�.X
�1
s DXs; �/�



X�1s 


0

O�.DXs; �/CO�.X
�1
s ; �/ kDk kX�k

�


X�1s 



0
kDk O�.Xs; �/CO�.X

�1
s ; �/ kDk kX�k

� 2 k1k2 kDk :

kW1�Q.�/k D





Z 1

0

ı.s/
�
Q.s/�Q.�/

�
ds





� O�.Q; �/� 2 k1k2 kDk :

kY1�W1k �





Z 1

0

�
h.s/� 1

�
P.s/ ds





� kP k0 Z 1

0

j1� h.s/j ds � � kP k0

� � k21 kık0 kDk :

kQ.�/k D


X�1� DX�



� 1

k21
kDk :

Therefore

kY1k � kQ.�/k� kW1�Q.�/k� kY1�W1k

�

�
1

k21
� 2k1 k2� � k

2
1 kık0

�
kDk :

By (44),

kZ1k D kX1 Y1k � k
�1
1 kY1k �

k�21 � 2k1 k2� � k
2
1 kık0

k1 k4
k�k D k5 k�k : �



790 GONZALO CONTRERAS

LEMMA 7.5. Let N be a smooth connected riemannian m-manifold and let
F W Rm! N be a smooth map such that

(45) jdxF.v/j � a > 0 for all .x; v/ 2 TRm with jvj D 1 and jxj � r .

Then for all 0 < b < a r ,˚
w 2 N j d

�
w;F.0/

�
< b

	
� F

˚
x 2 Rm j jxj< b

a

	
:

Proof. Let w 2 N with d
�
w;F.0/

�
< b. Let ˇ W Œ0; 1�! N be a differentiable

curve with ˇ.0/D F.0/, ˇ.1/Dw and j P̌j< b. Let � D sup.A/, where A� Œ0; 1�
is the set of t 2 Œ0; 1� such that there exists a unique C 1 curve ˛ W Œ0; t �! Rm such
that ˛.0/ D 0, j˛.s/j < r and F.˛.s// D ˇ.s/ for all s 2 Œ0; t �. By the inverse
function theorem � > 0, A is open in Œ0; 1� and there exists a unique ˛ W Œ0; �Œ!Rm

such that F ı˛ D ˇ. By (45),

(46)
ˇ̌
P̌.s/

ˇ̌
D


d˛.s/F 

 � j P̨ .s/j � a j P̨ .s/j ; for all s 2 Œ0; �Œ:

Thus, j P̨ j � 1
a

max0�t�1
ˇ̌
P̌.t/

ˇ̌
< b
a

. This implies that ˛ is Lipschitz and hence it
can be extended continuously to Œ0; ��. Observe that j˛.�/j< r , for if j˛.�/j � r ,
then

b � b � �

Z �

0

ˇ̌
P̌.s/

ˇ̌
ds � a

Z �

0

j P̨ .s/j ds � a r;

contradicting the hypothesis b < ar . This implies that the set A is also closed in
Œ0; 1�. Thus AD Œ0; 1� and � D 1. From (46), writing x D ˛.1/ 2 F�1fwg,

jxj � length.˛/D
Z 1

0

j P̨ .t/j dt �
1

a

Z 1

0

j P̌.t/j dt <
b

a
: �

Let G W R2n
2Cn! Rr.M/ be the map G.!/ D g! , where g! is from (32).

The following diagram commutes

R2n
2Cn
� B.0; k�15 �/ Rr.M/

Sp.n/

-G

HH
HHH

HHj
F

?

S

By Proposition 7.3 and Lemma 7.5, in Sp.n/ the ball B.S.g0/; �/�F
�
B.0; k�15 �/.

It is enough to prove that G
�
B.0; k�15 �/

�
�U0, for then S.V0/� B.S.g0/; �/.

If f W Œ0; 1�! R, write

kf kC r WD

rX
sD0

sup
x2Œ0;1�

jDsf .x/j:

Observe that
kfgkC r � 2r kf kC r kgkC r :
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If ! < k�15 � and p.t/ is from (33) and in '".x/, " < "1, then, by Lemma 7.6,

kg! �g0kC2 D


'".x/ x�p.t/ x

C2

� k6 kpkC0 C k6 " kpkC1 C k6 "
2
kpkC2

� k6 4 k
�1
5 � kıkC3 C k6 "1 4 k

�1
5 � .2 khkC1 kıkC4/

C k6 "
2
1 4 k

�1
5 � .22 khkC2 kıkC5/

< "0;

where the last inequality is from (31). Then, by (29), g! 2U0\FD V0.

Bump functions.

LEMMA 7.6. There exist k6 > 0 and a family of C1 functions '" W Œ�"; "�n!
Œ0; 1� such that '".x/� 1 if x 2 Œ� "

4
; "
4
�n, '".x/� 0 if x 62 Œ� "

2
; "
2
�n and for any

C 2 map B W Œ0; 1�! Rn�n the function ˛.t; x/ WD '".x/ x�B.t/ x satisfies,

k˛kC2 � k6 kBkC0 C " k6 kBkC1 C "
2
kBkC2 ;

with k6 independent of 0 < " < 1.

Proof. Let  W Œ�1; 1� ! Œ0; 1� be a C1 function such that  .x/ � 1 for
jxj � 1

4
and  .x/ � 0 for jxj � 1

2
. Given " > 0 let ' D '" W Œ�"; "�n! Œ0; 1� be

defined by '.x/D
Qn
iD1  

�
xi
"

�
. Let B 2 Rn�n and let ˇ.x/D '.x/ x�Bx. Then

kˇk0 � "
2
kBk ;(47)

dxˇ D .dx'/ x
�BxC'.x/ x�.BCB�/;

@'
@xi
D

1
"
 0
�
xi
"

� nQ
k¤i

 .xk
"
/:

kdx'k �
1
" kd k0 ;(48)

kdxˇk � 3 " kBk k kC1 ;(49)

d2xˇ D .d
2
x'/ x

�BxC 2 .dx'/ x
� .BCB�/C'.x/ .BCB�/;

@2 
@xi @xj

D
1
"2
 00
�
xi
"

� Q
k¤i

 
�
xk
"

�
ıij C

1
"2
 0
�
xi
"

�
 0
�xj
"

� Q
k¤i;j

 
�
xk
"

�
.1� ıij /:



d2x'

� 1
"2

max
˚ 

d2 



0
; kd k20

	
�

1
"2
k k2C2 :

d2xˇ

� k k2C2 kBk .1C 4C 2/� 7 k k2C2 kBk :(50)

Let k6 WD 4C 3 k kC1 C 7 k k
2
C2

. Then from (47), (49) and (50), we have that

(51) kˇkC2 � k6 kBk :
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Now let ˛.t; x/ WD '.x/ x�B.t/ x. Observe that

k˛kC2 � sup
t
k˛.t; �/kC2 C sup

x
k˛.�; x/kC2 C 2




 @2 ˛@x @t





0

� kˇkC2 C "
2
kBkC2 C 2




 @2 ˛@x @t





0
:

But, by (48),

@2 ˛
@x @t
D dx' � x

�B 0.t/ xC'.x/ x�
�
B 0.t/CB 0.t/�

�
;


 @2 ˛@x @t




� " k kC1 kB 0 k0C 2 " kB 0 k0 � 1
2
k6 " kBkC1 :

Hence, by (51),

k˛kC2 � k6 kBkC0 C k6 " kBkC1 C "
2
kBkC2 : �

8. Stable hyperbolicity

In this section we prove, in Theorem 8.1, a symplectic version of R. Mañé’s
Lemma II.3 in [24]. In contrast to the general case in GL.n;R/, where one obtains
uniform domination, in the symplectic case the result is uniform hyperbolicity.

We say that a linear map T W R2n! R2n is hyperbolic if it has no eigenvalue
of modulus 1. Equivalently, T is hyperbolic if there is a splitting R2n DEs˚Eu

and an iterate M 2 ZC such that T .Es/DEs , T .Eu/DEu and


TM jEs


< 1
2

and



.T jEu/�M


< 1

2
:

The subspaces Es and Eu are called the stable subspace and unstable subspace
of T .

Let Sp.n/ be the group of symplectic linear isomorphisms of R2n. We say that
a sequence � WZ!Sp.n/ is periodic if there existsm� 1 such that �iCmD �i for all
i 2 Z. We say that a periodic sequence � is hyperbolic if the linear map

Qm
iD1 �i

is hyperbolic. In this case the stable and unstable subspaces of
Qm�1
iD0 �iCj are

denoted by Esj .�/ and Euj .�/ respectively.
We say that a family � D f �˛ g˛2A of sequences in Sp.n/ is bounded if there

exists Q > 0 such that


�˛i 

 <Q for all ˛ 2A and i 2 Z. Given two families of

periodic sequences in Sp.n/, � D f �˛ g˛2A and � D f �˛ g˛2A, we say that they
are periodically equivalent if they have the same indexing set A and for all ˛ 2A

the periods of �˛ and �˛ coincide. Given two periodically equivalent families of
periodic sequences in Sp.n/, � D f �˛ g˛2A and �D f �˛ g˛2A, define

d.�; �/D sup
˚
k�˛n � �

˛
nk W ˛ 2A; n 2 Z

	
:

We say that a family � is hyperbolic if for all ˛ 2A, the periodic sequence �˛ is
hyperbolic. We say that a hyperbolic periodic family � is stably hyperbolic if there
exists " > 0 such that any periodically equivalent family � satisfying d.�; �/ < " is
also hyperbolic.
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Finally, we say that a family of periodic sequences � is uniformly hyperbolic
if there exist a constant iterate M 2 ZC and subspaces Esi .�

˛/, Eui .�
˛/, ˛ 2 A,

i 2 Z, such that

�j .E
�
j .�

˛//DE�jC1.�
˛/; for all ˛ 2A; j 2 Z; � 2 fs; ug

and


 MY
iD0

�˛iCj

ˇ̌̌
Es
j
.�˛/




< 1
2

and



� MY

iD0

�˛iCj

ˇ̌̌
Eu
j
.�˛/

��1


< 1
2
; for all ˛ 2A; j 2Z:

Equivalently, there exist K >0, 0<�< 1 and invariant subspaces Esi .�
˛/, Eui .�

a/,
˛ 2A, i 2 Z, such that


m�1Y

iD0

�˛iCj

ˇ̌̌
Es
j
.�˛/




<K �m and



�m�1Y

iD0

�˛iCj

ˇ̌̌
Eu
j
.�˛/

��1


<K �m;
for all ˛ 2 A, j 2 Z, m 2 N. Observe that in this case the sequence � is hyper-
bolic and the subspaces Esi .�

˛/, Eui .�
˛/ necessarily coincide with the stable and

unstable subspaces of the map
Qm�1
jD0 �

˛
iCj .

The remainder of the section is devoted to the proof of the following:

THEOREM 8.1. If �˛ is a stably hyperbolic family of periodic sequences of
bounded symplectic linear maps then it is uniformly hyperbolic.

Let � D
Pn
iD1 dxi ^ dxiCn be the canonical symplectic form on R2n and

J 2 Sp.n/ be J.x; y/ WD .�y; x/ for .x; y/ 2 Rn � Rn. The matrix of J in the
canonical basis is

J D ŒJij �D

�
0 I

�I 0

�
:

Then �.x; y/D hx; Jyi D x�Jy, where hx; yi D
Pn
iD1 xi yi . Observe that A 2

Sp.n/ if and only if

(52) A�JAD J:

We say that a basis BD .v1; : : : ; v2n/ is symplectic if �.vi ; vj /D Jij . If T W
R2n! R2n is a linear map with matrix A in a symplectic basis B, then T 2 Sp.n/
if and only if (52) holds.

We say that a linear subspaceE�R2n is lagrangian if�jE�0 and dimE D n.

LEMMA 8.2. (i) A subspace E � R2n is lagrangian if and only if JE DE?.

(ii) If T 2 Sp.n/ is a hyperbolic symplectic linear map, then its stable and unstable
subspaces Es.T /, Eu.T / are lagrangian.

(iii) If T 2GL.R2n/ has matrix D in a symplectic basis BD .v1; : : : ; v2n/ and the
lagrangian subspaceED spanfv1; : : : vng satisfies T .E/�E, then T 2Sp.n/
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if and only if

DD

�
A B

0 C

�
;

where C D .A�/�1 and A�1B is symmetric.

(iv) If E � R2n is a lagrangian subspace and BD .v1; : : : ; vn/ is an orthonormal
basis for E, then .B; JB/D .v1; : : : ; vn; J v1; : : : J vn/ is a symplectic basis
for R2n DE˚JE.

Proof. (i). Observe that JE D E? if and only if dimE D 2n� dimE and
�.x; y/D hx; Jyi D 0 for all x; y 2E.

(ii). Let u; v 2Es.�/. Since T preserves the symplectic form �, we have that

�.u; v/D lim
m!C1

�.Tmu; Tmv/D 0:

Therefore JEs � .Es/? and hence dimEs.T / � n. Similarly, �.u; v/ D 0 if
u; v 2Eu.T /. Therefore dimEs.T /D dimEu.T /D n.

(iii), (iv). Item (iii) follows from formula (52). Item (iv) is a direct calculation.
�

LEMMA 8.3. If f�˛g˛2A is a bounded stably hyperbolic family of maps in
Sp.n/, then there exist " > 0 and K > 0 such that if f�˛g˛2A is a periodically
equivalent family of maps in Sp.n/ with d.�; �/� ", then the family � is hyperbolic
and

8˛ 2A; 8 i 2 Z;






m�1QjD0 �˛iCj
ˇ̌̌
Es
i
.�˛/






<K; mD Per.�˛/;

where m is the minimal period of �˛.

Proof. Suppose the lemma is false. Then for all " > 0 and K > 0 there
exist a periodically equivalent family f�˛g˛2A with d.�; �/ � ", ˛0 2 A, i0 2 Z

and an orthonormal basis B for Esi0.�
˛0/ such that, in that basis,

Qm�1
jD0 �

˛0
i0Cj

has
an entry b D bk` with jbj �K, where mD Per.�˛0/.

For simplicity assume that i0 D 1. Let AD Œaij � 2 Rn�n be the matrix given
by aij D 0 if .i; j /¤ .`; k/ and a`k D ı, where

ı D
3n

K
:

In the basis .B; JB/ for Es1.�
˛0/˚JEs1.�

˛0/ write

mQ
iD1

�
˛0
i D

�
B C

0 .B�/�1

�
; Ds D

�
I C sA 0

0 .I C sA�/�1

�
:

Observe that Ds 2 Sp.n/ and j trBj< n. We claim that

(53) kI �Dsk � j 2 ısj :
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Indeed, if k ¤ ` then .I C sA�/�1D I � sA� and (53) holds. If k D ` then I �Ds

has only two nonzero entries, which are sı and 1� 1
1Csı

� sı.
Let f�˛.s/g˛2A, s 2 Œ0; 1�; be the families given by �i .s/ D �˛i if ˛ ¤ ˛0

or i ¤ 1, and �˛01 .s/ D �
˛0
1 Ds . Then Es1.�

˛0/ is an invariant subspace under
mQ
iD1

�
˛0
i .s/ for all s 2 Œ0; 1�. But

tr
�
mQ
iD1

�
˛0
i

ˇ̌̌
Es1 .�

˛0 /

�
D trB.I CA/D trBC b ı � b ı�n� n:

Therefore there is s 2 Œ0; 1� such that
Qm
iD1 �

˛0
i .s/ has an eigenvalue of modulus 1.

We have that

�˛01 � �˛01 

� 

�˛01 

 j2 ıj � 

�˛01 

 6n
K
;

d.�; �/� d.�; �/C d.�; �/� "C
� 

�˛01 

C "� 6nK :

Since d.�; �/! 0 when "! 0 and K!C1, this contradicts the stable hyperbol-
icity of � . �

LEMMA 8.4. If f�˛g˛2A is a bounded, stably hyperbolic family of maps in
Sp.n/, then there exist " > 0, K > 0 and 0 < � < 1 such that if f�˛g˛2A is a
periodically equivalent family of maps in Sp.n/ with d.�; �/� ", then

8˛ 2A; 8 i 2 Z;





m�1Q
jD0

�˛iCj

ˇ̌̌
Es
i
.�˛/





<K �m; mD Per.�˛/;

where m is the minimal period of �˛.

Proof. By Lemma 8.3 there exist "1 > 0, K1 > 0 such that if � is a family in
Sp.n/, periodically equivalent to � with d.�; �/� "1, then � is hyperbolic and

8˛ 2A; 8 i 2 Z;





m�1Q
jD0

�˛iCj

ˇ̌̌
Es
i
.�˛/





<K1; mD Per.�˛/:

Let " WD "1
2

. Suppose that � is a periodically equivalent family with d.�; �/�
"D "1

2
. On the splitting Esi .�

˛/˚JEsi .�
˛/ write

�˛i D

�
A˛;i C˛;i
0 .A�˛;i /

�1

�
; D˛;i .ı/D

�
.1C ı/ I 0

0 .1C ı/�1I

�
:

For all i 2 Z let �˛i D �
˛
i .ı/ WD �

˛
i �D˛;i .ı/ and let ı > 0 be such that

maxf ı; 1� .1C ı/�1 g �
h

sup
˛;i



�˛i 

C "12 i< "1

2
:

Then

(54) d.�; �/ < "1:

Therefore the family � is hyperbolic and we claim that

Esi .�
˛/DEsi .�

˛/ for all ˛ 2A; i 2 Z:
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For, observe that Esi .�
˛/ is invariant under

Qm�1
jD0 �

˛
iCj , where m D Per.�˛/. If

for some ˛ 2 A and i 2 Z, Esi .�
˛/ ¤ Esi .�

˛/, then there exists 0 < ı1 � ı such
that �˛.ı1/ has an eigenvalue of modulus 1. This contradicts (54).

We have that

.1C ı/m




m�1Q
jD0

�˛iCj

ˇ̌̌
Es
i
.�˛/





D 



m�1Q
jD0

�˛iCj

ˇ̌̌
Es
i
.�˛/





�K1:
This gives the lemma for �D .1C ı/�1 and K DK1. �

We shall need the following definition of angle between linear subspaces.
Given a linear decomposition Rd DE˚F define

�.E; F /D kLk�1 ;

where L W E? ! E is the linear map such that F D f x CLx j x 2 E? g, and
E? WD fy 2 Rd j hy; xi D 0; 8x 2E g is the orthogonal complement of E in Rd .

LEMMA 8.5. If f�˛g˛2A is a bounded, stably hyperbolic family of maps in
Sp.n/ then there exist " > 0, 
 > 0 and N0 2 ZC such that if f�˛g˛2A is a peri-
odically equivalent family of maps in Sp.n/ with d.�; �/� ", then � is hyperbolic
and

�
�
Esi .�

˛/; Eui .�
˛/
�
> 


for all ˛ 2A with minimal period >N0 and all i 2 Z.

Proof. Suppose it is false. Then there exists a periodic sequence � W Z!

Sp.n/ with period m arbitrarily large, periodically equivalent to a sequence �˛

of the family �, with supj2Z k�j � �
˛
j k arbitrarily small and some i 2 Z with

�.Esi .�
˛/; Eui .�

˛// arbitrarily small. Shifting the sequence we can assume that
i D 1.

By Lemma 8.2, JEs1.�/ D E
s
1.�/

?. Consider the matrix of
Qm
iD1 �i in the

decomposition R2n D JEs1.�/˚E
s
1.�/:

mY
iD1

�i D

�
A 0

P B

�
D

�
.B�/�1 0

P B

�
:

Since it is symplectic, choosing an orthonormal basis adapted to the decomposition,
we have that AD .B�/�1 and that B�1P is symmetric. By Lemma 8.4,

(55) kBk D


A�1

<K �m:

Let L W JEs1.�/!Es1.�/ be such that Eu1 .�/Df v˚Lv j v 2 JE
s
1.�/ g. Since

Eu1 .�/ is invariant,
LAD P CB L:

Thus LD PA�1CBLA�1 and

kLk �


PA�1

CkLk K2 �2m:
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If the period m is large enough, then K2 �2m � 1
2

and thus

1
2



PA�1

�1 � kLk�1 D�
�
Es1.�/; E

u
1 .�/

�
:

The number


PA�1

�1 is arbitrarily small because the angle �.Es1.�/; E

u
1 .�// is

arbitrarily small.
Define the sequence � W Z! Sp.n/ by �i WD �i for 1 < i �m and

�1 WD �1

�
I C

0 I

�
in the splitting R2n D JEs1.�/˚E

s
1.�/. This map �1 is symplectic if the matrix C

is symmetric. Then
mY
iD1

�i D

�
A 0

P B

� �
I C

0 I

�
D

�
A AC

P PC CB

�
:

If we find a symmetric matrix C with arbitrarily small norm kCk such that the last
matrix has an eigenvalue 1, then we shall obtain a contradiction with the stable
hyperbolicity of � .

Indeed, consider the system

AxC AC y D x;

PxC .PC CB/ y D y:

Then x D .I �A/�1ACy, and thus

y D .I �B/�1P
�
I CA .I �A/�1

�
C y:

Since I CA .I �A/�1 D�A�1 .I �A�1/�1, we have that

�.I �B/�1P A�1.I �A�1/�1 C y D y:

Take v2Rn such that jvjD


PA�1

�1 and jPA�1vjD1. Let yD�.I�B/�1PA�1v.

From (55) we can assume that kI �Bk � 2. Hence jyj�1 � 2. Now take w such
that .I �A�1/�1w D v. From (55),



I �A�1

 � 2, so that jwj � 2 jvj. Take a
symmetric matrix C such that

Cy D w and kCk D
jwj

jyj
:

Then kCk � 4 jvj D 4


PA�1

�1, which is arbitrarily small. �

LEMMA 8.6. Let R2n DE˚F , where E, F are lagrangian subspaces such
that �.E; F / > 
 . Then there exists K D K.
/ > 0 and a symplectic basis
fe1; : : : ; enI f1; : : : ; fng, ei 2E, fj 2 F , such that the norm


 nX

iD1

xiei Cyifi




2 WD nX
iD1

x2i Cy
2
i
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satisfies
1
K
jzj � kzk � K jzj;

where j � j is the euclidean norm in R2n.

Proof. Define the following inner product in R2n:

Œx1˚y1; x2˚y2� WD hx1; x2iC hy1; y2i;

where xi ˚ yi 2 E ˚F and h�; �i is the euclidean inner product in R2n. We first
show that the norm J � K associated to Œ�; �� is equivalent to the euclidean norm.

If x˚y 2E˚F , then

jxCyj2 D jxj2Cjyj2C 2 hx; yi

� jxj2Cjyj2C
�
jxj2Cjyj2

�
� 2 Jx˚yK2:

LetL WE?!E be a linear map such that F Df z˚Lz j z2E? g. Then kLk<
�1,
in the euclidean norm. Let z 2E? be such that y D z˚Lz. Then

jyj2 D jzj2CjLzj2 � .1C 
�2/ jzj2:

Hence
jzj2 �

1

1C 
�2
jyj2:

The last two equations imply that

jLzj2 � jyj2� jzj2 �

�
1�

1

1C 
�2

�
jyj2 D


�2

1C 
�2
jyj2:

Since hx; yi D hx; z˚Lzi D hx;Lzi,

jxCyj2 D jxj2Cjyj2C 2hx; yi

� jxj2Cjyj2� 2 jxj

�1p
1C 
�2

jyj

�

 
1�


�1p
1C 
�2

!
.jxj2Cjyj2/; 8 x˚y 2E˚F:

Writing A.
/ WDmax
˚p
2;
�
1� 
�1p

1C
�2

�� 1
2
	
, we have that

1
A.
/

jxCyj � Jx˚yK� A.
/ jxCyj ; 8 x˚y 2E˚F:

Now, let K W R2n - be the linear isomorphism defined by

Œx;Ky�D�.x; y/; x; y 2 R2n;

where � is the canonical symplectic form in R2n. Observe that F is the orthog-
onal complement of E with respect to Œ�; ��. Since E is lagrangian, we have that
Œx;Ky�D 0 if x; y 2E. Thus K.E/D F and similarly K.F /DE.
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Let e1; : : : ; en be an orthonormal basis forE and let fi WDK�1ei , iD1; : : : ; n.
Then

�.ei ; fj /D Œei ; Kfj �D Œei ; ej �D ıij :

This implies that the basis fe1; : : : ; fng is symplectic.
Observe that if y 2 R2n, then

JKyK2 D ŒKy;Ky�D�.Ky; y/� jKyj jyj � A.
/2 JKyK JyK:

Now,
JKyK� A.
/2 JyK for all y 2 R2n:

Let x 2 R2n and let y WD Jx 2 R2n. Then jJxj D jxj and �.Jx; x/ D jxj2.
Therefore

JJxK JKxK� ŒJ x;Kx�D�.Jx; x/D jxj2 D jJxj jxj � 1
A.
/2

JJxK JxK:

Thus
JKxK� 1

A.
/2
JxK for all x 2 R2n:

Finally, we have that

r nX
iD1

xiei Cyifi

z2
D

nX
iD1

x2i C
r nX
iD1

yifi

z2
D

nX
iD1

x2i C
r
K�1

� nP
iD1

yiei

�z2
�

nX
iD1

x2i CA.
/
4
r nP
iD1

yiei

z2
� A.
/4

nX
iD1

.x2i Cy
2
i /:

Similarly,

r nX
iD1

xiei Cyifi

z2
�

nX
iD1

x2i C
1

A.
/4

r nP
iD1

yiei

z2
�

1

A.
/4

nX
iD1

.x2i Cy
2
i /:

Hence the lemma holds for K.
/ WD A.
/2. �

Proof of Theorem 8.1. We first prove that there is M1 > 0 such that

(56)






M1�1Q
jD0

�˛iCj

ˇ̌̌
Es
i
.�˛/






< 1

2
; 8˛ 2A; 8 i 2 Z:

Since the family � is bounded, it is enough to prove that

(57) 9N > 0 W 8˛ 2A ; 8 i 2 Z ; 9 0 < n�N W






n�1QjD0 �˛iCj
ˇ̌̌
Es
i
.�˛/






< 1

2
:

Indeed, take m> 0 such that

(58)
1

2m

�
sup
˛;i



�˛i 

 �N < 1

2
;
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Figure 2. Sketch of Theorem 8.1: Once we know the angles are
uniformly bounded below for any perturbation, we can assume
Es and Eu are orthogonal. If a sequence does not uniformly
contract Es (




…k1�i jEs


 � 1
2

), multiply its stable component by
.1C "/m and its unstable component by .1C "/�m so that at some
iterate, say k, it expands Es and contracts Eu. Then the perturba-
tion of only �1 and �m shown in the figure obtains a small angle
�.Es; Eu/ at the k-th iterate, which is a contradiction.

and let M1 WD .mC1/N . Writing M1D n1Cn2C� � �CnkCr , where the n` �N
are such that (57) holds for i D n1C� � �Cn`�1 and 0� r <N we have that k �m
and by (58), we obtain that (56) holds.

If (57) were not true, then
(59)

8N > 0 ; 9˛N 2A ; 9 iN 2 Z ; 8 0 < n�N W






n�1QjD0 �˛NiNCj
ˇ̌̌
Es
iN
.�˛N /






� 12:
CASE I. Suppose that the periods of the sequences �˛N are bounded.

Taking subsequences of ˛N we can assume that
� iN � i0 is constant.
� Per.�˛N /Dm is constant.
� 8 j 2 Z, 9 �j D lim

N
�
˛N
i0Cj

.

� 8 j 2 Z, 9ECj D lim
N
Esi0Cj .�

˛N /.

� 8 j 2 Z, 9E�j D lim
N
Eui0Cj .�

˛N /.

Observe that the subspacesECj , E�j arem-periodic and invariant under
Qm�1
iD0 �jCi .

From (59) we have that

(60)




 n�1Q
jD0

�j

ˇ̌̌
E
C

0





� 12; for all n 2 NC:

The stable hyperbolicity of the family � implies that the sequence � is hyper-
bolic. Then

Qm�1
iD0 �i is a hyperbolic matrix which is the limit of the sequence

of hyperbolic matrices
Qm�1
jD0 �

˛N
i0Cj

. This implies that EC0 D limN Esi0.�
˛N /,
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E�0 D limN Eui0.�
˛N / are the stable and unstable subspaces of

Qm�1
jD0 �j . But

this contradicts (60).

CASE II. Suppose that the periods of the sequences �˛N are unbounded.

Let ", K, � be from Lemma 8.4. Let N1 > 0 and "0 > 0 be such that

(61) K �n1 .1C "0/
n1 < 1

2
; 8n1 �N1:

Let N0 and 
 be from Lemma 8.5. Taking a subsequence of ˛N we can assume
that all the periods satisfy

(62) Per.�˛N / >maxfN0; N1g:

If we extend the family � to the family of all the shifted sequences j 7! �˛iCj for
all ˛ 2A, i 2 Z, then the new family is also stably hyperbolic. Using this extended
family if necessary, we can assume that iN D 1 in inequality (59).

We shall perturb the symplectic linear maps �˛i so that the angle �.EsNC1.�
˛N /,

EuNC1.�
˛N // becomes arbitrarily small, contradicting Lemma 8.5.

In the decomposition Es.�˛N /˚Eu.�˛N /, for mD Per.�˛N /, write

NY
iD1

�
˛N
i D

�
B 0

0 .B�/�1

�
;

mY
iD1

�
˛N
i D

�
A 0

0 .A�/�1

�
:

By Lemma 8.4, (62) and (61),

(63) kAk �K �m < 1
2
:

Then from (59) we have that m>N .
By Lemma 8.6 and (62), it is equivalent to measure the norms of linear maps

in the decompositions Es.�˛N /˚Eu.�˛N /. Without loss of generality we may
assume that K.
/D 1 in Lemma 8.6.

Define a perturbation � of �˛N by

�1 W D

�
.1C "/ I 0

0 .1C "/�1I

�
�
˛N
1

�
I C

0 I

�
;

�i W D

�
.1C "/ I 0

0 .1C "/�1I

�
�
˛N
i ; 1 < i < m;

�m W D

�
I D

0 I

�
�˛Nm

�
.1C "/ I 0

0 .1C "/�1I

�
;

where C and D are small symmetric matrices defined as follows.
Observe that by (59), kB�kDkBk� 1

2
. Let u; v 2Rn be such that jB�ujD 1,

jvj D 1,
jB� uj � 1

2
juj and jB vj � 1

2
jvj:

Let C be a symmetric matrix such that

C .B�u/D " jB�uj v and kCk D ":
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Let D be the symmetric matrix

D D�.1C "/2m AC A�:

From (63), (62) and (61), if 0 < " < "0 then

kDk �K2 �2m .1C "/2m kCk< kCk D ":

Therefore, since the family � is bounded,

lim
"!0

d.�; �˛N /D 0 uniformly on N .

Observe that with this definition of D, we have that
mY
iD1

�i D

�
.1C "/m A 0

0 .1C "/�m .A�/�1

�
:

In particular,



� mQ
iD1

�i

ˇ̌̌
Eu1 .�

˛N /

��1



D 



 mQ
iD1

�i

ˇ̌̌
Es1 .�

˛N /





�K �m .1C "/m < 1:
Thus the sequence � is hyperbolic and has the same subspaces Es1, Eu1 as the
sequence �˛N .

Observe that
NY
iD1

�i D

�
.1C "/NB 0

0 .1C "/�N .B�/�1

� �
I C

0 I

�

D

24.1C "/NB .1C "/N B C

0 .1C "/�N .B�/�1

35 :
The unstable subspace EuNC1 at time N , is EuNC1.�/ D .

QN
iD1 �i /.E

u
1 .�

˛N //.
Therefore

EuNC1.�/D f z˚Lz 2E
u
NC1.�

˛N /˚EsNC1.�
˛N / j z 2EuNC1.�

˛N / g;

where L WEuNC1.�
˛N /!EsNC1.�

˛N / is given by

LD .1C "/2N B C B�:

The stable subspace is EsNC1.�/DE
s
NC1.�

˛N /.
We have that

jLuj D .1C "/2N jB CB�uj D .1C "/2N jBvj " jB�uj � 1
4
" .1C "/2N juj:

Under the inner product Œ�; �� of Lemma 8.6, EuNC1.�
˛N /D

�
EsNC1.�

˛N /
�?. Thus

�
�
EsNC1.�/; E

u
NC1.�/

�
D kLk�1 �

4

" .1C "/2N
;

which is arbitrarily small if N is large enough. This finishes the proof of (56).
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It remains to prove that there is M2 > 0 such that

(64)




�M2�1Q

jD0

�˛iCj

ˇ̌̌
Eu
i
.�˛/

��1



< 1

2
; 8˛ 2A; 8 i 2 Z:

Let N0 and 
 be from Lemma 8.5 for �. Let

A0 WD f˛ 2A j Per.�˛/ > N0 g:

In the splitting Esi .�
˛/˚Eui .�

˛/ we have that

M1�1Y
jD0

�˛iCj D

�
F 0

0 .F �/�1

�
;

with kF k< 1
2

by (56). Using the equivalent norm from Lemma 8.6, we have that



�M1�1Q
jD0

�˛iCj

ˇ̌̌
Eu
i
.�˛/

��1



D 



M1�1Q
jD0

�˛iCj

ˇ̌̌
Es
i
.�˛/





< 12; 8˛ 2A0; 8 i 2Z:

This finishes the proof if A0 D A. If not, by repeating sequences in A1 WD

A nA0 we can assume that A1 is infinite. Since the periods of the sequences in
A1 are bounded by N0, the same argument as in Case I above gives M3 > 0 such
that 



�M3�1Q

jD0

�˛iCj

ˇ̌̌
Eu
i
.�˛/

��1



< 1

2
8˛ 2A1; 8 i 2 Z:

Then for (64) take M2 DM1 �M3. In order to get (56) and (64) with the same M ,
take M DM1 �M2. �

9. Hyperbolicity

Given a subset A � SM and g 2 R1.M/ let P.g; A/ be the set of closed
orbits 
 for �g such that 
.R/� A. Define

Per.g; A/ WD
S


2P.g;A/


.R/;

H.A/ WD fg 2R1.M/ j 8
 2 P.g; A/; 
 is hyperbolic g;

F2.A/ WD intC2 H.A/:

Let G1 be as in Theorem 6.1,

Theorem E. If g 2G1\F2.A/, thenƒ WDPer.g; A/ is a hyperbolic set for �g .

Proof. Let ` be the injectivity radius of g. For each ˛ 2 A WD P.g; A/ let
T D T .˛/ be the period of ˛ and choose 0D t0 < t1 < t2 < � � �< tm D T .˛/ such
that tiC1� ti 2 Œ14`;

1
2
`�. Then ˛jŒti ;tiC1� is injective. Let

(65) N.i; ˛/ WD f v 2 T˛.i/SM j hv; P̨ .ti /ig D 0 g:
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Choose an orthonormal symplectic basis B.i; ˛/ for N.i; ˛/. Let �˛ W Z! Sp.n/
be the periodic sequence of period m such that �˛i is the matrix of d�gtiC1�ti W
N.i; ˛/! N.i C 1; ˛/ in the basis B.i; ˛/ and B.i C 1; ˛/. We use the following:

LEMMA 9.1. The family � D f �˛ g˛2A is stably hyperbolic.

Then, from Theorem 8.1 we obtain a hyperbolic splitting on P.g; A/. The
hyperbolicity condition implies the continuity of the splitting in Per.g; A/ (see [19,
Prop. 6.4.4] for diffeomorphisms). Then the splitting extends continuously to the
closure ƒD Per.g; A/ and the extension is also hyperbolic. �

Proof of Lemma 9.1. If � is not stably hyperbolic, then there is a periodically
equivalent family � with d.�; �/ arbitrarily small which is not hyperbolic. Modi-
fying � if necessary, we can assume that f˛ 2 A j �˛ ¤ �˛ g D f˛0 g is a single
sequence and �˛0 is not hyperbolic. Since g 2 G1 and d.�˛0 ; �˛0/ is arbitrarily
small, by Theorem 7.1 there is a metric g1 2R1.M/, which is C1, such that g1
is C 2 arbitrarily near g (and hence g1 2H.A/), the same ˛0 is a periodic orbit for
g1, g1 D g on ˛.R/ (hence the same subspaces N.i; a/ satisfy (65) for g1), and
�
˛0
i D d�

g1
tiC1�ti

WN.i; ˛0/!N.i C 1; ˛0/ for all 0� i < m.˛0/. Since �˛0 is not
hyperbolic and ˛0.R/� A, this contradicts the fact g1 2H.A/. �

The linearized Poincaré map Pc of a prime, closed geodesic c is a symplectic
map. If c is not hyperbolic denote by zj D˙ exp.2��j /, �j 2 Œ0; 12 �, j D1; : : : ; `�
n the eigenvalues of Pc with norm 1. The numbers 0� �1< � � �<�`� 1

2
are called

Poincaré exponents of c. Following Rademacher [33], we say that a riemannian
metric is strongly bumpy if all the eigenvalues of the linearized Poincaré map of
every prime closed geodesic are simple and if any finite set of the disjoint union of
the Poincaré exponents of the prime closed geodesics is algebraically independent.

For 2� k <1, let Bk be the set of strongly bumpy metrics in Rk.M/.

THEOREM 9.2 (RADEMACHER’S THEOREM ([33], [6])). For any 2� k �1:

(i) Bk is residual in Rk.M/.

(ii) If g 2Bk then g has infinitely many geometrically distinct closed geodesics.

Let K be the set of metrics g in R2.M/ such that

� The metric g is strongly bumpy: g 2B2.

� All heteroclinic points of hyperbolic closed geodesics of g are transversal.

By Theorems 9.2 and 2.1, for any 2� k �1, the set K\Rk.M/ is residual
in Rk.M/.

Given a continuous flow �t on a topological space X a point x 2X is called
wandering if there is an open neighborhood U of x and T > 0 such that �t .U /\
U D ∅ for all t > T . Denote by �.�t jX / the set of non-wandering points for
.X; �t /. Recall
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THEOREM 9.3 (SMALE’S SPECTRAL DECOMPOSITION THEOREM FOR FLOWS

([35], [19]). If ƒ is a locally maximal hyperbolic set for a flow �t , then there exists
a finite collection of basic sets ƒ1; : : : ƒN such that the non-wandering set of the
restriction �t

ˇ̌
ƒ

satisfies
�
�
�t
ˇ̌
ƒ

�
D

NS
iD1

ƒi :

Now let D WD K\G1, where G1 is from Theorem 6.1,

Theorem D. If g 2 D\F2.M/, then ƒD Per.g/ contains a nontrivial, hyper-
bolic, basic set.

Proof. Since D � G1, applying Theorem E to A D M we get that ƒ is a
hyperbolic set. By Proposition 6.4.6 in [19], there exists an open neighborhood U
of ƒ such that the set

ƒU WD
\

t2R
�
g
t .U /

is hyperbolic. Since ƒ D Per.g/, its non-wandering set is �.�t jƒ/ D ƒ. By
the definition of ƒU , ƒ �ƒU and hence ƒD�.�t jƒ/ ��.�t jƒU /. By Corol-
lary 6.4.20 in [19], the periodic orbits are dense in the non-wandering set�.�t jƒU /
of the locally maximal hyperbolic set ƒU . Thus ƒ��.�t jƒU /� Per.g/Dƒ. By
Theorem 9.3, the set ƒD�.�t jƒU / decomposes into a finite collection of basic
sets. Since the number of periodic orbits in ƒ is infinite, at least one of the basic
sets ƒi is not a single periodic orbit; i.e., it is nontrivial. �

Appendix A. Arc spaces

Let X be an algebraic variety on RN . Define the path space on X as

C.X/ WD
n
.an/n2N 2

Q
n2N RN

ˇ̌
9
 2 C1.R;RN /;


.R/�X;
1

nŠ

 .n/.0/D an;8n 2 N

o
:

Let F D .f1; : : : ; fq/ be generators of the ideal

I.X/D f f 2 RŒx1; : : : ; xN � j f jX � 0 g:

Recall that the arc space L.X/ is

L.X/ WD f .ak/k2N 2
Q
k2N RN

ˇ̌
F.
P1
kD0 akt

k/� 0 g;

where the equality � is as formal power series. The jet space Ln.X/ is

Ln.X/ WD
˚
.ak/k2N 2

Qn
kD0 RN

ˇ̌
F.
Pn
kD0 akt

k/D 0 .mod tnC1/
	
:

Then Ln.X/ is an algebraic variety. Let �n W L.X/! Ln.X/ be the projection
.ak/k2N 7! .ak/

n
kD0

. Then �n.L.X// is a constructible set in Ln.X/ (see [10, p.
202]). Let �n.C.X// be the Zariski closure of �n.C.X//.

PROPOSITION A.1. (i) dim�n.C.X//� .nC 1/ dimX .

(ii) The fibers of �nC1.C.X//! �n.C.X// have dimension � dimX .
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Proof. By Lemma A.2 it is enough to proof the proposition for an algebraic
variety X in CN . Observe that item (ii) implies item (i). We prove item (ii).

Fix aD .a0; : : : ; an/ 2 �n.C.X//. Define

ZnC1 WD
˚
.t; x/ 2 C�CN

ˇ̌
F.a0C � � �C ant

n
C tnC1x/D 0

	
:

For t 2 C, let
ZnC1.t/ WD f x 2 CN j .t; x/ 2ZnC1 g:

Let Fa WD �
�1
n .a/ be the fiber of �n W �nC1.C.X//! �n.C.X// over a. The limit

WnC1 at t D 0 of the 1-parameter family of varieties ZnC1.t/ exists (see [12, pp.
71–72]):

WnC1 WD lim
t!0

ZnC1.t/I

i.e., if Z�nC1 WD f .x; t/ 2ZnC1 j t ¤ 0 g, then Z�nC1[WnC1 is the Zariski closure
of Z�nC1.

Claim 1. Fa � WnC1. Indeed, let anC1 2 Fa. Since .a0; : : : ; an; anC1/ 2
�nC1.C.X// there is 
 2 C1.R;RN / such that F ı 
 � 0 and


.t/D a0C � � �C ant
n
C anC1t

nC1
CO.tnC2/; t 2 R:

Let xt WD 1
tn

�

.t/�

Pn
kD0 akt

k
�
D anC1 C O.t/ 2 ZnC1.t/. This implies that

anC1 2WnC1.

The following claim finishes the proof:

Claim 2. dimWnC1 � dimX . For t ¤ 0, we have that the variety ZnC1.t/
is isomorphic to X by the invertible change of variables ZnC1.t/ 3 z ! x 2X :
xD a0Ca1tC� � �Cant

nC tnC1z. Therefore dimZnC1.t/D dimX , when t ¤ 0.

Consider CN D CN � f1g � CPN D CN [CPN�1 and the corresponding
projective varieties ZnC1.t/, Z�nC1 D[t¤0 ZnC1.t/, WD limt!0 ZnC1.t/. Then
WnC1 DWnC1\CN .

Claim 2 follows from the fact that ZnC1 D Z�nC1 [WnC1 is a flat family
(see [12, Prop. II-29]) and the fact that the dimension of the fibers of a flat family
is constant (e.g. [17, pp. 256 – 257]). Another proof is the following:

Since for a generic fiber t¤0, dim ZnC1.t/DdimX , we have that dim Z�nC1D

dimX C 1. If dimWnC1 > dimX , then dim WnC1 � dimWnC1 � dimX C 1.
Therefore WnC1 contains an irreducible component of Z�nC1. This is incompatible
with WnC1 D limt!0 ZnC1.t/ (see [12, Prop. II-2, pp. 75 – 76].6 �

LEMMA A.2. LetX �RN be an algebraic variety and let X�CN be the alge-
braic variety defined by the same polynomials as X . Then dim R.X/� dim C.X/.

6Observe that a priori WnC1 could have all its irreducible components of maximal dimension
in the hyperplane at infinity CPN�1 and then dimWnC1 < dim WnC1. Since the function f .t/ WD
dim ZnC1.t/ is upper semi-continuous (see [16, p. 139]), dim WnC1 � lim supt!0 dim ZnC1.t/D

dimX . Then the argument above also shows that dim WnC1 D dimX .
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Proof. Let T be a stratum of X and T WD T \ Rd . Then T is a complex
submanifold of CN . In particular, its tangent spaces are closed under multiplication
by
p
�1. Then the 2-form �.u; v/D Im.hhu; vii/ is nondegenerate on T, because

�.u;u
p
�1/ D �

P
juj j

2 ¤ 0 if u ¤ 0. Let x 2 T � T. Since the tangent
space TxT � Rd , �jTxT � 0, i.e. TxT is an isotropic subspace for �. Therefore
dim R TxT �

1
2

dim R TxTD dim C TxT. �
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