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Abstract

We prove a perturbation lemma for the derivative of geodesic flows in high
dimension. This implies that a C? generic riemannian metric has a nontrivial
hyperbolic basic set in its geodesic flow.

1. Introduction

Let M"*1 be a closed (compact without boundary) manifold of dimension
n+ 1, n > 1, endowed with a C* riemannian metric g and let ¢; = ¢¥ be
the geodesic flow of g on the unit tangent bundle S M. The simplest invariant
which measures the complexity of the flow ¢f is its topological entropy which we
denote by /p(g). The topological entropy measures the difficulty in predicting the
position of an orbit given an approximation of its initial state. Namely, if 6 € S8 M
is a unit vector and T, § > 0, define the (8, T')-dynamic ball about 6 as

B(6.8.T) ={9 € S*M : d(¢} (9). 47 (9)) <&},

where d is the distance function in S8 M. Let Ng(T') be the minimal quantity of
(8, T')-dynamic balls needed to cover S& M. The topological entropy is the limit
on § of the exponential growth rate of Ng(T):

(1 hiop(g) := lim lim sup 1 log Ng(T).
§=0T 5400 r

Thus, if /p(g) > 0, some dynamic balls must contract exponentially at least in
one direction. R. Mafié [25] showed that

I §
)] hop(g) = TETOO T IOg/ nr(x,y)dxdy,

MxM

where nr(x, y) is the number of geodesic arcs of length < T joining x € M to
y € M and the integral is with respect to the volume on M x M.
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Some manifolds have all their riemannian metrics with positive entropy. For
example, when the fundamental group of M has exponential growth (see Dinaburg
[11], Manning [26]), by the definition (1) of the topological entropy, or when the ho-
mology of the loop space of M grows exponentially (see Paternain and Petean [30]),
by (2).

A way of obtaining positive topological entropy is by showing that the flow
has a nontrivial hyperbolic basic set. A locally maximal invariant set is a compact
subset A C S& M such that ¢¥ (A) = A for all ¢ € R and there is a neighborhood
U of A such that

A=()¢ ).
teR
A hyperbolic set is a compact ¢?¢ -invariant subset A C S& M such that the restric-
tion of the tangent bundle of S8 M to A has a splitting

TASSM =E*® (X)® EY,

where (X) is the subspace generated by the vector field X of ¢¥, ES and E¥ are
d¢¥ invariant sub-bundles and there are constants C, A > 0 such that

(i) |dof ()| <Ce ™ |g|forallt >0, £ € ES;
(i) |dgf, (&) <Ce ™ |E|forallt >0, & € E¥.

A nontrivial hyperbolic basic set is a locally maximal compact invariant subset
A C S&M which is hyperbolic, has a dense orbit and which is not a single periodic
orbit.

Using symbolic dynamics one shows that if a flow contains a nontrivial hyper-
bolic basic set then it has positive topological entropy. It also has infinitely many
periodic orbits and their number grows exponentially with their period, namely

1
hiop(8) = hiop(@¥|A) = TETOO 7 log P(T) >0,

where P(T) is the number of periodic orbits in A with period < T'.

If a manifold has negative sectional curvature, its geodesic flow is Anosov
and hence it contains a nontrivial hyperbolic basic set. On manifolds with posi-
tive curvature it is not so clear that one can perturb the metric to obtain positive
topological entropy. In this work we prove

THEOREM A. On any closed manifold M with dim M > 2 the set of C*°
riemannian metrics whose geodesic flow contains a nontrivial hyperbolic basic set
is open and dense in the C? topology.

COROLLARY B. Let M be a closed manifold with dim M # 1. There is a
set G of C® riemannian metrics on M such that G is open and dense in the C?
topology and if g € 4, hiop(g) > 0 and
. 1
lim = log P(T) >0,
T—l>+oo T & ( )
where P(T) is the number of closed geodesics of length < T.
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G. Knieper and H. Weiss [22] prove Theorem A for surfaces in the C*° topol-
ogy. Their methods are restricted to dimension 2. G. Paternain and the author
proved Theorem A for surfaces in [8]. This paper generalize their methods. For
general hamiltonian flows S. Newhouse [29] proves a stronger result: C2 generi-
cally the hamiltonian flow is either Anosov or it has a generic 1-elliptic periodic or-
bit. In both cases the flow contains a hyperbolic basic set. The Newhouse Theorem
was proved for riemannian metrics on S? or RP? in Contreras and Oliveira [7]. The
techniques of this paper are not enough to prove it for general manifolds because
of the lack of a closing lemma for geodesic flows.

If instead of riemannian metrics we were considering Finsler metrics then the
same techniques as in [29] would prove the Newhouse Theorem and in particular
Theorem A. However, perturbation results within the set of riemannian metrics
are harder, due to the fact that when we change the metric in a neighborhood of
a point of the manifold we affect all the geodesics leaving from those points; in
other words, even if the size of the neighborhood in the manifold is small, the
effect of the perturbation in the unit sphere bundle is necessarily large. This is the
main reason why the closing lemma is not known for geodesic flows (see Pugh and
Robinson [32]), even though there is a closing lemma for Finsler metrics.

An application of this paper is that the metrics obtained in Theorem A sat-
isfy the conditions H1, H2, (a periodic orbit with a transversal homoclinic point)
required in a recent paper by A. Delshams, R. de la Llave and T. Seara [9] to
obtain orbits with unbounded energy (Arnold’s diffusion type phenomenon) for
perturbation of geodesic flows by quasi-periodic potentials. See also Section 2
in [9] for a discussion on the abundance of this situation.

We show how to obtain Theorem A from the results proved in the following
sections. A closed geodesic is called degenerate if its linearized Poincaré map has
an eigenvalue which is a root of unity. A riemannian metric is called bumpy if all
its closed geodesics are nondegenerate. A closed geodesic is hyperbolic if it has no
eigenvalue of modulus 1 and it is elliptic if it is nondegenerate and nonhyperbolic.
An elliptic geodesic is g-elliptic if it has precisely 2g eigenvalues of modulus 1.

If vy and 7 are hyperbolic periodic orbits for ¢;g a heteroclinic orbit from 7 to
y is an orbit gb[g (0) such that

lim d(¢f(0),7)=0 and lim d(¢£(9),y)=0.
t—>—00 t—>+o00

The orbit ¢[§ (0) is said to be homoclinic if n = y. The weak stable and weak
unstable manifolds of a hyperbolic periodic orbit y are

W(y):={0eSM : tiigood@f(@),y) =0},
WH(y):={0eSEM : t_lir_nood(¢f(9),y)20}.

The sets W¥(y) and W¥*(y) are (n + 1)-dimensional invariant immersed subman-
ifolds of S& M. Then a heteroclinic orbit is an orbit in the intersection W¥*(y) N
WH(n). If WS(y) and W¥(n) are transversal at ¢”§ (6) we say that the heteroclinic
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orbit is transverse. A standard argument in dynamical systems (see [19, §6.5.d]
for diffeomorphisms!) shows that if a flow contains a transversal homoclinic orbit
then it contains a nontrivial hyperbolic basic set. Therefore for Theorem A it is
enough to look for a homoclinic orbit.

Denote by %K (M) the set of C* riemannian metrics in M provided with the
ck topology. In Section 2 we recall the Kupka-Smale Theorem 2.1 for geodesic
flows, which was proven in [8] using results of Anosov [2] and Klingenberg and
Takens [21]. In particular, it says that for a generic riemannian metric in Rk (M),
k > 2, all heteroclinic orbits are transverse.

In Section 3 we prove the following:

THEOREM C. There is a subset 99 C R>(M) such that

(i) Forall 4 <k < 00, %y contains a residual set in R (M).

(i1) If the geodesic flow of a metric g € 4o contains a nonhyperbolic orbit, then it
contains a nontrivial hyperbolic basic set.

This is obtained by showing that such a metric g contains a generic elliptic
geodesic. Using the Birkhoff normal form one obtains a region nearby the elliptic
periodic orbit where the Poincaré map is conjugate to a Kupka-Smale twist map
on T" xR*, n = dim M — 1. In Theorem 4.1, using arguments of M-C. Arnaud
and M. Herman we prove that such twist maps have a generic 1-elliptic periodic
orbit.

The restriction of the Poincaré map of this 1-elliptic orbit to its central man-
ifold is a twist map of the annulus S! x R. Such Kupka-Smale twist maps have
homoclinic orbits. Since the central manifold is normally hyperbolic, the homo-
clinic orbit for the twist map is a homoclinic orbit for the whole Poincaré map, and
it is transverse by the Kupka-Smale condition on the Poincaré map.

Theorem C can be used to obtain density of hyperbolicity in the C*° topology
when a nonhyperbolic geodesic is known to exist. Interesting cases are obtained
in W. Ballman, G. Thorbergsson and W. Ziller [4], where they give conditions
under which the existence of a closed nonhyperbolic geodesic is guaranteed (see
especially Theorem B in [5]). Combining this result with Theorem C one obtains
that any 1/4-pinched metric in S” may be approximated in the C*° topology by a
metric with a nontrivial hyperbolic basic set.

Having a nontrivial basic set for ¢ is an open condition on the C? topology
on g (this is, the C! topology on ¢&), because basic sets can be analytically contin-
ued (cf. [31, Th. 5.1]). Therefore Theorem C covers the case in Theorem A when
a metric can be C? approximated by one with an elliptic periodic orbit.

The remaining case is covered by the following Theorem D. Let

P(g):={y : y periodic orbit for g },

Per(g):= U y(®),
vYEP(g)

INote that for geodesic flows the closed orbits never reduce to fixed points.
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H(M):={geR®°(M)|VyeP(g) : yishyperbolic },
F2(M) = intg2 H(M).

THEOREM D.  There is a set 9 C R*(M) such that

() Forall2 <k < 0o, % NRK (M) is residual in R* (M).

(i) If g € DN F>(M), then A = Per(g) contains a nontrivial hyperbolic basic
set.

This finishes the proof of Theorem A because %2(M) is the open set in the
C? topology of C > metrics which cannot be C? approximated by a metric with
an elliptic periodic orbit and the set & is C? dense in F2(M).

When dim M = 2 Theorem D was proven in Contreras and Paternain [8].
The proof of Theorem D appears in Section 9 and follows from Rademacher’s
theorem [33] (which says that a generic riemannian metric has infinitely many
closed geodesics), Smale’s spectral decomposition theorem for hyperbolic sets and
the following Theorem E, also proved in Section 9:

Given a set A C SM, define

P(g.A):={yeP(@) :y[R)C A}
Per(g, A):= U r®),
y€P(g,4)
H(A):={geR®(M)|VyeP(g,A) : v is hyperbolic },

F2(A) = intc2 H(A).

THEOREM E. There is a set 4, C R*(M) such that 4 is open in R*(M),
Y1 NR®(M) is dense in R (M) and.:

If g €1 NF2(A), then A = Per(g, A) is a hyperbolic set.

Theorem E is proved in Section 9 by adapting R. Maiié’s theory of stable
hyperbolicity, developed for the stability conjecture in [24], to the case of geodesic
flows. One first considers the linearized Poincaré maps of small segments of the
closed geodesics in the set A. These are periodic sequences of symplectic matrices
in R?". Denote by Sp(n) the set of symplectic linear maps in R>”. In Theorem
8.1 we prove that if these sequences are stably hyperbolic under uniform perturba-
tions in Sp(n), then they are uniformly hyperbolic. Such uniform hyperbolicity is
inherited by the closure Per(g, A).

In order to reduce the problem to sequences of symplectic matrices we need a
perturbation lemma, proved in Theorem 7.1, which is the main technical difficulty
in the paper. One has to perturb the linearized Poincaré map on any orbit segment,
in an arbitrary direction in Sp(n), on an arbitrarily small neighborhood of the seg-
ment, without moving either the orbit segment or the possible self-intersections
with the remainder of the periodic orbit, without changing the metric above the
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segment and covering a perturbation size on Sp(n) which is uniform for all or-
bit segments of a given length, say 1, but possibly depending on the riemannian
metric g.

Such a perturbation had been done by Klingenberg and Takens [21] and Anosov
[2] but not with the uniform estimate. We prove the perturbation lemma only for
a special set of metrics 4; C R°°(M): those such that every geodesic segment
of length % has a point whose curvature matrix has all its eigenvalues distinct and
separated by a uniform bound.

In Theorem 6.1 we prove that such a set 9; is open and dense in Rk (M) for
all k > 2. The use of the set 9; is the main difference with the perturbation lemma
in dimension 2, proved in [8], which only needs the riemannian metric to be C 4.
We only prove the density of 9; for C > metrics.

The lengths 1 and % above are chosen for simplicity of the exposition and
they can be any number smaller than the injectivity radius £ of the metric. In their
application in the proof of Theorem E in Lemma 9.1, we use % <1=2- % < % L.
Multiplying the riemannian metrics by a constant, without loss of generality we
can assume that all the metrics in this work have injectivity radius larger than 4.

Finally, in Section 5 we introduce the Fermi coordinate system and the kind
of perturbations of the metrics that are used in Theorem 6.1 and Theorem 7.1

The author wishes to thank Carolina Aratjo and Xavier Gémez-Mont for use-
ful conversations.

2. The Kupka-Smale theorem

Let M"*1 be a closed manifold of dimension n + 1. Let d)f be the geodesic
flow of a riemannian metric g acting on SM, the unit sphere bundle of M. Let
7w : SM — M be the canonical projection. Nontrivial closed geodesics on M are
in one-to-one correspondence with the periodic orbits of ¢¥ . Given a closed orbit
y = {¢8(0) | t € [0,a]} of period a > 0, define the Poincaré map P¢(%,0) as
follows: Choose a local hypersurface ¥ in SM containing € and transversal to .
Then there are open neighborhoods X and X, of 8 and a differentiable function
§: o — R such that the map P4 (X, 0) : g — =, given by ¥ — ¢§(ﬂ)(z9) is a
diffeomorphism.

Recall (cf. Klingenberg [20]) that there is a canonical splitting of the tangent
bundle T(TM) = H &V, where the vertical subspace V = kerd m is tangent to
the fibers of 7 and the horizontal subspace H is the kernel of the connection map
K :T(TM) — TM. There is a natural identification TyTM = H(0) @ V(0) <
ToM @ TyM given by ¢ = (h,v) < (dgm(¢), K(¢)). Under this identification
the tangent space to the unit tangent bundle is TpSM = H(6) & N(6), where
N(@O) ={® € TM | (},0) @) = 0}. The geodesic flow preserves the canonical
contact form A($) = (0, h) z9) = (0, d7({)) x(6) and hence its kernel

N(O) :=ker ANTySM = N(6) @& N(6) C H(0) V()
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defines an invariant codimension 1 subspace in Ty S M, transversal to the geodesic
flow. The canonical symplectic form w := dA is invariant under the geodesic
flow and nondegenerate on N'(8). We choose the local hypersurface X above
such that Ty X = N(0). The linearized Poincaré map Pg(0) := dgPq(X,0) is
an w-symplectic linear map on N'(6) and

Pg(J(0), J(0)) = (J(a). J (a)),

where J is a normal Jacobi field along the geodesic 7 o y and J denotes the
covariant derivative along the geodesic. After choosing a symplectic linear basis for
N we can identify the group of w-symplectic linear maps on N with the symplectic
linear group Sp(n) on R” x R". Although the distribution N is not integrable, the
symplectic form w is still nondegenerate in Ty X for ¥ in a neighborhood of 6 and
the Poincaré map P, (X, ) preserves o|x.

Let J sk (n) be the set of k-jets of C* symplectic automorphisms of R” x R"
which fix the origin. One can identify J! (n) with Sp(n). A set Q C J Sk (n) is said
to be invariant if for all o € J Sk (n), 0Qo~! = Q. In this case, the property that
says that the Poincaré map %4 (X, ) belongs to Q is independent of the section X.

A closed orbit is said to be hyperbolic if its linearized Poincaré map has no
eigenvalues of modulus 1. If y is a hyperbolic closed orbit and 8 = y(0), define
the strong stable and strong unstable manifolds of y at 8 by

W) = {9 e SM| lim d(¢f(9).47(0)=0}.
WOy ={v e SM| lim_d(¢f(9).47 () =0}
Define the weak stable and weak unstable manifolds by
Wey):=Jof (W*©). W)= ef (W (0)).

teR teR

It turns out that they are immersed submanifolds of dimension
dim W3 (y) =dim W¥*(y) =dimM =n + 1.

A heteroclinic point is a point in the intersection W*(y) N W¥(n) for two hyperbolic
closed orbits y and 1. We say that 8 € SM is a transversal heteroclinic point if
0 e WS(y)NWH(n),and TgW*(y) + TgWH(n) = ToSM.

Let % (M) be the Banach manifold of C¥ riemannian metrics on M endowed
with the C* topology. Using results from Anosov [2] and Klingenberg-Takens [21],
in [8, Th. 2.5] we proved the following analogous to the Kupka-Smale theorem for
geodesic flows:

THEOREM 2.1. Let Q C J Sk (n) be open, dense and invariant. Then there
exists a residual subset O C R¥TY(M) such that for all g € 0:

e The k-jet of the Poincaré map of every closed geodesic of g belongs to Q.
o All heteroclinic points of hyperbolic closed geodesics of g are transversal.
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Since countable intersections of residual subsets are residual, in Theorem 2.1
we can replace Q by a residual invariant subset in J Sk (n). Also, using the natural
projection 7 : Jsk ) — Jsk (n) by truncation, in Theorem 2.1 one obtains a
residual subset O C R" (M) for any r > k + 1.

3. Elliptic closed geodesics

We say that a periodic orbit is g-elliptic if its linearized Poincaré map has 2¢
eigenvalues of modulus 1 and is elliptic if it is g-elliptic for some g > 0.

Suppose that 6 is a g-elliptic periodic point, ¢ <n. Let P = dgP (X, 0) be its
linearized Poincaré map. Let Ty X = E* @ E* & E° be the decomposition into the
stable, unstable and center subspaces for P. This is, ES, E* and E€ are invariant
under P and P|gs has only eigenvalues p of modulus |p| < 1, P|g« has only
eigenvalues p of modulus |p| > 1 and P|gc has only eigenvalues p of modulus
|p| = 1. Then there are local embeddings W¥ : (R?,0) — (X, 0), W : (R?,0) —
(2,0), p=n—qand W¢:(R??,0) — (X, 0), such that TyW* = ES, TyW¥ = E¥,
ToW€¢ = E€ which are locally invariant under # = P(X, 0), i.e. PWS, PWH,
PWE are locally equal to W*, W¥, W€ respectively; see Hirsch, Pugh, Shub [18].
They are called stable, unstable and center manifolds for (X, #). The stable and
unstable manifolds are unique, but the center manifold may not be unique. If P is
of class C¥ (resp. C°°) then W*, W¥, are ck (resp. C®°). If P is of class ck
(resp. C®) then W€ can be chosen C* (resp. C”, with r arbitrarily large) on a
sufficiently small neighborhood of 6. The submanifolds WS, W* are isotropic with
respect to the canonical symplectic form w (i.e. @|ws = 0 and w|w« = 0) because
P preserves @ and d% (resp. d %~ ') asymptotically contracts tangent vectors in
WS (resp. W¥). The restriction w|gc is nondegenerate (see Robinson [34]) and
hence P |« is a symplectic map on a sufficiently small neighborhood of 6.

Let p1,...,p4:P1, ..., Pq be the eigenvalues of P with modulus 1. We say
that 0 is 4-elementary if

q q
) H p;" #1 whenever 1< Z lvi| < 4.
i=1 i=1
In this case there are symplectic coordinates (X1, ..., Xg; Y1, ..., Yq) in W€ such
thatw|pe =>"7_, dy; Adx; and P|ye is written in Birkhoff normal form P (x, y) =
(X,Y), where

. q
4) Zp =% 1 + g1 (2), ok(z) =ax + Y Brelzel*.
(=1

z=x+iy, Z=X+iY, pi =e>™ % and g(z) = g(x, y) has vanishing derivatives
up to order 3 at the origin. We say that 6 is weakly monotonous if the matrix By
is nonsingular. The property det B¢ # 0 is independent of the particular choice of
normal form. In these coordinates, the matrix B, can be detected from the 3-jet
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of ® at 6 = (0,0) and it can be seen that the property {(3) and det 8y, # 0} is
open and dense in the jet space J23(q).
Consider the following maps

(X,y) B (9,,0) B (9,)02/8):(0,7')

D* L>TF‘IX[R3_L> Tqu[Ril_]|r

fl ng
P R

D* — T9xRT ——  T9xR%

where D = { (x,y) e RI xRY : |x]? + |y|> <1}, D* =D\ {(0,0)}, f = P|we
in the above coordinates, T¢ = R?/74 and P! is given by x; = p; cos(276;),
yi = p; sin(27 ;). Since the coordinates in Birkhoff normal form are symplectic,
the map f preserves the form w := )", dx; Ady; =dx Ady. Let Q = Ro P :
D* — T9 x [R{?F be given by Q(x,y) = (0,r), ri = ,ol.z/e. Then Q*(rdf) =
ﬁ(x dy — ydx) =: Ae. Since D is simply connected, f*(As) — A, is exact.
Therefore F*(r d6) —r d6 is exact.

Let G¢(0,7) := (6 +a + ¢ B r,r) be the symplectic diffeomorphism given
by the first term in (4) in the coordinates (6,r). Its N-th iterate is given by
Gév (6,r) == (0 + Na + e NBr,r). This is a totally integrable (cf. Arnaud [3,
p. 11]) weakly monotonous (i.e. det(e NB) # 0) twist map of T? x [Riz_. Let
Bs :={reRL : Y>;(ri - ﬁ)z < 82}, In [28] (see also Moser’s Appendix
3.3 in [20] or Arnaud [3, Chap. 8]) J. Moser proves that given n > 0 there exist
6 >0, N € N and ¢ > 0 such that

(i) ||F¥N=G¥|ci<n in T9xBs.

(i1) There exists a torus I radially transformed by FSN in T? x Bg, i.e. 9 =
{(6,7(0)) : 0 €T9} CT9xBg such that FN (6, 7(6)) = (6, R(6)) for some
R:T?—>R%.

Let Sy be a generating function for FSN ,i.e. a function Sy : T? x Bs — R
such that dSy = (FSN )* (r d6) —r d6. On the radially transformed torus 79 we
have that

dSn(0,r(0)) = (R(0)—r(0))d6.
Then critical points of dSy |g4 correspond to fixed points of F¥ in 79. Therefore
FSN has at least ¢ — 1 = cup length(7?) fixed points on 9. If Sy is a Morse
function then F, 8N has at least 29 fixed points.

Let Q C J2(n) be the set of 3-jets of C3 symplectic automorphisms 7 of
R" x R"™ which fix the origin and are such that

(i) The eigenvalues of doT are all different.

(i) The eigenvalues of modulus 1 satisfy the 4-elementary condition (3).
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(iii) The coefficients of the Birkhoff normal form (4) satisfy the weakly monoto-
nous condition det By # 0.

Theorem C. Let Gg be the set of C* riemannian metrics on M such that

o The k-jet of the Poincaré map of every closed geodesic of g (and its multiples)
belongs to Q.

e All heteroclinic points of hyperbolic closed geodesics of g are transversal.
Then
(i) %o contains a residual set in R* (M) for all k > 4.

(i1) If the geodesic flow of a metric g € 4o contains a nonhyperbolic periodic orbit
then it contains a nontrivial hyperbolic set; in particular hyp(g) > 0.

Proof. Since Q is residual and invariant in all J, f (n), £ = 3, by Theorem
2.1 the set %o contains a residual subset in ®¥ (M), k > 4. Now suppose that
g € 9o contains a nonhyperbolic periodic point § € S& M. We will prove that arbi-
trarily near to 6 there is a hyperbolic periodic orbit with a transversal homoclinic
point. Then (see e.g. [19, p. 276]) there is a hyperbolic horseshoe containing the
homoclinic point.

Observe that it is enough to find a 1-elliptic periodic point. For in that case
the Poincaré map restricted to the 2-dimensional central manifold W€ will be a
Kupka-Smale twist map which has hyperbolic orbits with homoclinic points (see
Le Calvez [23, Rems. p. 34]).2 This hyperbolic periodic orbit will be hyperbolic
in the Poincaré section (cf. Arnaud [3, lemme 8.6]). A homoclinic point in the
central manifold is also a homoclinic point in the Poincaré section, and it must be
transversal by the Kupka-Smale condition on 4.

Now suppose that there is a g-elliptic periodic point 8 with ¢ > 1. As stated
above, Moser proves that there is a subset T¢ x Bs near 6 and an iterate N € N such
that the N -th iterate F, 8N of the Poincaré map F = P|w. is a weakly monotonous
twist map with fixed points which is C! near to a totally integrable twist map
Gév . In this case Theorem 4.1 below says that F' has a 1-elliptic periodic point 6.
Since the central manifold is normally hyperbolic, by lemme 8.6 in Arnaud [3], the
periodic point 8 will also be 1-elliptic for the whole Poincaré map # : ¥ — ¥. O

4. Symplectic twist maps on T” x R”

In this section we use the techniques developed by Arnaud and Herman in [3].
Let T" = R"/Z" with its inherited addition. On T” x R" we use the coordinates
(0,r)eT"xR". Let A =rdf =), r; dO; be the Liouville 1-form on T" x R" =
T*T". The symplectic form on T" x R" is w = dA = dr A d6. Under the natural
identification T(g ) T" x R" = R" xR", the symplectic form is written as w(x, y) =

21n fact for such a twist map all hyperbolic periodic orbits have homoclinic points; see
Mather [27] or Franks and Le Calvez [14].
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x*Jy, where J = [_01 (I)] A C! diffeomorphism F : T" x R* — T" x R” is
symplectic if F*@w = w. This is equivalent to (dF)*J(dF) = J. It is exact
symplectic if F*A — A is an exact form. It is weakly monotonous if when writing
F(0,r) = (0, R), we have that det %—(;) #£0.

The torsion of F is b := %—?. The torsion is not necessarily symmetric and its
symmetrization b + b* may be singular. We say that the rorsion is positive definite,
negative definite, of signature (p,q) if b + b* is positive definite, negative definite,
of signature (p, q). Here signature (p, g) means p negative eigenvalues, g positive
eigenvalues and n — (p + q) zero eigenvalues.

A C! diffeomorphism G : T" x R” — T" x R" is completely integrable if it
has the form G(6,r) = (6 + B(r), r) for some B € C(R",R*) with 8(0) = 0.
If furthermore G is symplectic then its torsion g—r is symmetric. In this case
G*A— A =rdp is exact because it is a closed form in R”.

Throughout this section, F' will denote a weakly monotonous, exact, symplec-
tic C” diffeomorphism, r > 1 which is C! near a totally integrable, symplectic
map G.

Observe that for the totally integrable map G, the zero section T” x {0} consist
of fixed points. We look for fixed points of F near T” x {0}:

1. First we construct a radially transformed torus T = Graph(n) by solving
F(0.1(0)) = (6, %).
We can do this using the implicit function theorem applied to the equation
®0,n0), F)=20,

where F(6,r) = (0, R); we can continue the solution ng = 0 for G because
of the weakly monotonous condition det [%—?] = 0. The function n is C" if F
isC".
2. Since F is exact symplectic, there is a generating function S : T" x R" — R
such that
dS=F*A—A=Rd®—rdb.

On the radially transformed torus %,
dS|s=(R—r)do.
Therefore a fixed point of F'is a critical point for S in €. We define the radial
Sfunction p = L(F) : T" —> R as
©) ¢(0) = S(6.7(0)).

Since ¢ is C1, F has at least n + 1 = cup length(T") fixed points. If ¢ is a
Morse function then F has at least 2" fixed points.

LetQ CJ S3 (n) be the subset defined by conditions (i), (ii), (iii) in Section 3.
We say that the diffeomorphism F : T x R"” <= is Kupka-Smale if
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(i) If z is a periodic point of F with period® m then DF™(z) € Q.
(i1) All the heteroclinic intersections of hyperbolic periodic points are transversal.
THEOREM 4.1. If F : T" xR" — T* xR" is a C* Kupka-Smale weakly
monotonous exact symplectic diffeomorphism which is C' near a symplectic com-
pletely integrable diffeomorphism G, then F has a 1-elliptic periodic point near

T" x {0}. In particular, there is a nontrivial hyperbolic set for F near T" x {0}
and hyp(F) # 0.

LEMMA 4.2 (M. Herman). Let M = [? Z ] € R?"2" be a symplectic matrix
witha, b, ¢, d € R"" and det(b) # 0. For A € C, let

My :=b"ta+db -2 A"t 7hH* .
Then
rank (A I — M) =n +rank M.
In particular A is an eigenvalue of M iff det M) = 0.
Proof. Since M is symplectic, M*JM = J. Therefore a*c = c*a, b*d =
d*b and a*d — c¢*b = I. This implies that

(6) —b YWY =c—dbla.
I 0
When P = [d b1 I}’
L -1 . a—l—bdb_l b
N:=P MP—|: —b-Yy* ol

If (v1,v2) is an eigenvector of N with eigenvalue A, then vy = —A~1 (b~ 1)*v,
and

G la+db ' =2t H*—Ab H v =0. O

A periodic point z for F of period p is said to be nondegenerate if 1 is not
an eigenvalue of DF?(z). Observe that if F is Kupka-Smale then all its periodic
points are nondegenerate.

LEMMA 4.3. Let ¢ = L(F) be the radial function (5) on the radially trans-
Sformed torus X. At a fixed point (8, 1(0)) for F on X, with M = DF (6, n(9)),

M, =D%*@)+(1-)b 1 +1-2"H B H*
If the fixed points of F are nondegenerate then ¢ = L(F) is a Morse function.

Proof. From the equation ® (6, n(6)) = 6 for ¥ we get Dn(9) = b~ (I —a).
Now, Dp(8) = dS|z = R(0, n(0)) — n(8). Therefore, by (6),

(7) D?>¢p(0)=c+db "I —-a)-b "I —-a)=b"ta+db ' =b" 1= (b1 .
This implies the formula.

3 The integer m is not necessarily the minimal period of z.
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If A = 1 is not an eigenvalue of M, by Lemma 4.2, My_; = D?p(#) is
nonsingular. U

LEMMA 4.4. If z € T is a fixed point of F then there is a polynomial P € R[x]
of degree n such that A is an eigenvalue of DF(z) iff PQ—A—A"1) =0.
The leading coefficient of P is a, = detb™!, where b = %—(? is the torsion at

z and the independent term of P is ag = det D2¢(6).

Proof. From Lemma 4.3, det(M},) is a polynomial on x = (1 — A) and
y = (1 —A~1) with maximal exponent n. Since M; /» = M, this polynomial is
symmetric on x and y. Therefore it can be written as a degree n polynomial on
the variables x +y = xy =2—-A—A"1

Write w =2—A—A"!. Then w =0iff A = 1. Since P(2—A—A"1) =det(M},),
from Lemma 4.3, a9 = P(w = 0) = det D?¢(6).

Since w = (1—=21)(1 =171,

M;, __Dz<p(9)_F b7t ThH®

w w 1—A-1 1—1°
The leading coefficient of P is
P M
4= tim L) _ mndan)=®w*. 0
w—>+oo wh A—>—00 w

Proof of Theorem 4.1. If n=1 then F is a twist map of the annulus S!x R,
which is Kupka-Smale. These maps have 1-elliptic periodic orbits (which are min-
imax critical points of the generating function) and also hyperbolic points with
transversal homoclinic intersections (see Le Calvez [23, Rems. p. 34]).

Assume that n > 2. We shall prove that F contains a fixed point z¢ of ellip-
tic x hyperbolic type, i.e. a go-elliptic point with 1 < gg < n. Using the Birkhoff
normal form about that point and Moser’s theorem as in Section 3, we obtain a new
map Fy, : T9° x R90 < satisfying the hypothesis of Theorem 4.1. Then Fy, has a
fixed point z1 which is g1 -elliptic with 1 < g1 < go. The map Fy, is conjugate to an
iterate of F' on a piece of the central manifold of zg which is normally hyperbolic
(see Arnaud [3, lemme 8.6]). Therefore z; is a g;-elliptic periodic point for F'.
Inductively obtain a sequence z, . .., z, of periodic points for F', where z; is g;-
ellipticand n > qo > g1 > -+ > qm = 1. The point z,, is a 1-elliptic periodic point
for F. Applying the case n =1 to its central manifold which is normally hyperbolic
one obtains a totally hyperbolic periodic orbit for F' with a homoclinic orbit. The
homoclinic intersection is transversal by the Kupka-Smale hypothesis on F.

Write w = 2— A — A~ . Observe that

A=1 iff w=0,
A eS! iff w e |0,4],
reR iff  w e R\]0, 4],

AeC\(RUSY) iff weC\R,
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where S! = {w € C : |w| = 1 }. The completely integrable map G has all its fixed
points degenerate, with A = 1 and w = 0. Since we are assuming that F is C!
near G the eigenvalues A of DF at the fixed points in ¥ are near 1 and w is near 0.
From now on we can assume that |w| < 4.

Let z € ¥ be a fixed point of F. Let A1, )Ll_l, e An, )L;l be the eigenvalues
of DF(z). Let w; =2—24; —A7', 1 <i <n. By Lemma 4.4

(8) (=1)" (detb) det D?@(0) = wy - - wp.

If some w; € C\ R then the complex conjugate w; = w; for some j # i. Since
w; w; = |w;|? > 0, if the product in (8) is negative then there are at least two (real)
hyperbolic eigenvalues for DF(z).

Since the completely integrable map G is symplectic, its torsion bg := % is
symmetric. Therefore by LS (by hy*x = 2by 1 is nonsingular. Since F is C! near
G, we can assume that b~ + (h~1)* is nonsingular.

For the completely integrable map G we have that ng =0, og =0, cg =
g—g =0,ag = %—? = ]. Since F is C! near G, from (7) we have that D?¢(6) is
near 0. Therefore we can assume that || DZ¢(6)| is so small that

©) D2p@) +2[b7" + (1)

has the same signature as [h~! + (b™1)* ], where b = %—(;) is the torsion for F.
Since ¢ is a Morse function on T”, for any 0 < p <n there are (;’,) critical

points 6 of ¢ where D?¢(6) has signature (p,n — p). Suppose that the signature

of b= 4+ (b™1)* is (¢, n — q) and the signature of D% () is (p,n — p). Consider

the map [0, 7] 3 « |i> M, i corresponding to A = e¢’® € S!. Observe that
N(a) = Mo = D2p(0) 4+ (1 —e'*) b~  + (1 —e™'*) (b~ 1)*
is an hermitian matrix and that it has real eigenvalues. By Lemma 4.3,
N(0) = M;—; = D?>p(0) has signature (p,n — p),
By the hypothesis in (9),
N()=My—_, = D?p(0)+2[b~' +(b™1)*] has signature (g.n —q).

Therefore there are at least | p —¢| values of A = ¢’®, « € [0, 7] where det M, = 0,

counting multiplicities (by dim ker M}). Thus DF(z) has at least 2 | p — ¢g| eigen-

values of modulus 1, considering the complex conjugates A = e ~'%, —¢ € [, 0].
Let o :=sign [ (—1D)" deth ] If

(10) sign[(—1)" (det b) det D*¢(0)] = o (-1)? <0,

by (8) there are at least two (real) hyperbolic eigenvalues for DF(z). Therefore if
(10) holds and | p —¢| > 1, the fixed point z is of elliptic x hyperbolic type. These
conditions are satisfied in the following cases:
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(a) Ifo <0, for (10) we want p even:

If g # 0, take p = 0;
If ¢ =0, since n > 2, take p = 2.

(b) Ifo >0, for (10) we want p odd:

If g # 1, take p = 1;
Ifg=1andn > 3, take p = 3.

In the case 0 > 0, g =1 and n = 2 take p = 1. Then from (8) and (10) we
have that w; w < 0. Then w;, wy € R because otherwise they would be complex
conjugates. Say w; < 0, which gives two hyperbolic eigenvalues, and w, > 0. But
then 0 < wy < 4 because we are assuming that F is C! close to G. This gives two
elliptic eigenvalues and hence z is of elliptic x hyperbolic type. O

5. Coordinates and general perturbations

Let M"*! be a closed manifold of dimension n 4 1. Given a riemannian
metric g for M, denote by 7 : S8 M — M its unit tangent bundle, by ¢¢ : SE M —
S&M its geodesic flow and by X, the vector field of ¢&. Fix a C*° riemannian
metric g and denote by SM its unit tangent bundle, which we call the sphere
bundle. For any riemannian metric g, the map SM — SEM, 0 — 0/|6|; is a
diffeomorphism. Without loss of generality we shall assume that all the riemannian
metrics in the paper have injectivity radius larger than 4.

Denote by %K (M), k € NU {+o0} the Banach manifold of C* riemannian
metrics with the C* topology. Let X*(SM) be the set of C* vector fields on the
sphere bundle S M with the C* topology and F* (S M) the set of C¥ flows on SM
with the C* topology.

In a local coordinate chart, the geodesic equations read

B =) Tf xix;,
ij
where the Christoffel symbols

0g¢j | 9gi¢  98ij _

k kt kt

rhoo =4 20k (4 D) e =gy
L

depend only on the 1-jet of the riemannian metric g. Thus the map R%(M) —
X1(SM), g+ X, is continuous. This implies that the map R?(M) > g — ¢p& €
F1(SM) is continuous. In particular, the derivative of the geodesic flow dgp?
depends continuously on g € R%(M).

Fix a riemannian metric go on M and assume that the injectivity radius of gg
is larger than 4. We now introduce Fermi coordinates along a geodesic arc c(¢), t €
[—1, 1] with unit speed. All the facts that we will use about Fermi coordinates can
be found in [15], [20]. Take an orthonormal frame { c¢’(0), ey, ..., ey} for TeoyM.
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Let ¢; (¢) denote the parallel translation of e; along c. Consider the differentiable
map @ : [—1, 1] x R" — M given by

n
O(t, x) = expe(y) [Z X; e; (t)].
i=1

This map has maximal rank at (¢, 0), t € [—1, 1]. Since ¢ (¢) has no self-intersections
on t € [—1, 1], there exists a neighborhood V of [—1, 1] x {0} in which ®|y is a
diffeomorphism.

Let [go(?, x)];; denote the components of the metric gg in the chart (P, V).
Let (n) C R™" be the manifold of symmetric matrices. Let o : [—1, 1] x R” —
F(n) be a C*° function with support in a neighborhood of [—1, 1] x {0}. We can
define a new riemannian metric g by setting

n
goo(t,x) = [go(t. X)]oo + Y o;j(t,x)x; xj;
ii=1

11 .

(in goj(t,x) =[go(t,X)]oj, 1=j=<mn;
gij(t,x) =[go(t,x))ij, 1=<i,j=<n,

where we index the coordinates by xo = ¢ and (x1,...,x,) = x.

For any such metric g we have that (cf. [15], [20]):
g7 (t,00= g;00 =8&;, 0<ij<n;
0k g7(1,0) =0 gi;(1.0)=0,  0=i.jk=n:
where [g'/] is the inverse matrix of [g;;].
We need the differential equations for the geodesic flow ¢; in hamiltonian

form. It is well known that the geodesic flow is conjugate to the hamiltonian flow
of the function

1 .
Hx,y) =753 g7 () yiy;.
i’j
Hamilton’s equations are
%xi:Hyi:Zgij(x)yj, %yk:_ka:_%Zigc_kgij(x)Yiyj'
J i,J

Observe that for all such metrics g the curve c(¢) is a geodesic and the orbit y(¢) =
(c(?),¢(1)) is given by the coordinates xo =¢,x =0, yo=1, y =0.

Using the identity < (d¢;) = (dX o ¢;) - d¢;, with X = L¢,| _ . we ob-
tain the differential equation for the linearized hamiltonian flow, on the orbit y(¢),
which we call the Jacobi equation:

o g B [ P 1
(l,x=0) b _H_x_x _H_xy b 8_% 0 b ’

(12)

dt
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where K(t) € R™" is a symmetric matrix given by

2 2
(13) K(0)ij = 25255 ¢%0(1.0) = =1 52— 00 (. 0).

Let

2
Ko(r) := 3353 80" (1.0) € S ().
It is easy to check that
(14) K(t) = Ko(t) —a(z,0).
By comparison with the usual Jacobi equation we get that

(15) K(1)ij = (Rg(¢(2),ei (1)) ¢(1), €j(1))g.

where Ry is the curvature tensor for the metric g. We call K(0) the Jacobi matrix
or the matrix of sectional curvatures of the orthonormal frame {¢(0), e1,...,ex}.
If we change the frame {¢(0), e, ..., e} to another orthonormal frame

{¢(0),uy,...,un}

with u; = Zj gij ej, the matrix Q = [g;;]nxn is orthogonal and the matrix K(z)
changes to Q K(¢) Q*. Therefore we have a well-defined map Ky : S§M —
F(n)/ o), Kg(¢(0)) =[K(0)], from the unit tangent bundle for g to the conjugacy
classes of ¥(n) by the orthogonal group. In particular, the set of eigenvalues of
K¢ (¢(0)) is well-defined.

6. A generic condition on the curvature

In order to state the perturbation lemma in Section 7 we need to choose a
metric in which every geodesic segment of length % has a point in which the Jacobi
matrix (15) has no repeated eigenvalues. In this section we prove that such a
condition is generic.

Recall that %2 (M) is the manifold of C? riemannian metrics on M endowed
with the C? topology. Given g € ®2(M), define as in Section 5 the map K :
SEM — F(n)/ on) by Kg(8) = [K] where

Kij =(Rg(0.¢ei)0.¢j)r(0)

where {0, e1, ..., ey} is any orthonormal basis for T g)M . Let h : F(n)/ on) —
[0, +o0[ be the function
(16) h(KD = [] Gi-2p)>

1<i<j<n

where A1, ..., A, are the eigenvalues of K. Let H : R?(M) — [0, +o0[ be

R : g
(17) H(g):= pmain tg[l(ﬁ]h(Kg(qﬁt (6))).

In this section we prove the following:
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THEOREM 6.1. The function H : R*(M)— [0,400][ is continuous and the set

G :={geR*(M)|H(g)>0}

is open in R2(M) and 61 N RX(M) is dense in R(M).
Proof. Define the function i1 : ¥ (n) /o (n) — R by h([A]) := (—1)" det[Dp4(A)],
where p4(x) = det(x] — A) is the characteristic polynomial of a representative
A € F(n), Dpy is its derivative and m = (g) = @ It is easy to see that &

is well defined and, by calculating its value on a diagonal representative of [A] in
Ef(l’l)/o(n), that

h([A]) == (=)™ det[Dpa(D] =[] =242
1<i<j<n
where the A;’s are the eigenvalues of the class [A]. Moreover, the function /% is
continuous.
In a coordinate chart, the curvature tensor

ad
R(Bxl ’ 8x, 3xk ZRuk EET
ijk

s _ L s { s Ak BI‘;k
Riik = Z i Ui — Z Ui Uie + 5 — o
¢ ¢

depends only on the 2-jet of the riemannian metric. Thus the Jacobi matrix K (6)
depends continuously on g € R2(M).
Define the map I<: R2(M) x SM x [0, 1] — S (n)/ o(n) by

(18) K(g. 6.1) == Kg[¢F (1))

Since both / and I are continuous and S M is compact, the function H : R%*(M ) —

[0, 400 defined in (17) is continuous. Hence ; = H 1 (R™) is open in RZ(M).
Let FM — M be the frame bundle over M :

FM ={©®=(6y,6i,....0,)e(TxM)" ™| x € M, © is a g-orthonormal basis }.

Let J¥$(n) be the k-jet bundle of curves in ¥(n), i.e. JKS(n) is the set
of equivalence classes of smooth curves a :| — ¢, e[— F(n) under the relation
ai ~ ay iff there is a smooth chart ¥ : U — R? for ¥(n) about a;(0) such that
D7 (Y 0ay)(0) = D/ (Y 0ay)(0) forall j =0,1,...,k, where d := dim ¥ (n) =
@. Then J*¥%(n) is a smooth bundle over ¥(n) whose fiber is the set Py g of
polynomials p : R — R? of degree < k with p(0) = 0. Therefore

(19) dim J¥F(n) = dim$(n) + dim Py g =d + kd = (k + 1) d.
Consider the map K : R (M) x FM x R — ¥(n) defined by
K(g.0.1)ij 1= (Rg (65 (1), 67 (1)) 05 (1). 67 (1)) .

where ©8 = (6§, G‘Ig ,...,0%) is the g-orthonormal frame obtained from ® by the
Gram-Schmidt process and ©2 (1) is its g-parallel transport along the g-geodesic
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c(t) = n(¢f(9§)). Let % : RO (M) x FM — J*%(n) be the jet extension of K,
ie. H(g,®) = J*a(0) is the k-jet of the curve a(r) := K(g,®,1) att = 0.

The perturbation given in Section 5 and formula (14) show that any smooth
path a(t) on F(n) or J*S(n) with a(0) = K(g., ©, 0) can be realized by a smooth
perturbation of the metric g which preserves the geodesic at 95 . Therefore the
map J is a submersion for any k > 0.

Now consider the set ¥ C ¥(n) of symmetric matrices with a repeated eigen-
value. It is an algebraic subset of (1) ~ R? because it is the set of zeroes of the
polynomial map 4 : ¥(n) — R, h(A) = (—1)" det[Dp4(A)]. Since the polynomial
h is nonconstant, ¥ has positive codimension r > 0 in ¥(n). This is, since X is
an algebraic set, it has a Whitney stratification by submanifolds of ¥(n), whose
maximal dimension is d —r. Let J¥ X C J¥%(n) be the set of k-jets of C curves
in ¥(n) whose image is in X.

Define the arc space £(X) of X as the set of formal power series £(¢) =
Y20 di ¢, with a; € $(n) and one parameter ¢, such that 2(£(t)) = 0. For k € N,
let £; (%) be the set of polynomials p(t) = Zf:o a; t' of degree < k in ¥(n) such
that 2(p(¢)) =0 mod t*+1. We have a natural projection 7ty : £(X) —> L (X)
given by truncation. We also have a natural injection JX = < 74 (£(Z)) given
by the Taylor expansion of the curves up to order k. Thus we have the inclusions
JES C mi (B(D)) € L (D) € TkF(n).

The set £ (X) is algebraic because it is the set of zeroes of finitely many
polynomials. The set 5 (£(X)) is constructible (cf. Denef and Loeser [10, p.
202]); i.e., it is obtained by unions and subtractions of finitely many algebraic sets.
Each of those algebraic sets has a Whitney stratification, therefore 73 (£(X)) is a
union of countably many submanifolds of J k<(n). The dimension of 7 (£(2))
is the maximal dimension of those submanifolds. By Lemma 4.3* in Denef and
Loeser [10], dim 77z (£(X)) < (k+ 1) dim ¥ < (k 4+ 1)(d —r). Also in Proposition
A.1 in the appendix, we prove that dim J¥X < (k 4 1) dim =, which is enough
for our argument. Therefore, from (19), the codimension of 73 (£(X)) in J*¥(n)
satisfies

lim codim 7, (£(X)) = +o00.
im codim i i (£(5))

Since the function ¥ is a submersion, it is transversal to each stratum 7' of
7, (£(X)). By Theorem 19.1 in [1] there is a residual set 7 C R°°(M) such
that for all g € @7, the maps #(g,-) : FM — J¥%(n) are transversal to 7. Since
codim kg Tk (£(X)) = k + 1, if k + 1> dim FM and g € D, then the image
of H(g,-) does not intersect T'. Since there is a countable number of strata, inter-
secting all those residual subsets we get a residual set 99 C R (M) such that for
g € Dy, the image of H(g, -) is disjoint from 73 (£(X)) and also from Jks.

“4This estimate on the dimension may not be satisfied for £ (%), at least for small k; see examples
in Veys [36].
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Since R*°(M) is a complete metric space, the residual set @ is dense in
RC(M). We now prove that H > 0 on %g. Then %; contains a dense set in
RC(M). Let g € Dg. Suppose that H(g) = 0. Observe that both, the maximum
and minimum in (17) are attained. Since the function / in (16) is nonnegative, there
exists 0 € S8 M such that h(K ¢ (¢f (9))) =0 forall t € [0, %] Let g € SM be such
that p/|00|g = 0, and let ©® € FM be a frame whose first vector is 6. Then the
C®curvec(t):=K(g,0,t)e X forallt €0, %] Hence % (g, ©®) = Jkc(0)e J*=.
This contradicts the choice of g € 9. O

7. Franks’ lemma for geodesic flows

Let y = {¢% (v) |t € [0, 1]} be a piece of an orbit of length 1 of the geodesic
flow ¢tg of the metric g € R*°(M). Let o and X; be transverse sections to ¢8
at v and ¢¥ (v) respectively. We have a Poincaré map %, (29, X;, y) going from
3o to 2. One can choose 3¢ and 3; such that the linearized Poincaré map

Pe(n)(1) E duP4 (S0, Tt 7)

is a linear symplectic map from N := N (v) DN (v) to Nt := N (¢ (v)) DN (¢% (v))
and

Pe(y)(1)(J(0), J(0)) = (J(1). J (1)),
where J is an orthogonal Jacobi field along the geodesic m o y and J denotes the
covariant derivative along the geodesic. Fix a set of Fermi coordinates along o y.
Then we can identify the set of all linear symplectic maps from N¢g to N; with the
symplectic group

Sp(n) :={X e R"" | X*JX =0},

where J =[ _9 1.

Suppose that the geodesic arc 7 o y(¢), t € [0, 1], does not have any self-
intersection and let W be a tubular neighborhood of it. We denote by R*°(y, g, W)
the set of metrics g € R°° (M) for which y is a piece of orbit of length 1, g = g
on Y ([0, 1]) and such that the support of g — g lies in W.

When we apply the following Theorem 7.1 to a piece of a closed geodesic
we may have self-intersections of the whole geodesic. Given any finite set of non-
self-intersecting geodesic segments § = {71, ..., Im}, defined on [0, 1], with the
following properties:

1. The endpoints of n; are not contained in W;
2. The segment 7 o y|[o,1] intersects each n; transversally,

denote by R>®°(y, g, W, §) the set of metrics g € R>°(y, g, W) such that g = g in
a small neighborhood of W N UYL 7; ([0, 1]).

Consider the map S : R (y, g, W) — Sp(n) given by S(g) = Pz(y)(1).
The following result is the analogue for geodesic flows of the infinitesimal part

of Franks’ lemma [13, Lemma 1.1] (whose proof for general diffeomorphisms is
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Figure 1. Avoiding self-intersections.

quite simple). A difference with the case of surfaces in [8] is that here we ask the
original metric go to be in the residual set ¢; obtained in Theorem 6.1.

THEOREM 7.1. Let go € 61 NR" (M), 4 < r < 0o. Given U C R*(M) a
neighborhood of gg, there exists § = 8(go, W) > 0 such that given g € WU, y, W

and § as above, the image of U NG NR" (y, g, W, §) under the map S contains
the ball of radius § centered at S(go).

The time 1 in the preceding statement was chosen to simplify the exposition
and the same result holds for any time 7 chosen in a closed interval [a, b] C ]0, +o0],
now with 6 = 8(go, U, a, b) > 0. In order to fix the setting, take [a, b] = [%, 1] and
assume that the injectivity radius of M is larger than 4. This implies that there are
no periodic orbits with period smaller than 8 and that any periodic orbit can be cut
into non-self-intersecting geodesic segments of length ¢ with t € [%, 1]. We shall
apply Theorem 7.1 to such segments of a periodic orbit choosing the supporting
neighborhoods carefully as we now describe.

A closed geodesic is prime if it is not the iterate of a shorter closed geodesic.
Given g € R" (M) and y a prime periodic orbit of g let T € [%, 1] be such that
mt = period(y) with m € N. For 0 <k <m, let y;(¢t) := y(t + k) with ¢ € [0, 7].
Given a tubular neighborhood W of roy and 0 <k <m let Sg : R"(y, g, W) —
Sp(n) be the map Sk (8) = Pg (yi) (7).

Let Wy be a small tubular neighborhood of yg contained in W. Let Fy =
{77(1), oo o) be the set of geodesic segments 7 given by those subsegments of y
of length T whose endpoints are outside Wy and which intersect yq transversally
at n(t/2) (see §1). We now apply Theorem 7.1 to yg, Wy and Fy. The proof
of this theorem also selects a neighborhood Uy of Wy N Ul'-"zo1 r)?([O, 7]). We now
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consider y; and we choose a tubular neighborhood W; of y; small enough so that
if Y1 intersects yg transversally, then W) intersected with Wy is contained in Uy
(see §1). By continuing in this fashion we select recursively tubular neighborhoods
Wo, ..., Wiu—1, all contained in W, to which we successively apply Theorem 7.1.
This choice of neighborhoods ensures that there is no interference between one
perturbation and the next. In the end we obtain the following:

COROLLARY 7.2. Let go € 41 NR" (M), 4 <r < oo. Given a neighborhood
WU of go in R>(M), there exists § = 8(go, W) > 0 such that if g € U, y is a prime
closed orbit of 8 and W is a tubular neighborhood of ¢ = 1 oy, then the image of
UNG NR"(y, go, W) — H?:_(}Sp(n), under the map (So, . .., Sm—1), contains
the product of balls of radius § centered at S (go) for 0 <k <m.

The arguments below can be used to show that g — g can be supported not only
outside a finite number of intersecting segments but outside any given compact set®
of measure zero in y. This is done by adjusting the choice of the function 4 in (30).

The nature of these results (i.e. the independence from the size of the neigh-
borhood W) forces us to use the C! topology on the perturbation of the geodesic
flow, thus the C? topology on the metric. The size §(gg, W) > 0 in Theorem 7.1
and Corollary 7.2 depends on the C* norm of go and the value of H(go) from
Theorem 6.1.

The remainder of the section is devoted to the

Proof of Theorem 7.1. We first describe the strategy used in the proof. At the
beginning we fix most of the constants and bump functions that are needed. We
show that the map S is a submersion when restricted to a suitable submanifold of
the set of perturbations. To obtain a size § that depends only on g¢ and U and
that works for all g € U, y and W we find a uniform lower bound for the norm of
the derivative of S using the constants and the bump functions fixed before. This
uniform estimate can only be obtained in the C? topology.

The technicalities of the proof can be summarized as follows. To obtain a
C? perturbation of the metric preserving the geodesic segment ¢ = 7 o y one
needs a perturbation of the form (32), with a(z, x) = ¢.(x) p(¢) and @g(x) is a
bump function supported in an e-neighborhood in the transversal direction to ¢
and p(¢) is given by formula (33). The second factor in (33) is used to make the
derivative of S surjective. The function §(¢) is an approximation to a Dirac delta
at a point t = t where h(K(go.0,71)) > %H(go) and H is from Theorem 6.1.
This is done in order to solve equation (38), which is trivial when dim M = 2 (and
B € R). The first factor A (¢) is an approximation of a characteristic function used
to support the perturbation outside a neighborhood of the intersecting segments in
F=1{n1,...,0m}. Then inequality (27) shows that if the neighborhood W of c is
taken small enough, then the C? norm of the perturbation is essentially bounded

5But to use this argument to support g — g outside a given infinite set of geodesic segments of
length > % one needs to bound from below their angle of intersection with c.
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by only the C° norm of p(t). In order to bound the C? norm of p(¢) from (33) in
equation (27), we use the C* norm of g¢ to have a bound for the second derivative
of the sectional curvature Ko(¢, 0) of go along the geodesic c.

Since % is open in the C? topology, we can assume that AU is small enough
so that

UWNR"(y, g, W, F) CUNG NR(y, g, W, F).

By shrinking U if necessary, we can assume that there is ko = k(W) > 0 such that
the Jacobi matrices, given in (18), satisfy

(20) 1K(g. 0.0)|| < ko forall (g,0,t)€UxSM x|0,1].

Let k1 = k1 (W) > 1 be such that if g € U and ¢; is the geodesic flow of g, then
1) Idogpell <k and ||dggp; || <kr forallz € [0,1]

and all 6 € SéM. Given 0 < A K % let ko = ko (U, A) > 0 be such that )%1_% ka(A)
=0 and

(22) ||ldops —dodrll <kz and || dogp;" —dog; || <kz forall [s—1] <A,

s,t €[0,1],all g €U and all 6 € SglM. Choose A = A(AU) > 0 small enough such
that

(23) k1_2—2k1 k2>0.

Since g¢ € 91, there is ag > 0 such that H(gg) > 2a(2), where H is from (17). Con-
sider the map H, : R2(M)x SM x [0, 1] — R given by H»(g,0,t) = h(K(g, 0,1)),
where & is from (16) and K(g, 8, ¢) is from (18). Then H» is continuous. Let

Ao:=1{(0.1) € SM x[0,1] | H2(g0.0.7) = 24§ }.
Then Ag C SM x [0, 1] is compact and since H(ggo) > Za%,
Ao N ({9} X [%, %]) #@ forall 8 € SM.

Since H, is continuous, there is a neighborhood Ug C AU of gg in R?(M) such
that

Hy(g,0,t) > a(z) forall (g,0,t) € Uy x Aop.
Let v :=y(0) and fix T = 7(v,WUp) € [%, %] such that (v, t) € Ag. Then, if i # j,

(ko)™ D 3= 4,12 = 2 K(g, v, Ol )* "V A =42 = [[ (i =2,)* > a3,
i#]j

for all g € WUo, where m = (3) = @ and {A1,...,A,} are the eigenvalues of

K(g, 6,t). Therefore

(24) min [A; —Aj| > —

— =:ks.
iy T Qkoym 1 T
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Let
(25) ka:=max {k3', 1+4koks' 1, ko}.

Let § : [0, 1] = [0, +o00[ be a C*° function such that §(s) =0 if |[s—7| > A
and fol 8(s) ds = 1, where A = A(W) is from (23). The C* norm of § depends only
on AU and does not depend on t = 7(v).

By (23) there exists p = p(AU) > 0 such that

_ k1_2 —2k1ko —pk% ||5||C0 >0
kikq
Given ¢ > 0, let ¢, : R* — [0, 1] be a C* function such that p.(x) = 1 if
x €[4, 71" and g (x) = 0 if x ¢ [, 5]". In Lemma 7.6 we prove that @¢(x)
can be chosen such that

(26) ks :

Q7 Jee(x) x*p(1) x| c2 <ke | plico + eke I plict + & ke || pllc2

for some fixed k¢ > 0 (independent of &) and any p : [0, 1] — R™*" of class C2.
Let n = n(go,Up) > 0 be such that

(28) 4nks' ke llSllcs < % o
Let g9 = £9(go,Ug) > 0 be such that
(29) lg—gollcz2<e0 = g €Uo.

So far, the constants chosen above, excepting 7, do not depend on y or §. We
shall prove that the image of Ug by S contains the ball in Sp(#n) of center S(go)
and radius n = 1(go, W).

Let 2 : [0, 1] — [0, 1] be a C*° function with support outside the intersecting
points

supp(h) C 10, 1[\ (woy) [ UL, n;]
and such that

1
(30) / (1—h(s)) ds < p.
0
From (28), there is &1 = £1(go, o, ¥, §) > 0 such that
(1) k5'n(4ksll8lcs +8keer e 8llca + 16ks &7 1l cz 18llcs ) < eo.

Fix a Fermi coordinate chart (®, V') along the geodesic segment ¢ := mw oy
for the metric gg as in Section 5. Choose

e1 > &2 =€2(80.Uo, ¥, 5. W) >0

such that the segments 1; do not intersect the points with coordinates (¢, x) where
|x| < &2 and ¢ € supp(h) and such that [0, 1] x [—&32,&2]" C V and ([0, 1] x
[—82,82]") cw.
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nn+1) . .
Let ¥(n) ~ R 2 be the set of real n x n symmetric matrices. Let (¢, x)
denote a C*° function « : [0, 1] X [—&2, &2]" — F(n) with support contained in
v\ o hur 1 1i)- Let F be the set of C” riemannian metrics given by (11) en-

1=

dowed with the C? topology. One easily checks that & C R” (v, go, W, §). Let

OVO = @ﬂmo.

The Jacobi equation for the linearized geodesic flow on y for the metrics on
F is given by (12), where K(r) is given by (13). Its solutions (a(t), b(r)) satisfy
bo(t) =0 and ag(t) = aog(0) + ¢ bo(t). Observe from (11) that the conditions

ao(t) = &% (1,00ai(1) =0,  bo(t) = do(r) =0,

i=1

are invariant among the metrics g € & and satisfy (12). These solutions correspond
to Jacobi fields which are orthogonal to ¢(¢). In particular, the subspaces

Nt = {(a,b)eTc(,)TM|a0=b0=0} ~ R" x R"

are invariant under (12) for all g € &. From now on we reduce the Jacobi equation
(12) to the subspaces N;.
We need uniform estimates for all g € V. Fix g € V¢ and write

0 1
vt =[],
_K(t’ 0) 0 2nXx2n

where K (¢, 0) is from (13). Let X; = X;g = d(]ﬁf lxo : No = N be the fundamental
solution of the Jacobi equation (12) for g:

X[ :At Xt.

The time 1 map X is a symplectic linear isomorphism: X J X; = J, where J =
[_01 {)] Differentiating this equation we get the tangent space of the symplectic
isomorphisms Sp(n) at X1: Tx, ={Y € R*"*2" | X J Y is symmetric }. Observe
that, since X is symplectic, Jx, = X1 -J, and that J is the space of 2n x 2n

matrices of the form Y = [g —)/_Z}* ], where o, y € ¥(n) are symmetric n X n matrices

and B € R™" is an arbitrary n x n matrix. Since X; € Sp(n) is symplectic, the
map W — X! WX, is a linear automorphism of 7.
Write

S(n):={aeR""|a* =a},
S*(n):={d €F(n)|di; =0, Vi=1,....n},

AS(n) :={e e R™" |e* =—e}.
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PROPOSITION 7.3. Let F : $(n)? x $*(n) — Sp(n) be the map F(w) :=
X§ = dyd¥|ng, where w = (a,b,c;d) € $(n)? x F*(n),

n

(32) g=8w =280+ Z aij X xj dxo ® dxo,
ij=1
()l(t,X) = p(t) ‘Ps(x)’
(33) p(O)=h@)[ad(t)+b8 ) +c8"(t)+d 8" 1)].

Then if g, € Vo,
ldoF -C|| = ks ||C||  forall ¢e%P(n)?xF*@n)~ R21%+n.

Proof. Observe that the map w > g, is affine. Write g := g, and g” := g 4,¢,
¢t =(a,b,c;d), r € R. The Jacobi equation for g" along y is

(34) X, =A" X7,

where A" = [ 0 I] K" =K +7r p(t) and p(t) is from (33). Differentiating this
equation with respect to r, we get the differential equation for Z; := d);’r(z) ro
(35) Z=AZ+BX,

where A = [ X 0] and B = [p(()t) 8]. Here Z1 =dy,F - ¢C.
Write Z; = X; Y;; then from (34) and (35),

XY =BJX.

Since X7 (0) = I, we have that Z(0) = 0 and Y (0) = 0. Therefore

t
Y(t)=/ X1 By X; ds.
0

p=[pi] =3 »=[23)

Integrating by parts and using (34), we have

Write

1 1
/Xs_18’(s)BXsds=/ 8() [ X' Xs X' B Xy — X, 'BAX, | ds
0

/ 8(s) X; '[AB — BA]X, ds

/ 8(s)X b]Xsds.



GEODESIC FLOWS WITH POSITIVE TOPOLOGICAL ENTROPY 787
1 1
/ X;18"(s) C X ds=/ §() Xy [§ 2] Xy ds
0 0
1
:/O 56) X (AL5 %] - [ % 1A) X ds
1
:/O 56) X7 | Zikeery 8 | X ds.
1 1
[0 X718 (s) DX, ds :/O 8 () X[ kaSar) 3 | X ds
1
- —2d
I/O 8(s) X5 (A[—(Kdg-dK) % ]
0 —2d
_[—(Kd—i-dK) 0 ]A)Xs ds

1
=f0 8() Xy 1| TKAGAK O X ds.

Now,
36) W :=/1X;1&Xs ds=/18(s) X! [ﬁ V*} X, ds.
0 h(s) 0 a —p
Then we have
(37 a=a—(Kc+cK), y=-2c¢, B=b—-Kd-3dK.

We want to solve this system at s = 7 for a,b,c € $(n) and d € F*(n), where
a,y € £(n) and B € R™" is arbitrary. We start by separating § into a sum of a
symmetric and an antisymmetric matrix. Thus

_ *
(38) Kd—dK:ﬂ 2'3 .

Since k3 > 0 in (24), the next Lemma 7.4 shows that equation (38) has a solution
d € $*(n).

LEMMA 7.4. Let K be a symmetric matrix and let Lx : $*(n) — AS(n)
be given by Lx(d) := Kd —d K. Suppose that the eigenvalues A; of K are all
distinct. For all e € AS (n) there exists d € $*(n) such that Lx d = e and

< —el
mlnl‘#j |Al —A,J|

Proof. Let Q be an orthogonal matrix such that K = Q D Q*, where D =
diag(A1,...,A,) is a diagonal matrix. Define Fp : R"*" <= by Fg(a) := Q0% a Q.
Observe that Fp preserves both ¥(n) and .S (n).

Moreover, we have that

Lgd=¢ <+— LD(FQd)=FQ€.
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Thus
(39) Lg = Fo«Lp Fop.

Since Q is orthogonal, Fg is an isometry. Hence, from (39), it is enough to prove
that Lp restricted to $*(n) is a linear isomorphism and that

1
L cpk _IH < .
H plora | < min; ¢ j |A; — A

But writing the equation Lp w = h in coordinates, we have that
)L,'wij—wij)tjzhij, Vi,j=1,...,n,

which has the symmetric solution

1
A=A

for any antisymmetric . O

wij = hij . wii =0,

The rest of the solution to the system (37) is given by

(40) b=3(B+B)+2(Kd+dK),
(41) c=—37
(42) a=a—3(Ky+yK).

Consider the map 7 : ¥(n)3 x ¥*(n) — Iy,

T(a,b,c;d)= |:§ _Z*i|

given by the system (37). We want to estimate H 71 H Observe that

1Bl = sup (Bu.v)= sup (u.p*v)=|p"|.

[ul=|v|=1 lul=|v|=1
From (38), Lemma 7.4, (24) and (25),
B—B*
@3) PIPE = N I PRPTY

T min|A; —Aj| T k3
i#]
From (40), (20), (43) and (25),
Il < 1Bl +4ko lId]l < (1 +4ko k3 ") 1Bl < ka (8]l
Also, from (41), (25) and (42),
lell <yl <ka Nyl llall < llell +ko ¥l < ka max{{e| . [[y]}

D:= [ﬂ v ] =T().

Write

a —p*
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Since
1D = max{[le]| . (|8 v 113
we get
11l == max{{|al. 5]l llell 141} < ka [T
Thus
(44) IDI = 1T@) = £ IS
Write

1
Wi :=/ 8(s) X' D X; ds,
0
0(s):= X' D X; and P(s):=8(s) X; ' D X;.

Given a continuous map f : [0, 1] — R?"*2" define

Ou(fo0):= sup |f(s)— f(D)I.

[s—t|<A
Observe that
0,(/&. 1) = fllo Oa(g.7) + 0x(f. 0) g()],
where || f [l := supse[o,17 |/ (s)|. We have that
0,(Q. 1) = 02(X; DXy 1) < [ X7 Ou(DXs, 1) + 01X, 0) D] (| Xe |
<[ X7 I OA(Xs, ) + 02X ©) D] || X |
<2kiks |D].

<0x(Q.7) =2kikz ||D]|.

1
W1 = Q@) = H/O 8(s)[Q(s) = 0(v)] ds

1 1
/[h(s>—1]P<s>ds s||P||of H—h)ds<p [Pl
0 0

<pkt 18lo IDII.

Y1 — Wi <

0@ =[X:"DXe] = &5 DIl
Therefore
%0 2 10 - Wi — 0@l ~ I ~ Wi
= (=21 ka— i3 18l ) 11

By (44),
ki =2kika—pk3 |I8llo
kiky

1Z1ll = 1X Yl =k Il = Il =ks IICI. O
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LEMMA 7.5. Let N be a smooth connected riemannian m-manifold and let
F :R™ — N be a smooth map such that

45)  |dxF()|>a>0  forall (x,v) € TR™ with |v|=1and |x| <r.
Then forall0 <b <ar,
{weN|d(w, F(0))<b} < F{xeR™||x| <2}.

Proof. Let w € N with d (w, F(0)) < b. Let §: [0, 1] — N be a differentiable
curve with §(0) = F(0), f(1) = w and |/3| < b. Let T = sup(A), where A C [0, 1]
is the set of ¢ € [0, 1] such that there exists a unique C! curve « : [0, 1] — R™ such
that (0) = 0, |a(s)| < r and F(a(s)) = B(s) for all s € [0,¢]. By the inverse
function theorem 7 > 0, A is open in [0, 1] and there exists a unique « : [0, T[— R
such that F oo = 8. By (45),

(46) !B(s)‘ = Hda(s)FH la(s)| > a |a(s)], forallse][0,1].

Thus, |¢| < % maxop<s<1 ‘,B(t)‘ < % This implies that « is Lipschitz and hence it
can be extended continuously to [0, t]. Observe that |e(7)| < r, for if |x(7)| >,
then

bzbtz/t‘,g(s)}dsza/Tlo't(s)l ds>ar,
0 0

contradicting the hypothesis b < ar. This implies that the set A is also closed in
[0,1]. Thus A = [0, 1] and T = 1. From (46), writing x = a(1) € F~Hw},

! 1t b
|x| <length(x) =/ la(?)| dt < — / |B()| dt < —. O
0 a Jo a

Let G : R2%°*7 — 7 (M) be the map G(w) = go, Where go is from (32).
The following diagram commutes

G
R2H 5 B(0.k5 1) —— R (M)

Tl

Sp(n)

By Proposition 7.3 and Lemma 7.5, in Sp(n) the ball B(S(go),n) C F(B(O, ks_l n).
It is enough to prove that G(B(O, ks_ln)) C Uy, for then S(Vo) D B(S(go), n).
If :]0,1] - R, write

r

Ifllcr:=)_ sup |D*f(x)|.

s=0 *€[0,1]
Observe that
I fellcr < 2" 11 fllcr ligller -
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Ifw< ks_ln and p(¢) is from (33) and in . (x), € < &1, then, by Lemma 7.6,

g0 — gollc2 = [@e(x) x* p(1) x| 2
<kslplco+keellpllct +kee? [ pllce
<ke4ks' nl8llcs +kse14ks ' n 2kl 18]lcs)
+keet ks n (2% |hlc2 8llcs)

< &o,

where the last inequality is from (31). Then, by (29), g, € Ug N F = V.
Bump functions.

LEMMA 7.6. There exist k¢ > 0 and a family of C° functions ¢, : [—¢, €] —

[0, 1] such that pe(x) = 1 if x € [=%, 5]", ¢e(x) =0 if x &[5, 5]" and for any

C? map B : [0, 1] = R™" the function a(t, x) 1= @g(x) x* B(t) x satisfies,
lellc2 < ke [ Bllco + ks | Blct + € [ Blica,

with k¢ independent of 0 < & < 1.
Proof. Let ¢ : [—1,1] — [0,1] be a C* function such that ¥ (x) = 1 for

|x| < % and ¥ (x) = 0 for |x| > % Given ¢ > 0 let ¢ = @, : [—¢,¢]" — [0, 1] be
defined by ¢(x) = []i=; ¥ (3). Let B € R™*" and let f(x) = ¢(x) x* Bx. Then

47 I1Bllo <& Bl
dxB = (dx¢) x*Bx + ¢(x) x*(B + B*),
=V () TTves.
k#i

(48) ldxell <1 ldv o .
(49) ldxBll <3¢ [|B| ¥,
d?B = (d2¢) x* Bx +2(dxp) x* (B + B*) + ¢(x) (B + B*),

e = V() T () 8+ 59/ () v/ () TT w(E) (-6,
k#i k#i,j

|dZe|| < & max{ |d>y |, . ld¥5} <5 I¥IE--
(50) |d2B] < 1V lg= I1BI(1+4+2) <7 |[y|g- |B].

Letke :=44+3 |[¥|c1 +7 ||¥ ||%2 Then from (47), (49) and (50), we have that

(51 IBllc2 < ke [IB]l-
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Now let (¢, x) := ¢(x) x* B(t) x. Observe that

||a||C2<sup et M2 +sup e, Xl c2 +2

axat
< Bl +¢* 1Bllc2 +2 | 28
But, by (48)
axat =dxp-x*B'(t) x + ¢(x) x*[ B'(t) + B'(1)*].
|| <elvlcr 1B lo+2¢1B llo < S kse 1Bl

Hence, by (51),
lellc2 < ke |Bllco + ks e | Bllcr + [ Blc2 - O

8. Stable hyperbolicity

In this section we prove, in Theorem 8.1, a symplectic version of R. Maiié’s
Lemma I1.3 in [24]. In contrast to the general case in GL(n, R), where one obtains
uniform domination, in the symplectic case the result is uniform hyperbolicity.

We say that a linear map T : R?” — R2" is hyperbolic if it has no eigenvalue
of modulus 1. Equivalently, T is hyperbolic if there is a splitting R?" = E* @ E¥
and an iterate M € Z* such that T(E®) = ES, T(E¥%) = E* and

<% and H(T|Eu)_M ” <1

The subspaces E* and E* are called the stable subspace and unstable subspace
of T.

Let Sp(n) be the group of symplectic linear isomorphisms of R?”. We say that
a sequence & : Z — Sp(n) is periodic if there exists m > 1 such that &; 4, = &; for all
i € Z. We say that a periodic sequence £ is hyperbolic if the linear map [/~ &

HTM|ES

is hyperbolic. In this case the stable and unstable subspaces of ]—[l’-”:_o1 &4 are
denoted by E js (&) and E]“ (&) respectively.

We say that a family § = { £* },ey of sequences in Sp(n) is bounded if there
exists O > 0 such that Hél‘" H < Q forallx € A and i € Z. Given two families of
periodic sequences in Sp(n), & = {£% }qey and n = {n® }qey, We say that they
are periodically equivalent if they have the same indexing set ¢ and for all « € A
the periods of £* and n* coincide. Given two periodically equivalent families of
periodic sequences in Sp(n), £ = { €% }yey and n = { n* }yeyu, define

dE m =sup{llgy —nyll : west, neZ}.

We say that a family £ is hyperbolic if for all o € 54, the periodic sequence £% is
hyperbolic. We say that a hyperbolic periodic family £ is stably hyperbolic if there
exists € > 0 such that any periodically equivalent family 7 satisfying d(n, §) < ¢ is
also hyperbolic.
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Finally, we say that a family of periodic sequences £ is uniformly hyperbolic
if there exist a constant iterate M € ZT and subspaces EF(§%), E}(§%), a € A,
i € Z, such that

E/(Ef (%) = E; (6%, forallaesd, jeZ tels uj

and

M
1
”HE’Q” ‘E;@w) <z and H(]_[S,ﬂ

Equivalently, there exist K >0, 0 < A < 1 and invariant subspaces E7 (§%), E}(§9),
aed,i €Z,such that

” 1_[ SH']’E 5 (£9)

forall @ € o, j € Z, m € N. Observe that in this case the sequence & is hyper-
bolic and the subspaces E7(§%), E}(§%) necessarily coincide with the stable and
unstable subspaces of the map ]_[;-':01 b Iz

The remainder of the section is devoted to the proof of the following:

1
) | <3 forallaes, jez.
EX(E)

) “<me

m—1
< KA™ and H(Hélﬂ
i=0

E} ()

THEOREM 8.1. If €% is a stably hyperbolic family of periodic sequences of
bounded symplectic linear maps then it is uniformly hyperbolic.

Let @ = Y7, dx;i A dxj4n be the canonical symplectic form on R?” and
J € Sp(n) be J(x,y) := (—y,x) for (x,y) € R” x R”. The matrix of J in the

canonical basis is
0o 1

Then Q(x, y) = (x, Jy) = x*Jy, where (x,y) =Y 7_; x; yi. Observe that 4 €
Sp(n) if and only if

(52) A*JA = J.
We say that a basis B = (v1,...,v2y) is symplectic if Q(v;,v;) = J;;. If T:
R2" — R?" is a linear map with matrix A in a symplectic basis %, then T € Sp(n)
if and only if (52) holds.
We say that a linear subspace E C R?" is lagrangianif Q| =0and dim E = n.
LEMMA 8.2. (i) A subspace E C R*" is lagrangian if and only if JE = E=+.
(ii) If T € Sp(n) is a hyperbolic symplectic linear map, then its stable and unstable
subspaces E*(T), E¥(T) are lagrangian.
(iii) If T € GL(R?*") has matrix D in a symplectic basis B = (v1, ..., Van) and the
lagrangian subspace E = span{vy, ... vy} satisfies T(E) C E, then T € Sp(n)
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A B
>=[oc]

where C = (A*)~! and A~ B is symmetric.

if and only if

(iv) If E C R?" is a lagrangian subspace and ® = (vy, ..., vy) is an orthonormal
basis for E, then (B, JB) = (v1,..., Vs, Jv1,...Jvy) is a symplectic basis
forR?" = E® JE.

Proof. (1). Observe that JE = E L if and only if dim E = 2n —dim E and
Qx,y)=(x,Jy)=0forallx,y € E.
(ii). Let u, v € ES(§). Since T preserves the symplectic form €2, we have that

Qu,v) = mll)ngoo Q(T™u, T™v) = 0.

Therefore JE* C (E*)* and hence dim ES(T) < n. Similarly, Q(u,v) = 0 if
u, v e E¥(T). Therefore dim E5(T) = dim E*(T) = n.

(ii1), (iv). Item (iii) follows from formula (52). Item (iv) is a direct calculation.

O

LEMMA 8.3. If {£%}yey is a bounded stably hyperbolic family of maps in
Sp(n), then there exist ¢ > 0 and K > 0 such that if {n®}qeq is a periodically
equivalent family of maps in Sp(n) with d(&, n) < ¢, then the family n is hyperbolic
and

Yaes, VieZ, <K, m = Per(n%),

m—1 o
,-1;[0 Tits ‘Ef(na)

where m is the minimal period of n®.

Proof.  Suppose the lemma is false. Then for all ¢ > 0 and K > O there
exist a periodically equivalent family {n*},ecyq with d(n,&) <e, ap € A, ip €7
and an orthonormal basis % for E l-so (n®0) such that, in that basis, ]_[;-":_01 n?ﬁ)" v has
an entry b = byy with |b| > K, where m = Per(n“0).

For simplicity assume that ig = 1. Let A = [a;;] € R"*" be the matrix given

by a;j =0if (i, j) # (£, k) and agx = J, where

5=
K
In the basis (B, JB) for E}(n*°) & JET(n*°) write
n B C I +5A 0
%o — D, =
T [0 (B*)—l]’ s [ 0 +sA*)_1:|'

Observe that Dy € Sp(n) and | tr B| < n. We claim that

(53) 11 —Ds|l < [28s].
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Indeed, if k # £ then (I +sA*)™! =1 —sA* and (53) holds. If k = ¢ then I — D
has only two nonzero entries, which are 56 and 1 — 5 +S T35 = 6.

Let {{%(s)}aes, s € [0, 1], be the families given by {;(s) = n¥ if @ # ap
ori # 1, and {7°(s) = n{° Ds. Then E(®°) is an invariant subspace under

]_[ é’ao(s) for all s € [0, 1]. But
i=1

m
tr|:]_[§l‘.x° ]=trB(I+A)=trB+b82b8—nZn.
i=1 E{(n®0)
Therefore there is s € [0, 1] such that []7Z, ¢ l‘.x 9(s) has an eigenvalue of modulus 1.
We have that
¢ =nfe ] < [n5°] 1281 < nS°] %-

dE ) <dE ) +d(,0) <e+ (|| +¢) 2.

Since d(&,¢) — 0 when ¢ — 0 and K — +00, this contradicts the stable hyperbol-
icity of £. d

LEMMA 8.4. If {£*}yeq is a bounded, stably hyperbolic family of maps in
Sp(n), then there exist ¢ > 0, K > 0 and 0 < A < 1 such that if {n®}qeq is a
periodically equivalent family of maps in Sp(n) with d(&,n) < e, then

YVaoed, VielZ,

KA™, m = Per(n%),

=0 E T (%)
where m is the minimal period of n®.

Proof. By Lemma 8.3 there exist 1 > 0, K1 > 0 such that if n is a family in
Sp(n), periodically equivalent to & with d(#, §) < ey, then 7 is hyperbolic and

Vaed, Viel, < Kj, m = Per(n%).

ES( “)

Let ¢:= %1 Suppose that 7 is a periodically equivalent family with d(n, §) <
e = & On the splitting E (n*) @ JE] (n*) write

o __ Aa,i Ca,i ) _ (1+5)I 0
i _[ 0 (A;,l.)_l] D“”(‘S)_[ 0 (1+8)_11]'

Foralli € Z let {¥ = {¥(8) := 1} - Dg,i (8) and let § > 0 be such that

max{8, 1 —(14+8)~'}- [sau}) & + %1] < %1

Then
(54) d(§.§) <er.
Therefore the family ¢ is hyperbolic and we claim that
E; (%) =E (™) foralla e A, i € Z.
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For, observe that E(n*) is invariant under ]_[;”:_01 i+ j» where m = Per(n®). If
for some o € o and i € Z, E}({¥) # E7(n%), then there exists 0 < §; < J such
that {%(81) has an eigenvalue of modulus 1. This contradicts (54).

We have that
m m—1 o m—1 o
146 o’ - @ < K.
( ) jl;IO Ni+tj ES(n%) jl;IO §z+J ES (o) 1
This gives the lemma for A = (1 +8)7! and K = K. O

We shall need the following definition of angle between linear subspaces.
Given a linear decomposition R? = E & F define

S(E,F)=|L|I"",

where L : EL — E is the linear map such that F = {x + Lx | x € E1}, and
EL:={yeR?|(y,x) =0, Vx € E } is the orthogonal complement of E in R<.

LEMMA 8.5. If {£%}peq is a bounded, stably hyperbolic family of maps in
Sp(n) then there exist ¢ > 0, y > 0 and Ny € ZT such that if {n®}aey is a peri-
odically equivalent family of maps in Sp(n) with d(n, §) < ¢, then n is hyperbolic
and

L(EF ™), Ef (™)) > ¥
for all a € A with minimal period > Ng and all i € 7.

Proof. Suppose it is false. Then there exists a periodic sequence 1 : Z —
Sp(n) with period m arbitrarily large, periodically equivalent to a sequence £*
of the family &, with sup;ez [n; — Sj"‘H arbitrarily small and some i € Z with
L(EF(n*), E}*(n¥)) arbitrarily small. Shifting the sequence we can assume that
i=1.

By Lemma 8.2, JE{ () = Ef(n)J-. Consider the matrix of []7_; 7; in the
decomposition R?" = JE{(n) ® Ej(n):

ﬁ a0 _[BH o

LIn=lpB|=| P B

i=1

Since it is symplectic, choosing an orthonormal basis adapted to the decomposition,
we have that A = (B*)™! and that B~! P is symmetric. By Lemma 8.4,

(55) IBll =A™ < K A™.

Let L: JE{(n) — Ej(n) be such that EY(n) ={v® Lv|ve JE{(n)}. Since
EY(n) is invariant,
LA=P+BL.

Thus L = PA~' + BLA™! and
IL|| < HPA‘IH +|IL| K*A2™,
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If the period m is large enough, then K2 A?™ < % and thus
11 _
S IPATY T <L = (B (). EY ().

The number H PA~1 ”_1 is arbitrarily small because the angle <(E7(n), EY (1)) is
arbitrarily small.
Define the sequence ¢ : Z — Sp(n) by ; :=n; for 1 <i <m and

{1:=m [(I) f}

in the splitting R?"* = JE 1(n) ® Ej(n). This map {; is symplectic if the matrix C
is symmetric. Then

ﬁgl:[A o] [1 C}z[A AC }
bl P B||0 [ P PC+B
If we find a symmetric matrix C with arbitrarily small norm || C || such that the last
matrix has an eigenvalue 1, then we shall obtain a contradiction with the stable
hyperbolicity of &.

Indeed, consider the system

Ax+ ACy =X,
Px+(PC+B)y =y.

Then x = (I — A)~'A Cy, and thus
y=(I-B)'P[I+AU-A)7"]Cy.

Since I + A(I —A)" ! =—A"1(I — A71)~!, we have that
—(I-B)'PA YU -aHCy=y.

Take ve R” such that |v|= H PA_IH_1 and |PA"v|=1. Let y=—(I —B) "' PA~ 0.
From (55) we can assume that ||/ — B| < 2. Hence |y|~! < 2. Now take w such
that (1 — A=)~ w = v. From (55), |7 — 47! H <2, so that |w| <2 |v|. Take a
symmetric matrix C such that

w
Cy=w and ||C||=|—|
[yl
Then ||C|| <4|v| =4 ” PA! ”_1, which is arbitrarily small. d

LEMMA 8.6. Let R*" = E @ F, where E, F are lagrangian subspaces such
that < (E, F) > y. Then there exists K = K(y) > 0 and a symplectic basis
{et.....en; f1,..., fu}.ei € E, fj € F, such that the norm

n 2 n
Hine,-—l—yifi” :=le~2+y,~2
i=1 i=1
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satisfies
1
x lzl =zl = Kk |zl.
where | - | is the euclidean norm in R?".
Proof. Define the following inner product in R2":
[x1 @ y1. X2 @ y2] 1= (x1,x2) + (y1. y2),

where x; ® y; € E® F and (-, ) is the euclidean inner product in R?”. We first
show that the norm [ - ] associated to [-, -] is equivalent to the euclidean norm.
Ifx®yeE®F,then

e+ y12 = x>+ 1242 (x. )
<X+ P+ (Ix? + 1y )
<2[x®y]*

Let L: EL — E bealinear map such that F = {z@ Lz |z€ E+}. Then ||L| <y,
in the euclidean norm. Let z € E+ be such that y = z @ Lz. Then

2 =1z + Lz = A +y7?) |z

Hence

2> =

2
Z 15, Iy~

The last two equations imply that

1 y 2
L2 <v2—1z12<(1— 2 _ 2
L <yl = (1= 5 ) b = 2=
Since {x,y) = (x,z® Lz) = (x, Lz),
e+ 217 =[x+ 1y 4 2(x, )

)/_1

S

-1
Z<1—y—) (x1* + [y ). Vx®yeE®F.

V1+y2

T
Writing A(y) := max {~/2, (1 — \/%) 2}, we have that
=

ﬁ'xﬂLﬂf[[x@y]]SA(V) [x + y], Vx®yecE®F.

> [x[? +y[* —2]x]

Now, let K : R?" < be the linear isomorphism defined by
[x, Ky] = Q(x, y), x,y € R?",

where Q is the canonical symplectic form in R2”. Observe that F is the orthog-
onal complement of E with respect to [-,-]. Since E is lagrangian, we have that
[x,Ky]=0ifx,y € E. Thus K(E) = F and similarly K(F) = E.



GEODESIC FLOWS WITH POSITIVE TOPOLOGICAL ENTROPY 799

Letey,..., e, be an orthonormal basis for E and let f; := K lej,i=1,...,n.
Then

Qei, f) = lei, Kfjl = lei,ej] = dij.
This implies that the basis {ey, ..., f,} is symplectic.
Observe that if y € R?", then

[Ky]* = [Ky, Kyl = Q(Ky,y) < |Ky||y| < A(y)?* [Ky] Y]
Now,
[Ky] <A@y)*[y]  forall y € R*".

Let x € R?” and let y := Jx € R?*. Then |Jx| = |x| and Q(Jx, x) = |x|%.
Therefore

[Jx] [Kx] > [Jx, Kx] = Q(Jx,x) = |x]* = |J x| |x| > ﬁ [Jx] [x]-

Thus
[Kx] > ﬁ [x] for all x € R*",

Finally, we have that
n 2 n n 2 n 2
[[inei"‘ﬁfi]] =in2+[[2)ﬁfiﬂ =in2+[[ (Zyzel)ﬂ

i=1 i=1 i=1 i=1 i=1

<y +Ap* [ ] =400t Yod o2

i=1 i=1
Similarly,
n
0 . 2
[{;Xlel'i‘ylﬁ}] Z +A( )4[{2)}1 lﬂ _A( )4 ZZI( +y,
Hence the lemma holds for kx(y) := A(y)>. O

Proof of Theorem 8.1. We first prove that there is M1 > 0 such that

Mi—1

56 9‘.) <-. VYaed, VieZ
( ) jl;IO El—l—] Ef(‘g'o‘) 2

Since the family £ is bounded, it is enough to prove that

7)) AN>0: Vaed, ViezZ, 30<n <N :

n—1
I1 qu—f—j)
j=0

E$ (%)

Indeed, take m > O such that

(58) o (sp &) <5
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ES

gm
Ef EF —_— .
&1
R [, e m  ES s
! EU E" ge g

Figure 2. Sketch of Theorem 8.1: Once we know the angles are
uniformly bounded below for any perturbation, we can assume
ES and EY are orthogonal. If a sequence does not uniformly
contract E* (HH]1‘§,~|ES | >
(1 4+ &)™ and its unstable component by (1 4 &)~ so that at some
iterate, say k, it expands E* and contracts E*. Then the perturba-
tion of only &; and &, shown in the figure obtains a small angle
< (E®, E") at the k-th iterate, which is a contradiction.

%), multiply its stable component by

and let My := (m+1) N. Writing My =ny+no+---+ny+r, wheretheny < N
are such that (57) holds fori =ny+4---+ny_; and 0 <r < N we have that k > m
and by (58), we obtain that (56) holds.

If (57) were not true, then
(59)

VN >0, dayed, dineZ, YO<n<N:

A%

1
X

1_[ é:lN'l-j ‘

EF, GON)
CASE 1. Suppose that the periods of the sequences E*N are bounded.
Taking subsequences of oy we can assume that

e [y =ip Isconstant.

e Per(§%V) = is constant.

e Vjez, Elnj —hmé

io+J"
e VjezZ, EIE+—hmElS+]($°‘N).
- Vjez, 3E; —hmEl”ﬂ(é“N).

Observe that the subspaces £ ;r, E- ; are m-periodic and invariant under ]_[;’1:_01 Nj+i-
From (59) we have that

1
]_[ i, —, foralln eNT.

(60) z 5

The stable hyperbohclty of the family £ implies that the sequence 7 is hyper-
bolic. Then ]_[?;_01 n; is a hyperbolic matrix which is the limit of the sequence

of hyperbolic matrices ]_[;7:01 El"(‘)ﬁ’r je This implies that E;’ = limy El.so (E*N),
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Ey = limy El?f) (§*N) are the stable and unstable subspaces of ]_[;-":_O1 nj. But
this contradicts (60).

CASE II. Suppose that the periods of the sequences E*N are unbounded.
Let g, K, A be from Lemma 8.4. Let N1 > 0 and go > 0 be such that
(61) K™ (1+e9)" < 3, Vnp > Ni.

Let N and y be from Lemma 8.5. Taking a subsequence of oy we can assume
that all the periods satisfy

(62) Per(§*V) > max{Ny, N1}.

If we extend the family & to the family of all the shifted sequences j — &7, J
all « € A, i € Z, then the new family is also stably hyperbolic. Using this extended
family if necessary, we can assume that iy = 1 in inequality (59).

We shall perturb the symplectic linear maps §* so that the angle X (Ey . (§*V),
+1(E*V)) becomes arbitrarily small, contradicting Lemma 8.5.

In the decomposition ES(EXN) @ E*(E*N), for m = Per(§%V), write

an _ 0 an _ 0
I [0(3*)] HE [MA*) }

i=1
By Lemma 8.4, (62) and (61),
(63) A < K™ < 3

Ey

Then from (59) we have that m > N.

By Lemma 8.6 and (62), it is equivalent to measure the norms of linear maps
in the decompositions ES(§*V) @ E¥(£%N). Without loss of generality we may
assume that K(y) = 1 in Lemma 8.6.

Define a perturbation 1 of £*V by

[a+e1 o0 oy [I C
=1 0o (4ot |*t |o1]
L _[G+eI 0 an .
HEL 0 wetr] S b<i=m.
I D] sy [A48)I 0
Tm==1o 1] °m 0 (+e 1]

where C and D are small symmetric matrices defined as follows.
Observe that by (59), | B*|| = || B| > % Let u, v € R" be such that | B*u| =1,
vl =1,
|B* u| > 3 ul and |Bv|>1vl.

Let C be a symmetric matrix such that

C (B*u) =¢|B*u|v and IC|l = e.
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Let D be the symmetric matrix
D =—(14+¢)*"ACA*
From (63), (62) and (61), if 0 < & < &g then
ID] < K2 22" (14+)*™ |C| < |C| =e.

Therefore, since the family £ is bounded,

lim d(n, V) =0 uniformly on N.

e—>0

Observe that with this definition of D, we have that

ﬁ _[a+emA 0
S A R R G &
1=
In particular,

(Fin

i=1

m

[T

i=1

<KA"(1+e)™<1.

)—1
E{(N) E{(¢E*N)

Thus the sequence 7 is hyperbolic and has the same subspaces Ej, E} as the
sequence £V
Observe that

N _
_[a+9¥B 0 I C
_1_[1’7’ L o (l—l—e)_N(B*)_l] [o 1}

[1+e)¥B (1+eVNBC

0 (1+e) V(B!

The unstable subspace Ef; | at time N, is Efy  ,(n) = (]_[IN=1 ni)(EY(E*N)).
Therefore

Eyp(m={z0LzcEf E"")®EN (§*V)|z€ Ey 1 (§*V)},
where L : Bl (§%N) — Ey(E*V) is given by
L=(14¢2 BC B*.

The stable subspace is £y () = E (§*V).
We have that

|Lu| = (1+&)*N |BCB*u| = (1 +&)*" |Bv|e|B*u| > Le (1 + )" Jul.

Under the inner product [+, -] of Lemma 8.6, E,_ ; (§*V) = (E1Sv+1 (S“N))J'. Thus

Ky u _ —1
<I(EN+1(77)» EN+1(77)) =|L||" < m,

which is arbitrarily small if N is large enough. This finishes the proof of (56).
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It remains to prove that there is M» > 0 such that

1
(64) <3 Yaed, VieZ.

M>—1
o
(1

-1
E,»”(E“‘))
Let No and y be from Lemma 8.5 for £. Let
Ao :={a €| Per(§%) > Ny }.
In the splitting £7(§%) @ E}'(§%) we have that

Mi—1

0
1_[ El—i—] |:0 (F*) :|

with || F| < % by (56). Using the equivalent norm from Lemma 8.6, we have that

Mi—1

l_[ EH—]

o 1 ,

Mi—1
H 2’

-1
E}‘@a)) E} (%)

This finishes the proof if /{9 = . If not, by repeating sequences in o1 :=
A\ Ao we can assume that 5{; is infinite. Since the periods of the sequences in
A1 are bounded by Ny, the same argument as in Case I above gives M3 > 0 such
that

M3—1 o -1 1 .
H & Eu(ga)) ” <3 VYaedy Viel
Then for (64) take M, = M1 - M3. In order to get (56) and (64) with the same M,
take M = My - M5>. O

9. Hyperbolicity

Given a subset A C SM and g € R (M) let P(g, A) be the set of closed
orbits y for ¢p& such that y(R) C A. Define

Per(g,4):= U r(R),
v€P(g,A)

H(A):={geR®(M)|Vy eP(g,A), y is hyperbolic },
F2(A) := intg2 H(A).
Let %, be as in Theorem 6.1,
Theorem E. If g € 6, NF%(A), then A :=Per(g, A) is a hyperbolic set for ¢8.

Proof. Let £ be the injectivity radius of g. For each @ € o := P(g, A) let
T = T (o) be the period of o and choose 0 =ty < t; <t <--- <ty = T(x) such
thatt; 41 —t; € [%E, %Z] Then a|y, 1, ] s injective. Let

(65) NG, a) :={veTyi)SM | (v,a(t))g =0}.
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Choose an orthonormal symplectic basis B (i, o) for N(i, ). Let £* : Z — Sp(n)
be the periodic sequence of period m such that £ is the matrix of d¢fi it
N(@,a) > N(@ 4+ 1, @) in the basis B(i, o) and B(i + 1, @). We use the following:

LEMMA 9.1. The family & = { £* }yeq is stably hyperbolic.

Then, from Theorem 8.1 we obtain a hyperbolic splitting on (g, A). The
hyperbolicity condition implies the continuity of the splitting in Per(g, A) (see [19,
Prop. 6.4.4] for diffeomorphisms). Then the splitting extends continuously to the
closure A = Per(g, A) and the extension is also hyperbolic. O

Proof of Lemma 9.1. If £ is not stably hyperbolic, then there is a periodically
equivalent family n with d (1, £) arbitrarily small which is not hyperbolic. Modi-
fying 7 if necessary, we can assume that {o € o | n% # €%} = {ap } is a single
sequence and 7*° is not hyperbolic. Since g € 9; and d(£§%0, n*0) is arbitrarily
small, by Theorem 7.1 there is a metric g1 € R°° (M), which is C°°, such that g;
is C? arbitrarily near g (and hence g; € (A)), the same « is a periodic orbit for
g1, &1 = g on «(R) (hence the same subspaces N (i, a) satisfy (65) for g1), and

07 =deg'  _y, NG, a0) = N(i +1,a0) forall 0 <i < m(ap). Since 7* is not
hyperbolic and «o(R) C A, this contradicts the fact g, € #(A). O

The linearized Poincaré map P, of a prime, closed geodesic ¢ is a symplectic
map. If ¢ is not hyperbolic denote by z; = £ exp(27A;), A; €0, %], j=1,...,L<
n the eigenvalues of P, with norm 1. The numbers 0 <1; <--- <Ay < % are called
Poincaré exponents of c. Following Rademacher [33], we say that a riemannian
metric is strongly bumpy if all the eigenvalues of the linearized Poincaré map of
every prime closed geodesic are simple and if any finite set of the disjoint union of
the Poincaré exponents of the prime closed geodesics is algebraically independent.

For 2 < k < o0, let B, be the set of strongly bumpy metrics in R* (M).

THEOREM 9.2 (RADEMACHER’S THEOREM ([33], [6])). Forany 2 <k < oc:
() By, is residual in RE(M).
(ii) If g € By, then g has infinitely many geometrically distinct closed geodesics.
Let % be the set of metrics g in ®%(M) such that
e The metric g is strongly bumpy: g € %B5.
¢ All heteroclinic points of hyperbolic closed geodesics of g are transversal.

By Theorems 9.2 and 2.1, for any 2 < k < oo, the set % N Rk (M) is residual
in Rk (M).

Given a continuous flow ¢; on a topological space X a point x € X is called
wandering if there is an open neighborhood U of x and T > 0 such that ¢;(U) N
U = @ for all t > T. Denote by Q(¢¢|x) the set of non-wandering points for
(X, ¢r). Recall
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THEOREM 9.3 (SMALE’S SPECTRAL DECOMPOSITION THEOREM FOR FLOWS
([35], [19)). If A is a locally maximal hyperbolic set for a flow ¢z, then there exists
a finite collection of basic sets A1, ... AN such that the non-wandering set of the
restriction ¢; ‘ A satisfies

N
Q(de]5) = UAi.
i=1
Now let & := H N9, where ¥9; is from Theorem 6.1,

Theorem D. If g € 9 N F>(M), then A = Per(g) contains a nontrivial, hyper-
bolic, basic set.

Proof. Since 9 C 9, applying Theorem E to A = M we get that A is a
hyperbolic set. By Proposition 6.4.6 in [19], there exists an open neighborhood U
of A such that the set

Ay =(),,9f (@)

is hyperbolic. Since A = Per(g), its non-wandering set is Q(¢¢|pn) = A. By
the definition of Ay, A € Ay and hence A = Q(¢¢|a) € Q(¢¢|a, ). By Corol-
lary 6.4.20 in [19], the periodic orbits are dense in the non-wandering set 2(¢¢| A, )
of the locally maximal hyperbolic set Ayy. Thus A € Q(¢p¢|a,, ) € Per(g) = A. By
Theorem 9.3, the set A = Q(¢;|a,,) decomposes into a finite collection of basic
sets. Since the number of periodic orbits in A is infinite, at least one of the basic
sets A; is not a single periodic orbit; i.e., it is nontrivial. O

Appendix A. Arc spaces

Let X be an algebraic variety on RY . Define the path space on X as

¢(X):= {(an)nEN € [Tpen BY |3y € C®(R,RV),
y(R) C X, %y(”)(O) —ap,VneN }
Let F = (f1,..., fq) be generators of the ideal
I(X)={feR[x1,....,xn]| flx =0}
Recall that the arc space £(X) is
LX) = {(ar)ken € [Teen RY | FQZRZoaxt®) =01,

where the equality = is as formal power series. The jet space £, (X) is

Lu(X) :={(ar)ken € [Thmo RY | F(Xf—oakt®) =0 (mod r"*1) }.
Then ¥, (X) is an algebraic variety. Let 7, : £(X) — £,(X) be the projection
(ar)ken = (k)i —o- Then my (£(X)) is a constructible set in £, (X) (see [10, p.
202]). Let 7, (6(X)) be the Zariski closure of 7, (€¢(X)).

PROPOSITION A.1. (i) dim 7, (6(X)) < (n+1)dim X.
(ii) The fibers of 7wy +1(€ (X)) = 7, (€(X)) have dimension < dim X.
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Proof. By Lemma A.2 it is enough to proof the proposition for an algebraic
variety X in CN. Observe that item (ii) implies item (i). We prove item (ii).
Fix a = (ag, ..., an) € 71, (€(X)). Define

Znt1:={(t,x) eCxCN | Flap+---+ant" +1"T'x)=0}.
Fort € C, let
Zny1(0) :={x€CV | (t,x) € Zp11}.

Let Fz := 6,71 (a) be the fiber of O : 7,+1(6(X)) — 7, (€(X)) over a@. The limit
W41 att = 0 of the 1-parameter family of varieties Z, 1 (¢) exists (see [12, pp.
71-72]):
Wit1:= lim Z,11(2);
t—0

ie,if Zy :={(x,t) € Zpt1 |t #0}, then Z; , UW, 1 is the Zariski closure

n+1
of Z; ;.
Claim 1. Fz C Wy41. Indeed, let a, 41 € Fgz. Since (ag,...,an,an+1) €

Tn41(@(X)) there is y € C®(R, RN) such that F oy =0 and
y(t) =ao+---+ant" +ant 1"t +0("?), 1R

Let x; := tl,,[)/(t) — > o aktk] = dp+1 + O0() € Z,+1(¢). This implies that
an+1 € Wy1.

The following claim finishes the proof:

Claim 2. dim W41 < dim X. For t # 0, we have that the variety Z,41(¢)
is isomorphic to X by the invertible change of variables Z, () >z «— x € X:
x=ag+ait+---+aut™ +1"T1z. Therefore dim Z, 11 (¢t) = dim X, when t # 0.

Consider CV = CV x {1} c CPY = C¥ UCP¥~! and the corresponding
projective varieties Z,+1(t), Z | = Uz Zn+1(t), W = lim; 0 Zp,41(¢). Then
Wot1 =Wy, NCY. L

Claim 2 follows from the fact that 7,41 = Z;‘; Y W, 41 is a flat family
(see [12, Prop. II-29]) and the fact that the dimension of the fibers of a flat family
is constant (e.g. [17, pp. 256 — 257]). Another proof is the following:

Since for a generic fiber # # 0, dim Z,, 41 (t) =dim X, we have that dim Zj, |, =
dim X + 1. If dim W,4+; > dim X, then dimW,,+; > dim W, 4+; > dim X + 1.
Therefore W, 41 contains an irreducible component of Zy ;. This is incompatible
with Wy, 1 = lim; 0 Z,+1(¢) (see [12, Prop. II-2, pp. 75 — 76].6 O

LEMMA A.2. Let X C RN be an algebraic variety and let X C CN be the alge-
braic variety defined by the same polynomials as X. Then dimg(X) < dim ¢ (X).

%Observe that a priori Wy, 1 could have all its irreducible components of maximal dimension
in the hyperplane at infinity CPY ~1 and then dim W, 41 < dim W,, 41. Since the function f(z) :=
dim Z,, 4 1(¢) is upper semi-continuous (see [16, p. 139]), dimW; 1 > limsup; _,odimZ,+1(¢) =
dim X . Then the argument above also shows that dim W, 41 = dim X.
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Proof. Let T be a stratum of X and 7 := TN R?. Then T is a complex
submanifold of C¥ . In particular, its tangent spaces are closed under multiplication
by +/—1. Then the 2-form Q(u, v) = Im({u, v))) is nondegenerate on T, because
Qu,uv/—1) = —> |uj|* #0ifu#0. Let x € T C T. Since the tangent
space TxT C R, Q|r, 7 =0, i.e. TxT is an isotropic subspace for Q2. Therefore
dimg 75T < 3 dimg 75T = dim¢ 7 T. O
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