Ground States are generically a periodic orbit

Gonzalo Contreras

CIMAT Guanajuato, Mexico

Ergodic Optimization and related topics USP, Sao Paulo December 11, 2013

Ground States are generically a periodic orbit

X compact metric space.

 $T : X \to X \text{ an expanding map i.e.}$ $T \in C^{0}, \quad \exists d \in \mathbb{Z}^{+}, \quad \exists 0 < \lambda < 1, \quad \exists e_{0} > 0 \quad \text{s.t.}$ $\forall x \in X \text{ the branches of } T^{-1} \text{ are } \lambda \text{-Lipschitz, i.e.}$ $\forall x \in X \quad \exists S_{i} : B(x, e_{0}) \to X, i = 1, \dots, \ell_{x} \leq d,$

 $d(S_i(y), S_i(z)) \leq \lambda d(y, z),$

 $\begin{cases} T \circ S_i = I_{B(x,e_0)}, \\ S_i \circ T|_{B(S_i(x), \lambda e_0)} = I_{B(S_i(x), \lambda e_0)}. \end{cases}$

Ground States are generically a periodic orbit

ヘロン 人間 とくほ とくほ とう

X compact metric space.

 $T: X \rightarrow X$ expanding map, $F \in Lip(X, \mathbb{R})$.

A maximizing measure is a *T*-invariant Borel probability μ on *X* such that

$$\int F d\mu = \max \left\{ \int F d
u \mid
u \text{ invariant Borel probability}
ight\}.$$

Theorem

If X is a compact metric space and $T : X \to X$ is an expanding map then there is an open and dense set $\mathcal{O} \subset Lip(X, \mathbb{R})$ such that for all $F \in \mathcal{O}$ there is a single F-maximizing measure and it is supported on a periodic orbit.

ヘロト 人間 ト ヘヨト ヘヨト

- Bousch, Jenkinson: There is a residual set U ⊂ C⁰(X, ℝ)
 s.t. F ∈ U ⇒ M(F) has a unique measure and it has full support.
- Yuan & Hunt: Periodic maximizing measures are stable.
 (i.e. same maximizing measures for perturbations of the potential in Hölder or Lipschitz topology.)
 Non-periodic maximizing measures are not stable in Hölder or Lipchitz.
- Contreras, Lopes, Thieullen: Generically in C^α(X, ℝ) there is a unique maximizing measure.

If $F \in C^{\alpha}(X, \mathbb{R})$, then *F* can be approximated in the C^{β} topology $\beta < \alpha$ by *G* with the maximizing measure supported on a periodic orbit.

・ロト ・ 理 ト ・ ヨ ト ・

• Bousch: Proves a similar result for Walters functions: $\forall \varepsilon > 0 \ \exists \delta > 0$

 $\forall n \in \mathbb{N}, \quad \forall x, y \in X, \quad d_n(x, y) < \delta \implies |S_n f(x) - S_n f(y)| < \varepsilon. \\ d_n(x, y) := \sup_{i=0,...,n} d(T^i(x), T^i(y)).$

Quas & Siefken: prove a similar result for super-continuous functions.

(functions whose local Lipschitz constant converges to 0 at a given rate: here X is a Cantor set or a shift space).

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\mathcal{M}(T) := \{ T \text{-invariant Borel probabilities} \}$

 $F \in Lip(X, \mathbb{R}), \qquad \mathcal{L}_F : Lip(X, \mathbb{R}) \to Lip(X, \mathbb{R}):$ $\mathcal{L}_F(u)(x) := \max_{y \in T^{-1}(x)} \{ \alpha + F(x) + u(x) \},$ where $\alpha := -\max_{u \in \mathcal{M}(T)} \int F \, d\mu.$

Set of maximizing measures

$$\mathcal{M}(F) := \Big\{ \mu \in \mathcal{M}(T) \Big| \int F \, d\mu = -\alpha(F) \Big\}.$$

Ground States are generically a periodic orbit

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Calibrated sub-action = Fixed point of Lax Operator.

 $\mathcal{L}_F(u) = u$

write

$$\overline{F} := F + \alpha + u - u \circ T.$$

REMARKS:

•
$$-\alpha(\overline{F}) = \max_{\mu \in \mathcal{M}(T)} \int \overline{F} \, d\mu = 0.$$

$$2 \overline{F} \leq 0.$$

$$\mathcal{M}(\overline{F}) = \mathcal{M}(F) = \left\{ \mu \in \mathcal{M}(T) \mid \operatorname{supp}(\mu) \subset [\overline{F} = \mathbf{0}] \right\}.$$

Ground States are generically a periodic orbit

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

∃ 9900

If F is Lipschitz then there exists a Lipschitz calibrated sub-action.

Proof.

- **1** Prove that $\operatorname{Lip}(\mathcal{L}_{F}(u)) \leq \lambda (\operatorname{Lip}(u) + \operatorname{Lip}(F)).$
- 2 Then \mathcal{L}_F leaves invariant the space

$$\mathbb{E} := \left\{ u \in Lip(X, \mathbb{R}) \mid Lip(u) \leqslant \frac{\lambda \ Lip(F)}{1 - \lambda} \right\}$$

 \bigcirc $\mathbb{E}/_{\{\text{constants}\}}$ is compact & convex. \mathcal{L}_F is continuous on \mathbb{E} . Schauder Thm. $\Longrightarrow \mathcal{L}_F$ has a fixed pt. on \mathbb{E} .

REMARKS

• If *u* is a calibrated sub-action: Every point $z \in X$ has a calibrating pre-orbit $(z_k)_{k \leq 0}$ s.t.

$$\begin{cases} T^{i}(z_{-i}) = z_{0} = z, & \forall i \ge 0; \\ u(z_{k+1}) = u(z_{k}) + \alpha + F(z_{k}), & \forall k \le -1. \end{cases}$$

Equivalently, since $T(z_k) = z_{k+1}$,

$$\overline{F}(z_k) = 0 \qquad \forall k \leqslant -1.$$

Ground States are generically a periodic orbit

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

- ② If ν maximizing measure \implies supp $(\nu) \subset [\overline{F} = 0]$. If $z \in \text{supp}(\nu) \implies \exists \text{ pre-orbit of } z \subseteq \text{supp}(\nu)$.
- We will obtain a periodic orbit O(y) s.t. every calibrating pre-orbit has α-limit in O(y).
 By item 2 this will imply that every maximizing measure has support in O(y).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Definition

- $(x_n)_{n\in\mathbb{N}} \subset X$ is a δ -pseudo-orbit if $d(x_{n+1}, T(x_n)) \leq \delta, \quad \forall n \in \mathbb{N}.$
- ② A point $y \in X \varepsilon$ -shadows a pseudo-orbit $(x_n)_{n \in \mathbb{N}}$ if $d(T^n(y), x_n) < \varepsilon$, $\forall n \in \mathbb{N}$.

Ground States are generically a periodic orbit

ヘロン 人間 とくほ とくほ とう

э

Proposition (Shadowing Lemma)

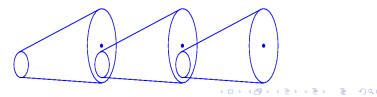
 $\begin{array}{l} If (x_k)_{k \in \mathbb{N}} \text{ is a } \delta \text{-pseudo-orbit} \\ \implies \exists y \in X \text{ whose orbit } \varepsilon \text{-shadows} (x_k) \\ \text{ with } \varepsilon = \frac{\delta}{1-\lambda}. \end{array}$

If (x_k) is periodic

 \implies y is a periodic point with the same period.

Proof.

$$\begin{split} & a = \frac{\lambda \delta}{1 - \lambda}. \\ & \{y\} = \bigcap_{k=0}^{\infty} S_0 \circ \cdots \circ S_k \big(B(x_{k+1}, a) \big). \\ & \text{where the inverse branch } S_k \text{ is chosen such that } S_k(T(x_k)) = x_k. \end{split}$$



The perturbation

- Original argument: Yuan & Hunt.
- Present argument: Quas & Siefken.
- Adapted to pseudo-orbits.

$$Per(T) := \bigcup_{p \ n \mathbb{N}^+} Fix(T^p) = \text{ periodic points.}$$

For $y \in Per(T)$:

 $\mathbb{P}_{y} := \left\{ F \in Lip(X, \mathbb{R}) \mid \exists F - \text{maxim. meas. supported on } \mathcal{O}(y) \right\}$ $\overset{\circ}{\mathbb{P}}_{y} := \text{int } \mathbb{P}_{y} \qquad \text{on } Lip(X, \mathbb{R}).$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Proposition

Let F, $u \in Lip(X, \mathbb{R})$ with $\mathcal{L}_F(u) = u$, $\overline{F} := F + \alpha(F) + u - u \circ T$, and $M \in \mathbb{N}^+$.

Suppose that $\forall \delta > 0 \quad \exists \ p(\delta) \text{-periodic } \delta \text{-pseudo-orbit } (x_k)_{k=1}^p$ $in [\overline{F} = 0],$ with at most M jumps,

such that for $\gamma_{\delta} := \min_{1 \le i < j \le p(\delta)} d(x_i, x_j),$ $\lim_{\delta \to 0} \frac{\gamma_{\delta}}{\delta} = +\infty.$

Then

$$F \in closure\left(\bigcup_{y \in Per(T)} \overset{\circ}{\mathbb{P}}_{y}\right).$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

= 990

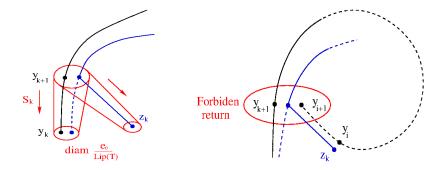
Proof:

- Let $\mathcal{O}(\mathbf{y})$:= periodic orbit $\frac{\delta}{1-\lambda}$ -shadowing $(x_k)_{k=1}^p$.
- ② Let *G* be a small perturbation of $\overline{F} \varepsilon d(x, \mathcal{O}(y))$ [equivalently of *F* − $\varepsilon d(x, \mathcal{O}(y))$] It is enough to prove that $G \in \mathbb{P}_{Y}$.
- O(y) shadows the pseudo-orbit (x_k) on [F = 0]. Then
 O(y) has F ε d action nearby 0 (proportional to δ).
 Also O(y) has G-action neary 0.
- It is enough to prove that if L_G(v) = v any calibrating pre-orbit for v has α-limit = O(y).

▲ 聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Let (z_k)_{k≤0} be a calibrating orbit for (v, G). Since G is nearby F − ε d, (z_k) eventually approaches O(y). The time (z_k) shadows O(y) is OK. It is enough to prove that (z_k) only spends finite time far from O(y).
- Since (x_k) has no forbidden intermediate returns, then (y_k) doesn't have either.

くぼう くほう くほう



< • • • **•** • Ground States are generically a periodic orbit E 990

- モト ・モト

- The first time z_K that (z_k) does not continue shadowing $\mathcal{O}(y)$ it separates from $\mathcal{O}(y)$ because:
 - It is at least at distance ^{e₀}/_{Lip(T)} from the point y_K in O(y) that would continue the shadowing: because the inverse branch S_i is injective on B(T(y_K), e₀).
 - It is far from other points in the orbit $\mathcal{O}(y)$ because otherwise its iterate $z_{K+1} = T(z_K)$ would be near two points y_i , y_j in $\mathcal{O}(y)$. Then $d(y_i, y_j)$ was small, i.e. a forbidden intermediate small return.
- There is a < 0 such that for all such z_K , $\overline{G}(z_K) < a$. But $\overline{G} \le 0$ and on a calibrating pre-orbit

$$\sum_{i=L}^{0} \overline{G}(z_i) = v(z_0) - v(z_L) \ge -2 \|\overline{G}\|_{sup}$$

is uniformly bounded. Therefore the quantity of such z_K must be finite.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem (Morris)

Let X be a compact metric space and $T : X \to X$ an expanding map. There is a residual set $\mathcal{G} \subset Lip(X, \mathbb{R})$ such that if $F \in \mathcal{G}$ then there is a unique *F*-maximizing measure and it has zero metric entropy.

Ground States are generically a periodic orbit

ヘロン 人間 とくほ とくほ とう

3

Proof.

Use estimates of Bressaud & Quas to obtain a close return in supp(µ) which is not too long in time. Construct a periodic orbit L_n with it. It has an action proportional to the distance of the return.

2 Use
$$f_n(x) := f(x) - \varepsilon d(x, L_n)$$

If a measure ν is nearby the closed orbit L_n , then it has small entropy.

If it is far from L_n then it is not minimizing for the perturbed function f_n .

Those f_n form a dense set.

We prove that $\mathcal{O} := \bigcup_{y \in Per(T)} \overset{\circ}{\mathbb{P}}_{y}$ is open and dense in $Lip(X, \mathbb{R})$. It is clearly open.

Suppose it is not dense. Then there is an open subset $\emptyset \neq \mathcal{U} \subset Lip(X, \mathbb{R})$ disjoint from \mathcal{O} .

By Morris Theorem we can choose $F \in U$ such that there is a unique (ergodic) *F*-maximizing measure μ and

 $h_{\mu}(T)=0.$

Ground States are generically a periodic orbit

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

 μ maximizing \implies for any calibrating sub-action u, supp $(u) \subset [\overline{F} = 0]$.

 μ is ergodic \implies there is a generic point q for μ , i.e. for any continuous function $f: X \rightarrow \mathbb{R}$

$$\int f \, d\mu = \langle f \rangle(q) = \lim_{N} \frac{1}{N} \sum_{i=0}^{N-1} f(T^{i}(q)).$$

Ground States are generically a periodic orbit

通り イヨト イヨト

By the perturbation proposition with M = #jumps = 2, there is Q > 0 and $\delta_0 > 0$ such that if $(x_k)_{k \ge 0} \subset \mathcal{O}(q)$ is a *p*-periodic δ -pseudo-orbit with at most 2 jumps made with elements of the positive orbit of q (which is in $[\overline{F} = 0]$) and $0 < \delta < \delta_0$. Then

$$\gamma = \min_{1 \leq i < j < p} d(x_i, x_j) < Q \delta.$$

i.e. every closed pseudo-orbit in $\mathcal{O}(q)$ with at most 2 jumps must have an intermediate return with proposition at most Q.

Main idea: This will contradict the zero entropy of μ .

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Fix a point $w \in \text{supp}(\mu)$ for which Brin-Katok theorem holds:

$$h_{\mu}(T) = -\lim_{L \to +\infty} \frac{1}{L} \log \mu (V(w, L, \varepsilon)),$$

where $V(w, L, \varepsilon)$, $L \in \mathbb{N}$, $\varepsilon > 0$ is the dynamic ball

$$V(w,L,\varepsilon) := \{ x \in X \mid d(T^k x, T^k w) < \varepsilon, \forall k = 0, \ldots, L \}.$$

Since *T* is an expanding map, for $\varepsilon < e_0$ small we have

$$V(\boldsymbol{w},\boldsymbol{L},\varepsilon)=\boldsymbol{S}_{1}\circ\cdots\boldsymbol{S}_{L}\big(\boldsymbol{B}(\boldsymbol{T}^{L}\boldsymbol{w},\varepsilon)\big),$$

for an appropriate sequence of inverse branches S_i . Thus

$$V(\boldsymbol{w},\boldsymbol{L},\varepsilon) \subseteq \boldsymbol{B}(\boldsymbol{w},\lambda^{\boldsymbol{L}}\varepsilon).$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

The measure of $V(w, L, \varepsilon)$ can be estimated by the proportion of the orbit of q which is spent on it.

If the measure of $V(w, L, \varepsilon)$ decreases exponentially with *L* it contradicts $h_{\mu}(T) = 0$.

We estimate the measure of the ball $B(w, \lambda^{L}\varepsilon) \supset V(w, L, \varepsilon)$.

By the perturbation proposition: Two consecutive visits of the orbit of *q* in the ball $B(w, \lambda^{L_{\varepsilon}})$ give rise to (exponentially) many intermediate returns (or approximations) which are outside the ball.

Thus the measure of the ball decreases exponentially with *L*.

(1) マン・ション・

Let N_0 be such that $2Q^{-N_0} < \delta_0$. For $N > N_0$ let $0 \le t_1^N < t_2^N < \cdots$ be all the Q^{-N} returns to w, i.e.

$$\left\{t_1^N, t_2^N, \dots\right\} = \left\{ n \in \mathbb{N} \mid d(T^n q, w) \leqslant Q^{-N} \right\}$$

Propositior

For any
$$\ell \ge 1$$
, $t_{\ell+1}^N - t_{\ell}^N \ge \sqrt{2}^{N-N_0-1}$.

From this

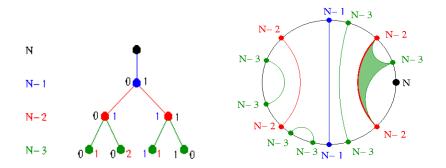
$$\mu(B(\boldsymbol{w}, \boldsymbol{Q}^{-N})) \leq \frac{1}{\sqrt{2}^{N-N_0-1}}.$$

And then $\mu(V(w, L, \varepsilon)) \leq \mu(B(w, \lambda^{L}\varepsilon))$ decreases exponentially with *L*.

Ground States are generically a periodic orbit

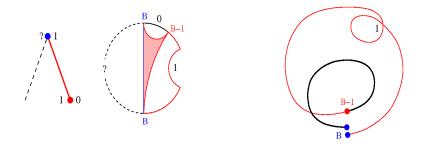
イロン 不得 とくほ とくほう 一日

Proof of the proposition



An example of a distribution of returns implied by the perturbation lemma and the tree representing it. The shadow will be explained later.

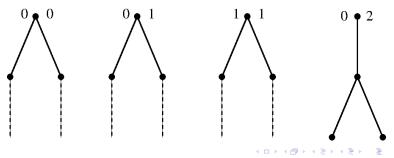
< ∃→



If the return implied by the proposition contains one of the endpoints of the mother periodic pseudo-orbit we observe that it divides the mother pseudo-orbit in two child pseudo-orbits. We draw lines connecting the ends of these pseudo-orbits and shadow the internal part of the disk \mathbb{D} which does not contain an interval in the circle. We treat the shadow as one node in the tree. Therefore

$$t_{\ell+1}^N - t_{\ell}^N \ge \#\{ \text{ nodes in the tree } \}.$$

- Each pseudo-orbit with at most two jumps and $\delta = Q^{-B}$ gives rise to a new node in the tree and a new intermediate return. An also subsequent pseudo-orbits with $\delta = Q^{-B+1}$.
- A pseudo-orbit with 3 jumps is not continued in the tree. This only happens in a node in the tree with numbers (0,2). At the side with 0 there is a pseudo-orbit with one jump. So the tree may not brach but always continues.
- We enumerate all the possibilities and show that in two steps every node has at least two grandchildren nodes.



Ground States are generically a periodic orbit

- The process continues as long as $Q^{-M} < \delta_0$, i.e. $N_0 < M < N$.
- The number of nodes duplicates every 2 steps in the tree.

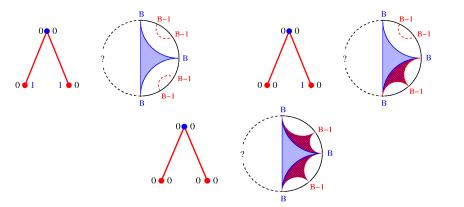
$$\#\{ \text{ nodes } \} \ge 2^{\frac{N-N_0-1}{2}} = \sqrt{2}^{N-N_0-1}$$

Ground States are generically a periodic orbit

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Nodes with numbers (0,0)

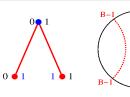


Ground States are generically a periodic orbit

< ∃→

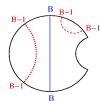
æ

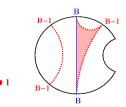
Nodes with numbers (0,1)

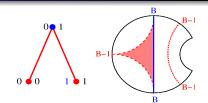


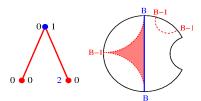
0

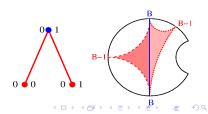
0





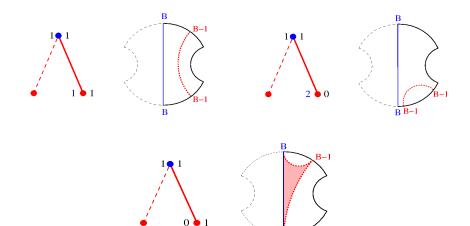






Ground States are generically a periodic orbit

Nodes with numbers (1,1)



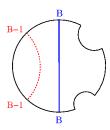
Ground States are generically a periodic orbit

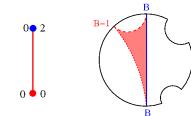
< 注→

æ

в

Nodes with numbers (0,2)





Ground States are generically a periodic orbit

ヨト くヨト

æ