
GROUND STATES ARE GENERICALLY A PERIODIC ORBIT

GONZALO CONTRERAS

Abstract. We prove that for an expanding transformation the maximizing measures

of a generic Lipschitz function are supported on a single periodic orbit.

1. Introduction

Let X be a compact metric space and T : X → X an expanding map. This means

that there are numbers d ∈ Z+, 0 < λ < 1 such that for every point x ∈ X there is a

neighborhood Ux of x in X and continuous branches Si, i = 1, . . . , `x ≤ d of the inverse of

T such that T−1(Ux) = ∪`xi=1Si(Ux), T ◦ Si = IUx ∀i, and

d
(
Si(y), Si(z)

)
≤ λ d(y, z) ∀y, z ∈ Ux.

Given a continuous function F : X → R, a maximizing measure or a ground state is

a T -invariant Borel probability measure µ which maximizes the integral of F among all

T -invariant Borel probabilities:∫
F dµ = sup

{∫
F dν

∣∣∣ ν ∈M(T )
}
,

where

M(T ) =
{
T -invariant Borel probabilities in X

}
.

They are called ground states because they correspond to the usual variational principle

in ergodic theory

µF := arg max
{
hµ(T ) +

∫
F dµ

∣∣∣ µ ∈M(T )
}
,

without the entropy term hµ(T ). The measure µF is called the equilibrium state for F .

They are also the candidates for zero temperature limits of equilibrium states. This is,

limits of the form lim
β→+∞

µβF . Here β is interpreted as the inverse of the temperature. It

is known [8, Proposition 29] that if the limit of a sequence {µβkF }k with βk → ∞ exists,

then it has to be a maximizing measure with maximal entropy among the maximizing
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measures. Brémont [4] proves that the limit lim
β→+∞

µβF exists if F is locally constant.

Chazottes, Gambaudo and Ugalde [7] give a characterization of the limit and a new proof

of Brémont’s result. Lepaideur [13] proves the convergence for general Hölder functions

F .

For generic Hölder or Lipschitz functions F , the maximizing measure is unique. This

is proven in [8] and it is presented in a general version in [12]. The ideas came from an

analogous result for lagrangian systems by Mañé [14]. After Jenkinson lecture notes [14]

the study of maximizing measures for a fixed dynamical system became known as Ergodic

Optimization. Surveys of the subject are presented by Jenkinson [12] and Baraviera,

Leplaideur, Lopes [1].

1.1. Theorem (Contreras, Lopes, Thieullen [8], see also[12]). Let T : X → X be a

continuous map of a compact metric space. Let E be a topological vector space which is

densely and continuously embedded in C0(X,R). Write

U(E) :=
{
F ∈ E

∣∣ there is a unique F -maximizing measure
}
.

Then U(E) is a countable intersection of open and dense sets.

If moreover E is a Baire space, then U(E) is dense in E.

The main conjecture in Ergodic Optimization during the last decade have been wether

the maximizing measure for generic Hölder or Lipschitz functions F is supported on a

periodic orbit. For lagrangian systems an analogous statement is known as Mañé’s con-

jecture.

On the space Lip(X,R) of Lipschitz functions on X we use the norm

(1) ‖f‖ := sup
x∈X
|f(x)|+ sup

x 6=y

|f(x)− f(y)|
d(x, y)

.

We denote the second term in (1) as Lip(f).

Recall that using a Markov partition (cf. [17, §7.29]) the symbolic model for an expand-

ing map is given by a one-sided subshift of finite type. Here we prove

Theorem A. If X is a compact metric space and T : X ←↩ is an expanding map then

there is an open and dense set O ⊂ Lip(X,R) such that for all F ∈ O there is a single

F -maximizing measure and it is supported on a periodic orbit.

Corollary B. For an open and dense set O of Lipschitz functions F on X the zero

temperature limit lim
β→+∞

µβF exists and it is supported on a single periodic orbit.
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On the negative side, for expanding transformations Bousch [3, Proposition 9, p. 306]

proves that for generic continuous functions the maximizing measure is not supported on

a periodic orbit. The case of hyperbolic sets is presented by Jenkinson in [12, Theorem

4.2].

There have been several approaches to the conjecture from which we will use some of

their techniques. Write

P(E) :=
{
F ∈ E

∣∣ the F -maximizing measure is supported on a periodic orbit
}
.

Contreras, Lopes, Thieullen [8] prove that P(E) is open for E = Cα(X,R) the space

of α-Hölder continuous functions and in the α-Hölder topology it is open and dense in

E = C !α(X,R), the space of functions F : X → R such that

∀η > 0 ∃ε > 0 d(x, y) < ε =⇒ |F (x)− F (y)| < η d(x, y)α.

The main technique is the introduction of a sub-action u : X → R to transform the

function F to a cohomologous function G = F + u ◦ T − u such that G ≤ a =
∫
GdµG,

where µG is a maximizing measure for G and F . The sub-action is defined similarly, and

plays the same role, as a sub-solution of the Hamilton-Jacobi equation for Lagrangian

systems. In fact analogous constructions to the weak KAM theory can be translated to

this setting. In proposition 2.1 we construct a sub-action following the original method by

Fathi [9] to construct weak KAM solutions. This method was used in ergodic optimization

by Bousch in [2]. In fact many results from Lagrangians systems can be translated to the

ergodic optimization setting, see for example [10].

Bousch proves that P(E) is dense for Walters functions. Yuan and Hunt [19] prove that

if a fixed measure is maximizing for an open set of functions F in the Lipschitz topology,

then it is supported on a periodic orbit. Their method of perturbation is the basis of the

present work. Quas and Siefken [16] work in a one-sided shift. They prove that P(E)

contains an open and dense set if E is the space of super-continuous functions. They

present an elegant version of the method of Yuan and Hunt. We need to modify it for

Lipschitz functions and pseudo-orbits with finitely many jumps in Proposition 2.4.

Another ingredient of the proof is the following theorem. As a weak version of the

conjecture, Morris [15] proves

1.2. Theorem (Morris [15]). Let X be a compact metric space and T : X ←↩ an expanding

map. There is a residual set G ⊂ Lip(X,R) such that if F ∈ G then there is a unique

F -maximizing measure and it has zero metric entropy.
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The original version of Theorem 1.2 is for Hölder functions in a shift of finite type.

In appendix A we describe the modifications from the proof in [15] needed to obtain

Theorem 1.2.

2. Preliminars

Let e0 > 0 and 0 < λ < 1 be such that for every x ∈ X the branches of the inverse of

T are well defined, injective and are λ-contractions on the ball of radius e0 centered at x.

Given F ∈ Lip(X,R), the Lax operator for F is LF : Lip(X,R)←↩

LF (u)(x) = max
y∈T−1(x)

{
α+ F (x) + u(x)

}
,

where

α = − max
µ∈M(T )

∫
F dµ.

Denote the set of maximizing measures by

M(F ) :=
{
µ ∈M(T )

∣∣∣ ∫ F dµ = −α(F )
}
.

A calibrated sub-action for F is a fixed point of the Lax operator LF . If LF (u) = u,

writing

(2) F := F + α+ u− u ◦ T

it is easy to see that

(i) −α(F ) = max
µ∈M(T )

∫
F dµ = 0.

(ii) F ≤ 0.

(iii) M(F ) =M(F ) = {T -invariant measures supported on [F = 0] }

2.1. Proposition. There exists a Lipschitz calibrated sub-action.

Proof: We claim that

Lip(LF (u)) ≤ λ
(

Lip(u) + Lip(F )
)
.
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Indeed, given x, y ∈ X, let y ∈ T−1(y) be such that LF (u)(y) = α + F (y) + u(y). Let S

be the branch of the inverse of T such that S(y) = y. Let x := S(x). Then

LFu(x)− LFu(y) ≤ α+ F (x) + u(x)− α− F (y)− u(y)

≤
(
F (x)− F (y)

)
+
(
u(x)− u(y)

)
≤
(

Lip(F ) + Lip(u)
)
d(x, y)

≤
(

Lip(F ) + Lip(u)
)
λ d(x, y).

The other inequality is similar.

Thus LF leaves invariant the space

E :=

{
u ∈ Lip(X,R)

∣∣∣ Lip(u) ≤ λ Lip(F )

1− λ

}
.

The quotient space E/{constants} is compact and convex and on it LF is continuous. By

Schauder Theorem [11, Theorem 18.10, p. 197] LF has a fixed point in E.

In fact LF is non-expanding in the supremum norm and a simpler fixed point applies

[11, Theorem 3.1, p. 28].

�

If u is a calibrated sub-action, every point z ∈ X has a calibrating pre-orbit, (zk)k≤0

such that T i(z−i) = z0 = z and

(3) u(zk+1) = u(zk) + α+ F (zk), ∀k ≤ −1.

Or equivalently, since T (zk) = zk+1,

F (zk) = 0, ∀k ≤ −1.

2.2. Remark. If ν is a maximizing measure then by (iii) its support is contained in

[F = 0]. If z ∈ supp(ν) then there is a pre-orbit of z which is included in supp(ν). Since

supp(ν) ⊂ [F = 0] the pre-orbit must calibrate u. In proposition 2.4 we will obtain a

periodic orbit O(y) such that the α-limit of every calibrating pre-orbit is O(y). This

implies that every maximizing measure has support on O(y).

The iteration of equality (3) gives

∀k ≤ −1, u(z0) = u(z−k) + kα+

−1∑
i=−k

F (zi)
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for any calibrating pre-orbit.

We say that a sequence (xn)n∈N ⊂ X is a δ-pseudo-orbit if d(xn+1, T (xn)) ≤ δ, ∀n ∈ N.

We say that the orbit of y ε-shadows a pseudo-orbit (xn)n∈N if ∀n ∈ N, d(Tn(y), xn) < ε.

2.3. Proposition (Shadowing Lemma).

If (xk)k∈N is a δ-pseudo-orbit then there is y ∈ X whose orbit ε-shadows (xk) with

ε = δ
1−λ . If (xk) is a periodic pseudo-orbit then y is a periodic orbit with the same period.

Proof: Write B(x, r) := { z ∈ X | d(z, x) ≤ r } and a := λ δ
1−λ . Let Sk be the branch of the

inverse of T such that Sk(T (xk)) = xk. We have that

Sk
(
B(xk+1, a)

)
⊆ Sk

(
B(T (xk), a+ δ)

)
⊆ B

(
xk, λ(a+ δ)

)
= B(xk, a).

Let y ∈ X be given by

y ∈
∞⋂
k=0

S0 ◦ · · · ◦ Sk
(
B(xk+1, a)

)
.

The point y exists and is unique because it is the intersection of a nested family of non-

empty compact sets with diameter smaller than 2aλk. We have that T k(y) ∈ B(xk, a).

Thus y a-shadows (xk). Now suppose xk is p-periodic. Then also T p(y) a-shadows (xk).

The uniqueness of y implies that T p(y) = y.

�

We show now a condition which permits to obtain a perturbation with maximizing

measure supported on a periodic orbit. The argument appeared first in Yuan and Hunt

[19]. The proof below is a modification that we shall need of the arguments by Quas and

Siefken [16] which we adapt to pseudo-orbits.

Let y ∈ Per(T ) = ∪p∈N+ Fix(T p) be a periodic point for T . Let Py be the set of Lipschitz

functions F ∈ Lip(X,R) such that there is a unique F -maximizing measure and

it is supported on the positive orbit of y. Let
◦
P y be the interior of Py in Lip(X,R).

2.4. Proposition. Let F, u ∈ Lip(X,R) with LF (u) = u and let F be defined by (2).

Let M ∈ N+. Suppose that for any δ > 0 there is a p(δ)-periodic δ-pseudo orbit

(xδk)k in [F = 0] with at most M jumps such that if γδ := min0≤i<j<p(δ) d(xδi , x
δ
j) then

limδ→0
γδ
δ =∞.

Then F is in the closure of ∪y periodic
◦
Py.
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Proof: Observe that fixing u, for any H ∈ Lip(X,R) the functions H and H + α(F ) +

u − u ◦ T have the same maximizing measures. Therefore it is enough to prove that the

function F is in the closure of ∪y periodic
◦
Py.

Let ε > 0. We will show a perturbation of F with Lipschitz norm smaller than ε such

that it has a unique maximizing measure supported on a periodic orbit. Moreover, we will

exhibit a neighborhood of the perturbed function in which the same periodic orbit is the

unique maximizing measure for all functions in the neighborhood. The neighborhood will

depend on the periodic orbit.

Let

K := max

{
M Lip(F )

(1− λ)2
,
Lip(F ) + 2

1− λ

}
,

γ3 := 1
Lip(T )

(
γ − 2δ

1−λ − δ
)
.

Assume that γ
δ is so large that

(4) 3Kδ − εγ3 =: −2a < 0.

Let y be the p-periodic point which
(

δ
1−λ
)
-shadows (xk). Write yk := T k(y) and

O(y) = {T i(y) | i = 0, . . . , p− 1} = {y0, . . . , yp−1}.

For a function G : X → R write

〈G〉(y) =
1

p

p−1∑
i=0

G(T i(y)).

Let ni, i = 1, . . . , `, ` ≤ M , be the jumps of (xk); i.e. d
(
T (xk), xk+1

)
= 0 if k /∈

{n1, . . . , n`}. We have that∣∣∣∣∣∣
ni∑

k=ni−1

F (yk)−
ni∑

k=ni−1

F (xk)

∣∣∣∣∣∣ ≤
ni∑

k=ni−1

Lip(F ) d(yk, xk) ≤
ni−ni−1∑
k=0

λk
δ

1− λ
Lip(F )

≤ Lip(F )

(1− λ)2
δ.

Thus ∣∣∣∣∣
p−1∑
k=0

F (yk)−
p−1∑
k=0

F (xk)

∣∣∣∣∣ ≤ M Lip(F )

(1− λ)2
δ.
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By hypothesis ∀k, F (xk) = 0, thus
∑p−1

0 F (xk) = 0. Therefore

p−1∑
k=0

F (yk) ≥ −
M Lip(F )

(1− λ)2
δ ≥ −Kδ,

(5) 〈F 〉(y) ≥ −Kδ
p
.

Observe that if 0 ≤ i < j < p,

d(yi, yj) ≥ −d(yi, xi) + d(xi, xj)− d(xj , yj) > γ − 2 δ

1− λ
=: γ2.

Claim: Assume that d(z, yk) ≤ δ < e0. Take w1 ∈ T−1{z} such that d(w1, yk−1) < λδ. If

w2 ∈ T−1{z} \ {w1} then

d(w2,O(y)) ≥ γ3 :=
γ2 − δ
Lip(T )

� δ.

Proof: Let yj ∈ O(y) be such that d(w2,O(y)) = d(w2, yj). Observe that j 6= k − 1

because T is injective in the ball d( · , yk−1) ≤ λδ. Then

γ2 < d(yk, yj+1) ≤ d(yk, z) + d(z, yj+1) ≤ δ + Lip(T ) d(w2, yj).

This proves the claim.

Now we make two perturbations to F . The first perturbation is the addition of −εg(x),

where

g(x) := d(x,O(y)),

and ε depends on δ and γ. This is a perturbation with Lip(εg) = ε. The second is a

perturbation by any function with norm

(6) ‖h‖0 <
Kδ

2p
.

This perturbation depends on O(y), and in particular on its period p. We shall prove that

the function G1 := F −εg+h has a unique maximizing measure supported on the periodic

orbit O(y). Since the set of such functions G1 contains an open ball centered at F − εg,

this proves the proposition.

Let

(7) G = F − εg + h+ β = G1 + β,
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where

β = − sup
µ∈M(T )

∫
(F − εg + h) dµ.

It is enough to prove the claim for G because G and G1 have the same maximizing

measures.

Using (5), we have that

β ≤ −〈F − εg + h〉(y) = −〈F + h〉(y)

≤ −〈F 〉(y) + ‖h‖0

≤ Kδ

p
+ ‖h‖0(8)

Let v be a calibrated sub-action for G, LG(v) = v. Given any z ∈ X let (zk)k≤0 be a pre-

orbit of z which calibrates v. Let 0 > t1 > t2 > · · · be the times on which d(zk,O(y)) > δ.

Then for each n ∈ N+ there is sn ∈ Z such that the orbit segment (zk)
tn−1
k=tn+1+1 δ-shadows

(y−i+sn)1i=tn−tn+1−1, thus

d(z−i+tn+1 , y−i+sn+1) ≤ λi−1 δ, ∀n ∈ N, ∀i = 1, . . . , tn − tn+1 − 1.

By the Claim, we have that

d(ztn ,O(y)) ≥ γ3.

Since both terms in F − εg are non-positive, from (7) and (8) we obtain

(9) G ≤ h+ β ≤ Kδ

p
+ 2 ‖h‖0 .

On a shadowing segment we have∣∣∣∣∣∣
tn−1∑
tn+1+1

G(zk)−
sn−1∑

sn−tn+tn+1−1
G(yk)

∣∣∣∣∣∣ ≤ Lip(G)
+∞∑
i=0

λi δ ≤ Lip(G)
δ

1− λ
≤ Kδ.

Write

tn − tn+1 − 1 = mp+ r

with 0 ≤ r < p and separate the shadowing segment in m loops around the orbit O(y)

and a residue with at most p− 1 iterates. Using (9) for (p− 1) times, we have that

tn−1∑
tn+1+1

G(zk) ≤ mp 〈G〉(y) + (p− 1)
Kδ

p
+ 2(p− 1) ‖h‖0 + Lip(G)

δ

1− λ
.
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By the definition of β we have that 〈G〉(y) ≤ 0. Therefore

(10)

tn−1∑
tn+1+1

G(zk) ≤ (p− 1)
Kδ

p
+ 2(p− 1) ‖h‖0 +Kδ.

On the points ztn far from O(y), using (9) we have that

(11) G(ztn) ≤ 0− ε γ3 + ‖h+ β‖0 ≤ −ε γ3 +
Kδ

p
+ 2 ‖h‖0 .

Thus, adding (10) and (11), and using (6) and (4)

(12)

tn−1∑
tn+1

G(zk) ≤ 2p ‖h‖0 + 2Kδ − εγ3 < −a < 0.

Since v is finite and (zk) is a calibrating pre-orbit for v, we have that for every k ≤ 0,

v(z) = v(zk) +
−1∑

i=k+1

G(zi)

Thus
−1∑
−∞

G(zk) ≥ −2 ‖v‖0 > −∞.

From (12) we obtain that the sequence tn is finite. Thus every calibrating pre-orbit has α-

limit O(y). By remark 2.2, this implies that every maximizing measure for G has support

on O(y).

�

3. Proof of Theorem A

Proof of theorem A:

We prove that ∪y∈Per(T )
◦
P y is open and dense. It is clearly open.

Suppose that there is a non-empty open set

(13) U ⊂ Lip(X,R)

which is disjoint from ∪y∈Per(T )
◦
P y. Let F ∈ U . Let µ be an ergodic maximizing measure

for F . By Theorem 1.2 we can assume that the entropy of µ is

(14) hµ(T ) = 0.
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By (iii) for any calibrating subaction u, supp(µ) ⊂ [F = 0]. Let q ∈ X be a generic point

for µ, i.e. for any continuous function f : X → R,

∫
f dµ = 〈f〉(q) = lim

N

1

N

N−1∑
i=0

f(T i(q)).

By Proposition 2.4 with M = 2 there is Q > 0 and δ0 > 0 such that if (xk)k≥0 ⊂ O(q)

is a p-periodic δ-pseudo-orbit with at most 2 jumps made with elements of the positive

orbit of q and 0 < δ < δ0 then γ = min1≤i<j<p d(xi, xj) < Qδ.

Let N0 be such that

(15) 2Q−N0 < δ0.

Fix a point w ∈ supp(µ) for which Brin-Katok Theorem holds [6], i.e.

(16) hµ(T ) = − lim
L→+∞

1

L
logµ

(
V (w,L, ε)

)
,

where V (w,L, ε) is the dynamic ball:

(17) V (w,L, ε) :=
{
x ∈ X

∣∣ d(T kx, T kw) < ε , ∀k = 0, . . . , L
}
.

Given N > N0 let 0 ≤ tN1 < tN2 < · · · be all the Q−N returns to w, i.e.

{tN1 , tN2 , . . .} = {n ∈ N | d(Tnq, w) ≤ Q−N}.

We need the following

3.1. Proposition. For any ` ≥ 0, tN`+1 − tN` ≥
√

2
N−N0−1

.

Using Proposition 3.1 we continue the proof of Theorem A.

Write

B(w, r) := {x ∈ X | d(x,w) ≤ r }.

Given N � N0, let fN : X → R be a continuous function such that 0 ≤ f ≤ 1,

f |B(w,Q−N−1) ≡ 1 and supp f ⊆ B(w,Q−N ). Using that q is a generic point for µ and
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Proposition 3.1, we have that

µ
(
B(w,Q−N−1)

)
≤
∫
fN dµ = lim

L→+∞

1

L

L−1∑
i=0

fN (T iq)

≤ lim
L→+∞

1

L
#
{

0 ≤ i < L
∣∣∣ d(qi, w) ≤ Q−N

}
≤ lim

L→+∞

1

L
#
{
`
∣∣∣ tN` ≤ L }

≤
√

2
−N+N0+1

.(18)

Recall that the dynamic ball about w is

V (w,L, ε) :=
{
x ∈ X

∣∣ d(T kx, T kw) < ε , ∀k = 0, . . . , L
}
.

We have that

V (w,L, ε) = S1 ◦ · · · ◦ SL
(
B(TLw, ε)

)
,

where Sk is the branch of the inverse of T such that Sk(T
kw) = T k−1w. Therefore

V (w,L, ε) ⊆ B(w, λLε).

Let N be such that

Q−N−2 ≤ λLε ≤ Q−N−1.
Then

−N ≤ L log λ

logQ
+

log ε

logQ
+ 2.

Using (18), we have that

µ
(
V (w,L, ε)

)
≤ µ

(
B(w, λLε)

)
≤ µ

(
B(w,Q−N−1)

)
≤
√

2
−N+N0+1

.

1

L
logµ

(
V (w,L, ε)

)
≤ 1

L

(
log
√

2
)(
−N +N0 + 1)

≤ log λ

logQ
log
√

2 +
1

L

(
log
√

2
)(

2 +
log ε

logQ
+N0 + 1

)
.

By Brin-Katok Theorem [6] we have that

hµ(T ) = − lim
L→+∞

1

L
logµ

(
V (w,L, ε)

)
≥ log λ−1

logQ
log
√

2 > 0.

This contradicts the choice of F in (14). Therefore such non-empty open set U in (13)

does not exist. This implies that the (open) set ∪y∈Per(T )
◦
P y is dense. �
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Now we prove

3.1. Proposition. For any ` ≥ 0, tN`+1 − tN` ≥
√

2
N−N0−1

.

Proof: For N ∈ N, let

AN := {(x, y) ∈ X ×X | d(x, y) ≤ Q−N}.

From (15) if N > N0 and (xk)
p−1
k=0 is a p-periodic 2Q−N pseudo-orbit in O(q) with at most

2 jumps, then there is a Q−N+1-return (xi, xj) ∈ AN−1 with 0 ≤ i < j ≤ p− 1.

Write qi := T i(q). The sequence (qk)
tN`+1−1
k=tN`

is a periodic Q−N pseudo-orbit in O(q) with

1 jump. Therefore there is a Q−N+1-return d(qi, qj) ≤ Q−N+1 with tN` ≤ i < j ≤ tN`+1− 1.

This gives rise to two Q−N+1 periodic pseudo-orbits inO(q) with at most 2 jumps. Namely,

(qi, . . . , qj−1) and (qj , . . . , qtN`+1−1
, qtN`

, . . . , qi−1). Each of them give rise to a Q−N+2 return.

Figure 1. Example of a cascade of returns implied by the inductive process.

It is simpler to show the inductive process in a picture. Draw a circle S with the

elements of the pseudo-orbit (qk)
tN`+1−1
k=tN`

. Inside the disk D, draw a line from qi to qj . It

may be that qi = qtN`
but in that case qj 6= qtN`+1

. The line `1 = qiqj separates the disk

in two components. Each component is a Q−N+1 pseudo-orbit with at most two jumps

(one jump of size ≤ Q−N+1 and possibly another with size ≤ Q−N < Q−N+1). Thus, each

component has at least one Q−N+2 return . . . The interior of the lines in this construction

do not intersect.

We will also draw a tree with the returns, in order to see that their number grows

exponentially. An example appears in figure 2. The nodes of the tree are the returns
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implied by Proposition 2.4. The height1 of the node corresponds to the size of the return.

The numbers near a node are the quantity of returns in upper levels of the tree which are

adjacent to the return of the node, either at its left or at its right. These numbers are also

equal to −1 +the quantity of jumps of the two new periodic pseudo-orbits determined by

the node.

Figure 2. An example of a distribution of returns implied by Proposi-
tion 2.4 and the tree representing it. The shadow is explained after in-
equality (19).

We show how the tree is constructed in the example of figure 2. We begin with a

return in AN . This gives a periodic Q−N pseudo-orbit with no other jump. It implies the

existence of a return in AN−1. In the tree we draw a vertical line from level N to level

N − 1. At this stage, the line in the circle corresponding to the AN−1 return divides the

disk in two components. One side has 1 return in AN that appears in a previous level

in the tree and the other side has 0 returns appearing above in the tree. We write the

numbers 0 and 1 at the sides of the node of the tree corresponding to the AN−1 return.

The AN−1 return divides the circle in two components. The component at the left is a

periodic QN−1 pseudo-orbit with only one QN−1 jump, corresponding to the number 0

in the tree. The component at the right is a QN−1 pseudo-orbit with a QN−1 jump and

also a QN jump, and corresponds to the number 1 in the tree in the node at level N − 1.

Proposition 2.4 implies the existence of other returns in AN−2 for both pseudo-orbits. In

the right hand side of figure 2 we draw the case in which the pseudo-orbit segment between

the AN−2 return contains a Q−N jump. Cutting the QN−1 pseudo-orbit of the right hand

side of the circle at the AN−2 return we obtain two QN−2 periodic pseudo-orbits. The one

1A node in level N − 2 corresponds to a return (qi, qj) ∈ AN−2 with d(qi, qj) ≤ Q−N+2. The distance
could actually be smaller. The height in the tree is just the distance implied by the previous steps in the
construction of the tree. It if was smaller it would imply a larger subtree from that point, this helps the
argument.
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at the right has a QN jump which appears previously in the tree and the one at the left

has a QN−1 jump appearing previously in the tree. We write the numbers 1 and 1 in the

corresponding node of the tree.

Figure 3. If the return implied by Proposition 2.4 contains one of the
endpoints of the mother periodic pseudo-orbit we observe that it divides the
mother pseudo-orbit in two child pseudo-orbits. We draw lines connecting
the ends of these pseudo-orbits and shadow the internal part of the disk D
which does not contain an interval in the circle S.

We want to assure that each node of the tree corresponds to a return which has at least

one new point of the pseudo-orbit (qtN`
, . . . , qtN`+1−1

) which did not appear in the returns

corresponding to the other nodes of the tree. So that we have

(19) tN`+1 − tN` ≥ #{nodes}.

Given a Q−B periodic pseudo-orbit (qa, . . . , qb−1) with at most M = 2 jumps we get a

return (i, j) with d(qi, qj) ≤ Q−B+1, a ≤ i < j ≤ b. It may happen that i = a or j = b− 1

but not both, because it would be the same return we started with. Say i = a. The next

return in the construction of the tree could be (j, b) and in that case the new node in the

tree does not correspond to a new element in the pseudo-orbit, the points qa, qi, qb were

already counted. To avoid this situation we observe that (qj , . . . , qb−1) is indeed a 2Q−B

periodic pseudo-orbit because d(qj , qb) ≤ d(qj , qa) + d(qa, qb) = d(qj , qi) + d(qa, qb). In the

disk we draw two new lines qaqj and qjqb and shadow the region bounded by these two

lines and qaqb. We treat the region as a new line. This is, the two new components in

the (disk D) \ {shadow} are treated as the two sides of a new line in D corresponding to a

node in the tree. The numbers in the node are -1 + the quantity of jumps of each of the

pseudo-orbits determined by the components.

We describe in figures 4 – 7 all the possibilities for a vertical step of size one of the

tree’s construction. The “bitten” parts are returns which appeared previously in the

tree’s construction. In the case of a node at level B with numbers (0, 2), for M = 2

Proposition 2.4 does not give a new return for the side which already has 2 returns. In
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this case Proposition 2.4 only implies that there is one return in AB−1 in the side which

had 0 previous returns. Then for a node at level B with numbers (0, 2) we draw only one

vertical line to level B − 1.

Figure 4. These are all the cases for a node in the tree with numbers
(0, 0). Since the beginning numbers are (0, 1), the numbers (0, 0) appear
only with a shadow i.e. returns to the beginning (and end) of the pseudo-
orbit.

The tree is constructed by joining the pieces shown in these figures. Except for the

nodes with numbers (0, 2) all the other nodes have two child nodes. All the nodes have

at least one child. The nodes with numbers (0, 2) in figure 7 have one child with numbers

different from (0, 2). This implies that they have at least two grandchildren nodes. This is

graphically shown in figure 8. Therefore the quantity of nodes at least duplicates in every

sequence of two vertical steps. The tree continues growing while the height number is

larger than N0. Thus it has at least N−N0 vertical steps and then at least (N−N0−1)/2

sequences of two vertical steps (and hence duplication of nodes). We obtain

tN`+1 − tN` ≥ #{nodes} ≥ 2
N−N0−1

2 .

�
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Appendix A. Zero Entropy.

In this appendix we describe the modifications to the proof of Theorem 2 in [15] to

obtain Theorem 1.2.

We need two lemmas.

A.1. Lemma. Let a1, . . . , an be non-negative real numbers, and let A =
∑n

i=1 ai ≥ 0.

Then
n∑
i=1

−ai log ai ≤ 1 +A log n,

where we use the convention 0 log 0 = 0.

Proof: Applying Jensen’s inequality to the concave function x 7→ −x log x yields

1

n

n∑
i=1

−ai log ai ≤ −

(
1

n

n∑
i=1

ai

)
log

(
1

n

n∑
i=1

ai

)
= −A

n
logA+

A

n
log n

from which the result follows. �

A.2. Lemma. Let f ∈ Lip(X,R) and suppose that Mmax(f) = {µ} for some µ ∈ M(T ).

Then there is C > 0 such that for every ν ∈M(T ),

−α(f)− C
∫
d(x,K) dν ≤

∫
f dν,

where K = suppµ.

Proof: By Proposition 2.1 there exists g ∈ Lip(X,R) such that f + g − g ◦ T ≤ −α(f).

Define f̃ = f + g − g ◦ T . Since f̃ is continuous,
∫
f̃ dµ =

∫
f dµ = −α(f) and

f̃ ≤ −α(f), it follows that f̃(x) = −α(f) for every x ∈ K = suppµ. Let C = Lip(f̃).

Given x ∈ X, let z ∈ K be such that d(x, z) = d(x,K); we then have

f̃(x) ≥ f̃(z)− C d(x, z) = −α(f)− C d(x,K)

from which the result follows. �

Proof of Theorem 1.2:

For p ≥ 1 letMp(T ) be the set of invariant probabilities supported on periodic of period

smaller or equal to p. In this appendix we will identify a periodic orbit {z, Tz, . . . , T p−1z}

with the corresponding invariant measure µ = 1
p

∑p−1
i=0 δT iz.
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Let

(20) ε0 > 0, 0 < λ < 1

be such that for every x ∈ X the branches of the inverses of T at x are well defined,

injective, and are λ-contractions on the ball B(x, ε0) of radius ε0 centered at x.

Let

Eγ := { f ∈ Lip(X,R) | h(µ) < 2 γ htop(T ) ∀µ ∈Mmax(f) }.

It is enough to prove that Eγ is open and dense for every γ > 0.

Step 1 and Step 2 of the proof are the same as in [15]. The Claim of step 3 is

Step 3.

Claim: Given any 0 < θ < 1, there is a sequence of integers (mn)n and a sequence of

periodic orbits µn ∈Mn(T ) such that∫
d(x,K) dµn = o(θmn) and lim

n→∞

log n

mn
= 0.

which has the same proof as in [15].

Step 4. For each n ≥ 1 define Ln := suppµn. Using (20), fix

(21) 0 < θ < min{ε0, λ}.

Claim: There is Nγ > 0 such that when n ≥ Nγ

ν({x ∈ X | d(x, Ln) ≥ θmn }) > γ

for every invariant measure ν ∈M(T ) such that h(ν) ≥ 2γ htop(T ).

Proof of the Claim.

Recall that a Markov partition for T is a finite collection of sets Si which cover X such

that

(a) Si = intSi.

(b) If i 6= j then intSi ∩ intSj = ∅.
(c) f(Si) is a union of sets Sj .

Ruelle [17, §7.29] proves that for expanding maps there are Markov partitions of arbitrarily

small diameter. Let P be a Markov partition with diamP < ε0. The elements of the
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partition

P(n) :=
n−1∨
i=0

T−iP =
{ n−1⋂
i=0

Ai

∣∣∣ Ai ∈ T−iP }
have diameter smaller than λn−1ε0 and contain an open set. Then the partition P is

generating because the σ-algebra

P∞ = σ
(
∪n P(n)

)
= Borel(X).

contains all the open sets. Therefore [18, Theorem 4.18] for every invariant measure

ν ∈M(T ),

h(ν) = inf
k

1

k

∑
A∈P(k)

−ν(A) log ν(A).

From the definition of topological entropy using covers [18, §7.1] we have that

lim
k≥1

1

k
log #P(k) ≤ htop(T ).

Choose Nγ large enough that for all n ≥ Nγ

2 + log #P
mn

+
log n

mn
+

γ

mn
log #P(mn) < 2γ htop(T ).(22)

Let ν ∈M(T ) and suppose that

(23) ν({x ∈ X | d(x, Ln) ≥ θmn}) ≤ γ

for some n ≥ Nγ . We will show that necessarily h(ν) < 2γ htop(ν).

Let

Wn := {A ∈ P(mn) | d(x, Ln) < θmn for some x ∈ A }.

From (23),

γ̃n :=
∑

A∈P(mn)\Wn

ν(A) ≤ γ.

Using lemma A.1 we have that

h(ν) ≤ 1

mn

∑
A∈Wn

−ν(A) log ν(A) +
1

mn

∑
A∈P(mn)\Wn

−ν(A) log ν(A)

≤ 1

mn

(
1 + (1− γ̃n) log #Wn

)
+

1

mn

(
1 + γ log #P(mn)

)
.(24)
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Unsig (21), observe that since θmn
λmn < ε0 for any y ∈ Ln there is a branch g of the inverse

of Tmn such that the ball

B(y, θmn) ⊆ g
(
B(Tmny, ε0)

)
.

Since P is a Markov partition with diamP < ε0,

Pmn = { g(A) | A ∈ P, g is branch of T−mn }.

Therefore the ball B(y, θmn) intersects at most #P elements of Pmn because by applying

Tmn

#{B ∈ Pmn | B ∩B(y, θmn) 6= ∅} ≤ #{A ∈ P | A ∩B(Tmny, ε0) 6= ∅ } ≤ #P.

Since Ln has at most n elements, #Wn ≤ n#P . Thus from (22) and (24) we have that

h(ν) ≤ 1

mn

(
1 + (1− γ̃n) log n#P

)
+

1

mn

(
1 + γ log #P(mn)

)
.

≤ 2 + log #P
mn

+
log n

mn
+

γ

mn
log #P(mn) < 2γ htop(T ).

This proves the claim.

Step 5 is the same as in [15]. This ends the proof.
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