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Convex Hamiltonians without conjugate points
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Abstract We construct the Green bundles for an energy level without conjugate points of a
convex Hamiltonian. In this case we give a formula for the metric entropy of the Liouville
measure and prove that the exponential map is a local diffeomorphism. We prove that the
Hamiltonian flow is Anosov if and only if the Green bundles are transversal. Using the
Clebsch transformation of the index form we prove that if the uniqgue minimizing measure
of a generic Lagrangian is supported on a periodic orbit, then it is a hyperbolic periodic
orbit.

We also show some examples of differences with the behaviour of a geodesic flow
without conjugate points, namely: (non-contact) flows and periodic orbits without invariant
transversal bundles, segments without conjugate points but with crossing solutions and
non-surjective exponential maps.

0. Introduction

Let M be a closed connected Riemannian manifold Akd/ its cotangent bundle. By a

convex Hamiltonian ofT*M we shall mean @2 function H : T*M — R satisfying the

following conditions.

(@ Convexity:Forallg € M, p € T;M, the Hessian matri)(32H/8p,'3pj)(q,p)
(calculated with respect to linear coordinatesrgiM) is positive definite.

(b) Superlinearity:

H(q,
im 9P _
Ipl=oo |pl
TheHamiltonian equatiorior H is defined as
q'=H, p =-H, (1)

where H, and H, are the partial derivatives with respectgcand p. Observe that the
Hamiltonian functionH is constant along the solutions of (1). Its level sBts= H ~1{¢}

are callecenergy levelsf H. Then the compactness#f and the superlinearity hypothesis
imply that the energy levels are compact. Since the Hamiltonian vectorfield (1) is Lipschitz,
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the solutions of (1) are defined on all&f Denote byy, the correspondinglamiltonian
flowonT*M.

Our main interest in this paper are ttisconjugateorbits of the Hamiltonian flow, i.e.
orbits without conjugate points. Let: T*M — M be the canonical projection and define
thevertical subspacend € T*M by V(0) = ker(ds). Two pointsdy, 62 € T*M are said
to beconjugatef 62 = v, (61) for somer # 0 andd v, (V (1)) NV (62) # {0}.

In this work we generalize some results of the theory of geodesics without conjugate
points. A first step is to construct tii&reen subspacedsr disconjugate orbits.

PROPOSITIONA. Suppose that the orbit f € T*M does not contain conjugate points
and H(®) = e is a regular value ofH. Then there exist twe-invariant Lagrangian
subbundle&, F c T(T*M) along the orbit ob given by

E©) = lim_dy- (VW ©O).
F©6) = lim _dy(V(y-:(6))).

Moreover E(Q)UF©0) C Ty X, E@)NV®O) =F@O)NV(O) = {0}, (X)) CEBO)NF®)
anddimE®) = dimF@®) = dimM, whereX() = (H,, —H,) is the Hamiltonian
vectorfield andz = H " 1{e}.

These bundles were constructed for disconjugate geodesics of Riemannian metrics by
Green [L9 and of Finsler metrics by Foulorlf]. In the Finsler case this is done by
defining a new connectiol such that the solutiong of the Euler—Lagrange equation
satisfy % (y) = 0. This approach leads to extensions of many important theorems in
Riemannian geometry to Finsler geometry. See Ch@rarid the references therein for a
survey and an introduction to this field.

If the energy levelx does not have conjugate points, the Green burillaadF can
be defined on ah € . Nevertheless, in general they are neither continuous4pfnpr
transversal irr X (i.e. dmENF = 1).

An example of the relationship between the transversality of the Green subspaces and
hyperbolicity appears in the following.

PROPOSITIONB. Let " be a periodic orbit ofy, without conjugate points. Theh is
hyperbolic (on its energy level) if and onlylif(6) NF(©) = (X (#)) for somed € T", where
(X (0)) is the one-dimensional subspace generated by the Hamiltonian vectoxfield
In this caseE andF are its stable and unstable subspaces.

We can compare Proposition A with the following theorem by Paternain and Paternain

[32.

THEOREMO.1. (Paternaind2]) Suppose that is a regular value ofH, and thaty,|x
admits a continuous invariant Lagrangian subbun#leThen:

@ EO)NVEO) ={0}VoeX;

(b) =(%)=M;

(c) X contains no conjugate points.
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It is not difficult to see (e.g.44]) that when the flomy; |y is Anosov, the stable and
unstable subbundles &fx are Lagrangian. Paternain’s theorem then implies that Anosov—
Lagrangian flows do not have conjugate points. This result was proven for geodesic flows
by Klingenberg £3]. An extension of the Klingenberg result appears inn§Z4].

Define

B®) = {g eTys

supldy; (0)€| < +oo}.
teR

An important property (cf. Proposition 1.11) in the proof of Proposition B is that if
the orbit of 6 is disconjugate theB(#) < E(@©) N F@@). This in turn implies that
(X)) CE@®)NTF@®)andE@®) UF@©) C T, = (cf. Corollary 1.12). The global version of
Proposition B is given by the following.

THEOREMC. Let X = H{e} be a regular energy level without conjugate points. Then
the following statements are equivalent:

(@) Y|y is Anosov;

(b) foralld € X, E() andF(0) are transversal irnfy X;

(c) foralld e Z,E@)NF®) = (X(®H));

(d) ifoeX,velpX,v¢ (X)) thensupg |dy:(0) - v] = +o0.

Where(X (0)) C Ty X is the one-dimensional subspace generated by the vectoXfiglg

of .

This theorem was proven by Eberlein (cL3]) for geodesic flows. For further
applications of this theorem se8][or [11]. An interesting ingredient in its proof is
the characterization of recurrent quasi-hyperb&actions of vector bundles. Given a
vector bundler : E — B consider a continuouR-actionA : R — Isom(E, E),
where A, : E — E is a bundle map which is a linear isomorphism on each fiber
and Ag+; = Ag o A;. The actionA induces a continuous flow, : B < such that
¢, o =1 o A;. We say thatA is quasi-hyperboligf

SUp|A;(§)| =+oco forallé e E, £ #0,
teR
and we say that it iiyperbolicif there exists a continuous splittin = E* @ E* and
C > 0, > O such that:
(i) |A&)| <ceMforallr >0, € ES;
(i) |A_; (&) <CceMforallt >0,& € EX.

It is easy to see that hyperbolic actions are quasi-hyperbolic. The converse is false by
counterexamples found in Robins@#] and Franks and Robinsof4]. But it is true with
an additional recurrency hypothesis (that in our case is always true because the Lagrangian
flow preserves the Liouville measure).

Define thenon-wanderinget2 (¢) of ¢ as the set of points € B such that for every
neighbourhood/ of b there existsT > 0 such thaipr(U) N U # 0. The following
theorem is a slight modification of a theorem in Freit8][ written there for quasi-Anosov
flows (i.e whenA; = d¢; andE is a continuous invariant subbundle®B transversal to
the vectorfieldX, see Theorem 3.1).
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THEOREMO.2. Letw : E — B be a continuous vector bundle and: R — Isom(E, E)
a continuousR-action with induced flow;: = o A; = ¢; o . If A is quasi-hyperbolic
andQ(¢|p) = B, thenA is hyperbolic.

For completeness of the exposition we present a proof of Theorem 0.2 in 83. The
reason for using this version of Freire’s result is that our Hamiltonian flows are not of
contact type ana priori they may not preserve any continuous bundle transversal to the
vectorfieldX (9). Indeed, in the Appendix we show an example of a convex Hamiltonian
without conjugate points where this phenomenon occurs. The solution is to study the
behaviour of an (orbitwise) reparametrization of the flow which preserves a continuous
transverse bundlE c T (T*M). This reparametrization cannot be made global but instead
we use the quasi-hyperbolicity of the action(®) = P(y;(0)) o dvy;(0) o P(0) where
P©): TyT*M — E(0) is the projection along the direction of the vectorfidl®).

Generic Lagrangians.
A C*functionL : TM — Ris called a (convex autonomousigrangianif it satisfies the
following properties.
(@) Convexity: For all x € M, v € TyM, the Hessian matri)(BZL/Z)viE)vj)(x, v)
(calculated with respect to linear coordinatesiQi) is positive definite.
(b) Superlinearity:
L(x,v)

|[v|—00 |U|

uniformly onx € R.
Observe that by the compactnessidf the Euler—Lagrangesquation, which in local
coordinates is
d oL oL
doL . 9L . 5
T 8U()c,x) o (x, X), 2
generates a complete flaw: TM x R — T M defined by

@t (x0, vo) = (x (1), X(1)),
wherex : R — M is the maximal solution of (2) with initial conditions(0) = xg and
x(0) = vo.
A Lagrangian flow is conjugated to a Hamiltonian flow by the Legendre transform
Fr:TM — T*M defined by

JL
Frlx,v) = <x, —(x, v))-
ov

The corresponding Hamiltonian is given Bi(q, p) = E(]—‘L’l(q, p)), whereE : TM —
R is theenergyfunction, defined by

oL
E(x,v) = ™
Vlx,v)

Conversely, given a convex Hamiltonidhon T* M, the corresponding convex Lagrangian
is given by the Legendre transform of the Hamilton#gg : T*M — T**M ~ T M which
can be seen as

L(x,v) =maX(p(v) — H(x, p)} = (pHp = H) 0 Fm L

-v— L(x,v). 3
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Observe that item (b) in Theorem 0.1 implies that the energffan Anosov level for
the Lagrangian flow satisfies

e > ep := —maxL(p, 0),
PEM
becauseg is the minimal energy level for which 7 (X) = M. Define
c(L) := —min { / Ldu ’ wis ap — invariant probabilit%.
™

Itis proven in P8 (see also§]) thatc(L) > ep.
We say that a-invariant probabilityu is minimizingif

o(L) = —/Ldu,

and we say that it isiniquely ergodicif it is the only invariant probability measure
supported inside sugp).

Action minimizing curves do not contain conjugate points. This fact is known since
Morse’s earlier works (cf.30]). We present a simple proof of this fact in 84 and we use
Proposition B to prove the following theorem, which was stated as Theorem Il iné®la”
unfinished work 28].

THEOREM D. There exists a generic s€ C C*°(M, R) such that for allp € O the
LagrangianL + ¢ has a unique minimizing measure and this measure is uniquely ergodic.
When this measure is supported on a periodic orbit or a fixed point, this orbit (d0iist)
hyperbolic and its stable and unstable manifolds intersect transverBal{y") h W (T").

In Mafié [28], it is conjectured that there exists a generic @esuch that this unique
minimizing measure is supported on a periodic orbit or an equilibrium point.

The first statement of Theorem D was proved byl [26]. Here we prove the
generic hyperbolicity of the minimizing periodic orbit and the transversality property
wsT) t W*(T). The hyperbolicity of" was announced in M#& [28] and the
transversalityW*(I') th W*(I") was conjectured in M& [27]. We use the Clebsch
transformation 7] to derive formulas for the index form on an orbit without conjugate
points. Then we use similar arguments to the Rauch comparison theorem to obtain the
transversality of the Green bundles of the periodic orbit. Finally, Proposition B implies the
hyperbolicity of the periodic orbit.

The metric entropy.

The machinery developed for the proof of Theorem C can be used to obtain formulas for
the metric entropy of a Hamiltonian flow without conjugate points. Oseledec’s thetiry [
gives a splitting

Ty = E°(0) ® E°(0) ® E*(9)
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for a set of point® € A C X of total measure, such that

1

lim =log|dy:(0)€] <0 foré e E*(6),
t—>to0 t
1

lim =log|dy:(0)¢| =0 for& e E€(0),
t—>to0 t

1
lim —log|dy,(0)é] >0 for& e E“(9).
t—>to0 t
Following Freire and Maé& [16], we see in Proposition 1.14 that
E"(9) CF(©O) C E"(0) ® E°(0),
E*(0) CE®) S E*() © E°(O).

Given a Riemannian metric oif, define thehorizontal subspacas the kernel of the
connection map. Then there exist symmetric linear isomorphism& (¢) — V () such
thatlF(0) = grapiU(0)) for all 6 € . They satisfy the Ricatti equation (7)

U+ UH,,U + UHpq + HypU + Hyq =0,

whereH,,, H,,, H,, andH,, are linear maps which coincide with the second derivatives
of H in local coordinates, and is the covariant derivative df defined as

U@ = }[imo%[th(l/fh(Q))v —U®wl e V(EO)~ T/ M,

wheret, : T;wh(e)M — T;(Q)M is the parallel transport.

Foro € A define the unstable Jacobian by

1
) := Ilim —log|detd wig)|-
x(©) AmoT gl YrlEn @)l

We prove in Proposition 1.14 that

. 1 [T
x® = i [ ulHy + Hy Ul ar

where tf ] is the trace. From Ruelle’s inequalit@g], for any invariant measurg for
Y |s, we obtain that the metric entropy satisfies

hu(llfb:)S/Exduffztr[Hpq—i—prU]du.

Pesin’s formula states that for a smooth invariant meaguogéa C1*¢ diffeomorphism
f : N <>, we have that
hu(f) = / xdp.
N
In our case we obtain the following.

THEOREM E. Let m be the Liouville measure on an energy le¥elwithout conjugate
points. Then

i (Wl5) = / W[ Hyq + HypUldm.
D)

This theorem was proved for geodesic flows by Freire andéMa€], Finsler metrics
by Foulon [L8 and mechanical Lagrangians by Innar22].
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The exponential map.
The quasi-hyperbolicity in the cad&6) m F(0) is obtained from Proposition 1.10 which
states the horizontal growth of vertical vectors, i.e.

IETOO ldm o dysi|v o)l = +o00.

The bounds obtained in Proposition 1.10 are not uniform, from an example in Ballmann
et al[4]. In 86 we give a uniform lower bound fd/ o dy; |y @) ll, 0 € Z, |t| = 1. This
bound was given by Freire and M&[1€] in the case of geodesic flows.

Define the exponential map of an energy le¥eas exp : 7,)M — M, exp,(t0) =
7 (¥:(0)), wheref € ¥ N Tq*M andgq is a regular value oft : ¥ — M. This
map is not differentiable & € 7,*M, but its Lagrangian version is differentiable with
dexp,(0) = I. An important question is whether the lift of this map to the universal
cover, exp : ;M — M, is a diffeomorphism in an energy level without conjugate
points and, in particular, if the universal coviér is homeomorphic t®”. We show in
Corollaries 1.18 and 1.13 that if the energy le¥ehas no conjugate points then exp a
local diffeomorphism ane (X) = M.

Let ® = pdq be the Liouville’s 1-form (4) inT*M. Given a regular energy level
andg € n(%), letx, = (z|s)"Yg}. SinceM is simply connected, in order to obtain a
global diffeomorphism exp: 7'M — M it is sufficient to show that expis a covering
map. For this it is enough th&(X) > 0. Indeed, in 86 we prove the following.

THEOREMF. Let H : T*M — R be convex and®& = H 1{e} a regular energy level.
Suppose thag € 7(X) satisfies the following.

(a) The positive orbit of alb € X, has no conjugate points.

(b) Inf{lOX@)NI | P € yr+(ZH} > 0.

Then the (Lagrangian) exponential magp, : 7;M — M associated tay;, X) is a
diffeomorphism.

We give an example (cf. Example A.4) in the appendix in which égmot surjective
and where all the orbits il of y; starting atr ~1{g} have no conjugate points. This shows
that condition (a) is not sufficient in Theorem F. By Theorem X iml§9] (see also§]),
this cannot happen for high energy levels. Example A.1 in the appendix also shows that the
norm of the derivative|dy (exp,) | may not be bounded below on an energy level without
conjugate points. We do not know if the exponential map is a diffeomorphism when the
whole energy level has no conjugate points.

The condition®(X) = pH, > 0 is writen ®(X) = vL, > 0 in Lagrangian
form. It is satisfied by Finsler Lagrangians(x, v) = %||v||§, mechanical Lagrangians
L(x,v) = %(v, v)y — ¢(x) (With ©(X) = 1, H(g, p) = %(l’vl’)q + ¢(¢)) and all
convex Hamiltonians on sufficiently high energy levels. It fails for magnetic Lagrangians
L(x,v) = %(v, vy — ¢(x) + nx(v) (with dn #£ 0) on lower energy levels. If one adds
a closed 1-form to a Lagrangian, the Euler—Lagrange equation, and hence the Lagrangian
flow, do not change. This may help to make a given Lagrangian flow satisfy condition (b).
See Remark 6.5 an@][for a characterization of the energy levels for which this condition
holds for a convex Lagrangian. Se] for other proofs of Theorem F and its converse.
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The obstruction to obtain a bound ody, o) (EXP,) I is the following angle
<UX (Y (0)), dyr (V(0) N TpX)). If the orbit of 6 is disconjugate this angle is always
non-zero by Proposition 1.16. In Example A.3 of the Appendix, this angle reaches zero
beforethe first conjugate point appears. Moreover, there are crossings of solutiahs on
starting atr (9) before the first conjugate point.

In 81 we prove Proposition A, Theorem E and we show the proof of item (c) in
Theorem 0.1. In 82 we study the transversal behaviour of the Hamiltonian flow and prove
Proposition B. In 83 we show the proof of Theorem 0.2 and we prove Theorem C. In 84
we give a characterization of the index form and in 85 we prove Theorem D. In 86 we
give a uniform lower bound fafz o d;|v ) and prove Theorem F. Finally, we add some
examples in the Appendix.

1. The Green bundles

For the proof of the basic results in this section see Abraham and Margdérhgre is a
canonical symplectic structure @i M given by a closed non-degenerate 2-fasra:= d©,
where® is the Liouville’s 1-form, defined by

B9 (§) = 0(dm (0)8), 4)

wherer : T*M — M is the canonical projection. The Hamiltonian vectorfigdof
a functionH : T*M — R is defined byw(X,-) = —dH. The Hamiltonian flowy,
preserves the functioH and the 2-formw. The level sets oH are calledenergy levels
Givenalocalchary : U € M — R" itinduces anatural chart(g, p) : T*U — R" x R"
of T*M. In natural charts the Liouville’s 1-form is written &= p dq. Hence, in natural
chartsw = dp A dg and the Hamiltonian equations are given by

G=H, p=—H, (5)

In general, a set of local coordinates p) of T*M is calledsymplectiaf the canonical
2-form is written asv = dp A dq. A subspaceE C T(T*M) is said to be_agrangianif
dimE =n =dimM andw(x, y) =0forallx,y € E.

Fix a Riemannian metric o and the corresponding induced metric BhM. Then
ToT*M splits as a direct sum of two Lagrangian subspaces: the vertical subggace-
ker(dm (9)) and the horizontal subspaég©) given by the kernel of the connection map.
Using the isomorphisnkK : ThT*M — Tr@eyM x T;(Q)M, & — (dm(0)E, Vy(m§)),
we can identifyH (0) ~ Tr@yM x {0} andV () =~ {0} x T;(Q)M ~ Tro)M. If we
choose local coordinates along— w,(6) such that — (3/9q;) (T, (0)) are parallel
vectorfields, then this identification beconges> (dq (&), dp(§)). LetE C TyT*M be an
n-dimensional subspace such ti#an vV (9) = {0}. ThenE is a graph of some linear map
S : H@O) — V(0). It can be checked thdt is Lagrangian if and only if in symplectic
coordinates§ is symmetric.

Proof of Proposition ATaked € T*M andé = (h,v) € TyT*M = HO) d V(0) ~
TH(Q)M D Tn(Q)M. Consider a variation

as (1) = (qs (1), ps(1)),
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such that for each €] — ¢, ¢[, «a is a solution of the Hamiltonia® such thatxg(0) = 0
and (d/ds)as(0)|s—0 = &. Writing dy;(§) = (h(t), v(¢)), we obtain the Hamiltonian
Jacobi equations

h = Hpgh + Hppv, 0 = —Hygh — Hypv, (6)

where the covariant derivatives are evaluated alo(®, (1)), and Hy,, H,p, Hpp and
H,, are linear operators dfy, 4, M, which in local coordinates coincide with the matrices
of partial derivativesd?H /dq;dq;), (32H /dq:dp;), (8%H /dp;dp;) and (32H /dp;dq;).
Moreover, since the HamiltoniaH is convex, therH,, is positive definite.

We now derive the Ricatti equation. L& be a Lagrangian subspace BfT*M.
Suppose that for in some intervall — ¢, e[ we have thatly,(E) N V(y;(0)) = {0}.
Then we can writely, (E) = graphS(¢), whereS(?) : H(y,0) — V (y0) is a symmetric
map. Thatis, i€ € E then

dy(§) = (h(1), S()h(1)).
Using equation (6) we have that
Sh + S(Hpgh + HppSh) = —Hyqh — H,pSh.
Since this holds for alt € H(y;(6)) we obtain the Ricatti equation:
S+ SH,pS + SHpy + HypS + Hyy = 0. 7

Take the symmetric mag(z) for which dvy,(V(9)) = graphS()), t > 0. Let
Y(t) : TyyM =~ V(0) - H(WY0) = Try,eM, t € R, be the family of isomorphisms
Y)w =dm - dy,(0)(0, w), where(0, w) € H(0) @ V(0). Thenforr > 0, Y (¢) satisfies

Y = (Hpg + HppS)Y, Y(0) =0, Y(0) = Hpp, (8)
whereY (0) is calculated from (8) using that
im S@OY @) =1.
t—0
Givenu € T; )M, define
hi@®) =Y®u, vi@) =SOY@)u, t > 0.

Then(hy, v1) is a solution of equation (6) with1(0) = 0,v1(0) = u. Leté € TyT*M and
let (h(t), v(t)) = dy(§) € H ® V. Sincedy, preserves the symplectic form, we have
that

(h(1), v1 (D) — (@), h1 () = (h(0), u).

Hence,
(Y*()S®h(), u) — (Y*(O)v(t), u) = (h(0), u)

forall u € Ty M. Therefore,

v(t) = SOh(t) — (Y*(1)"h(0). )
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Since
h = Hpgh + Hppv
we get
h = (Hpg + HppS)h — Hpp(Y)"20(0). (10)

DifferentiatingY ~14 and using equation (8), we obtain
h(t) = Y ()Y (¢) " h(e) + Y(t)/ YY) Hpp(Y¥(5) Th(0)ds, forO <t <c. (11)
t

Now consider the magv; restricted to the subspaeB)_.(V (¥.0)), ¢ > 0. Its
projectionZ.(¢) to the horizontal subspace is given by the solutions of (6) with = 0.
ThenZ.(¢) is the family of isomorphisms given by

Zo() =Y (@) /C YY) H,pp(Y¥(s) " tds, 0<1t<c, (12)
t

because. (1) satisfies (6) forO< ¢ < ¢, Z.(c) = 0 and

Z:(0) = lim Z.(t) = I.
t—0t
Observe that from its definition, the linear map(¢) is defined for alk € R and the no-
conjugate points condition implies that (¢) is an isomorphism for all # ¢. Moreover,

sinceZ.(r) is a matrix solution of the Jacobi equation (6), th#0) exists, and taking the
limitin (12), we have that the linear isomorphism

d
Z4(0) — Z:(0) = Hpp(0) / Y(s) " H,, (Y*(s)) L ds (13)

is symmetric and the second factor on the right is positive definite for all®@< d. In
particular

Za(t) — Ze(t) = Y () Hpp(0) [ Za(0) — Zc(0)], 0<c <d. (14)
Fore > 0 define
Z_o(t) =Y@®N:+ Z.(t), teR, (15)

where N, := —Y(—¢&)"1Z.(—¢). We have thatZ_.(¢) is the solution of the Jacobi
equation (6) satisfying_.(—¢) =0,Z_.(0) = I and

Z_¢(0) — Z:(0) = Hpp(O)N. (16)

CLAIM 1.1. Y~X(1)Z.(¢) is symmetric for alk # 0. In particular N. is symmetric for all
c>0.

Proof. Using (10), we have that

Ze=AZc+ Hpp(YH) ™,
Y =AY 40, t+#0,
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whereA = Hy, + HppS. Then
Ze=AZ_ ¢+ Hpp(Y*) L.
Using (9) we have that the functions
ha(t) = Z_(Du,  v2(1) = SOha(t) — (Y1) M, 17)
are solutions of (6) wittho(—¢) = 0, h2(0) = u. Similarly, the functions
h3(t) = Ze(w,  v3(t) = SOha) — (V* (1)) w, (18)

are solutions of (6) witlk3(0) = w, hz(c) = 0.
Since the flow preserves the symplectic form, we have that the following expressions
do not depend onfor all u, w € T )M

(ha(t), v3(1)) — (v2(2), h3(1))
(Z—eu, (SZe — (Y Hw) — ((SZ—e — (¥ D, Zew)
77 o —Y 12— 757 4722y =zt -v iz,

Using formula (15), this is equal to
Y 1zy*—v1z.— N. =N}, (19)

where the right-hand side corresponds to its value whea —s. SinceZ.(c) = 0,
evaluating the equation at= ¢, we get thatv, is symmetric for alle > 0. Using (19)
again, we obtain that ~1Z. is symmetric for alk + 0. |

CLAIM 1.2. N, is positive definite for alt > 0.

Proof. Itis enough to show it foN . We have that

d_ zeO vy =z1z.z7vy -7 YW|—o=—-H

dt ¢ t—O_ c c%c c 1=0 = pp-
Therefore—Z.(t)~1Y (¢) is positive definite for small < 0. By Claim 1.1, this matrix
is symmetric for alk < 0. Since forr < 0 its determinant never vanishes, it is positive
definite for allz < 0, in particular for = —e, N1 is positive definite. 0

Define a partial order on the symmetric isomorphismg g M by writing A > B
if H,,(0)"1(A — B) is positive definite. From (13) we have that the famify =
{Z-(0) — Z1(0) | ¢ > 1} is monotone increasing. Moreover, by (16) and Claim 1.2
we have that

Z:(0) — Z1(0) <t HppNe + (Z:(0) — Z1(0))
4 Z_¢(0) — Z1(0),

so that the familyF is bounded above. It can be seen that this implies the existence of a
least upper bound which is the limit of the family. We obtain the first part of the following.
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CLAM 1.3.
(@)  lime 100 Zc(0) — Z1(0) = Q exists and is symmetric.
(b) lim.= 100 Z(t) = D(¢) exists (uniformly for boundedintervals).
Moreover,
h@#) = D),
v(t) = SOD® + (Yt 1 #0
is a matrix solution of(6) such thatD(0) = 1, D(0) = Q + Z1(0) anddetD(r) # O for
allt e R.

Part (b) is a consequence of (14) and the continuous dependence of the solutions of
equation (6) on the initial data.
We have that the subspace

Eg(0) := {(u, vOO)u) | u € Tr9yM} C H(0) ® V(0)
is the limit of the subspaces

Ec(0) :=dy—c(V(¥e(0))) = {(h3(0),v3(0)) | u € TroyM},
wherehs(t) andvz(¢) are given by (18). Moreover,
Eq (1) := dyi(Ee(0) = {(h()u, v(D)u) | u € TroyM}
satisfiesEq (r) N V (y,0) = {0} and
Eq (1) = CHTOO dyi—c(V(¥c(0))) = dﬂToo dy—a(V(a(4:0))) = Ey,6(0).

Since the vertical subspace is Lagrangian, tBe) is Lagrangian. By the continuity of
the symplectic form, the subspadés(¢) are Lagrangian.

To obtain the ‘unstable’ Green bundi&6), observe that the flow of the Hamiltonian
H(9) = —H(®) is the flowy, of H with the time reversed. In this cas}_epp is negative
definite, but similar arguments apply to obtain the subbufididpplying the lemma to
H, we obtain the subbunde Moreover, in this case the family = {Z_.(0) — Z_1(0) |
¢ > 1} is monotone decreasing and bounded belowZbg0) — Z_1(0). This finishes
the proof of the first part of Proposition A, we defer the proof of the second statement to
Corollary 1.12. |

Let
S@t) : = v()h()™t
=S +Y*0)" b7t (20)

ThenS(z) is a symmetric solution of the Ricatti equation (7), which is defined onalR.
The symmetry of(z) can be checked either becalide) = graphS(z)) is a Lagrangian
subspace or because

YO ID(@) = Jim Y()“1Z.()

is symmetric and this implies thar*)~1D~1 is symmetric.
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Let S(0), U(#) be the symmetric solutions of the Ricatti equation (7) corresponding to
the Green bundleB(6#) = graphS()) andF(9) = graphU(0)). Let K.(0) : H(®) —
V (60) be the symmetric linear map such that gréoh9)) = dv_.(V(¥.(0))). Define a
partial order on the symmetric isomorphismsTa{g M by writing A > B if A — B is
positive definite.

PrROPOSITION1.4. Forall ¢ > O:

(@ ifd>c>0thenK_, -~ K; - K
(b) ifd <c<O0thenkK, < K; < K¢;

© limgsiooKg=S,liMmy_co Kg =T
(d S<xU.

Proof. Let (Z.(2), V.(¢)) be the matrix solution of the Jacobi equation (6) wWAth0) = 1,
Z:(c) =0,c > 0. From (9) we have that

Ve(t) = SO Ze(t) — (Y1)~ (21)
Hence, using (14) and (13), we have that
Va(t) — Ve(t) = SO Zq(1) — Zc(1)] (22)

d
=SOY () / Y~ H,,(r*)"tds. (23)

Whent — 0 we have thaf(¢)Y (t) — I. Therefore,
d
V4(0) — Ve (0) = / (Y7 H,,(v") Y ds. (24)

Let K.(t) = V.(t)Z.(r)~1 be the corresponding solution of the Ricatti equation (7). Since
Z:(0) = I, we have thak.(0) = V.(0). By (24), K;(0) — K.(0) is positive definite if
d > ¢ > 0, hence, the sequen&g (0), d > 0 is strictly increasing.

From (17) we have that equation (22) also holdscfer —e. Using (15), we have that

Va(t) = V_e(t) = S()(Za(t) — Z_(1))
= SO(=Y())Na).

Hence,V;(0) — V_.(0) = — N, is negative definite. Sincé_.(0) = I, thenK_.(0) =
V_¢(0). ThereforeK_. = K, foralld > 0.

This completes the proof of item (a). Item (c) has already been proven on Claim 1.3
above. Item (b) is proven similarly using the concave Hamiltoias: —H and item (d)
is a corollary of items (a), (b) and (c). O

Remark 1.5If a bounded open segmefy,;(9) | a— < t < a*} has no conjugate
points, the arguments above apply to obtain limit solutions li;x Z.(r) = D*(r),
D*(0) = I, detD(r) # 0, Lagrangian subspacés™(0) = lim,_, .= dy_,(V(¥,0)) =
dvyr,=(V (y¥,=(0))) and the monotonicity properties of Proposition 1.4. Nevertheless, in
generalE*(9) ¢ Ty (see Remark 1.17).
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Remark 1.6.The existence of the Green bundles, the solutibn, U, S and the
monotonicity properties in Proposition 1.4 do not need the uniform boundedness of the
operatorsH,,, H,,, Hyq. But in the unbounded case we cannot guarantee either that
X(@©) e E@)NF@®) orE@) UF®) C T X.

PROPOSITIONL.7.

(@) Any symmetric solutioiy(¢) : H(y,(0)) — V(¥,(0)) of the Ricatti equatiorf7)
which is defined on > 0is uniformly bounded on> 1, i.e. there existal > 0 such
that

I1Se(D)|| <A foralld e X, r > 1.

(b) Any measurable symmetric solution of the Ricatti equation defined on the energy
level X is uniformly bounded.

An immediate consequence is the following.

COROLLARY 1.8.
(@) The solutionSy () of equation(8) given bylmage Yy (r), Sy (t)Ye(¢)) = dy; V(0) is
uniformly bounded foft| > 1.
(b) The solutionsSy(¢), Uy(z) corresponding to the Green bundles are uniformly
bounded ork.
We shall need the following lemma, whose proof is elementary.
LEMMA 1.9. The functiorw(r) = R coth(Rt — d), R > 0, satisfies:
() w+w?—R?>=0;
(i) w=<0,w(—t+d/R)=—w(t+d/R);
(i) im0 w(®) = R, liM, oo w(t) = —R;
(iv) Iim,_)(d/Rﬁ w(t) = +oo, Iim,_>(d/R)f w(t) = —oo.
Proof of Proposition 1.7 We first prove (a). By the spectral theorem, it is enough to prove
thatx*Sy (¢)x is uniformly bounded fofix|| = 1 andr > 1. SinceH;;q = H,, andS* = §,
we have that
S+ S*HppS + H,, S + S*Hpq + Hyqg = 0.
LetC := (Hpp) YHpy, D := Hyy — C*H,,C — C and V(1) := Sp(t) + C(¥:(9)). Then
V+V*H,,V+D=0.
SinceC(0) and D(0) are continuous, then they are uniformly bounded on the energy
level. Hence, it is enough to prove thetVy(¢)x is uniformly bounded on > 1 and
6 € X. Observe thaty () is not necessarily symmetric. L&f > 0 be such that

1
Y Hpp(@)y > Mllyll2 forallo € . (25)
Let R > 0 be such that
[y*D(©)y| < MR?> forallo e =, |y|=1 (26)

We claim that

[V*Vg(t)y| < MRcoth(R) forall |yl =1 t>1, 0¢cX.
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We prove the claim. Lefip € %, |x|| = 1. Write V(t) 1= Vy(2), Hpp(t) 1= Hpp(¥:0).
Suppose that there existse R such that

x*V(to)x =: Ma > MR coth(R).

There existsdg € R such thatRcoth(Rtg — dg) = «. Observe thatly > 0 and
to > do/R > 0. Write w(t) := Rcoth(Rt — dp). Thenw(z) is a solution of
W+ w? — R = 0fort > do/R. In particular,

Mw + Mw? — MR? = 0.
Let f(¢) ;== x*V(t)x — Mw(¢t). Thenf (1) = 0 and
@) + V@) Hyp (O V (0)x — Mw(t)®) + (x*D(t)x + MR?) =0.  (27)

Using the Schwartz inequality and (25), we have that
1 1
Muw(tg)® = Ma? = M(Moz)z = V (10)x)?

1
< MIV(IO)XIZ < (V(t0)x)* Hpp (1) (V (t0)x)
Muw(10)? < x*V (t0)* H,p (10) V (o) x. (28)

Then (28), (26) and (27) imply that' (r0) < 0. The same argument can be applied each
time thatf (r) = 0. Thereforex*V (t)x < Mw(¢) forall ¢+ > 19 and

x*V(t)x > Mw(t) foralldg/R <t < 1.

Then
im x*V@EHx >  lim Mw() = +oo.
t—>(do/R)* t—>(do/R)*
Sincedp/R > 0, this contradicts the existence Wf¢) for r > 0. Hence, sucky does not
exist and
x*V(t)x < MRcoth(R) forallt > 0.

Now suppose that there exisise R, ||z|| = 1 such that
x*V(t1)x < —MR.

We comparev(r) = x*V(t)x with Mw1(z), wherew1(t) = Rcoth(Rt — ¢g) is such
that Mw1(t1) = v(t1). Observe thatwi(¢) is defined forr < c¢o/R and in this case
co > 0 andcg/R > t1 > 0. The same argument as above shows tligt < Mw1(t)
forny <t < co/R. Since lim_, .,/ r)- wi(t) = —o0, this contradicts the fact that(r) is
defined for allz > 0.

The proof of (b) is similar to that of (a). In this case we can changeMtiecoth(R)
bound byM R. We allowzy € R anddp € R to be non-positive if necessary. The second
inequality has also the same proof, but here we allow R andcg € R. |

The following proposition states that limi [|[dw o dy; (0)|v @)l = oo for all
6 € X. This limit is not uniform in@ € X. A uniform lower bound for this norm is
given in 86.
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PrROPOSITION1.10. For all R > Othere exists' > T(R,0) > 0such that Yy (r)v| >
Rlv|forall |t| > T and allv € TyM \ {0}.

Proof. Let
M(t) ::/ YY) Hpp(5)(Y*(s)) "L ds.
t
From (12), using thabD () = lim._ » Z.(t), we have that
D(s)=Y(s)M(s) fors > 0. (29)

Consider the solution$(¢), S(z) of the Ricatti equation given on (8) and (20). From (20)
and (29) we have that

St = S() =Y @) M) ty@w)~t fort > 0.
Since the solution$(z), S(¢) are defined on all > 0, by Proposition 1.7, there exigt> 0
andk > O suchthat|S(®)| < kand|S()|| < kforallt > ro. Thenfor|x| = 1 andr > 1o,
(MO ()R, Y () 1) = [(SO)x, x)| + [(S()x, x)| < 2k.
Let A(z) be the largest eigenvalue 8f(¢), r > 0. SinceM (¢) is positive definite then
A(t) > 0and||M(2)|| = A(t). Moreover,

2% > (M) 'Y () e, Y () )| = Tlt)warlxﬁ
Y () Ix] < V2k |M@)|Y? forall x| =1, t > 1.
Then if|v] = 1, we have that
Yaws s 1
1Y@~ V2k|M (0|12
Since M(t) — 0 whent — +o00, given R > 0 there existsT > 19 such that

(2k||M()|)Y/2 < 1/R forall t > T and hencelY (t)v| > R forall r > T and|v| = 1.
Using the HamiltoniarH := —H, we get the result for < —T. ]

Ford € T M, define

ort > fg.

B®) := {é e TyT*M

supldy; (@) - €| < +oo}.
teR

PrRoPOSITION1.11. If the v-orbit of 6 € TM does not contain conjugate points, then
B(®) CE@®) NF(@©).

An example showing that in genef&ld) NF(0) ¢ B(0) is given in Ballmanret al [4].

Proof. Leté € B(9) and leter € E7(0) :=dy—_7 (V (Y7 (0))) be such thadlz (9) - &7 =
dm(0) - &, in particulars — ¢7 € V(0). Since limy_, ;o0 E7(0) = E(0) andE(9) h V()
then there exists := lim7_, 10 ¢ € E(0). Moreoverdnodyr (§ — ¢1) = dmod iy (§).
Sincedrodyr(§) is bounded o > 0, by Proposition 1.10, lim., 1o (§ — ¢7) = 0.
Sincetr — ¢ € E(9), thené € E(@9).

Similarly, if ny € Fr(®) := dvyrr (V (Y—7(0))) is such thadz () - ny = dn (@) - &,
then limr—, 1o nr € F(®) and limy_, 4 oo (§ — n7) = 0. o
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COROLLARY 1.12. If the orbit of@ has no conjugate points then:
(@ (X(©) CE@®)NF@©);
(b) E@®)UF®) C THx.

Proof. The property X (9)) C E(@) NF(0) is a direct consequence of Proposition 1.11. It
remains to show thd(9) UF(9) C Ty X. Observe that sincedH = w(X, -), then

THE ={§ e HT"M | 0(X(0),§) = 0}.

SincelF(9) is Lagrangian an& (0) € F(9), thenw (X (0), &) = 0 for all¢ € F(9). Hence,
F(0) C TpX. Similarly, E(0) C TpX. O

COROLLARY 1.13. If M is connected and is a regular energy level without conjugate
points, thent (X) = M.

Proof. For6 € X, dn(9) : F(0) — Tr@)M is an isomorphism. By Corollary 1.12,
F@®) c Tpyx. Hence,m : ¥ — M is an open map. Sinc#/ is connected then
(X)) =M. a

The metric entropy.
Let A be the set of total measure having the Oseledec’s splifyfgM = E*(0) &
E€(0) ® E“(0).

ProPOSITION1.14. Forall 8 € A:

(@ E(0) CE®) S E(0) ®E©);
(b) E"(0) SF(@©) € E"(0) ® E“(V);

. 1 [T
© x®= lm = /0 {11 Hpq + Hpp U101 (6)) dr.
Proof. We only prove
E"(9) CF©O) C E"(0) ® E°(0), (30)

which shall be used for the proof of Theorem E; the other inclusions are similar.

We first prove the second inclusion. Observe thatfes (0, v) € V(0) we have that
dyr (0)v = (Yp(t)v, *). Then, by Proposition 1.10, we have tHato) N E*(#) = {0}.
For everyd € A there exists a subspad®f) C E“(0) & E°(0) and a linear map
L(@®) : R(®) — E*(0) such thatV(#) = graphL(6).

Let u be an ergodic invariant measure fgr. Givene > 0 let K C A be a compact
subset such that(K) > 1 — ¢ and also:

(@) SUglL@)ll |6 € K} < +o0;
(b) thereexist§ > 0and0<n <1< i <n Lsuchthatfor > 7T andd € K,

ldyiles@yll <0’ and dy; Y pe@@re@ll < A
Let V_,(0) := dvs(V (_,(6))). Then

V_s(0) = dys(graphL(y_s(9)))
= graphidy; o L(Y—s(8)) o (d¥s|ry_, @) -
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Foré € K take a sequencg — +oo suchthaty_g, (6) € K. Sincedyrs, (R(Y—s, (0))) C
E"(0) & E(0), by properties (a) and (b), we have that

ld s, o L(Y—s, (0)) o (dY—s, lay, Ry, @) || < 1A% SUP|ILO)]|.
feK

Sincen* A" — 0 whenn — 400, we have that
F@O) = lim V_,(0)= lm dy,, (R(Y_, ) S E“() & E°©).
n——+00 n—+o00

Therefore, the second inclusion in (30) is satisfieddfar K. Sinceuw(K) > 1 — ¢ ande
andu are arbitrary, this inclusion holds for a set of total measurg.in

We now prove the first inclusion. There exists (&, Theorem 3.1.19]) a continuous
Riemannian metri¢, ) on 7*M and a continuous family of linear isomorphism&) :
T,T*M < such that/(#)2 = —I and the symplectic form is written as(x, y) =
(x,J@)y) forall x,y € TpT*M and6é € T*M. From now on we use this metric.
Let {e1(09), ..., e,(0)} be an orthonormal basis @(¢) and definee,+;(0) = Je;(0)
fori = 1,...,n. Since the subspacB() is Lagrangian, the subspacef(®) =
spafe,+1(0), ..., e2(0)} is the orthogonal complement &%6) with respect to{ , ).
The matrices ofv anddy, (0) with respect to the family of basig1(0), ..., e2,(0)} are

A(0) Cz(G)} .

1
J = [—I ] and dvy,(0) = [ B,(6)

Sincedvy; preserves the symplectic form we have tliat/,)*J(dvy;) = J. Hence,
B} (0) = A1 andB; (0)C;(9) is symmetric.
SinceF(§) C E"(9) & E€(9), then

lim 1|0 B Y@)w| = lim 1Io A (@)w| >0
Jim —logl B/ "(@)wll = lim —logllA;@)wl =
forall w € R", 6 € A. This implies that

1 .

—to0 ¢

t

Suppose that“(©) ¢ F@©). Takev € E“(0) \ F(). Thenv = w + z with
: € F® and 0# w € JF@©H). We have thaly_,v = u_, + (+, B 1(®)w) with
u—; € F(Y—(9)) € E"(Y—(0)) & E(Y—(0)). SinCEBfl(é’)w € JF(y—(9)) and
F and JIF are orthogonal, we have thidy_; (v)|| > ||B[1(9)w||. Hence, from (31) we
obtain

. 1
dim " loglldyr— (@)vll = O.

This contradicts the choiaee E*(6).
Finally, we prove (c). Letry : F(@) — H(9) be the restriction okiz. Then
7, (v) = (v, U(H)v) and by Corollary 1.8

supllzy |l < +oo. (32)
fex
Fix0 € A, let Zy(r) : V(0) — H(y,(9)) be defined by
Zo(H)v = 1y, 0) dY () (v, UO)V) .
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Then
Ay (O)lre) = 7,19 © Zo(1) 0 Mg,

By (30) and (32), we have that

. 1
x(0) = TL'TOO T log | detdy; (0)|r) |
= lim lIo | detZy (1)|
C Totoo T 9 o '

Since the isomorphismg(z) = Zy(), v(t) = U, (0))Zy(r) satisfy the Jacobi
equation (6), we have that

Zo = (Hpq + HppU)Zp.

Since defZy(t) # 0 for allt € R, then detZy (r) has constant sign and
d d
E' detZy(1)| = p detZy(t) = tr(Hpq + HppU)| detZy(1)],

d
7 log|detZe(1)| = tr[H,q + HppUl,

1 1 [T
lim —log|detdy, (6 = lm — | u[H H dt. o
I - log | detdy @)lsoy| = 1m 2 [ty + 1)

The exponential map.
The following proposition proves item (c) in Theorem 0.1. We present a modern proof that
shall be needed in the sequel.

ProPOSITION1.15. (HartmanZQ]) LetH : T*M — R be a convex Hamiltonian. Then:

(@) a half-open segmenty;(0) | t € [0, a[}, a €]0, +oo[U{+o0} has no conjugate
points if and only if there exists a Lagrangian subspdtec 7,7*M such that
dyr:(E)N V(y:(0)) = {0} for all ¢ €]0, af;

(b) a closed segmeni/;(0) | ¢t € [0, a]} has no conjugate points if and only if there
exists a Lagrangian subspaéec T, T*M such thatdy, (E) NV (y,(0)) = {0} for
allr €[0,al;

(c) if a closed segmerit);(0) | ¢t € [0, a]} has no conjugate points, then there exists
8 > Osuch that the segmefit; (0) | t € [—§, a + 8]} has no conjugate points.

Proof. (a) If the half-open segment is disconjugate, then the Lagrangian subBpace
V (0) satisfiesdy, (V(9)) NV (y:(0)) = {0}.

Conversely, suppose that such Lagrangian subspasegiven. LetE(¢) := dy, (E).
Then the projectiodr : E(t) — H(y,(0)) is an isomorphism. Le§(z) : H(y,(0)) —
V (¥, (0)) be the linear isomorphism such th&ts) = graph(S(z)) for ¢ €]0, a[. Since
E(t) is Lagrangian, ther§(z) is symmetric and it satisfies the Ricatti equation (7). Let
Z(): E(0) > H(y,(0)) be given byZ(t)w = dn dy,(6)w. Then

Z = (Hpg + HppS)Z, Z(0) =drn|E. (33)
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Letw € E and(h1(2), v1(t)) = dy;(w) € E(t), thenh1(t) = Z(H)w, v1(t) = S Z()w.
Leté € TyT*M and (h(z), v(t)) = dy(€). Suppose thak(c) = 0, ¢ €]0,a[. Using
h1(t), v1(¢), the same arguments as in (9), (10), (11) give that

t
h(t) = Z() Z(c) " *h(c) + Z (1) / Z7H) Hpp(ZH () THZ () v(e))ds.  (34)
Sinceh(c) = 0, then

t
(Z)Yh(), Z(e) v(c)) = / (Hpp(Z())1Z(c) v(c), (Z(s)) 1 Z(e) v(e)) ds.
(35)

In particulari(z) # 0 for all # €]0, a[\{c}. Hence, the segmen®, a[ does not have
conjugate points.

It remains to prove the cage= 0. Let 0 < b < a. We prove that is not conjugate
to ¥, (0). We already know thay;, (6) has no conjugate points i, (0) | 0 < ¢t < a}.
ForO< d < bletE; = dyp—q(V(¥a())) = graphKy), whereKy; : H(yp(0)) —

V (¢ (0)) is the corresponding solution of the Ricatti equation (7).4.et 0 be such that

b<b+e<aandletEpie = V_o(V(Ypte(0))) = grapi(Kp+.). By Proposition 1.4(b)

and Remark 1.5, the famili(; is monotone decreasing @hand has the (lower) bound
Kp+e. Hence, there exists := lim,_, o+ Eg = dy,(V (0)) andE N V (¥, (0)) = {0}.

(c) If the closed segmeiid, a] has no conjugate points, thér, (V (0)) N V (¥, (0)) =
{0} for0 < ¢t < a. Thendy,(V(0)) N V(¢ (0)) = {0} for0 < ¢t < a + & for somes > 0.

By item (@), usingE () = dv,(V (9)), the segmen, a + §] has no conjugate points. The
same argument using(r) = dva+s—: (V(¥a45(0))) shows that there exists > 0 such
that the segmerit-41, a + 8] has no conjugate points.

(b) Suppose that the segmdfit a] is disconjugate. By item (c) there exisis> 0
such that the segmeft§, a + 8] is disconjugate. Now apply item (a) to the segment
[—8/2,a + 8[. Conversely, if there is a Lagrangian subspatec TpT*M with
dyr (E) N V(Y (0)) = {0} forall 0 < ¢t < a, then the argument of equation (35) applies
forall ¢ € [0, a]. O

It may be impossible to find such a Lagrangian subspgaod Proposition 1.15(a),(b)
satisfyingE C Ty X as explained in Remark 1.17. Compare this with Theorem 0.1.
there exists @ontinuousnvariant Lagrangian bundl&(9), one can always suppose that
E@®) C TyX by taking(E(©) N TpX) ® (X (0)). Thenit must satisfy the transversality
condition 0.1(a).

PROPOSITION1.16. For 0 € X defineW(©0) := (V(O) NTpX) & (X (0)). Suppose that
the orbit ofé has no conjugate points. Then for ali£ 0, dvy, (W (0)) NV (¥, (8)) = {0}.

Proof. Suppose that there exigts> 0 such thatO, wp) € dyp (W (60)) NV (¥(0)) # {0}.
Let (kg, wo) := d¥_p(0, wp) € W(O). Since the segmeriy(0) | t € [0, +oo[} has no
conjugate points, thekp # 0. Write H,(¢) := H,(y;(0)), Hy(t) := H,(¥:(6)). Since
W©®) = (V(O)NThX) & (X)) andX (8) = (H,(0), —H,(0)), thenko = «H,(0) for
somewx # 0. Multiplying wp, by 1/a, we can assume that= 1. Let

(h(1), v(1)) = d (X (0)) — (ko, wo) € dy(W(0)) € Ty, 9)%.
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Then

h(0) = Hp(0) —ko =0, v(0) #O;
h(b) = dr[X (¥1(6)) — (0, wp)] = Hp(b). (36)

Since(k(0), v(0)) € Ty X, then
0=dHh(0),v(0)) = H;h(0) + Hpv(0) = H,(0) - v(0). (37)

Let E(r) = E(y;(0)) be the stable Green bundle ¢fz(09), let S(z) be from (20)
and letZ(@) := h(t) : HW,(©0)) — V(¥,(0)) be from Claim 1.3. So thaZ(r)w =
dm dyr(w, S(O)w) and Z(¢) satisfies (33). Using formula (34) fer= 0, (with Z(t) =
h(t), Z(0) = I andh(0) = 0) we obtain that

t
h(t) :za)/ Z7Y(s)Hyp (5)(Z7(5)) "u(0) ds.
0

Hence, since(0) # 0, we have that

b
(Z(b)"h(b), v(0)) = /0 (Hpp(Z*(s) 10(0)), (Z*(s)"tv(0))) ds > 0. (38)
SinceX (0) € E(0), then

(Hp(D), —Hy(b)) = X (Yp(0)) = dp(X(0)) = dyp(H(0), S(0)H,,(0))
= (Z(b)Hp(0), S(b) - Z(b)H(0)).

From the first component we get thﬂtb)*al(b) = H,(0). Using (36) we have that
Z(b) h(b) = H,(0). Replacing this equation on (38), we obtain that

(Hp(0),v(0)) > 0.
This contradicts equation (37). ]

Remark 1.17The same proof applies to the following statementHif: T*M — R is
convex and there is a Lagrangian subspéce Ty ¥ such that/y, (E) NV (¥, (0)) = {0}
fort € [0, a], thendy, (W (0)) NV (y;(0)) = {0} for all r €]0, a].

In particular this hypothesis holds {iy;(0) | + > 0} or {y,(0) | + < 0} have no
conjugate points. Just take the corresponding Green bundles.

Example A.2, in the appendix, does not satisfy the conclusion of Proposition 1.16 on
t € [0, ], but nevertheless the segméiit (6) | ¢ € [0, 7]} has no conjugate points.
This implies that the Lagrangian subspace given by Proposition 1.15(b) may not satisfy
ECThX.

COROLLARY 1.18. LetH : T*M — R be convexy = H e}, g € n(X) and suppose
that the orbits{v, (6) | r > 0} have no conjugate points for @l e 7 ~1{g} N =. Then the
exponential magxp, : T;M — M is an immersion.

Proof. We have that expto) = mwoi(6) foro e ¥, = 7714} N . Consider the
splitting
Tze(Tq*M) ~ T;M =Tp(Zy) ®(F) = (VO NTHZ) D (0).
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The derivativel exp, (t0) : Tq*M — Try,0)M is given by

dexp,(t)|ventys = dm o dy ()lve)nty =, (39)
dexp, (10)(0) = dn (X (¥:(0))) = dm o dy (X (9)). (40)

Therefore

dexp,t0)(T; M) =dm ody (V(O) N Ty X) ® (X (9)))
= dm o dy (W(H)). (41)

Since dimW6) = n, then dimdy;(W(®)) = n. By Proposition 1.16Iv,(W(0)) N
V(:(0)) = {0}. Hence,dm : dy(W(®#)) — Trw,eM is a linear isomorphism.
From (41).d exp, (0) is a linear isomorphism for all > 0,6 € Z,. |

2. The transversal behaviour
Givend € %, considerH,(f) = dn X (0) # 0. LetN () < To X be defined by

N@O) = ey | {dn&,dnX(0))re) =0}. (42)

ThenN () & (X (0)) = Ty X. Fix6g € T and a smooth coordinate systém, ..., g, t)
of M x R along the projectiotir (v, (6p)), ¢) of the orbit ofdg such that:
(2a) 9/991l(x(y,60).,n = A X (¥ (00));
(2b) 9/dq>, ...,8/dqg, is an orthonormal basis fafz N (y,(0g)) = (9/dg1)* along
7 (Y (6o), 1).
Write p; = dgilr,m,i = 1,2, ...,n. From (2a) we have that

d

1=—q
At e (ybo).n)

= Hp,(¥1(60)) # 0.

Then the equatio® (g1, g2, . . ., gu; p1, P2, - - ., pn) = h can be solved locally fop1:
pP1= _K(Qa Pv Ts h)v

whereP = (p2,...,pn), Q@ = (g2,...,491), T = g1. This solution can be extended to a
simply connected neighbourhodd of the orbit{(y,(6p),t) | t € R} C T*M x R.

From now on we omit theéR-coordinate inW C T*M x R. Let ¢7 be the
reparametrization of the flow; on W such that it preserves the foliatien = T =
constant. In particulat¢r (6o) preserves the transversal bundlépr (6p)) along the orbit
of 6. Definet (T, 0) by ¢r(0) = Y (1,6)(0). Thent(T,0p) = T forall T € R. The
following reduction appears in Arnol@].

LEMMA 2.1. The orbits¢r(0) = (T = g1, O(T), p1(T), P(T); (T, 0)) € W satisfy

the equations
dQ 9K dP oK

dT — 3P’ dT _ 30’
whereQ = (g2,...,qn), P = (p2,...,pn), T = q1 and K(Q, P; T) is defined by
H(T,q2,...,q2; —K, p2,..., pn) =h.
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Proof. Consider the canonical 1-forl® = pdg on T*M and the symplectic form
w=d0® =dp Adqg. OnTX we have thato (X (0), ) = —dH = 0. Let(d/dT)pr(0) =
(Y (¢7(0)), (d/dT)t (T, 0)) be the vectorfield opr. ThenY (¢7(9)) is a multiple of the
vectorfieldX (¢7(0)) of ¥, and hencep (Y (¢7(0)), ) = 0onT X. We have

®=pdg=PdQ — KdT,
n
o|try =dO|ry = Z[dP,‘ ANdQ; — Ko, dQi NdT — Kp, dP; NdT].
i=2

The matrix ofw|7y is given by
0 —I —Kjl}e
1 0 —Kj|}tr
Ko Kp 0 } T=q1.
Then the vecto(Kp, —K g, 1 = dq1/dT) =: Z(¢7(9)) satisfiesv(Z(¢7(6)),) = 0on

X~ {(T,Q, p1,P)| pr=—-K(Q, P, T)}. Since the formw has maximal rank oix, we
have thatZ (¢7(0)) = Y (¢7(0)) for 8 € W. This proves the lemma. O

Since ford € W, ¢7(9) = Yo (1,9)(P), then

at

dor(P) - & =d(r,9)- & + (%

d
'S) Ew’(ﬁ)

(T,9) (T, %)

=dV¥r) - § +a(T, )X (¢ (D)), (43)

wherea(T, &) = 9t/30|(1,9) - €.
Let A(Y(80)) : Ty,60% — N(¥:(60)) be the projection along the direction of the
vectorfield, i.e.

A§ =& + B(E)X (Y1 (6o)) with B(§) € R such thatA§ € N (¥ (6o)).

Through the proof of Lemma 2.2, all the quantities will be understood in local
coordinatesl’ = g1, Q = (g2,...,qn), P = (p2,..., py) Of W N X. In particular,
Tpr60E = R x R"1 x R""L for all T € R, with coordinategd/aT,3/dQ, 3/d P).
Since along the orbit afp we have that

G =(T, Q)= (1,0,_1) = (Hp,, Hp) along ¢r(fo) = (T, 0,_1,0,_1),

then the subspad€(¢r (Ao)) in (42) is written as\ := {0} x R"~1 x R*~1in coordinates.
DefineP: Ty =R x R" 1 x R"1 - N = {0} x R"~1 x R""1 as the projection

P(h1, H,V) := (0, H, V).
Using = —hq on (43) andH, = (1, 0), the projection is written as
A(h1, H, V)= (0,H,V + h1- Hp),

whereHg := (Hy,, ..., Hy,). Define the matrices
H(T) — |: HP‘] HPP :|
—Hgq —Hop (2n—1)x(2n—1)
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len O1><(n—1)
K(T)=| Kpq Kpp
—Kos —Kogr (2n—1)x(2n—1)
along the orbit ofp.

LEMMA 2.2. Along the orbittr := ¢7(00) of g, we have that:
(@) the matrixKpp(67) is positive definite;
(b) for& e NOr); K(Or)§ = AOr)H(O71)E;
(c) the operatolK(67)|n ;) is uniformly bounded offf € R.
Proof. (b) Write 6y = ¢7(6p) = Yr(6o) = (T,0,0). From Lemma 2.1, the Jacobi
equation forpy is written as
d
—[Pd = K[Pd ,
dT[ or &l [Pdor &]

wheredgré = (hi(T), H(T),V(T)) € R x R*™1 x R*™L for anyé e TyX =
R x R*~1 x R""1, Also, from (6),

d

E[dl/f@] = H[d¥&].

Sinced g7 (Ap) preserves the foliatiop; = constant, then it preserves the subsp&te
Therefore
Pdor & =doré = AdpréE for& e V.

In particular, the first coordinate @& is h1(T) = 0 and alsdd/dT)hy = 0. Hence, if
& e N, then

d d
ﬁ[Pd(ﬁTS] = ﬁ[d(ﬁTS]

d
= d—T[dl//Té +a(T) X (67)]
=H@dyr§) +a(T) X (0r) + o(T) %X(GT)

= Hld¢ré§ — a(T)X O1)] + a(T)X (Or) + o(T) %X(QT),
wherea(T) = «(T, &) is from (43).
Since(d/dT)X (0r) = H X (0r), then
%[PdfPT §] = Hld¢rél + a(T) X (Or).
Hence,
Kd¢ré = Hldeorél+a(T)X(0r) for& e N. (44)

Observe that this equation must hold in all the 2 1 coordinates offyX. Since
ImageK) € N, thenAK = K. So

K(d¢rt) = AK(dore) = AlHdore +a(T, £) X (0r)]
= AH(d¢re) forc e N.



Convex Hamiltonians without conjugate points 925

Sinced¢r : N(6g) = N — N(Or) = N is surjective, this proves item (b).
(a) LetV € R*1, then

V*KppV = [0, V*), 0,_1] K [(‘),} .

Since¢ = (0,, V) € N, we can use equation (44) to obtain

V*KppV =[(0, V*),0,1] [H [OV} +a(T. dp-r§) [_}Z’H

=0+ V*HppV +a((0, V") - H)
= V*HWV > 0.
We now prove (c). Since the operafiic?) is uniformly bounded o € X, from (b)

it is enough to prove that the projectiagnis bounded on the orbit @f. For it is enough
to see that the angle(X (67), N (07)) is uniformly bounded away from 0. Given a vector

& a a
=) =) (hi— + vi—) € N(Or),
i=1 8ql 3171

written in our coordinates (2a), (2b), define the naém:= (37, h? + viz)l/z. Suppose
that|£| = 1. Sincet € N(6r), thenH, - h = 0. MoreoverH, = 9/dq1 and hence,

IX(9T)-$I: |Hp -h — Hy - v _ |Hyllv]
|X (7)) (IHp|2 + |Hy|?)Y/2 \/m
<1- max = 4 <
T 0=x=AJ142x2 1+ A2 ’
whereA := supy.g |Hy (67)| < +oo with the norm in our coordinate ap; . O

COROLLARY 2.3. Along the orbitd; = ¢71(6p), we have the following.
(@) The orbit of9gg undergr has no conjugate points.
(b) Existence of the Green bundles thp; |y, ):

ET©0r) = lim_dg_,(V(Orss) N NOr+,))
FT(0r) = lim_de-s(VOr+5) N N(Ors)).

MoreoverE' (8) = E(0) N N(@) andFT (0) = F@)NN@®)forall 6 € =.

(c) Horizontal growth of iterates of vertical vectors: for akR > O there exists
S = S(R,67) > 0such that for allls| > S(R,67) and allé € N(Or) N V(Or)
we have thatdn (d¢s(07) - )| > R|&].

(d) Define

BT (0r) = {s e N@©r)

supldm - dys - §| < +00}-
seR

ThenBT (07) CET(67) NFT (67).
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(e) LetW, :=des|y = A odys|n, then

dosINer) = AOrys) 0o dWs o A(O7) = Wy,
\Ijs+[ = \Ils o \Il[.

Proof. LetU (0r) := V(0r) N N(Or) = V(0r) N T, =. From (43) we have that
d¢r (o) - § = dyr(0o) - [§ + (T, §) X (60)].

Hence,d¢7(U(00)) C dyrr (W(6p)), whereW©0) = (V(O) N THX) & (X(H)). From
Proposition 1.16,

U(6r) Ndor(UBo)) € V(Or) Ndyr (W (o)) = {0} forall T #0.

This implies item (a).

From Lemma 2.2, the first part of item (b) and items (c) and (d) have the same proofs
as Propositions A, 1.10 and Proposition 1.11, respectively.

Sinced¢; andd, satisfy (43) andi¢, preserves the bundl€é(67), we have that

dosINer) = AOr+s) o ds|INer) = AOrys) odyrs o A(Or) = V.

Moreover,

Wit = dositINer) = ddsIN@ry) © ddiINor) = s o Wy,

This proves item (e).
Finally, we have that

ET (6o) = TE)TOO[d(ﬁfT(V(QT) NN (r))]
= A(bo) TE)TOO[dI/ffT(V(QT) N Ty %))
< A(fo) - E(bo) < E(6o),

becauseX (6p) € E(fo). Thus,ET (8g) < E(Ho) N N(hg). Since dinE" (9g) = dimU =
n—1 = dimE@®y) N N (b)), we have thalt T (9g) = E(6g) N N(6g). The equation
FT(80) = F(6p) N N (6p) is proven similarly. This completes the proof of item (b). O

Proof of Proposition B.Let 9p € " and lett > 0 be the period oby. Suppose that
I' is hyperbolic, then by Proposition 1.1&(6y) < E*(6p) @ (X (00)) andF(6g) <
E"(6o) ® (X (6o)). HenceE(6o) N F (o) = (X (6o)).

Now observe that if we construct the coordinalgs . . ., ¢,) in (2a), (2b) so that they
are periodic with period, thendg¢, (6p) : N(6g) < is the derivative of the Poincarhap
of ¥, defined on the cross-secti¢f | g1 () = 0}.

Suppose thaE(6g) N F(6y) = (X(6g)). By Corollary 2.3(a) and (b) we have that
BT (60) CET(00)NF' (6g) = (X (Po))NN (o) = {0}. This implies thal is hyperbolicO

3. Quasi-hyperbolic actions

Let B be a compact metric space and: E — B a vector bundle provided with a
continuous norn - |, on each fibrer —1{p}. Let ¥ be anR-action¥ : R — Isom(E),
i.e.
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(i) there exists a continuous floy; on B such thatr o W, = ¢, o 7;
(i) W : E(p) > EW:(p)) is a linear isomorphism, wherE(p) := (|g) {p},
p € B;
(i) Wy =Yy 0 ¥,
We say that the actio¥, is quasi-hyperboligf

sup|¥; (&) = +oo forallé € E, & #£0.
teR
We say that¥ is hyperbolicif there exists an invariant continuous splittidgy p) =
E"(p) ® ES(p), p € BandC > 0, > 0 such that:
(3a) W/(E"(p)) = E"(Yu(p)), Vi(E*(p)) = E*(Yu(p)), forallx € B, 1 € R;
(3b) |W;(§)| < CeMg[forallt > 0,& € E“(p), p € B;
(3c) W (§)| < Ce™|¢|forallz > 0,& € E“(p), p € B.
The aim of this section is to prove the following.

THEOREMO.2. If the actionW¥ is quasi-hyperbolic and the non-wandering $&ty)|g) =
B, ¥ o = m o W, thenV|g is hyperbolic.

Applying this theorem to the case in whidh = M is a compact manifoldy, is a
differentiable flow onM, ¥, = dy, andE is ad,-invariant continuous bundle such that
E @ ((d/dr)y) = T M, we get the following.

THEOREM3.1. (Freire L9)) If M is a closed manifold angr is a quasi-Anosov flow on
M such thatQ (y) = M, theny is Anosov.

The proof of Theorem 0.2 is similar to that of Theorem 3.1. We include it here for
completeness.
Suppose that the action &f is quasi-hyperbolic. Fop € B define

E'(p) := {v € E(p)

SU(I)OI‘I/z(p)(v)I < +00},
t>

E"(p) = {v € E(p)

supl¥: (p)(v)| < +00}.

t<0

Observe that by the quasi-hyperbolicity we have that
E*(p) N E*(p) ={0} forall p € B.
LEMMA 3.2. There exists > 0 such that for allp € B,

1 1
Yrlespyll < 3. IVW—rlEepll < 3
forall p € M.

Proof. Suppose that the lemma is false #6f. The proof forE* is similar. Then there
exist sequences, € B, v, € E’(x,), |vy| = 1 such thaty, (v,)| > %for alln € N. We
claim that there exist€ such that

supllW: ()| es(pll < C < +o0.
t>0
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forall p € B.
Suppose the claim is true. Let, := V,(v,) andy, := ¥,(x,). We have that
% < |wy| < Cforalln and

W, (wp)| = [Wpn(vp)| < C forallt > —n.
Since B is compact there exists a convergent subsequence,ofv,). If y, =y and
Wn —> W, We have thay € B, w € E(y), |lw| > % and
¥ (w)| < C forallt e R.

This is a contradiction.
Now we prove the claim. Suppose it is false. Then there existe B, 1, > 0,
v, € E*(xy), |vy| = 1, such that

sup|W;, (vy)| = +o00. (45)
n
Lets, > 0 be such that
Wy, (Un)| > 3 SUplWy(va)| > 31, (va)].

s>0
By (45) we have thai, — +oo. Lety, := ¥, (x,) and
. \I/sn (vn)
T, (o)

Then|w,| = 1 and ifr > —s, we have that
|‘Ilt+sn(vn)|< 2| Wy, (vn)|
I“I'[sn(vn” - Sug30|ws(vn)| -
Since|w,| = 1 andy, € M, there exists a convergent subsequengew,) — (y, w).
We would have that € B, w € E(y), |lw| =1 and
|W;(w)] <2 forallr € R.

This is a contradiction. O

[V (wp)| =

LEMMA 3.3. There existk > 0such thatforallk € B andv € E (x),
W (v)| < K(Jv| + |¥s(v)]) forall0<t <s.
Proof. Suppose it is false. Then there exigte B, 0 # v, € E(x,) and0< t, < sy,
such that
Wy, (V)| = n(Jvn| + [Ws, (Vn)])-
Thent, — +4oo ands, —t, — +4oco whenn — +oo. We can assume that
[Wi, (vp)l = sup [W;(v,)]. Let

0<t<s,
. ‘Iltn (vn)
Wy = ————-
[y, (V)]
For—t, <t < s, — t,, we have that
v
[Wrts, (Vn)] < sup |, (vp)| = 1.
(s, (Un)] [, (V)| 0<r<s,
Taking a subsequence, if necessary, we can assume,that x andw,, — w € E(x).
Then|¥,(w)| < 1forallr € R, with [w| = 1. This is a contradiction. o

[V (wy)| =
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Proof of Theorem 0.2Standard methods (cf. Hirsch—Pugh—Shat]) show that the
continuity of the strong stable and unstable bundles is redundant in the definition of a
hyperbolic action. So it remains to prove that forxakk B, we have thaE* (x) ® E"(x) =

E(x). Givenx € B, sincex € Q(¥|p), there existx, — x, s, — 400 such that
Y, Xn — x. Let E,, be a subspace d (x,) such that

dmE, =dmE(x) —dimE*(x), E(x)®limE, = E(x).
n
We claim that there exist§ > 0 such that
W_; W, (En) <C forall0 <t <s,.

Suppose that the claim is true. Taking a subsequence if necessary, we can assume that
the limit lim, ¥, (E,) exists. Then

[P |lim, ¥, (E,)| <C forallr> 0.

Then lim, ¥, (E,) C E*(x) and dimE*(x) + dimE®(x) > dimE, + dimE*(x) =
dim E(x). SinceE*(x) N E*(x) = {0}, this completes the proof.

Now we prove the claim. Suppose it is false, then there exist Vs, (E,), |v,| = 1
and O< 1, < s, such thaf¥_, (v,)| > n. By Lemma 3.3, we have that

n < |V_, )l < K(IW_s, (Wp)| + val).
Hence|W_;, (v,)| = (n — K)/K. From Lemma 3.3 we also have that

W, (P_ K
—| ASEC <K+——— forO<t <s,.
|‘Il—sn(vn)| |‘Il—sn(vn)|
Letw, := W_g, (vn)/|V_g, (vy)|. The estimates above give that

2

[V (wp)| < K + forO<t < sp,.

n—
If w, - w, then|lw| = 1 andw € lim E,, thus,w ¢ E*(x). But |¥,(w)| < K for all
t > 0. This is a contradiction. O

Proof of Theorem CFor6 € X, let
N@O):={§ € HX | (dn -§ dnX(0))x@) = O},
and letA(0) : TyZ — N(0) be the projection along the direction &f(0):
A@©O)-E=£+ BE)X@®O) suchthatr(d)-& € N(©H).

Let W,(0) = A(y5(0)) o dys|n). By Corollary 2.3(e) ¥, defines ariR-action on the
vector bundler : N — X.
Suppose that the Green bundles satisfy F = (X) on . Then by Corollary 2.3(b)
and 2.3(d),
BT®) CETO)NFT () =E®) NF@®)NN®) = {0}.

Therefore, the actiol/; is quasi-hyperbolic. Sincé¢, preserves the Liouville measure,
which is positive on open sets, theny |g) = X. Hence W is a hyperbolic action.
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This implies thatp, is Anosov. By the methods in Hirsch—Pugh—Sh2tj[we get that
Y, is Anosov. We outline the proof below.

For6 € T let £“(9) € N(0) be the subspace given by item (3b) in the definition of
hyperbolic action. The&* is a continuous subbundle &fx. Define

F :={L:&" — R continuous| L) : £E“(6) — Rislinearvd € X},

With [|L]| = SUR cgu (o) IL(E)I/IE].
To each functional itF associate a subbundig; of TX by

WL (0) := grapiL(®)) = {§ + (L(0) -§)X(0) | § € £“(O)}.

Lett > 0 be such thaCe™® < e* < 1, whereC andx are from (3b). Consider the
following ‘graph transformationT : 7 — F, corresponding t&Vr; = dv (W) and
defined by

dy (6 + L(E)X©)) = W () + [T(L)(Y:ENIX (Y= (0)), 0 € X, & e&O).

We claim thatT is a contraction. Indeed

T(Ly— L2)(V:%) ldvre[(L1(§) — L2(&) X (]Il
X 0)| <
(R WX w00l = et||g||
[(L1— L2)(&)|
———— | X (Y0)]|.
< el I X (0|

Hence||T (L) — T(L2)|| < e *||L1 — L2|.

The fixed pointL* of T gives the (continuous) strong unstable bundle/af Indeed,
if E* = Wpx, then E* is clearly dy,-invariant. Moreover, if¢ € E"(9), then¢ =
E4+ (L*6)X(0) with & = A¢ € £“(0). SinceL* is continuous then there exis@® > 0
such that¢| < Q1l&] = Q1]|A¢| forall ¢ € £*. SinceN(0) is transversal tdX (9))
and both are continuous subbundle§'af, (¥ compact), then the angie(X (8), N(0)) is
bounded below and hence, there ex@ts> 0 such thatl/Q2)|A¢| = (1/02)|E| < |¢].
Then

ldy: (©)] = (W, (§) + (T(LY) - )X (¥:0)]
7le)ht t

> iI‘I‘z(:ﬁ)l > < & > [Z].
T 02 - 02 ~C0102

Finally,
dimE" = dimgrapiL*) =dim&" =n — 1.
The existence of a continuous strong stable subbundle of dimensierl is proven
similarly. ]

4. The index form

Let L = pH, — H be the Lagrangian associated . ConsiderdL/dv(x,v) :
T (M) ~ TcM — R as an elemeni, € T*M. The Legendre transform
Fr(x,v) = (x,L,) identifiesq = x, p = L,. Similarly, using#;* = Fp, we get
thatv = H, under the same identification. Also

H=vL,—-L=pH,— L(g, Hy).
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Hence,H, = —L, = —L,. With these identifications the Hamiltonian equations (1)
become
d

Ex =v <> Eq = Hp,

d d

—L,=1L «~— —p=-—-H,. 46

drY X dtp q (46)
Hence, identifyingL, = —H, e T, 4 (T*M), the Euler-Lagrange equation (46) is

understood as a first-order differential equation’orM, where(d/dt)L, is the tangent
vector to the path — L,(y (), y())in T*M.

We derive the Jacobi equation in this Lagrangian setting. ji(et be a solution of
the Euler-Lagrange equation (2). Considering a variation:) of y (¢) = f(0, t) made
of solutionst — f(s,t) of the Euler-Lagrange equation (2) and taking the covariant
derivativeD/ds, we obtain theJacobi equation

D . .
Z(vak + vak) = Lxxk + L)Cl)kv (47)

wherek = (3f/3s)(0,1), k = (D/dr)(3f/ds) and the derivatives of. are evaluated
ony() = f(0,t). Here we have used thab/ds)(0F/dt) = (D/dt)(dF/ds) for the
variation mapF (s, t) = L, (f (s, t), (3f/0t)(s,t)) € T*M,whereD/ds andD/dt are the
covariant derivatives on the Riemannian maniféttV/. The linear operators,, Ly,

L,, coincide with the corresponding matrices of partial derivatives in local coordinates.
The solutions of (47) satisfy

Doy (k(0), k(0)) = (k(t), k(1)) € T, (1)(T M),

wherey; is the Lagrangian flow off M. A solution of (47) is called dacobi field
Let Q7 be the set of continuous piecewi6& vectorfieldss along vio,r]- Define the
index formon Qr by

T
1, n) = /0 (ELyyi) + ELyyn + &Lyt + ELyxn) dt, (48)

which is the second variation of the action functional for variatifts ) with df/ds €
Qr. For general results on this form see Duisterméadf |

The following transformation of the index form is taken from Hartma€] [and was
originally due to Clebsch7. Let® € T*M and suppose that the orbit 6f v, (9),
0 < t < T does not have conjugate points. LEt C TyT*M be a Lagrangian
subspace such thaty; (E) N V(¢¥,(0)) = {0} forall 0 < ¢+ < T. Such a subspace
E always exists by Proposition 1.15(b). L&) := dy;(E) and letH(¢), V(¢) be
a matrix solution of the Hamiltonian Jacobi equation (6) such thatidet # 0 and
E(t) = ImagegH (1), V(1)) C Ty, (T*M) is a Lagrangian subspace. In particutafr)
satisfies the Lagrangian Jacobi equation (47). We have that

H@)| H@ | |1 0 H
vol=rrwor-[a0 =1 215 (49)
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From (49) and (47), we have that
V=LywH +LyH, V' =LH +LH. (50)

Moreover, since: (¢) is a Lagrangian subspace, then the Hamiltonian solution of the Ricatti
equation (7)S(t) = V(¢)H (1)~1, is symmetric, i.e.

H®*V() =V@®)*H®). (51)

Letn € Qr and defineg € Q7 by n(t) = H(¢)¢(t). Then the integrand aof(n, ) in
(48) is
(LpwHE + V) - (H' ¢+ H) + (Ve + LywHE') - HE.

Since(LyyH¢') - (H'¢) = (HE') - (LywH'¢) and(Lyy HE') - (HE) = (HE') - (Lyx HE),
the integrand can be written as

LywH -H +H -Ve+Ve-He+Ve-H +V'ec-He.
Using (51), we have that*H¢' - ¢ = H*V(¢' - ¢ = V¢’ - HZ. Hence, the integrand in
(48)isLy, H¢' - H' + (V¢ - HZ)'. Sincen and¢ are continuous, we have that

T
I, n>=/ (LooHE - HE)di + He -VEI] it n=He e Q. (52)
0

Let Fu(q, p) = (¢, Hp) be the Legendre transform of the Hamiltonian. Ttfgnand
Fy are inverse maps, in particular

-1
1 0 1 0

DFy) L= = = DFy,

( H) [Hpq pri| [va vai| L

and henceL,, = (H,,) 1. We obtain that

T
1G. ) = /0 (HE'Y (Hyp) " (Hp') dt + (HE) (V) S (53)

foré = H; € Qr,n = Hp € Qr. This formula can also be written as

T
1. = /0 (HE'Y (Hyp) " (Hp') dt + &%), (54)

whereS(t) = V(r)H ()~ is the corresponding solution to the Ricatti equation (7).

COROLLARY 4.1. If 6 € T*M and the segmerit/,(0) | t € [0, T]} has no conjugate
points then the index form is positive definite on

IFr={:[0,T]1 > TM | &) € TryoM, &I piecewisecz, £0)=0,&(T) =0}.
Moreover,Ir (n, n) = 0if and only ify is a Jacobi field o7.

Proof. Let& € 'y, £ # 0. Writeé(r) = H(¢)¢(t). Since def (r) # 0, ¢(0) = 0,
(T) = 0andz(¢) # 0, thenz” # 0. Now use formula (53). O
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We now extend formula (53) to the case in whilir) may be singular (ot (z), n'(t)
may be discontinuous) at a finite set of points. {zgf. . ., ty} be the points if0, T] such
that detH (t;) = 0. Then

T N n
1€, m) = /0 (HE'Y (Hpp) H(Hp ) di + (HO* (V)G — D (HO*(Vp)['-,  (55)
i=1 !

whereé = H¢, n = Hp. But now¢, p are piecewise 2 but may be discontinuous
at r1,...,ty. Alternatively, we can use a sum of formulas (53) or (55) using
different Lagrangian subspacés; (E;) and corresponding solutiori#f;, V;) on disjoint
subintervalgs;, 1;+1[ C [0, T1.

Observe that for any convex Hamiltonian @M and anyd € M there exists
¢ > 0 such that the segmefi{;(0) | |t] < &} has no conjugate points. Indeed, let
Yo(t)v = dm dy,(0)(0, v), where(0, v) € V(0). Then from the Jacobi equation (6) we
have that

Py = H,0)
dr? t:O_ ppi7)-

SinceYy(0) = 0 andH,,(6) is non-singular, thei¥s (¢) is an isomorphism foft| < e,
somee > 0. In particulardy, (0)V (6) N V(8) = {0} for |¢| < e.

We say that a curve (t) € M, ¢ € [0, T] is minimizingif it minimizes the action
functional

T
/ L(5(), 8 (1) dt
0

over all absolutely continuous curvég) € M, 0 <t < T, such that(0) = y(0) and
8(T) =y (D).

COROLLARY 4.2. If 6 € T*M and the segmenitry,(0) | ¢t € [0, S[} is minimizing, then
it has no conjugate points.

Proof. Suppose it is false. Latr(0), T < S be the first conjugate point it ¥, () |
t € [0, S[}. Then there exist§ = (0,v) € V(0) such thatdyr(0)¢ € V(yr(9)).
Let n(#) = dndy,(0)E. Using the limit of (53) on the intervdl0, T[ we have that
I(n.n|§ =0.

Lete > 0 be such that (cf. Proposition 1.15) the segmiéntd) | T —e <t < T + ¢}
has no conjugate points. Lett) = Yy, @) (=T —e)w = dm dy, 17— (Ur4£(0))(0, w),
T—e <t < T+e,wherewissuchthat(T—¢) = n(T—s). Lety=n(®)if T—e <t <T
andn(t) =0if T <t < T +e¢. ThenusingH (1) = Yy, .9 —T — &) on (53), we have
that

I@.DIFEE > 1@ 0IFE.

Extends andi by ¢(r) =7(t) = n(t) forO<t < T — . Then
1€ Ol <1 MGt =0

Now consider the variatiorf (s, 7) = eXPyy, ) S (7). We have thatf(s,0) = 7(0),
f(s, T +e)=a(Yr+e0)), 9f/3s(0,1) = ¢(¢) and if

T+e
A(s) = / L <f(s, 1), %(s, t)) dt
0 Jt
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is the action off (s, t), thenA’(0) = 0 becausef(0,1) = my,(9) satisfies the Euler—
Lagrange equation and
A"(0) =1(z,¢) <0,

Therefore, the segmefit () | 0 <t < T + ¢} is not minimizing. ]
COROLLARY 4.3. If 'y isasin Corollary 4.1, then
index/r|r, = Y dimldy,(V(0)) N V(¥ 0)],

O<r<T

where the sum is over the discrete set of points conjugate to

A proof of this corollary can be obtained from the following remarks.

1. By Corollary 4.1, if O< t < T thenI;(n,n) = 0 only if n is a Jacobi field orf’;.
Hence, the index of, can only change with wheny, (0) is conjugate t@®.

2. IfL,¢) <0andO< ¢ < T, then the extensioﬁ(s) =¢(s)on0<s <t
andZ(s) = 0on 0< s < T satisfyI7(z,¢) = I,(¢, ¢) < 0. Hence, the function
t — index(;|r,) is non-decreasing.

3. The proof of Corollary 4.2 constructs a linearly independent vectorfietd I'r
with I (¢, ¢) < 0O for each linearly independent vectoe V (6) Ndvy—;(V (¥, (0)),
O<t<T.

5. Proof of Theorem D

We begin by quoting the following theorem by N&a[26]. Given a (periodic) Lagrangian
L:TM x ST - Randw € HY(M, R), let M®(L) be the set of minimizing measures of
L + @, whereo is any 1-form in the class.

THEOREMS5.1. (Maié [26])

(@) Foreveryw € HY(M, R) there exists a residual subs®i{(w) c C®(M x S1) such
thaty € O(w) implies#M*(L + ¢) = L.

(b) There exist residual subsefsc C>®°(M x S1) andH ¢ HY(M, R) suchthaty € ©
andw € H imply#M®(L + ) = 1.

Now take an autonomous Lagrangiarandw = 0 € HY(M,R). Then the item (a)
implies the first part of Theorem D. L& be the residual subset given by this theorem. Let
A be the subset ab of potentialsy: for which the measure aM (L + ) is supported on
a periodic orbit. Let3 := O \ A and letA; be the subset aff on which the minimizing
periodic orbit is hyperbolic. We prove that; is relatively open ond. For, lety € A;
and

ML+ ) = {uyh

whereu,, is the invariant probability measure supported on the hyperbolic periodic orbit
y for the flow of L 4 . We claim that if¢y € A, ¢ — v andM(L + ¢y) = {uy, }, then

nx — y. Indeed, sincd is superlinear, the velocities in the support of the minimizing
measuresgy, = uy are bounded (cf.75, 29), and hence, there exists a subsequence
wr — v converging weakly* to a some invariant measufer L + . Thenifv # u,,,

|i1f{'n S (i) = Sy (V) > Spiy (1y). (56)
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Thus, if §; is the analytic continuation of the hyperbolic periodic orpito the flow of
L + ¢y in the original energy level(L + v), since lim, Sz yy, (1s,) = Sr4+y (1), fork
large we have that,

SL+¢k (,uﬁk) < SL+¢7k (Mﬂk);

which contradicts the choice of;. Therefore,v = u,. For energy levels: near to
c¢(L + ) and potentialg near toy, there exist hyperbolic periodic orbiig ;, which
are the continuation of. Now, on a small neighbourhood of a hyperbolic orbit there
exists a unigue invariant measure supported on it, and it is in fact supported in the periodic
orbit. Thus, since;; — v, thenn; is hyperbolic. Henceg, € A1 and.A; contains a
neighbourhood o in A.

Let/ be an open subset 6f*° (M, R) such thatd; = & N A. We shall prove below
that. 41 is dense ind. This implies thatd1 U B is generic. Lel := int(C*® (M, R) \ U),
theni/ UV is open and dense ii® (M, R). Moreover) N A = g becaused € A; € U
andVN A C A\ U = @. Since® = AU Bis generic and

UUWVNAUB =UNAU@ULUVY)NDB)
C ALUB,

then.A, U B is generic.

Note. The perturbation needed to achieve hyperbolicity in the case of a periodic orbit and
a singularity follow the same spirit. However, to prove it in the case of a singular point is
much easier because the Jacobi equation (the linear part of the flow) is autonomous. We
suggestitis read first.

We have to prove thatl; is dense in4, i.e. given that a Lagrangiah has a unique
minimizing measure supported on a periodic oghithen there exists a perturbation by
an arbitrarily smallC°°-potential¢, such that the new Lagrangidn+ ¢ has a unique
minimizing measure supported on a hyperbolic periodic orbit.

Fix p € A and letl" be the periodic orbit inM (L + p), we can assume that = 0.

By the graph property (cf.2b, 29), the projectionz|r : ' - M, n(x,v) =

is injective. In particularr(I') € M is a simple closed curve. Choose coordinates
= (x1,...,x) : U — ST x R*1 on a tubular neighbourhood af(I") such that

() = S x {0} and {3/dx1,d/dx2,...,d/dx,} is an orthonormal frame over the

points of 7(I"). In particulara/8x1 is parallel tox(T). Definel = L + ¢ with

(x1, ..., xn) = 3f@e(xZ + x2 + -+ + x2), where £ (¥) is aC> non-negative bump

funct|on with support inU which is one on a small nelghbourhoodmﬂ“) Clearly, ¢

can be mad& > arbltrarlly small. Onn(l“) we have that,, = Lyy, Lyy = Ly and

Lix =Ly + el ]. Observe that sincg > L thenM(L + ¢) = {ur}.

Let H andH = H # be the Hamiltonians associated toand L respectively. Let
I' be the corresponding periodic orbit féf and H on T*M. We have to prove that the
periodic orbitI" is hyperbolic for the flow ofd. Since it is minimizing, by Corollary 4.2
the orbitl’ has no conjugate pomts By Proposition B it is enough to prove that the Green
bundIesiE F satlsfy]E(G) N F(@) = (X(@)) onapoint € T, whereX is the Hamiltonian
vectorfield of H .
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Fix0 € I andletZr (1) = dmodyold|yg_, vy oy - Let(Zr, Vr) andKr (1) =
VT(t)(ZT(t)) 10<r<T,bethe correspondmg solutions of the Jacobi equatlon (6) and
the Ricatti equation (7) respectively: gre{ﬁr(t)) = dw,(dm// T(V(wTe))) ZT(T) =0,
ZT(O) =1.

Define N®) = {w € TpyyM | (w,y) = 0}. ThenN(6) is the subspace of
Tﬂ(Q)M generated by the vectoﬂs/axg ..... 0/0x,. Letvg € N(G) lvo] = 1 and let
T (@) = ZT(t)vo Denote byIT and/r the index forms o0, T'] for L andL respectively.
Using the solut|or(ZT, VT) on formula (53), we obtain that

Ir T, €7y = —(Zr (0)vo)* (V7 (0)vo) = —vo* K1 (0)vo. (57)

Moreover, in the coordinatéss, . . ., Xp; 0/0X1, ..., d/0x,) onTU we have that
T
Tl £7) = /0 GTTofT + 267 LT 4 6T Loty s
T . . . T n
=/ (&TststTLMsT+sTLxxsT>dt+f ey I&/17dr. (58)
0 0 i

We have thaIZT(O) = ] andfor allz > 0, lim;_ ZT(t) = h(t) with h(t) given on
Claim 1.3 forH. Writing 7y (&) = (&2, &3, ...&,) then|nNh(O)v0| |v0| =1 because
vo € N(9). Hence, there exists > 0 andTp > 0 such thatrye” ()| = |nNZT(t)v0| >3
forall0 <t < A andT > Tp. Therefore,

~ A
IrET &7y > 1T, 6Ty + % (59)

Let (h(t),v(t)) = dyy; o (dnhE(g))*l be the solution of the Jacobi equation far
given by Claim 1.3 and leS(y; (9)) = v(t)h(r)~! be the corresponding solution of the
Ricatti equation, with gragB(y;(0))] = E(:(0)). Using formula (53), and writing
T (1) = h(1)¢ (1), we have that

T
IrE" E") = /0 (h$)*H, (hE)dt + 0 — (h(0)£(0))*(v(0)£(0)),
IrE" &) = —vgS(@)vo. (60)

From (57), (59) and (60), we get that

~ A
v5S(@)vo > v5Krvo + %

From Proposition 1.4, we have that fm ;. K7(0) = S(8), where graptS(9)) = E(®),
the stable Green bundle féf. Therefore,

~ A
wES©@)vo > vESO)vo + %. (61)
Similarly, for the unstable Green bundles we obtain that
voU@)vo + A2 < USHNJ(G)UO forvg € N(9), |vo| = 1, (62)

for somei, > 0 independent ofip.
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From Proposition 1.4 we have th&t®) = S(6). From (61) and (62) we get that
IU|N - IU|N = S|y > S|N Slnce]E(é)) = grapk(S(@)) andF(@) = grapr(IU(G)) we get
thatIE(e) ﬂIF(G) - (X(G)) Then Proposition B shows thatis a hyperbolic periodic orbit
for L + ¢.

This proves thaid; is dense inA. Let A2 be the subset ofl; of potentialsyr for which
the minimizing hyperbolic periodic orbit has transversal intersectioR& (I") m W*(T").
Then A3 is relatively open onAd;. Indeed, if¢, € Ay and¢, — v € A and
M(L+¢n) = {1y, }, M(L+v) = {ur}, we have seen that thgs are continuations of the
hyperbolic orbitl” for nearby flows (on nearby energy levelg):= TI'y, 5,. Since compact
subsets (fundamental domains) of the invariant maniféfdél’y ,) depend continuously
in the C* topology on(¢, h), then the transversality proper*(Ly. ) m W*(Ty n)
persists on a neighbourhood@f, ). In particular, it holds fot,, = I'y, 4, for (¢, h,)
sufficiently close tay, ko).

By the same arguments as above, it is enough to provedh&t dense ind. For it we
need the following lemma.

LEmMMA 5.2. Let " be a hyperbolic periodic orbit without conjugate points of a convex
Hamiltonian. Then for alb € W*(I") there existsS = §(#) > 0 such that the segment
{v:(®) | t > S} has no conjugate points.

Proof. Let E be the stable Green subspacd’ofThenE(¢#) N V() = {0} forall ¢ € T".
Since the weak stable manifold® (") is tangent tdg; then for alldo € W*(I") there exists
S = 8§(0) > 0suchthaiE (r) := Ty, W*(I') satisfiesE (1) NV (;(8)) = {0}. Moreover,
dimE(t) = nand forallu € E(), lims;_ 100 d¥s(u) € (X (0)). Sincey, preserves the

symplectic formw, we have thato(u, v) = lim;_ o @(d¥s (), ds(v)) = 0 for all
u,v € E(t). Hence,E(¢) is Lagrangian and (t) N V (¢, (0)) = {0} forall ¢t > S. Then
the Lemma follows from Proposition 1.15. |

Now we prove thatd, is dense ind. Letp € A\ A2 and make the perturbation
L= (L + p) + ¢ explained above, so that+ ¢ € A1. We can assume that+ ¢ = 0
and also thap + ¢ ¢ A2, otherwise there is nothing to prove. Writd (L) = {ur} and
leto e WS N W) be such that digT, W* (") N TyW*(T")) > 1. Observe that the
« andw limit sets of areTl. In particular, the orbit o has no autoaccumulation points.
LetS = S(@) > 0 be from Lemma 5.2 and > 0 small. Then there exists> §(9) and
a neighbourhoodv c M of = (y;(9)) such thafr € R | wy,(0) € W} =]z, T + 3¢[ and
Wnna() =@. LetU ¢ M x R be atubular neighbourhood oz v, (0); 1) | t > S(0)}.
Choose coordinateg = (y1,...,yn;t) : U — R" x R such thaty(wy;(0),1) =
(a(1),0;1) e RxR" 1 xR, and{d/dy1, 3/dyo, ..., d/dy,} is an orthonormal frame over
the pointst ¥, (0), 1 > S©@). Leto(y1, ..., ) = 3 f(MEO2 + y2 + -+ + y2), where
f (@) is aC*> bump function with support itV which is one on a small neighbourhood
of {wy;(@) | t € [t + ¢, T + 2¢]}. By choosing a small > 0 the functiong can
be madeC® arbitrarily small. Choos@& small enough such that the orliit remains
hyperbolic. Then we. still have that/l(L +¢) = {ur} and the orbit ofy is the same
for both flows. WriteL = L + o+ o, L=L+ v andlr, It the corresponding index
forms on{y,(0) | ¢t € [z, T]}. Since{y,; () | t > S(0)} has no conjugate points, the
stable Green subspaﬁem//t 0)),t > S(0) and the stable solution of the Ricatti equation
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§(1/ft (0)) exist. The same arguments as in equations (58)—(61) givefor 2T(t)vo,
vo € N(¥=(0)), lvol = 1, Zr (1) = dm o d¥i—7 0 [dT| 4y (v (G ] 5 that

T+2¢ n

8> 1&g P,
€ i=2

~ Sh
Vo S(¥: (0))vo = voS(Yr¢ (6))vo + 7

T, e = TT@T,STH/

T+

for somex > 0. In particular

E(:(0) NEW:(6) = (X(:0)). (63)
By the same arguments as for Proposition 1.14, we have ﬁﬁmtr ) =
T‘/,T(g)(W%(I//TG)). Observe that T‘/,T(g)(W%(I//TG)) did not change. Write
Twr(g)(W%(WTG)) =VoWwW, withy C E(y:0) andW N E(y.0) = {0}. By diminishing
$ if necessary we can get (63) alBthy.6) N W = {0}. Thus,
T oy WD) N Ty oy WET) = E(:0) N Ty, o) W' (D) = (X (Y26)).

Finally, by a finite number of these perturbations on a fundamental domair @f)
one can remove all tangenciesWf (I") andW*(I") and obtain a potential i, arbitrarily
C®-nearp € A. O

The case of a singularity.

Suppose that the minimizing measyreis supported on a singularitgxg, 0) of the
Lagrangian flow. From the Euler-Lagrange equation (2) we get ihétp, 0) = O.
Differentiating the energy function (3) we see tliag, 0) is a singularity of the energy
level c(L). Moreover, the minimizing property gi implies thatxg is a minimum of
the functionx — L,,(x,0). In particular,L,(xg, 0) is positive semidefinite in linear
coordinates iy, M.

Choose coordinategs = {y1, ..., y»} on a neighborhood afg such thaty(xg) = 0
andL,,(xo, 0) is the identity on the basi®/dy1lxg, ..., 0/9ynlx}. Use the coordinates
(y1, ..., yu}, {8/0y1,...,0/9y,}) on a neighbourhood ofg. On the orbity; (xgp, 0) =
(x0, 0) the matricesL,,, L.,, L,, are constant with respect to the time The Jacobi
equation (47) atxo, 0) becomes

k = Ly (x0,0)k,

whereL,,(xp,0) = I. Let f be a non-negativ€ > function onR" with support on
ly] < e < landf = 1 on a neighbourhood df. Letq)(yv) = %Sf(y)(yf + -4 y,%).
Adjustings > 0 we can make arbitrarily C*°-small. LetL := L + ¢. Then the atomic
measurew supported orixo, 0) is still the unique minimizing measure farand the Jacobi
equation for the orbig; (xo, 0) = (xo, 0) is

k = (Lyx(x0,0) 4 81)k. (64)

SinceL, (xg, 0) is positive semidefinite, theA := (L., (xo, 0) + 81) is positive definite.

Equation (64) is linear
14 0 I [k
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with constant coefficients, wheke= 0 is a hyperbolic singularity.

To obtain the transversality propefy m W* at homoclinic orbits we can use the same
arguments as above if we have areplacement for Lemma5.2. The arguments of Lemma5.2
apply if we show that the stable subspacéxf 0) is transversal to the vertical subspace.

It is enough to prove that the eigenvectarsy) of the (non-singular) matrix in (65) have
coordinatex # 0. These eigenvectors satisfy= ix, Ax = A°x, (A € R). Hence, if
x = 0, then(x, y) = (0, 0) is not an eigenvector. O

6. The exponential map
The following lemma was proven for geodesic flows by Freire andhé/jag] and has
intrinsic interest (compare with Proposition 1.10).

LEMMA 6.1. Let H be a convex Hamiltonian. Choose a Riemannian métricon M. If
¥: has no conjugate points ad = H~1{e}, then there exist8 > 0 such that

1Yo (2) - vl > Bllv]|

forall 9 € =, [t|] > 1andv € TyM, whereYy(t) - v = dm o dy,(0) - (0, v),
(0,v) € HO) ® V(9).

We outline the proof of Theorem F. In the case in wh&llX) > 0 on X one can
define the vectorfield = 1/|®(X)|X. This vectorfield preserves the 1-fottnon T'X.
SinceX has no conjugate points, thetix) = M, (cf. Corollary 1.13) and we can define a
Hamiltonian on7* M by H(16) = 12, whered € . This new Hamiltoniari is convex and
has no conjugate points . The Hamiltonian vectorfield of H is called the (convex)
symplectificatiorof the contact vectorfiel#. The transversal bundi¥ (6) = ker®|r,x
is invariant under the flow of. Let E, : T,M — M be the exponential map fal’, =).
The derivatived E,(16) is given in formulas (39) and (40). The norm of the directional
derivative in formula (40) is clearly bounded below. By Lemma 6.1, the norm of the
derivatived E; |y g)nt,x in formula (39) is uniformly bounded away from zero. Since
V(O)NTyx C N(0), and the anglet(N (), X(0)) is bounded below, we obtain that
ldE,| is bounded away from zero. This implies ttaf : T,,M — M is a covering map
and hence, a diffeomorphism. In particular, the universal covef M is homeomorphic
toR". By Corollary 1.18, the exponential map ¢xjpr X is a local diffeomorphism. Once
we know thatt,, is a diffeomorphism, it is easy to show that gxp bijective and hence, a
diffeomorphism.

Proof of Lemma 6.1SinceY (¢) satisfies (8) (withH,, and H,, uniformly bounded on
%) and by Corollary 1.8S,(¢) is uniformly bounded foiz| > 1, then there exist®; > 1
such that

1Yo (r) - w| < D1||Ye(2) -w| forall|s] >1, we V(®), 6 € x.
Let
A = (1+ D1)? sup|| Hpp(0) 1.
fex

Let Hy(t) := Yw_z(g)(l‘—i-Z)o(Yw_z(g)(Z))_l, thendetHy(t) # Ofort > —2,Hy(0) = 1
and there exists a linear homomorphi8pir) : H(©#) — V (¥,(0)) such thal Hy, Vy) isa
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matrix solution of the Jacobi equation (6) and Im@dg(z), Ve (t)) = dv,12(V (¥—2(6)))
is a Lagrangian subspace. Let

Dp:= _max |[Hy(t)*(Hpp) ™ Hy(0)]| < +o0.
fex
Letp : R — [0, 1] be aC*°-function such thap (r) = 0 for || > 1 andp(0) = 1. Let

1
C:= DZ/ 1/ (1)|? dt.
-1
Let
0< B < (AC)Y2, (66)

Suppose thallYs(T)voll < Bllvoll for somed € X, vg € Tr@yM, |lvoll = 1 and
|T| > 1. Assumethal > 1,the cas& < —1lisprovensimilarly. Let/ (¢+) € H(,(0)) =
Try,6)M be defined by (r) = 0for—1 <t < 0,J(t) = Yp(t)vgforO < ¢ < T and
JO) =T +1-0r,J(T)forT <t < T + 1, wheret; : Ty, )M — Try,0)M is the
parallel transport along the path> 71 (9). ThenJ (¢) is continuous and piecewisg?.

Letv(t) € V() = Ty M be defined by/ (1) = Ys(t)v(r). Thenv(t) = O for
—1<t<O0andv(t) =wfor0 <t <T. Let{ey,...,e,} be abasis off ;4 M and
write v(r) = ;4 vi(t)e;, Yi(t) = Y (t)e;. Then the covariant derivative alongy; (9) of
J(t) = Y()v(r) is

D D n DY; A dv; :
E(yv) = E(;vi(Z)Yi(IO = Z < P ) v + Xl: <E> Y,

i

ForT <t <T+1,sinceJ(t) =Yy(®)v(®) = (T +1—1)r, J(T), we have that
n DY
dt v

+ D1l @)l

o < | 2w
|\ dt

BJ(Z)
dt

< Il + D1llJ (D)l
< (14 D1)B.

Using Yy (¢) on formula (55) we have that

T+1
1(J,J) :/ (YV)*(Hpp) (Y V') dt
T
< (1+ D)?B?|H,; || = AB*.

Let Z(t) € HWY:(0)) = Tqy,M be defined byZ(r) = p(t)Hp(t)vo. Then
Z(t) = Yo()&@t) for t # 0, with &(r) = O for |f] > 1. Sincedy;(0) - V(0) =
ImageYy (1), Sp()Yy(2)), we have thatSy (1) Yo (t) — I whent — 0. UsingYy(t) on
formula (55), we have that the only non-zero term is

1(Z,J)=—Z(O") -vg+ Z(07)-0= —|lvgl® = —1.
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Write Z(¢t) = H()¢(t), £(t) = p(t)vo. UsingH (¢) andV (r) on formula (53), we have
that

1
1(Z,2) = / 1(H§/)*(pr)*l(H¢’) di
1
= / l(p/(t))z(H(t)vo)*(Hp_pl)(H(t)vo) dt

1
< Dz/ lp' (1) dt = C.
-1
Since by (48) the index form is symmetric, fore R we have that
I(Z —27J,Z —2J) <C+ 2%+ A2AB>

Since by (66) 4- 4AB2C > 0, this polynomial inx has two real roots. Therefore,
1(Z — MJ,Z — )\J) < 0 for some value of.. Hence, there must be conjugate points
in the orbit segmenty, (0) | t € [-1, T + 1]}. O

PROPOSITIONG.2. Let e be a regular value ofd. If ®(X) > 0 on the energy level

¥ = H e} and the flow ofX has no conjugate points, then there exists a Hamiltonian
H on T*M with vectorfieldZ such that:

() Hisconvex andl e} = =;

(i) z=1/6(X)-Xonxk;

(i) the flow, of Z has no conjugate points an;

(iv) ¢, preserves the 1-for® onT%;

(v) ifN@©):=(d/ds)sO|s=1, then ford € X we have

d&i(0) - N(0) = N(5:(0)) +1Z(5:(9)).

Remark 6.3.This proposition holds if®@(X) # 0 on a connected compact forward
invariant setK C X. In this case we obtain an open connected neighbourlibad

K suchthatinfcy |©(X(9))| > 0 and a convex Hamiltonial without conjugate points,
defined on a neighbourhood &f in T*M. To apply this on Theorem F, we can take
K = closure ofyp+ ((|2) *g}) C =.

Remark 6.4Giveng € 7%, let S(¢) := T, M N X be the energy sphere @t Then it is
impossible to hav® (X (p)) < 0 on allp € S(g) and the conditio® (X (¢, p)) > Ois
equivalenttoH (¢, 0) < e, i.e. the zero sectioM x 0 lies inside the (vertical convex hull
of the) energy lever. Indeed,S(g) is convex and ifH (¢, 0) < e then, since fop € S(g)
the vectorH (g, p) is outwards normal t&(q), then® (X (g, p)) = p - Hy(g, p) > O.
Otherwise, ifH (¢, 0) > e, then there exists a supporting hyperpld@ér S(g) in Tq*M
containing(q, 0). Letp € EN S(q). Then®(X (g, p)) = p - Hy(q, p) = 0 because the
vectorp is tangent taS(¢) at (¢, p).

Remark 6.5By Remark 6.4, the conditio®(X) # 0 is equivalenttdd (¢,0) < e, Vq €
M. We can extend the result of Theorem F to the cHSg,d, f) < e, Vg € M for
some differentiable functiorf : M — R because the flow of the new Hamiltonian
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Hyr(q, p) := H(q, p +d, f) is conjugate to the flow o on H = ¢ and satisfies
Hyr(q,0) < e,Yg € M. See Theorem A ing] for a characterization of the energy levels
where the last condition holds. Se¥] for other proofs of Theorem F and its converse.

Proof of Proposition 6.2Recall thatw(X,-) = —dH. Let® = pdgq be the canonical
1-form onT*M. Suppose tha®(X) > 0 onX. LetY be the vectorfield ort given by
Y =1/0(X) - X. ThenY preserves the 1-for® on T X because the Lie derivative

Ly® =diy® + iy d® = d[O(Y)] + w(Y, )

1
=d(l)— ——dH =0o0nTX.
OX)

Let¢, (g, p) be the flow ofY on X. Define the symplectificatioﬁ, of ¢, (cf. Arnold [2, J)
on the cotangent bundle without its zero sectihM \ M by ¢,(q, Ap) = A¢:(q, p),
(g, p) € . Observe that; preserves the canonical 1-foréh Indeed, we have that

Togr=m Ogt and ifg; (g, p) = (g1, 1),

O, Apr) - (drw) = (Apy) - d(drw)
=Alps - (drdpiw)]
=Ar[p-(drw)] =0O(g, rp) - w.

Let ¥ be the vectorfield of;. We have that
Ly® =d[O()] 4+ w(Y,-) = 0.

Therefore, the functiodl = ©(Y) is a Hamiltonian forY. But ¥ has conjugate points on

¥ andH is not convex. In factd is homogeneous of degree one on the fibreB o .
LetH = 3 A2 and letZ be the Hamiltonian vectorfield df. We have thaZ = H - Y.

SinceH |y = 1, thenZ is also an extension df. Let ¢, be the flow ofZ. Observe that

G (g, 5P) = 55y 5p) > P) = 5¢is(q, p),  for (g, p) € =.
Taking the derivativel /ds|;—1, we obtain
dgi(0) - N(6) = N(&:(8)) +tY(¢:(9)) foré e X.

Write ¢ (¢, 0) = Y (s (¢, 0),0) with s(¢,0) > 0,0 € X. Then
D¢ = Dy + X (Y (9))2—; onTx. (67)

Let E ¢ TX be the stable Green bundle f& on . SinceX () € E() andE is
Y-invariant, then equation (67) shows that the flpwof Z preserves the Lagrangian
bundleE c T %, which satisfieE(©) NV (6) = {0} for all € . By Proposition 1.15;,
has no conjugate points ai.

The following lemma completes the proof of Proposition 6.2.

LEMMA 6.6. The HamiltoniarH is convex, i.eH ,, is positive definite.
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Proof. Letg € n(X) andS(g) := Tq*MDE. SinceH is homogeneous of degree two, then
H,, is homogeneous of degree zero and it is enough to proveilthaly, p) is positive
definite forp € S(q). Letpg € S(g). Leth : T,,S(q) xR — Tq*M beh(x, 1) := x+Apo.
LetG = Hoh andK = Hoh. ThenG = 3K?2. SinceD?h = 0, thenD?H(qo) is positive
definite if DG (0, 1) is positive definite. Sinc& (0, A) = A, we have that

G,(0,1) = [K,\Z + K- Koy =1

Since in the coordinatgs, A) the vectors)/dx;|,1), i = 1,...,n — 1 are tangent abo
to S(¢g) andH =1 onS(g), thenk, (0, 1) = 0. Hence,
Gx (0. D)(v.v) = [Ky - v]* + KK x (v, v)
= Kyx (v, v).

Observe thak is homogeneous of degree one. Therefafg(0, 1) = K, (0, 1) for all
A > 0. HenceK,,(0,1) =0, so that

Gx1(0,1) - (v, ) = n[Ki(Ky -v) + K(Kyp - v)] = 0.
Then

D?G(0, H)(v, 1)@ = %Gy + 2u(Gix - V) + Grx (v, )
=12+ K (0,1) - (v, 0).

So itis enough to see thét,, (0, 1) is positive definite.

Letv € Tp,S(g) be a unit vector and defing : R — R by f(s,t) = H((po + sv)).
Observe thatH,(pg) - v = 0 anddf/dt|01) = po - Hy(po) = O(X) > 0. Let
t :]— e ¢e[— R be a localC?function such thatf(s,t(s)) = e and¢(0) = 1.
Differentiating this equation with respecttave obtain

H,[1'(s)(po+ sv) + 1 (s)v] =0, (68)
Hpplt' (5)(po + sv) 4 1()v]® + Hy[t"(s)(po + sv) + 21 (s)v] = 0. (69)
Evaluating (68) ak = 0, 1(0) = 1, we have that’(0)(H), - po) = 0. SinceH, - po =
®(X) > 0, thent’'(0) = 0. Evaluating (69), we get that
¢ (0) = —V Hppv <5
O(X(po))
for somes > 0 unifoan forall(g, po) € X, v € Ty,S(g), |v| = 1.
SincekK (sv, 1) = H(po + sv) = 1/t(s) and¢’(0) = 0,¢(0) = 1, then
V'K v =—1t"(0) > $
forallve TXZ, |v]| =1. O

Proof of Theorem FThrough the proof of Theorerfi we work with the lifted Hamiltonian
to the cotangent bundle of the universal cowérof M. Let ¢, be the flow of the
HamiltonianH of Proposition 6.2. Leyy € M and letE, : T)M — M be the
exponential map associated to the flgwand the energy levet.. We first prove that
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E, is a diffeomorphism. The derivativeE, (10) is non-singular by Corollary 1.18 and is
given by formulas (39) and (40). We claim that the ndj@hE, (6|l is uniformly bounded
below. By Lemma 6.1, the norid £, (10)|v e)nz,= |l is uniformly bounded below for
t > €. From equation (40)|d E, (¢0)] |l is also uniformly bounded below. It remains to
see that the angle[d E,(10)(V(0) N T, X), dr (X (¢:0))] is uniformly bounded below.

Since¢; preserves the 1-for®, the bundleK (6) = ker®|,x is invariant undees;.
SinceV (@) N T, = C K(9), then

dE;t0)(V(O) NTEX) € drdg(0)(K(©)) S dr(K(&5:(6))). (70)

Foré = (g, p) € X write H,(q, p) = ap +k, with (k, p) = 0. Since®(X) = p-H, # 0
on X there exists 0< 1 < 1 such thatk| < A|H,| on 2. Leth e dn(K({0)) with
|h| =1,i.e.(p,h) =0, |h| = 1. Then

(h, Hp) = a(p, h) + (k, h) = (k, h),
[{h, Hp)| < 1-AlHp|.

Hence, cosi(h, H,) < A < 1. Therefore, the angleidn (K (0)),dn (X (0))] is
uniformly bounded below o8l € X. By (70), <[dE,(:0)(V(0) N Ty %), dm (X (£:6))] >
<[dn (K (¢:0)), dmw (X (£:6))] is uniformly bounded below. This proves thatE, (:0)|| is
uniformly bounded below on € R*, 6 € =. Hence, the mag, : T,M — M is a
differentiable covering map. Sin@é is simply connected, it must be a diffeomorphism.
Now let exp : T,M — M be the exponential map af;, £). Sinces; is a
reparametrization ofy, fort > 0,6 € X, there existx(¢,0) > 0 such thaty; () =
$z1,0)(0). By Corollary 1.18, exp is a local diffeomorphism. It remains to prove that
it is bijective. Since|®(X)| = |X|/|Y]| is bounded then — 1(z,0) is a (bijective)
homeomorphism aR*. This implies that the ma@ — t(z, )8, with ¢ Tq*M nx,is
a homeomorphism cﬁ”q*M. SinceE, is bijective and expt0) = Eq4(t(1,0)0), then exp
is bijective. ]

Appendix: examples

We learned the following formalism for twisted Hamiltonians on surfaces from
G. Paternain and M. Paternain. L&t be a closed orientable Riemannian surface with
Riemannian metri¢, ). LetK : TTM — TM be the connection mafé = V;v,
where¢ = d/dt(x(t), v(t)). Letm : TM — M be the canonical projection. Leb be the
symplectic form inT M obtained by pulling back the canonical symplectic form via the
Legendre transform associated to the Riemannian metric, i.e.

wo(§,¢) = (dn§, K&) — (dng, K§).

Denote by the area 2-form om4. Given a smooth functiod : M — R, define a new
symplectic formwr on T M by

wr =wo+ (Fom)(m*Q).
This is called awisted symplectic structuenT M. Let H : TM — R be the Hamiltonian

H(x,v) = %(v, V)y.
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Consider the Hamiltonian vectorfiekir corresponding
to (H, wr), i.e.

wr(XF(0),) =dH. (71)
DefineY : TM — T M as the bundle map such that
Qx(u, v) = (Y (), v)x. (72)
ThenY (u) = iu is the angle of rotatior- /2. From (71) and (72) we have that
dHp(§) = wo(XF(0),8) + F((0)(Y(drn XF(0)), dé)x ). (73)

Hence, ifé = (§1,62) = (dn§, K§) € H(O) DV (0) andXF = (X1, X2) € HO) DV (0),
equation (73) becomes

(0,8&2) = (X1,&2) — (X2,81) + F(Y(X1), &1),
Xr@@) = (0, FY(9)). (74)

In particular, the orbits of the Hamiltonian flow are of the fof(z), y (¢)) fory : R —
M, with

D. .
V= F()Y(y). (75)

If ]M FQ = 0 this flow can be seen as a Lagrangian flow as follows. The condition
[ F2 = 0 implies that the cohomology class Bf2 is zero. Hence, there exists a 1-form
n on M such thatin = FQ. Consider the Lagrangian

L(x,v) = 3(v, v)x + nc ().

The corresponding Euler-Lagrange equation is
D . . .
E(% ) =dn(y) =(FY(y),),
which gives the same differential equation (75). This flow corresponds to a magnetic field
with Lorentz forceF (x)Y (v).

Observe that the theory developed in the previous sections also applies to the case
in which fM FQ # 0. Indeed, lely : U € M — R? be a local chart defined on a
simply connected domaiti ¢ M. Then the 2-formF is exact onU and there exists
a 1-formpn|y such thatdn = FQ on U. The Hamiltonian flow orfifU c TM is the
Lagrangian flow ofL(x, v) = %(v, v)x +nx(v), x € U. Let(q, p) be the natural chart
onT*U C T*M corresponding to the chaytand letZ ! be the inverse of the Legendre
transform corresponding tb. Let (¢, w) = F 1o (¢, p). SinceF*(d®) = wr, then
(g, w) is a symplectic chart fabr and sends the vertical bundleTf)R” to the vertical
bundle of Ty M.

We derive the Jacobi equation. Let(z), ¢(z)) be an orbit of the flow. Consider a
variationy; (1) = f (s, t), wheref (0, 1) = c¢(¢) and the paths+— f(s, t) are solutions of
(75):

D . .
EVS = FY(yy). (76)
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Denote the variational field of by J (z) = 9f/9s(0, ¢). Using the formula

DDaf_DD8f+R af af\ of
dsdt 3t  dtds ot ar’ s ) ot
and taking the covariant derivative of equation (76) in the direcfigi, we obtain

.. D
J+ R, J)c = —[FY(yy)l.
ds

SinceY (v) is linear on the fibers of M andJ = (D/ds)(3f/9t) = (D/dt)(3f/ds), we
have that

ZEY G = [V FIGy) + FY (),
= (V;F)Y() + FY(J).
Hence, we obtain the Jacobi equation
J 4+ R, J)ée — (VyF)Y (&) — FY(J) =0. (77)

Consider the orthonormal badis Y (¢) = i¢} of T,y M. We have that

D= Fre
‘= <

DY(')— V:Y) (¢ Y(D'>
TRl = (VeY) () + 7
= —F¢.

Write
J =xc+yY ().

Then
J == Fy)é+ (5 + Fx)Y(©),
J=G—=2Fy—Fy— F?)¢+ (J 4+ 2Fx + Fx — F?y)Y(¢),
FY(J)=—F@ + Fx)é+ F(x — Fy)Y (¢).
Replacing these formulas in equation (77) we obtain
¥ — (Fy) =0, (78)
V+Ky+ Fx =y(VyF), (79)

where K = (R(¢, Y(¢))¢, Y(¢)) is the sectional curvature alongr). Fix the energy
level s = H Y3} = SM. If (J,J) € T:(xT C H®) ® V(©9), we have that
dH(J,J) = (¢, J) = 0. Hence,

x—Fy=0. (80)
This implies equation (78), and from (79) and (80), we get
¥+ (K + F2 = VyF)y =0. (81)

Hence, the Jacobi equations By, = are given by (80) and (81).
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Example A.1. A convex Hamiltonian without conjugate points and no continuous invariant
transversal bundle.
TakeK = —1, F = 1. Then equations (80) and (81) become

x=y,
y=0. (82)
The solutions have the form
x(t) = %atz + bt + ¢,
y(t) = at + b, (83)
y(t) = a.
The derivative of the Hamiltonian flow, on (c(z), ¢(¢)) is given by

dy:(J(0), J(0)) = (J (1), J (1)) € H(6) & V (¥16)
= (x¢ 4+ yY(6); 0¢ + (v +x)Y (¢))
= (x ()¢ + y(@O)Y(0); ()Y (), (84)
wherez(t) = y(t) + x(¢t) andd = (c(0), ¢(0)).

Every orbit (¢, ¢) has no conjugate points because the only solution of (83) with
x(0) = y(0) = 0andy(T) = 0 =x(T),T # 0isx(#) = y(t) = 0. The Green
bundles coincide and are generatedy) = (¢; —Y(¢)) and(Y (¢); 0). The last vector
can be found by solving(0) = 0, y(0) = 1,x(T) = y(T) = 0 and lettingl’ — +o0.

Now suppose that there exists an invariant continuous subbdi@eC Ty X which is
transversal to the vectorfield (). Let6® € X be a recurrent point and let - 400 be

such thaty;, (9) — 0. Lets € N6\ {0}, If dyre (B) = (x(1), y(1); 2(1)) = (J(1); J (1)),
then

. 1 . 1
im md% (§) = lim TR (x(tn), y(tn); 2(t))
=(1,0;1) = X (). (85)
By the continuity of N we have that
X () = lim 1 dyi (§) € N(9).
n x(ty)

This contradicts the transversality hypothesis.

The same argument as in equation (85) shows that for eery X, the angle
Ud (VO N Ty 2), X(Y0)) — 0.

In this case the trajectories of the Hamiltonian flow are the unit tangent vectors of the
horospheres of the Riemannian metric, i.e.

Vi (0) = =Y (h: (Y (0))), (86)

where#;, is the horocycle flow. In particular, the exponential mapqexquM — Mis
a diffeomorphism for al € M. This flow has no periodic orbits because the horocycles
W C S = T*M|z,m) are homeomorphic t&.
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FIGUREA.1.

We prove (86). Leb < TqM, 6]l = 1. Letg, : TM < be the geodesic flow af7.
Consider a sphere

Sr(©) ={q e M |dy(qg, nér©) =T}

and a parametrization by arc length(s) of S () with y7(0) = 7 (0). Then(D/ds)yr(s)

is orthogonal toyr(s). Moreover, it has constant norm, because it is the image of
(D/ds)yr(0) by the isometry given by a rotation about the centerr () of Sy (6).
Thereforeyr satisfies

D . .
—yr =ArY(yr)
ds

for some constant; > 0. Passing to the limit whe@ — +oco we obtain that the
reparametrizations by arc lengthof the horospheres satisfy

D
7 y =uY(y), 87)
)

with u = limy_ 1 A7, (in factT — A7 is strictly decreasing). We claim that = 1.
Indeed, the solutions of (87) of are closed circleg ifs big enough. The infimunug

of suchus corresponds to the horospheres. ko o the flow has conjugate points
corresponding to the period (length) of these closed circles (see Example A.3). From the
Jacobi equation (81) with = u, we see thak = H—l{%} has conjugate points for > 1

and the flow is Anosov for < 1. Henceuo = 1.

Indeed, foru < 1 the solution of (80) and (81) are = A€ + Be ™™, x =
[u(A/))eM — (B/ e M + C], with & = /1 — 2. Writing & = (x(0), y(0); x(0), ¥(0))
we have thatly, (&) = (x(t), y(); x(¢), y(t)). For A # 0 the functiont — ||dy,(&)||
has exponential growth and f&r £ 0,7 — ||dy—,(£)]| has exponential growth. As in 83,
this implies that the flow is Anosov fgr < 1. Foru > 1, the Jacobi equations (80), (81)
exhibit conjugate points, by the same arguments as for equations (89) and (90).

Example A.2. A periodic orbit without conjugate points and no transversal invariant
subspace.

We construct a convex Lagrangian which has the Jacobi equations (82) on a periodic
orbit. Letd € T be such a periodic point with periad > 0. Changing the coordinates
(x,y; z) onTy T of equation (84) tax, y; y) = (x, y; z — x), the matrix of the derivative
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dy.(9) is
16 3% 11 |
1]y 1 :

Let {e1, e2, e3} be the basis ofy £ in which dvy, (9) is written in canonical form. The
transformationg -, and
0 1
dy, — I = 0 1
0

have the same invariant subspaces. The vectorfield corresponds to the unique eigenspace
(e1) and the only invariant subspaces @¢) = (X (0)), (e1,e2) = E(@®) = F(@®) and
{e1, e2, e3) = Ty X. None of them are transversalXqf) = e1.

Now we make the construction. Consider the tdfds= R?/g; with the flat metric
and polar coordinates, 6) centered at0, 0) Rz/szz definedon < 2. LetF : T2 - R
be aC>-function such thatF(r,0) = F(r), Fr = 1) = 1, QF/dr)|,=1 = —1,
and sz FQ = 0. Letyn be a 1-form inT? such thatdn = FQ. DefineL(x,v) =
%(v, v)x + nx(v). Atr = 1, the Euler-Lagrange equation (75) is

D
Ty =FOY@) =Y() atr=1

Hence, = 1,6 = —1 is a periodic solution. Moreover, at= 1 we have tha# = 1,
VyF = —3F/dr = +1. Hence, the Jacobi equations (80), (81) are the same as (82).

Example A.3. Asegmentvithout conjugate points with crossing solutions.
Let W = {(x, y) € R? | x2 + y2 < 4} and consider the Lagrangian

L(x,v) = 3(v,v) + 15 (v),

where (, ) is the Euclidean metric andn = —Q. This Lagrangian corresponds to
Flw = —1 in the formalism above and can be embedded into a convex Lagrangian on
a closed surface. The Euler-Lagrange equation (75) is

V= —iv. (88)

The solutions of (88) on the energy leyel = 1, are all the circles contained I with
constant angular velocity = —1. FixC: R(t) = 1,6(t) = = — ¢ in polar coordinates in

W with center(0, 0). Lety = (0, 1)(—1,0) be the initial vector of this solution. Then the
circles which are rotations df fixing the initial pointp = (—1, 0) are also solutions

of (88) (see Figure A.3) with the same enery= 3|v| = 3. The solutionC has
conjugate points, but the conjugate points appear=at 27. In particular the segment
{v, () | 0 <t < 37 /2} has no conjugate points. But the intersections with other solutions
starting atp = (—1, 0) appear at < 37r/2 and at = & thereisavectof e V() NTy X
such thatiz (dy&) = dn X (¥,9) = (0, —1). Proposition 1.16 says that these phenomena
cannot occur if all the positive (negative) orbitsstbhave no conjugate points. The claims
stated above can be proved using the Jacobi equations (80) and (81):

x+y=0 §+y=0, (89)
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whose solutions are
x(t) = acost +bsint +c,
y(t) = asint — b cost. (90)

Thus, ifx(0) = y(0) = 0 andy(0) # 0 then(x(¢), y(t)) # Oforall0 < ¢ < 27.
Moreover, ifa = —1,b =0,c = +1, thenx(0) = y(0) = 0, y(r) = 0, x(r) = +2.

FIGUREA.3. FIGUREA.4.

Example A.4. A non-surjective exponential map without conjugate points.
Consider the flat toru§? = R?/g7 = [—3, 3]%/6z and polar coordinateg-, #) on
{(x,y) € T?x2 + y2 < 3} centered ad = (0, 0). Define the Lagrangian

L(x,v) = (v, v)x + 1:(v) + ¢ (x),

whereg is aC*-function onT? such thatp (r, §) = %rz—f-COSnr onr <2andg(r,0) > 1
outsider < 2; andn(r,0) = —%rzf(r) do with f(r) a C*°-function with support on
r < 3 suchthatf(r) = 1onr < 2andf(r) < 1.

Observe that the pathh : r(r) = 1, 8(r) = ¢ is static (cf. Mané [28]). Indeed, the
Lagrangian

L(r,0;r, é) = %(,;2 + rzéz) — %},29‘ + %rz +cosxr onr <2,

is minimized oy = 0,0 = 1,r = 1, with L = —1; and onr > 2, we have thap(r) > 1
andf <1, sothat

3207+ ) = r2(36° - 30) = —3r* = —1.

Hence,L > ¢(r) > 1onr > 2.

By Theorem VII in Maié [28] (see also §]), there exists a semistatic (hence, forward
minimizing) solutiony (¢) such thaty(0) = (0,0) and thew-limit of (y,y) is the
(hyperbolic) closed orbif. By the rotational symmetry of the Lagrangian, for every one-
dimensional subspacé C T(o,0T? we obtain a semistatic curye, which is tangent to
L, with y£(0) = (0,0) andw-limit(y.z, y2) = C. Since the semistatic solutions are
minimizing, none of themy |0, +o0[ have conjugate points. Moreover, by Theorem X in
Marié [28] (also [8]), C and all the(y,, y,)’s are in the same energy levEl= ¢(L). By
the graph property (Theorem VII, M&T28] and also 8]), the v 10, +00[S do not intersect
7 (C) nor do they intersect each other.
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