The Hausdorff Dimension of the Harmonic Class on Negatively Curved Surfaces

By Gonzalo Contreras

Abstract

We study the regularity of the Hausdorff dimension of the harmonic class of a surface M of negative curvature as a function of the riemannian metric. We prove that it is a C^{r-3} function of the metric in the Banach manifold of C^{r} riemannian metrics on M. We also prove regularity results for some asymptotic quantities associated to the Brownian motion on \tilde{M}.

1. Regularity of the harmonic class

1.1. Introduction

In the last years there has been increasing interest in potential theory on simply connected manifolds \tilde{M} of bounded negative curvature. Anderson [3], Anderson and Schoen [4], and Sullivan [28] have proven that the Dirichlet problem on \tilde{M} can be solved for continuous data on the sphere at infinity $S(\infty)$ of \tilde{M}. In [17], Kifer gives a probabilistic proof of this result, relating it to the Brownian motion on \tilde{M}. When \tilde{M} is the universal cover of a closed manifold of negative curvature M, Ledrappier [21] related some asymptotic quantities associated to the Brownian motion on \tilde{M} with ergodic quantities associated to the geodesic flow of M and obtained rigidity results for the metric on M (see Theorem 1.2). For example, if $(\rho, \theta) \in \mathbb{R}^{+} \times\left\{v \in T_{x} \tilde{M}| | v \mid=1\right\}$ are the geodesic polar coordinates about x of a point $z=\exp _{x} \rho \theta \in \tilde{M}$, and $A(x, z)$ is the function defined by $d V(z)=A(x, z) d \rho d \theta$, where $d V$ is the volume element of \tilde{M}, then for almost every Brownian path $\tilde{\omega}(t)$ on \tilde{M} we have the same limit:

$$
\lambda=\lim _{t \rightarrow \infty} \frac{\log A(x, \tilde{\omega}(t))}{d(x, \tilde{\omega}(t))},
$$

where $d(x, y)$ is the distance function on \tilde{M}. We restrict ourselves to the case of the universal cover of a closed surface and consider λ as a function of the riemannian metric g. We prove that the map $g \mapsto \lambda(g)$ is C^{r-3} when g varies in the C^{r} topology.

Solving the Dirichlet problem on \tilde{M} for boundary data on $S(\infty)$ gives rise to harmonic measures ω_{x} associated to each point x of \tilde{M}. All these measures are absolutely continuous with respect to each other and define a measure class on $S(\infty)$. Since, in the case of surfaces, the sphere at infinity
has a natural C^{1} structure, the Hausdorff dimension of the harmonic class $H D\left(\omega_{g}\right)$ is well defined. It gives a measure of the deviation of g from a metric of constant curvature (cf. Katok [15]). We prove that the map $g \mapsto H D\left(\omega_{g}\right)$ is C^{r-3} varying g in the C^{r} topology.

The actual condition that we need on the riemannian metric g on M is that the geodesic flow of g is Anosov. This allows some sets of positive curvature but not conjugate points (cf. Klingenberg [19] or Mañé [24]). We state the theorems in this setting.

1.2. Notations and statements of results

Let (M, g) be a closed surface of genus $g \geq 2$ endowed with a riemannian metric whose geodesic flow is Anosov, for example, a metric with variable negative curvature $-b^{2} \leq K \leq-a^{2}$. Let $\pi: \tilde{M} \rightarrow M$ be its universal cover with the metric induced by π and (M, g). Let $S_{g} M$ (resp. $\left.S_{g} \tilde{M}\right)$ be the unit tangent bundle of (M, g) (resp. (\tilde{M}, \tilde{g}) the lift of g) with the natural projection $p: S_{g} M \rightarrow M$ (resp. $\left.\tilde{p}: S_{g} \tilde{M} \rightarrow \tilde{M}\right)$. Let $\Gamma=\pi_{1}(M)$ be the group of deck transformations of \tilde{M}.

The harmonic class

Two geodesics γ and η in \tilde{M} are said to be equivalent if $\sup _{t \geq 0} d(\gamma(t), \eta(t))<+\infty$. The space of equivalence classes is called the sphere at infinity and is denoted by $S(\infty)$ (see, e.g., [6]). For \tilde{X} in $S \tilde{M}$ let $\gamma_{\tilde{X}}$ be the geodesic in \tilde{M} defined by $\left(\gamma_{\tilde{X}}(0), \gamma_{\tilde{X}}^{\prime}(0)\right)=\tilde{X}$. Denote by $\tau: S \tilde{M} \rightarrow S(\infty)$ the map that associates to each \tilde{X}, the class of $\gamma_{\tilde{X}}$. For x in \tilde{M}, the restriction τ_{x} of τ to $S_{x} \tilde{M}=\tilde{p}^{-1}\{x\}$ is a homeomorphism between $S_{x} \tilde{M}$ and $S(\infty)$. The cone topology on $\tilde{M} \cup S(\infty)$ is obtained by adding to the topology of \tilde{M} and $S(\infty)$ the open sets $C(A, R):=\tau(A) \cap \cap_{t>R} \exp _{\tilde{x}}(t A)$, where A is an open subset of $S_{\tilde{x}} \tilde{M}$.

Let $\tilde{\phi}: S \tilde{M} \times \mathbb{R} \rightarrow S \tilde{M}$ be the geodesic flow of $(\tilde{M}, \tilde{g}), \tilde{\phi}_{t}(\tilde{X})=\left(\gamma_{\tilde{X}}(t), \gamma_{\tilde{X}}^{\prime}(t)\right)$ and $\phi:$ $S M \times \mathbb{R} \rightarrow S M$ be the geodesic flow of (M, g). Given $\tilde{X} \in S \tilde{M}$, the weak stable manifold of \tilde{X} is defined by

$$
\tilde{W}^{s}(\tilde{X}):=\left\{\tilde{Y} \in S \tilde{M} \mid \sup _{t \geq 0} d\left(\tilde{\phi}_{t}(\tilde{X}), \tilde{\phi}_{t}(\tilde{X})\right)<+\infty\right\} .
$$

$\widetilde{W}^{s}(\tilde{X})$ is a C^{1} submanifold of $S \tilde{M}$ homeomorphic to \mathbb{R}^{2}. The stable foliation $\widetilde{\mathcal{F}}^{s}=\left\{\tilde{W}^{s}(\tilde{X}) \mid \tilde{X} \in\right.$ $S \tilde{M}\}$ is Γ-invariant and projects onto the stable foliation $\mathcal{F}^{s}=\left\{W^{s}(X) \mid X \in S M\right\}, W^{s}(\pi X):=$ $\pi\left(\tilde{W}^{s}(\tilde{X})\right)$, for the Anosov flow ϕ_{t} on $S M$. Since $\operatorname{dim} M=2$, the foliations $\tilde{\mathcal{F}}^{s}, \mathcal{F}^{s}$ are $C^{1}(\sec [13]$ or [14]). The strong unstable manifold

$$
\tilde{W}^{u l t}(\tilde{X})=\left\{\tilde{Y} \in S \tilde{M} \mid \lim _{t \rightarrow+\infty} d\left(\tilde{\phi}_{-t}(\tilde{X}), \tilde{\phi}_{-t}(\tilde{Y})\right)=0\right\}
$$

is the negative horosphere passing through \tilde{X}, which is a Γ-invariant embedded submanifold of $S \tilde{M}$ homeomorphic to \mathbb{R} and projects onto the strong unstable manifold $W^{u u}(\pi \tilde{X})=\left(\tilde{W}^{u u}(\tilde{X})\right)$ for $\pi(\tilde{X})$. They form a foliation $\widetilde{\mathcal{F}}^{u u}=\left\{\widetilde{W}^{u u}(\tilde{X}) \mid \tilde{X} \in S \tilde{M}\right\}$, called the strong unstable foliation or the horospheric foliation which is transversal to the stable foliation. The spheric foliation $\mathcal{S}=$ $\left\{S_{x} \tilde{M} \mid x \in \tilde{M}\right\}$ is also transversal to $\widetilde{\mathcal{F}}^{s}$. The restrictions $\tau: \widetilde{W}^{u u}(\tilde{X}) \rightarrow S(\infty)-\{\tau(-\tilde{X})\}$ and $\tau_{x}: S_{x} \tilde{M} \rightarrow S(\infty)$ are homeomorphisms whose transition maps $\left.\tau\right|_{\tilde{W}^{u u}(\tilde{X})} \circ\left(\left.\tau\right|_{\tilde{W}^{u u}(\tilde{Y})}\right)^{-1}$, $\left.\tau\right|_{\tilde{W}^{u u}(\tilde{X})} \circ \tau_{y}^{-1}, \tau_{x} \circ \tau_{y}^{-1}$ are the holonomy maps of the stable foliation, i.e., the diagram

commutes. Since the holonomy maps of \mathcal{F}^{s} are C^{1}, this gives a natural C^{1} structure to $S(\infty)$.
The Laplacian operator on \tilde{M} is the operator $\Delta \varphi=\operatorname{div}(\operatorname{grad}(\varphi))$ on $C^{2}(\tilde{M}, \mathbb{R})$, where $\langle\operatorname{grad}(\varphi), \tilde{X}\rangle=\tilde{X}(\varphi), \forall \tilde{X} \in T \tilde{M}$ and $\operatorname{div}(F)$ is the trace of $Y \mapsto \nabla_{Y} F$, the riemannian connection on a vectorfield $F: \tilde{M} \rightarrow T \tilde{M}$. The Dirichlet problem $\Delta \varphi=0,\left.\varphi\right|_{S(\infty)}=f$ can be solved for any $f: S(\infty) \rightarrow \mathbb{R}$ continuous (see [3, 4, 28], or [17]). Let $H f=\varphi$ be the solution to the problem. For $x \in \tilde{M}$, the harmonic measure at x is the unique Borel measure ω_{x} on $S(\infty)$ such that

$$
(H f)(x)=\int_{S(\infty)} f d \omega_{x}
$$

for any $f \in C^{0}(S(\infty), \mathbb{R})$. All these measures are absolutely continuous with respect to each other. Their equivalence class is called the harmonic class of \tilde{M}.

Given a subset K of a separable metric space (Ω, d), the Hausdorff dimension of K is defined to be

$$
\begin{aligned}
H D(K) & :=\inf \left\{\delta>0 \mid m_{\delta}(K)=0\right\}, \\
m_{\delta}(K) & :=\liminf _{\delta \rightarrow 0}\left\{\sum_{V \in \mathcal{O}}(\operatorname{diam} V)^{\delta}\right\},
\end{aligned}
$$

where the infimum on $m_{\delta}(K)$ is taken over all open covers \mathcal{O} of K with $\operatorname{diam} \mathcal{O}<\epsilon$. Given a Borel probability measure μ on (Ω, d), the Hausdorff dimension of μ is defined to be

$$
H D(\mu):=\inf \{H D(\Lambda) \mid \mu(\Lambda)=1\} .
$$

This number is constant in an equivalence class of (absolutely continuous) probabilities.
Since C^{1} maps preserve Hausdorff dimension and $H D\left(\cup_{n=1}^{\infty} K_{n}\right)=\sup _{n \in \mathbb{N}} H D\left(K_{n}\right)$, we can define the Hausdorff dimension of the harmonic class to be $H D(\omega):=H D\left(\omega_{x} \circ \tau_{y}^{-1}\right)=$ $H D\left(\omega_{x} \circ\left(\left.\tau\right|_{\tilde{W} u u(\tilde{Z})}\right)^{-1}\right)$ for any $x, y \in \tilde{M}, \tilde{Z} \in S \tilde{M}$. We write $H D\left(\omega_{g}\right)$ when we want to make explicit the dependence of $H D(\omega)$ on the riemannian metric g of M.

Kifer and Ledrappier [20] proved that for a simply connected complete riemannian manifold \tilde{M} of bounded negative sectional curvatures $-b^{2} \leq K \leq-a^{2}$, the Hausdorff dimensions $H D\left(\omega_{x} \circ \tau_{x}^{-1}\right)$ (which a priori depend on $x \in \tilde{M}$ because the maps $\tau_{x} \circ \tau_{y}^{-1}$ are only Hölder continuous) are all positive. Actually, they are all equal by Remark 1.5 .

Let $R^{r}(M)$ be the Banach manifold of C^{r} riemannian metrics on M with the C^{r} topology and let $A^{r}(M)$ be the open subset of C^{r} metrics whose geodesic flow is Anosov, in particular, metrics with negative curvature. Here we prove the following:

Theorem 1.1. The map $A^{r}(M) \ni g \mapsto H D\left(\omega_{g}\right) \in \mathbb{R}$ is $C^{r-3}, r \geq 3$.

The Brownian motion

Let (M, g) be as above. Denote by $\widetilde{\Omega}=C^{0}([0,+\infty[, \tilde{M})$ the space of continuous paths on \tilde{M} with the topology given by uniform convergence on compact subsets. For $x \in \tilde{M}$ let \boldsymbol{P}_{x} be the Borel probability on $\widetilde{\Omega}_{x}:=[\tilde{\omega} \in \widetilde{\Omega} \mid \tilde{\omega}(0)=x]$ defined by

$$
\boldsymbol{P}_{x}[\tilde{\omega} \in \tilde{\Omega} \mid \tilde{\omega}(0)=x, \tilde{\omega}(t) \in A]=\int_{A} p(t, x, y) d m_{g}(y)
$$

for any $t>0$ and any Borel subset $A \subset \tilde{M}$, where m_{g} is the volume element of \tilde{M} and P : $\mathbb{R} \times \tilde{M} \times \tilde{M} \rightarrow \mathbb{R}$ is the fundamental solution of the heat equation on \tilde{M} :

$$
\begin{aligned}
\frac{\partial p}{\partial t}+\nabla p(t, \cdot, y) & =0 \\
\lim _{t \downarrow 0} \int_{\tilde{M}} p(t, x, y) f(y) d m_{g}(y) & =f(x),
\end{aligned}
$$

for any continuous function $f: \tilde{M} \rightarrow \mathbb{R}$. Since the heat kernel satisfies (see [8, Theorem VIII.4, VIII.5]):

$$
\begin{equation*}
p(t, y, x)=p(t, x, y) \geq 0, \quad \forall t \geq 0, \quad \forall x, y \in \underset{\sim}{\tilde{M}} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\tilde{M}} p(t, x, y) d m_{g}(y)=1, \quad \forall g \geq 0, \quad \forall x, y \quad \in \tilde{M} \tag{ii}
\end{equation*}
$$

(iii) $\quad \int_{\tilde{M}} p(s, x, y) p(t, y, z) d m_{g}(y)=p(s+t, x, z), \quad \forall s, t \geq 0, \quad \forall x, y, z \in \tilde{M}$;
we have that the family $\mathcal{P}=\left\{\boldsymbol{P}_{x} \mid x \in \tilde{M}\right\}$ of probability measures defines a continuous Markov process on \tilde{M} called the Brownian motion on \tilde{M}. The induced probabilities $P_{\pi(\tilde{X})}=\boldsymbol{P}_{\tilde{x}} \circ \pi$ on $\Omega=C^{0}([0,+\infty[, M)$ define the Brownian motion on M.

Since the geodesic flow ϕ_{t} is Anosov, \tilde{M} cannot have conjugate points and $\exp _{x} T_{x} \tilde{M} \rightarrow \tilde{M}$ is a diffeomorphism for every $x \in M$ (see [19] or [24]). For $x \in \tilde{M}$, we consider geodesic polar coordinates about x, i.e., we identify $T_{x} \tilde{M}$ with $] 0,+\infty\left[\times S_{x} \tilde{M} \cup\{0\}\right.$ and a point $z \in \tilde{M}$ is described by the polar coordinates of $\exp _{x}^{-1}(z)$. For $\tilde{\omega} \in \widetilde{\Omega}$, denote by $(r(\tilde{\omega}, t), \theta(\tilde{\omega}, t))$ the geodesic polar coordinate about x of the point $\tilde{\omega}(t)$. For $x \in \tilde{M}$, let λ_{x} be the Lebesgue measure on $S_{x} \tilde{M}$ and denote by $A_{g}(x, z)$ the function on $\tilde{M} \times \tilde{M}$ such that

$$
d m_{g}\left(\exp _{z} t \xi\right)=A(x,(t, \xi)) d t d \lambda_{x}(\xi)
$$

for $\xi \in S_{x} \tilde{M}$. Let $V_{g}(x, t)$ be the volume of the ball of radius t about x :

$$
V_{g}(x, t)=\int_{0}^{t}\left(\int_{S_{x} \tilde{M}} A_{g}(x,(s, \xi)) d \lambda_{x}(\xi)\right) d s
$$

The following theorem has been proved by several people:

Theorem 1.2.

[26] For all $x \in \tilde{M}, \boldsymbol{P}_{x}$-a.e. $\tilde{\omega} \in \widetilde{\Omega}, \theta(\tilde{\omega}, t)$ converges as t goes to infinity towards some limit $\theta(\tilde{\omega},+\infty) \in S_{x} \tilde{M}$.
The induced measure on $S(\infty) \approx S_{x} \tilde{M}$ by $\theta(\cdot,+\infty):\left(\Omega, \boldsymbol{P}_{x}\right) \rightarrow S_{x} \tilde{M}$ is the harmonic measure ω_{x}.
[29] There exists a number $\alpha>0$ such that for all $x \in \tilde{M}, \boldsymbol{P}_{x}$-a.e. $\tilde{\omega}$, $\lim _{t \rightarrow+\infty} \frac{1}{t} r(\tilde{\omega}, t)=\alpha(g)$.
[16] There exists a number $\beta>0$ such that for all $x \in \tilde{M}, \boldsymbol{P}_{x}$-a.e. $\tilde{\omega}$, $\lim _{t \rightarrow+\infty}-\frac{1}{t} \log p(t, x, \tilde{\omega}(t))=\beta(g)$.
[21] There exists a number $\gamma>0$ such that for all $x \in \tilde{M}, \boldsymbol{P}_{x}$-a.e. $\tilde{\omega}$, $\lim _{t \rightarrow+\infty} \frac{1}{t} \log A(x, \tilde{\omega}(t))=\gamma(g)$.
[21] In general $\beta \leq \gamma$ and $\beta \leq \alpha h$, where h is the topological entropy of the geodesic flow on SM.
[21] Each of the equalities $\beta=\gamma$ or $\beta=\alpha h$ hold if and only if the surface M has constant curvature.

We prove the following slightly more general result than Theorem 1.1:

Theorem 1.3.

(i) The map $A^{r}(M) \ni g \mapsto \frac{\beta(g)}{\alpha(g)} \in \mathbb{R}$ is C^{r-2}.
(ii) The map $A^{r}(M) \ni g \mapsto \frac{\gamma(g)}{\alpha(g)} \in \mathbb{R}$ is C^{r-3}.
(iii) The Hausdorff dimension of the harmonic measure is $H D\left(\omega_{g}\right)=\frac{\beta(g)}{\gamma(g)}$.

Since for surfaces the harmonic measure on $S_{X} \tilde{M} \approx S(\infty)$ is absolutely continuous with respect to the Lebesgue measure only in the case of constant (negative) curvature and in this case $H D(\omega)=1$, then $H D\left(\omega_{g}\right)$ can be seen as a measure of the deviation of g from a metric of constant curvature (cf. [15]).

1.3. Equilibrium states

Given a Hölder continuous function $F: S M \rightarrow \mathbb{R}$, there exists a unique ϕ-invariant probability measure μ_{F} on $S M$, called the equilibrium state of (ϕ, F) such that it maximizes the functional

$$
v \mapsto h_{v}\left(\phi_{1}\right)+\int F d \mu
$$

over all the ϕ-invariant Borel probability measures on $S M$, where $h_{\nu}\left(\phi_{1}\right)$ is the entropy of ϕ_{1} with respect to ν (see [7]).

For $X \in S M$ define the local stable and strong unstable manifolds of X by

$$
\begin{aligned}
W_{\epsilon}^{s}(X) & =\left\{Y \in S M \mid d\left(\phi_{t}(X), \phi_{t}(Y)\right) \leq \epsilon, \quad \forall t \geq 0\right\} \\
W_{\epsilon}^{u u}(X) & =\left\{Y \in S M \mid d(X, Y) \leq \epsilon \text { and } \lim _{t \rightarrow+\infty} d\left(\phi_{-t}(X), \phi_{-t}(Y)\right)=0\right\}
\end{aligned}
$$

If $\epsilon>0$ is sufficiently small, then they are transversal embedded discs in $S M$ with dim $W_{\epsilon}^{S}(X)=2$, $\operatorname{dim} W_{\epsilon}^{u u}(X)=1$. For $\epsilon>0$ small there exists a partition ξ of $S M$ with diam $\xi<\epsilon$ such that it is subordinate to $\mathcal{F}^{u u}$, i.e., $\xi(X) \subset W_{\epsilon}^{u u}(X)$ for all $X \in S M$ (see [22]) and such that it is a measurable partition, i.e., the quotient space $S M / \xi$ is separated by a countable number of measurable sets (see [27]). Then (cf. [27]) there exists a system of conditional measures associated to it, i.e., for μ a.e. $X \in S M$ there exists a probability measure $\mu_{X}=\mu_{\xi(X)}$ on $\xi(X)$ such that for any Borel set A on $S M$, the function $X \mapsto \mu_{\xi(X)}(A \cap \xi(X))$ is measurable and $\mu(A)=\int_{S M} \mu_{\xi(X)}(A \cap \xi(X)) d \mu(X)$.

If μ^{F} is an equilibrium state and \mathcal{L} is the holonomy map of the stable foliation \mathcal{F}^{s} from (a subset of) $\xi(X)$ to $\xi\left(\phi_{t}(X)\right): \mathcal{L}(Y)=W^{s}(Y) \cap \xi\left(\phi_{t}(X)\right)$, then the measures $\mu_{\xi(X)}^{F}$ and $\mu_{\xi\left(\phi_{t}(X)\right)}^{F} \circ \mathcal{L}^{-1}$
are equivalent on $\xi(X) \cap \mathcal{L}^{-1}\left(\xi\left(\phi_{t}(X)\right)\right)$. It follows that the measure v on $\xi(X)$ defined by $v(A)=$ $\mu^{F}\left(\cup_{Y \in A} W_{\epsilon}^{S}(Y)\right)$ is equivalent to $\mu_{\xi(X)}^{F}$.

Observe that if $H f=\varphi$ is the solution of $\Delta \varphi=0,\left.\varphi\right|_{S(\infty)}=f$ on \tilde{M} and $\Gamma \in \Gamma$, then $H(f \circ \Gamma)=(F f) \circ \Gamma$ so that the harmonic measures satisfy $\omega_{\Gamma(x)}=\omega_{x} \circ \tilde{\Gamma}^{-1}$, where $\tilde{\Gamma}$ is the extension of Γ to $S(\infty)$. Since for $\tilde{X} \in S \tilde{M},\left.\tau\right|_{W^{u u}(D \Gamma \cdot \tilde{X})} \circ D \Gamma=\left.\tilde{\Gamma} \circ \tau\right|_{W^{u u}(\tilde{X})}$, we have that the measures $v_{\tilde{X}}:=\omega_{p(\tilde{X})} \circ \tau_{W^{u u}(\tilde{X})}$ satisfy $\tilde{v}_{D \Gamma \cdot \tilde{X}}=\tilde{v}_{\tilde{X}} \circ D \Gamma$ and hence the system $\left\{\tilde{v}_{\tilde{X}} \mid \tilde{X} \in S \tilde{M}\right\}$ projects to a family of measures $\left\{v_{X} \mid X \in S M,\right\}, v_{\pi \tilde{X}} \circ D \pi=\tilde{v}_{\tilde{X}}$, that we call the horospheric harmonic measure on $S M$.

Theorem 1.4 [21].

1. The horospheric harmonic measures are equivalent to the conditional measures on local strong unstable manifolds of the equilibrium state μ^{F} of the function

$$
\begin{equation*}
F(\pi \tilde{X})=\log K\left(\gamma_{\tilde{X}}(0), \gamma_{\tilde{X}}(1), \tau(\tilde{X})\right) \tag{1.4.1}
\end{equation*}
$$

where $K: \tilde{M} \times \tilde{M} \times S(\infty) \rightarrow \mathbb{R}$ is the Poisson kernel of \tilde{M} (see Section 1.5): $\mu_{\xi(X)}^{F} \approx \nu_{X}$ for all $X \in S M$.
2. We have, for the Brownian motion in \tilde{M}, that $\gamma=\alpha \int J^{u} d \mu^{F}$, where

$$
J^{u}(X)=\frac{d}{d t}\left[\log \left|\operatorname{det} D \phi_{t}\right| T_{X} W^{u u}(X) \mid\right]_{t=0}
$$

In particular $\frac{\gamma}{\alpha}$ is the positive Lyapunov exponent of $\left(S M,\left\{\phi_{t}, t \in \mathbb{R}\right\}, \mu^{F}\right)$.
3. We have $\beta=\alpha h_{\mu}(\phi)$.

Since $D \pi$ is a C^{l} map and the Hausdorff dimension $H D\left(\mu_{\xi(X)}^{F}\right)$ is constant for μ-a.e. $X \in S M$ (cf. [23]), then we have that $H D\left(\omega_{g}\right)=H D\left(v_{X}\right)=H D\left(\mu_{\xi(X)}^{F}\right)$, μ-a.e. $X \in S M$. Ledrappier, Manning, and Young (cf. [22, 23, 30]) proved that $H D\left(\mu_{\xi(X)}^{F}\right)=h_{\mu}(\phi) / \lambda(\mu)$, where $\lambda(\mu)$ is the positive Lyapunov exponent of (ϕ, μ). In particular, we have that $H D\left(\omega_{g}\right)=\beta(g) / \gamma(g)$.

Remark 1.5. Ledrappier and Young [22] proved that in higher dimensions, dim $S M \geq 4$, the Hausdorff dimension of conditional measures on $W^{u u}, H D\left(\mu_{\xi(X)}\right)$, of invariant probabilities μ, are the same μ-a.e. $X \in S M$. This implies that in $\operatorname{dim} M>2$, even when the holonomy maps of the stable foliation \mathcal{F}^{s} are only Hölder continuous and hence the sphere at infinity has only a Hölder structure, the Hausdorff dimension of the harmonic class is well defined (and positive).

We are going to use the following:

Theorem 1.6 [9].

Let X be a C^{r} vectorfield on a compact manifold N whose flow is Anosov. Let $\mathfrak{X}^{r}(N)$ be the Banach space of C^{r} vectorfields on N and $C^{\alpha}(N, \mathbb{R})$ be the Banach space of α-Hölder continuous functions on N. Let $\psi: \mathcal{V} \subset \mathfrak{X}^{r}(N) \rightarrow C^{0}(N, \mathbb{R})$ be a continuous map from a neighborhood \mathcal{V} of X of vectorfields whose flows are Anosov. For $Y \in \mathcal{V}$ let u_{Y} be the topological equivalence of Proposition 1.13, and suppose that the map $F(Y):=\psi(Y) \circ u_{Y}$ is such that $F: \mathcal{V} \subset \mathfrak{X}^{r}(N) \rightarrow$ $C^{\alpha}(N, \mathbb{R})$ is $C^{s-1}, s \leq r$. For $Y \in \mathcal{V}$, let μ_{Y} be the equilibrium state for $(Y, \psi(Y))$ and $h\left(\mu_{Y}\right)$ the metric entropy of Y with respect to μ_{Y}. Then there exists a neighborhood $\mathcal{U} \subset \mathcal{V}$ of X in $\mathfrak{X}^{r}(N)$ such that the maps
(i) $\mathcal{U} \ni Y \mapsto h\left(\mu_{Y}\right) \in \mathbb{R}$ is C^{s-1},
(ii) $\mathcal{U} \ni Y \mapsto \mu_{Y} \in\left(C^{\alpha}(N, \mathbb{R})\right)^{*}$ is C^{s-1},
(iii) $U \ni Y \mapsto \lambda\left(\mu_{Y}\right):=\int \frac{d}{d t}\left[\log \left|\operatorname{det} D\left(\phi_{t}(Y)\right)\right|_{E_{Y}^{u u}(p)} \mid\right]_{t=0} d \mu_{Y}(p) \in \mathbb{R}$ is C^{t} with $t:=$ $\min \{s-1, r-2\}$,
where $(p, t) \mapsto\left(\phi_{t}(Y)\right)(p)$ is the flow of $Y \in \mathcal{U}$ and $E_{Y}^{u u}(p)=T_{p} W_{Y}^{u u}(p) \subset T_{p} N$ is the unstable subspace for Y at p.

Moreover, if $F: \mathcal{V} \subset \mathfrak{X}^{r}(N) \rightarrow C^{\alpha}(N, \mathbb{R})$ is C^{s-1} and $F: \mathcal{V} \subset \mathfrak{X}^{r}(N) \rightarrow C^{\alpha}(N, \mathbb{R})$ is C^{s}, then the map $\mathcal{U} \ni Y \mapsto P(F(Y)) \in \mathbb{R}$ is C^{s}, where $P(F(Y))$ is the pressure function $F(Y)$ for the flow of Y.

Sketch of the proof of Theorems 1.1 and 1.3

We will apply Theorem 1.6 to our case: let $R^{r}(M)$ be the Banach manifold of C^{r} riemannian metrics on M. Given $g \in R^{r}(M)$, the geodesic flow of (M, g) is generated by a C^{r-1} vectorfield $X(g)$. Fix a riemannian metric $g_{o} \in \mathcal{A}^{r}(M)$ and a small neighborhood $g_{o} \in \mathcal{V} \subset \mathcal{A}^{r}(M)$. Let $\Sigma M=S_{g_{0}} M$ be the g_{o}-unit tangent bundle. For $g \in \mathcal{V}$, using the orthogonal projection $S_{g} M \rightarrow$ ΣM, conjugate the geodesic flow for g to a flow on ΣM with vectorfield $Y(g)$. Since this projection is differentiable, entropies and Lyapunov exponents for $Y(g)$ are the same as the corresponding ones for $X(g)$. We will prove (cf. Lemma 1.12) that the map $\mathcal{R}^{r}(M) \ni g \mapsto Y(g) \in \mathfrak{X}^{r-1}(\Sigma M)$ is C^{∞}. Let F_{g} be the function defined in Theorem 1.4. In Section 1.7 we will prove that the map $\mathcal{R}^{r}(M) \ni g \mapsto F_{g} \circ u_{g} \in C^{\alpha}(\Sigma M, \mathbb{R})$ is C^{r-2} for some $0<\alpha<1$ and the map $\mathcal{R}^{r}(M) \ni g \mapsto$ $F_{g} \circ u_{g} \in C^{0}(\Sigma M, \mathbb{R})$ is C^{r-1}. Then using Theorem 1.4 and Theorem 1.6, we obtain Theorems 1.1 and 1.3 .

1.4. Conformal equivalence

Given an initial riemannian metric g_{o} on M, the existence of isothermal coordinates (see below) implies that we can find an oriented atlas on M in which locally we can write $g_{o}=f(x, y)(d x \otimes d x+$ $d y \otimes d y$), where f is a smooth scalar function. Writing $z=x+i y$ we obtain an analytic atlas. Indeed, for other isothermal charts (u, v), writing $w=u+i v$ and $g_{o}=h(u, v)(d u \otimes d u+d v \otimes d v)$ we have that the derivatives of the transition maps $w \circ z^{-1}$ must satisfy $\left[\frac{\partial(u, v)}{\partial(x, y)}\right]\left[\frac{\partial(u, v)}{\partial(x, y)}\right]^{T}=\frac{f(x, y)}{h(u, v)} I d$, which gives the Cauchy-Riemann equations for $\frac{d w}{d x}$.

This gives to M and \tilde{M} the structure of riemann surfaces. The uniformization theorem [11] implies that \tilde{M} is conformally equivalent to $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ with the euclidean metric. We identify $\mathbb{D} \approx \tilde{M}$ so that the covering map $\pi: \mathbb{D} \rightarrow\left(M, g_{o}\right)$ is conformal, the deck transformations are holomorphic and the lifted metric $\widetilde{g_{o}}$ can be written as $\widetilde{g_{o}}=\rho_{o}(d x \otimes d x+d y \otimes d y)$, where $\rho_{o}: \mathbb{D} \rightarrow \mathbb{R}$ is a positive smooth function. Denote by $z=x+i y: \tilde{M} \rightarrow \mathbb{D}$ this coordinate system.

Consider the lift \tilde{g} to \tilde{M} of another riemannian metric g on M. We look for coordinates $w: \tilde{M} \rightarrow \mathbb{D}$ such that $\widetilde{g}=\rho|d z+\mu d \bar{z}|^{2}$ where $\rho: \tilde{M} \rightarrow \mathbb{R}^{+}$and $\mu: \tilde{M} \rightarrow \mathbb{C}$ is a smooth function such that $|\mu(p)|<1$ for all $p \in \tilde{M}$. Writing \widetilde{g} in the coordinates $z=x+i y$ as

$$
\tilde{g}=\mathrm{A} d x \otimes d x+2 \mathrm{~B} d x \otimes d y+\mathrm{D} d y \otimes d y,
$$

we have

$$
|d z+\mu d \bar{z}|^{2}=\left(1+|\mu|^{2}\right)|d z|^{2}+2 \operatorname{Re}\left(\bar{\mu} d z^{2}\right)=\lambda \tilde{g}
$$

with $\rho=\frac{1}{\lambda}$. Form this we get that

$$
\alpha=\frac{\mathrm{A}-\mathrm{D}}{4} \lambda \quad, \quad \beta=\frac{\mathrm{B}}{2} \lambda \quad, \quad 1+|\mu|^{2}=\frac{\mathrm{A}+\mathrm{D}}{\mathrm{~B}} \beta .
$$

We choose the solution

$$
\begin{align*}
\beta & =2 \mathrm{~B} \frac{(\mathrm{~A}+\mathrm{D})-2 \sqrt{\mathrm{AD}-\mathrm{B}^{2}}}{(\mathrm{~A}+\mathrm{D})^{2}-4\left(\mathrm{AD}-\mathrm{B}^{2}\right)}=2 \mathrm{~B} \frac{p-q}{p^{2}-q^{2}} \\
\beta & =\frac{2 \mathrm{~B}}{p+q} \quad, \quad \alpha=\frac{\mathrm{A}-\mathrm{D}}{p+q} \tag{1.7}
\end{align*}
$$

where $p:=\mathrm{A}+\mathrm{D}>0$ and $q:=2 \sqrt{\mathrm{AD}-\mathrm{B}^{2}}>0$ because the matrix $A=\left[\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{B} & \mathrm{D}\end{array}\right]$ is positive definite. Observe that we get that

$$
1+|\mu|^{2}=\frac{2 p}{p+q}=\frac{2}{1+\frac{q}{p}}<2
$$

because $\frac{q}{p}>0$, and then $|\mu|<1$.
Let $C^{k}(r)$ be the Banach space of C^{k} functions $f:\{z \in \mathbb{C}| | z \mid<r\} \rightarrow \mathbb{D}$ with the C^{k} norm and let $C^{0}(\mathbb{D}, \mathbb{D})$ be the space of continuous functions of the open disc to itself with the C^{0} norm.

Lemma 1.8. For all $0<r<1$ and all $k \geq 0$, the map $\mu: \mathcal{R}^{k}(M) \rightarrow C^{k}(r) \cap C^{0}(\mathbb{D}, \mathbb{D})$ given by $g \mapsto \mu(g) \circ z^{-1}$ is C^{∞}.

Proof. From formula (1.7) it is clear that the map $\mu: \mathcal{R}^{k}(M) \rightarrow C^{k}(r)$ is C^{∞}. Observe that the equation $\tilde{g}=\rho|d z+\mu d \bar{z}|^{2}$ has exactly two solutions for μ at each point, one with $|\mu|>1$ and one with $|\mu|<1$. We choose the one with $|\mu|<1$. Let h be a deck transformation and write $w=h(z)$. The map h is holomorphic, so that $h_{\bar{z}}=0$. Since h is a g-isometry, we have that

$$
\begin{aligned}
\rho|d z+\mu d \bar{z}| & =\rho(w)|d w+\mu(w) d \bar{w}| \\
& =(\rho \circ h)\left|h_{z}\right|\left|d z+(\mu \circ h) \frac{\bar{h}_{\bar{z}}}{h_{z}} d \bar{z}\right|
\end{aligned}
$$

Therefore,

$$
\mu \circ h=\mu \frac{h_{z}}{\bar{h}_{\bar{z}}}
$$

Let \mathcal{D} be a fundamental domain and choose $r_{0}>0$ such that $\mathcal{D} \subset\left[|z|<r_{0}\right]$. Choose any point $\tilde{p} \in \mathbb{D}=\tilde{M}$, then

$$
\begin{aligned}
\left|\mu\left(g_{1}\right)(\tilde{p})-\mu\left(g_{2}\right)(\tilde{p})\right| & =\left|\dot{\mu}\left(g_{1}\right)(q)-\mu\left(g_{2}\right)(q)\right|\left|\frac{h_{z}(q)}{\bar{h}_{\bar{z}}(q)}\right| \\
& =\left|\mu\left(g_{1}\right)(q)-\mu\left(g_{2}\right)(q)\right|
\end{aligned}
$$

where h is a deck transformation such that $\tilde{p} \in h(\mathcal{D})$ and $q \in \mathcal{D}$ is such that $h(q)=\tilde{p}$. Therefore,

$$
\left\|\mu\left(g_{1}\right)-\mu\left(g_{2}\right)\right\|_{C^{0}(\mathbb{D}, \mathbb{D})} \leq\left\|\mu\left(g_{1}\right)-\mu\left(g_{2}\right)\right\|_{C^{0}(r)}
$$

This implies that $\mathcal{R}^{k}(M) \rightarrow C^{0}(\mathbb{D}, \mathbb{D})$ is C^{∞}.

1.5. The Poisson kernel

Given a riemannian metric g on M, the Laplace-Beltrami operator can be written in local coordinates as

$$
\Delta=\sum_{i, j} g^{i j}\left(\frac{\partial^{2}}{\partial x^{i} \partial x^{j}}-\sum_{k} \Gamma_{i j}^{k} \frac{\partial}{\partial x^{k}}\right)
$$

where

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{m}\left(\frac{\partial g_{i m}}{\partial x^{j}}+\frac{\partial g_{m j}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{m}}\right) g^{m k}
$$

are the Christoffel's symbols of g and $\left[g^{i j}\right]=\left[g_{i j}\right]^{-1}$ is the inverse matrix of the local representation of $g=\sum g_{i j}\left(d x^{i} \otimes d x^{j}\right)$. If we multiply a metric g on \tilde{M} by a smooth function $\lambda: \tilde{M} \rightarrow \mathbb{R}^{+}$, the Laplace-Beltrami operator for λg takes the form:

$$
\begin{aligned}
\Delta_{\lambda g} & =\sum_{i, j}(\lambda g)^{i j}\left(\frac{\partial^{2}}{\partial x^{i} \partial x^{j}}-\sum_{k} \Gamma_{i j}^{k}(\lambda g) \frac{\partial}{\partial x^{k}}\right) \\
& =\frac{1}{\lambda} \Delta_{g}-\left(\frac{2-\operatorname{dim} M}{2}\right) \frac{1}{\lambda^{2}} \sum_{m, k} \frac{\partial \lambda}{\partial x^{m}} g^{m k} \frac{\partial}{\partial x^{k}} \\
& =\frac{1}{\lambda} \Delta_{g}
\end{aligned}
$$

so that the set of harmonic functions for g coincides with the set of harmonic functions for λg.
The Poisson kernel on $\tilde{M}, K: \tilde{M} \times \tilde{M} \times S(\infty) \rightarrow \mathbb{R}$ is defined as the Radon-Nikodym derivative of the harmonic measures:

$$
K(x, y, \theta):=\frac{d \omega_{y}}{d \omega_{x}}(\theta)
$$

Fix a riemannian metric g_{o} on M and its lift $\tilde{g_{o}}$ to \tilde{M}. Suppose that its geodesic flow is Anosov. Fix an isothermal chart $z:\left(\tilde{M}, \tilde{g}_{o}\right) \rightarrow(\mathbb{D}, e)$, where e is the euclidean metric (actually its conformal type) on \mathbb{D}.

Lemma 1.9.

There exists a neighborhood \mathcal{U} of g_{o} in the C^{3}-topology such that for all $g \in \mathcal{U}$ the chart z induces a homeomorphism $z: S_{g}(\infty) \rightarrow S^{1}=\partial \mathbb{D} \subset \mathbb{C}$ of the sphere at infinity of g and S^{1} by $z\left[\gamma_{g}\right]:=\lim _{t \rightarrow+\infty} z \circ \gamma_{g}(t)$.

Moreover,
(i) The extension $z: \tilde{M} \cup S_{g}(\infty) \rightarrow \overline{\mathbb{D}}$ is a homeomorphism.
(ii) The mapz: $S_{g_{0}}(\infty) \rightarrow S^{1}$ is Hölder continuous.

Proof.

(i) In [12] it is proved that for any metric on M whose flow is Anosov, the map $z: M \cup S_{g}(\infty) \rightarrow \overline{\mathbb{D}}$ is a homeomorphism. It is also proved that any two Anosov geodesic flows for M are topologically equivalent.
(ii) Let $\phi: S_{g} \tilde{M} \times \mathbb{R} \rightarrow S_{g} \tilde{M}$ be the lift of the geodesic flow for g and let ρ be the g-distance on $S_{g} \tilde{M}$. Let $\psi: \Sigma \tilde{M} \times \mathbb{R} \rightarrow \Sigma \tilde{M}$ be the lift of the geodesic flow for the metric g_{1} with constant curvature $K \equiv-1$ and let d be the hyperbolic distance on $\Sigma \tilde{M}=S_{g_{1}} \tilde{M}$. Let $h: S_{g} M \rightarrow \Sigma M$ be a topological equivalence of the geodesic flows for g and g_{1}, and let $\tilde{h}: S_{g} \tilde{M} \rightarrow \Sigma \tilde{M}$ be its lift. Since $S_{g}(\infty)$ is compact, it is enough to prove that for any $w \in S_{g} \tilde{M}$, the map $H: \tilde{W}^{u u}(w, \phi) \approx$ $S_{g}(\infty) \xrightarrow{z} S^{1} \approx \widetilde{W}^{u u}(\tilde{h}(w), \psi)$ is Hölder continuous on a neighborhood of w. We use local strong unstable manifolds:

$$
\tilde{W}_{\beta}^{u u}(p, \psi):=\left\{q \in \Sigma \tilde{M} \mid d(p, q)<\beta \text { and } \lim _{t \rightarrow-\infty} d\left(\psi_{t}(p), \psi_{t}(q)\right)=0\right\}
$$

We have that $H=P \circ \tilde{h}$ where $P: D_{\theta} \subseteq \Sigma \tilde{M} \rightarrow \tilde{W}_{\beta}^{u u}(\tilde{h}(w), \psi)$ is the projection along the flow lines of $\psi, D_{\theta}=\left\{z \in \widetilde{W}^{u}(\tilde{h}(w), \psi) \mid d(z, \tilde{h}(w))<\theta\right\}$, and $\widetilde{W}^{u}(\tilde{h}(w), \psi)=\cup_{t \in \mathbb{R}} \psi_{t}\left(\widetilde{W}^{u u}(\tilde{h}(w), \psi)\right)$ is the weak unstable manifold of $\tilde{h}(w)$. Fix $\epsilon>0$ small and such that if $p, q \in \tilde{W}^{u}(\tilde{h}(w), \psi)$, $d(p, \tilde{h}(w))<\epsilon$ and $d(q, \tilde{h}(w))<\epsilon$, then there exists exactly one point in the intersection

$$
\{w\}=\tilde{W}_{4 \epsilon}^{u u}(q, \psi) \cap\left\{\psi_{t}(p) \mid-4 \epsilon \leq t \leq 4 \epsilon\right\} \neq \emptyset
$$

Let $\theta:=12 \epsilon$. For the hyperbolic metric g_{1} we know that P is C^{1}. Let $B>0$ be such that $d(P(x), P(y))<B \rho(x, y)$ for all $x, y \in D_{\theta}$. We need the following:

Claim.

(a) There exists $0<a<A$ such that if $x \in S_{g}=\tilde{M}$ and $s(x)>0$ is such that $\tilde{h}(\phi(x, 1))=$ $\psi(\tilde{h}(x), s(x))$, then $2 a<s(x)<\frac{A}{2}$.
(b) There exists $0<a<A$ such that if $x \in S_{g} \tilde{M}, T>2$ and $s(x, T)>0$ is such that $\tilde{h}(\phi(x, T))=\psi(\tilde{h}(x), s(x, T))$, then $a T<s(x, T)<A T$.

Proof. For (a) use the continuity of h and the compactness of $S_{g} M$. For (b), suppose that $T=n+\delta$, with $n \in \mathbb{Z}^{+}$and $\delta \in\left[0,1\left[\right.\right.$. From item (a) we get that $2 a \frac{t}{2} \leq 2 a n \leq s(x, T) \leq \frac{A}{2} n+\frac{A}{2} \leq \frac{A}{2} 2 T$.

Let $\lambda>0$ be such that $\rho\left(\phi_{t}(x), \phi_{t}(y)\right) \leq \mathrm{e}^{\lambda t} \rho(x, y)$ for all $t \geq 0$ and all $x, y \in S_{g} \tilde{M}$. Let $\eta>0$ be such that $\rho(x, y)<2 \eta$ implies $d(\tilde{h}(x), \tilde{h}(y))<\epsilon$. If $x, y \in \widetilde{W}_{\delta}^{u u}(w, \phi)$ with $\delta<\mathrm{e}^{-3 \lambda} \eta$, let $T:=\min \left\{s>0 \mid \rho\left(\phi_{s}(x), \phi_{s}(y)\right)=\eta\right\}$. This number exists by the expansivity of ϕ if η is small enough (in fact for any η using the conjugacy \tilde{h}). We have that $T>3$ and $\rho(x, y) \geq \eta \mathrm{e}^{-\lambda T}$.

There exist continuous functions $\sigma, \tau: \mathbb{R} \rightarrow \mathbb{R}$ such that $\sigma(0)=0=\tau(0)$ and $\tilde{h}(\phi(x, s))=$ $\psi(\tilde{h}(x), \sigma(x)), \tilde{h}(\phi(y), t)=\psi(\tilde{h}(y), \tau(t))$. By the claim, $a T \leq \tau(T) \leq A T$ and $a T \leq \sigma(T) \leq$ $A T$. Since $x, y \in W_{\delta}^{u u}(w, \phi)$, then $\tilde{h}(x)$ and $\tilde{h}(y)$ are in the weak unstable manifold $W^{u}(\tilde{h}(w), \psi)$ of $\tilde{h}(w)$. Write $p:=\tilde{h}(x), q:=\tilde{h}(y)$ and let

$$
m:=W_{4 \epsilon}^{u u}(\tilde{h}(y)) \cap\left\{\psi_{t} \tilde{h}(x) \mid-4 \epsilon \leq t \leq 4 \epsilon\right\}
$$

Then

$$
\begin{aligned}
d\left(\psi_{\tau(T)}(q), \psi_{\tau(T)}(m)\right) & \geq \mathrm{e}^{\tau(T)} d(q, m) \geq \mathrm{e}^{a T} d(q, m) \\
d\left(\psi_{s(T)}(p), \psi_{\tau(T)}(q)\right) & =d\left(\tilde{h} \phi_{T}(x), \tilde{h} \phi_{T}(y)\right) \leq \epsilon
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{e}^{a T} d(q, m) & \leq d\left(\psi_{\sigma(T)}(p), \psi_{\tau(T)}(q)\right)+d\left(\psi_{\sigma(T)}(p), \psi_{\tau(T)}(m)\right) \\
& \leq \epsilon+|\sigma(T)-\tau(T)|+d(p, m) \\
& \leq \epsilon+2 A T+4 \epsilon \\
d(q, m) & \leq(5 \epsilon+2 A T) \mathrm{e}^{-a T} \leq \mathrm{e}^{-\frac{a}{2} T}
\end{aligned}
$$

if $T>T_{0}:=T_{0}(\epsilon, A, a)>0$. If we choose $0<\delta<\mathrm{e}^{-\lambda T_{0} \eta}$, then $x, y \in \widetilde{W}_{\delta}^{u u}(w, \phi)$ implies that $T>T_{0}$. In particular

$$
d(q, m) \leq \mathrm{e}^{-\frac{a}{2} T} \leq\left(\eta \mathrm{e}^{-\lambda T}\right)^{\frac{a}{2 \lambda}} \eta^{-\frac{a}{2 \lambda}} \leq \eta^{-\alpha} \rho(x, y)^{\alpha}
$$

for $\alpha=\frac{a}{2 \lambda}$. We have that $d(\tilde{h}(w), m) \leq d(\tilde{h}(w), p)+d(p, m) \leq \epsilon+4 \epsilon<12 \epsilon=\theta$. Then

$$
\begin{aligned}
d(H(x), H(y)) & =d(P(p), P(q))=d(P(m), P(q)) \\
& \leq B d(q, m) \leq B \eta^{-\alpha} \rho(x, y)^{\alpha} .
\end{aligned}
$$

This proves Lemma 1.9.
Let $g \in \mathcal{U}$ be another metric on M and \tilde{g} its lift to \tilde{M}. Suppose that $f:\left(\overline{\mathbb{D}}, S^{1}\right) \rightarrow\left(\overline{\mathbb{D}}, S^{1}\right)$ is a homeomorphism which is differentiable on \mathbb{D} and satisfies

$$
f_{\bar{z}}=\mu(g) f_{z},
$$

where $\mu(g)$ is from Section 1.4. Then for $w=f \circ z$, the metric \tilde{g} is written as $\tilde{g}=\lambda|d w|^{2}$. By the remark above, the \tilde{g}-harmonic functions on \mathbb{D} in the coordinates w are the harmonic functions for the euclidean Laplacian on \mathbb{D}.

From now on we identify $\tilde{M} \approx \mathbb{D}$ and $S_{g}(\infty) \approx S^{1}$ for any metric g on \mathcal{U}, using z.
Lemma 1.10. The Poisson kernel for \tilde{g} on $\mathbb{D} \cup S^{1} \approx \tilde{M} \cup S_{g}(\infty)$ is given by

$$
k(x, y, \theta)=\mathbb{P}(f(x), f(y), f(\theta))
$$

for any $x, y \in \mathbb{D}, \theta \in S^{1}$, where \mathbb{P} is the Poisson kernel for the euclidean Laplacian

$$
\mathbb{P}(z, w, \theta)=\operatorname{Re}\left(\frac{\mathrm{e}^{i \theta}+w}{\mathrm{e}^{i \theta}-w} \cdot \frac{\mathrm{e}^{i \theta}-z}{\mathrm{e}^{i \theta}+z}\right) .
$$

Proof. For $z \in \mathbb{D}$, let ω_{z} be the \tilde{g}-harmonic measure at z and λ_{z} be the euclidean harmonic measure at z. Let $\varphi: S^{1} \rightarrow \mathbb{R}$ be a continuous function. By Lemma 1.9, it corresponds to a continuous function $S_{g}(\infty) \rightarrow \mathbb{R}$. Let $\varphi(z)$ be its \tilde{g}-harmonic extension to $\overline{\mathbb{D}}, \Delta \tilde{g}(\varphi)=0$. Let $\phi(w)=\varphi\left(f^{-1}(w)\right)$ be the function φ, written in the coordinates $w=f(z)$. Let Δ be the euclidean Laplacian on \mathbb{D}. Then $\Delta \phi=0$ and hence

$$
\begin{aligned}
\int \varphi d \omega_{y} & =\varphi(y)=\phi(f(y))=\int_{S^{1}} \phi(\theta) d \lambda_{f(y)}(\theta) \\
& =\int_{S^{1}} \varphi \circ f^{-1} d \lambda_{f(y)} \\
& =\int_{S^{1}} \varphi \circ f^{-1}(\theta) \mathbb{P}(f(x), f(y), \theta) d \lambda_{f(x)}(\theta) \\
& =\int_{S^{1}}\left(\varphi \circ f^{-1}\right)\left(k \circ f^{-1}\right) d \lambda_{f(x)}=\int_{S^{1}} \varphi \cdot k d \omega_{x}
\end{aligned}
$$

where $k(\theta):=\mathbb{P}(f(x), f(y), f(\theta))$. Therefore,

$$
k(x, y, \theta):=\frac{d \omega_{y}}{d \omega_{x}}(\theta)=\mathbb{P}(f(x), f(y), f(\theta)) .
$$

1.6. Stability of the geodesic flow

Fix a C^{r} riemannian metric $g_{o} \in \mathcal{A}^{r}(M) \subset \mathcal{R}^{r}(M)$ such that the geodesic flow of g_{o} is Anosov. Let ΣM be the g_{o}-unit tangent bundle $\Sigma M:=\left\{v \in T M \mid g_{o}(v, v)=1\right\}$. Given another riemannian metric $g \in \mathcal{R}^{r}(M)$ and its unit tangent bundle $S_{g} M=\{v \in T M \mid g(v, v)=1\}$, define the map $F: S_{g} M \rightarrow \Sigma M$ by $F(v)=v\left(g_{o}(v, v)\right)^{-\frac{1}{2}}$. Let ψ_{t} be the geodesic flow for g and define $\varphi_{t}:=F \circ \psi_{t} \circ F^{-1}$. Then F is a C^{r} conjugacy between ψ_{t} and ϕ_{t}.

Given a chart $x: U \subseteq M \rightarrow \mathbb{R}^{2}$, consider the chart $(\bar{x}, \bar{y})=(x, d x): T U \rightarrow \mathbb{R}^{2} \times \mathbb{R}^{2}$, with $\bar{y}(v)=\left(y_{1}, y_{2}\right)$ if $v=\sum y_{i} \frac{\partial}{\partial x^{i}}$. In this chart, the geodesic flow for g satisfies

$$
\frac{d x^{k}}{d t}=y_{k} \quad, \quad \frac{d y_{k}}{d t}=-\sum_{i j} \Gamma_{i j}^{k} y_{i} y_{j} \quad, \quad k=1,2
$$

where

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{\ell}\left(\frac{\partial g_{j \ell}}{\partial x^{i}}+\frac{\partial_{\ell i}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{\ell}}\right) g^{\ell k}
$$

are the Christoffel symbols for $g=\sum g_{i j}\left(d x^{i} \otimes d x^{j}\right)$ and $\left[g^{k \ell}\right]=\left[g_{i j}\right]^{-1}$.
Let $\lambda(s)=(p(s), \vec{v}(s)) \in T_{p(s)} M$ be an orbit of ψ_{s}. Then $F(\lambda(s))=\left(p(s), \vec{v}(s)\left(g_{o}\right)^{-\frac{1}{2}}\right)$, $g_{o}:=g_{o}(\vec{v}(s), \vec{v}(s))$, and

$$
\begin{aligned}
\frac{d(F \circ \lambda)}{d s} & =\left(\frac{d p}{d s}, \frac{1}{\sqrt{g_{o}}} \frac{d \vec{v}}{d s}-\frac{\vec{v}}{2\left(g_{o}\right)^{\frac{3}{2}}} \frac{d}{d s} g_{o}\right) \\
& =\left(\vec{v},-\frac{1}{\sqrt{g_{o}}} \sum_{i j} \Gamma_{i j}^{k} v^{i} v^{j} \frac{\partial}{\partial x^{k}}-\frac{\vec{v}}{2\left(g_{o}\right)^{\frac{3}{2}}} \frac{d}{d s} g_{o}\right) \\
\frac{d}{d s} g_{o}(\vec{v}(s), \vec{v}(s)) & =\frac{d}{d s} \sum_{i j} g_{i j}^{o}(p(s)) v^{i}(s) v^{j}(s) \\
& =\sum_{i j k} \frac{\partial g_{i j}^{o}}{\partial x^{k}} v^{k} v^{i} v^{j}-2 \sum_{i j k \ell} g_{i j}^{o} \Gamma_{k \ell}^{i} v^{k} v^{\ell} v^{j} .
\end{aligned}
$$

If $\vec{w}(s)=F(\vec{v}(s))$, then $\vec{v}(s)=\frac{\vec{w}}{\sqrt{g(w, w)}}$ and $\sqrt{g_{o}(\vec{v}, \vec{v})}=\frac{\sqrt{g_{o}(w, w)}}{\sqrt{g(w, w)}}$. We have

$$
\frac{d w}{d s}=\left(\frac{w}{\sqrt{g}},-\frac{1}{\sqrt{g} \sqrt{g_{o}}} \sum_{i j} \Gamma_{i j}^{k} w^{i} w^{j} \frac{\partial}{\partial x^{k}}-\frac{\vec{w}}{2 \sqrt{g}\left(g_{o}\right)^{\frac{3}{2}}} \sum_{i j k}\left(\frac{\partial g_{i j}^{o}}{\partial x_{k}}-2 \sum_{\ell} g_{\ell k}^{o} \Gamma_{i j}^{k}\right) w^{i} w^{j} w^{k}\right)
$$

This is the vectorfield of ψ_{s}, denote it by $X(g)$. Let $\mathfrak{X}^{r-1}(\Sigma M)$ be the Banach space of C^{r-1} vectorfields on ΣM with the C^{r} norm. The formula above proves the following lemma.

Lemma 1.12. The map $\mathcal{R}^{r}(M) \rightarrow \mathfrak{X}^{r-1}(\Sigma M)$ is C^{∞}.

We will need the following version of the structural stability theorem:

Proposition 1.13 [9].

Let $X \in \mathfrak{X}^{r-1}(\Sigma M)$ be an Anosov flow, then there exists a neighborhood $\mathcal{V} \subset \mathfrak{X}^{r-1}(\Sigma M)$, $0<\beta<1$ and C^{r-2} maps $\mathcal{V} \rightarrow C_{\phi}^{\beta}(\Sigma M, \Sigma M): Y \mapsto u_{Y}$ and $\mathcal{V} \rightarrow C_{\phi}^{\beta}\left(\Sigma M,\left[\frac{1}{2},+\infty[): Y \mapsto\right.\right.$ γ_{Y} such that $Y \circ u_{Y}=\gamma_{Y} D_{\phi} u_{Y}$.

Moreover, the corresponding maps $Y \mapsto u_{Y}$ and $Y \mapsto \gamma_{Y}$ for $\beta=0$ are C^{r-1}.
Where $C_{\phi}^{\beta}(\Sigma M, \Sigma M)$ is the space of β-Hölder continuous functions $u: \Sigma M \rightarrow \Sigma M$ such that $\left.\frac{d}{d t} u\left(\phi_{t}(p)\right)\right|_{t=0}$ exists and it is β-Hölder continuous endowed with the norm $\llbracket u \rrbracket_{\beta}=\|u\|_{\beta}+$ $\left\|\frac{d}{d t}\left(u \circ \phi_{t}\right)\right\|_{\beta}$ where $\left\|\|_{\beta}\right.$ is the β-Hölder norm for a fixed C^{r} riemannian metric and $C_{\phi}^{0}(\Sigma M, \Sigma M)$ is the space of continuous functions $u: \Sigma M \rightarrow \Sigma M$ such that $\frac{d}{d t}\left(u \circ \phi_{t}\right)$ exists, with the norm $\llbracket u \rrbracket_{0}=\|u\|_{\text {sup }}+\left\|\frac{d}{d t}\left(u \circ \phi_{t}\right)\right\|_{\text {sup }}$.

Corollary 1.14. For $Y \in \mathcal{V}$ consider the map $\sigma_{Y}: M \rightarrow \mathbb{R}^{+}$defined by $\psi_{Y}\left(u_{Y}(p), 1\right)=$ $u_{Y} \circ \phi\left(p, \sigma_{Y}(p)\right)$, where ψ_{Y} is the flow of Y. Then
(i) The map $\mathcal{U} \rightarrow C^{\beta}\left(\Sigma M, \mathbb{R}^{+}\right): Y \mapsto \sigma_{Y}$ is C^{r-2}.
(ii) In particular the maps $\mathcal{U} \rightarrow C^{\beta}(\Sigma M, \Sigma M): Y \mapsto \psi_{Y}\left(u_{Y}(p), 1\right)$ is C^{r-2}.
(iii) The corresponding maps for $\beta=0$ are C^{r-1}.

Proof. From the equation $\psi(u(p), t)=u(\phi(p, s(t)))$ we get that $\frac{d s}{d t}=\gamma\left(\phi_{s}(p)\right)$. Consider the $\operatorname{map} F: \mathcal{U} \times C^{\beta}\left(\Sigma M, \mathbb{R}^{+}\right) \rightarrow C^{\beta}\left(\Sigma M, \mathbb{R}^{+}\right)$given by $F(Y, \sigma)(p)=\int_{0}^{\sigma} \frac{1}{\gamma_{Y}\left(\phi_{s}(p)\right)} d s$. Then the function σ_{Y} is characterized by $F\left(Y, \sigma_{Y}\right) \equiv 1$. Observe that $\left(\frac{\partial F}{\partial \sigma} \cdot \tau\right)(p)=\left(\gamma_{Y}\left(\phi_{s}(p)\right)\right)^{-1} \tau(p)$ is invertible because $\gamma_{Y}\left(\phi_{s}(p)\right)>0$. Since F is C^{r}, the implicit function theorem implies that $Y \mapsto \sigma_{Y} \in C^{\beta}\left(\Sigma M, \mathbb{R}^{+}\right)$is C^{r-2}. The case $\beta=0$ is similar.

For (ii) use the fact that $\mathfrak{X}^{r}(\Sigma M) \rightarrow C^{\gamma}(\Sigma M \times \mathbb{R}, \Sigma M): Y \mapsto \psi_{Y}$ is C^{r-2} for $0<\gamma<1$ and $\mathfrak{X}^{r}(\Sigma M) \rightarrow C^{0}(\Sigma M \times \mathbb{R}, \Sigma M): Y \mapsto \psi_{Y}$ is C^{r-1}.

1.7. Proof of Theorems 1.1 and 1.3

We will need the following generalization of a theorem by Ahlfors and Bers which will be proved in Section 2.

Theorem 1.15. Given $\mu: \mathbb{D} \rightarrow \mathbb{D}$ measurable with $\|\mu\|_{\infty}<k<1$ there exists a unique homeomorphism of the closed disk $f^{\mu}=f: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}}$ satisfying $f_{\bar{z}}=\mu f_{z}$, with generalized derivatives $f_{z}, f_{\bar{z}}$, such that $f(0)=0, f(1)=1, f\left(S^{1}\right)=S^{1}$. Moreover
(i) The map f is Hölder continuous on $\overline{\mathbb{D}}$ and if $0<r<1$ and $\mu \in C^{n}(|z|<r$, $\mathbb{D})$ then $f \in C^{n+\alpha}(|z|<r, \mathbb{D})$ for some $0<\alpha=\alpha(k)<1$.
(ii) For any $n \geq 1$ and any $0<r<R<1$, the map $\mathcal{L}_{\infty}(\mathbb{D}) \cap C^{n}(|z|<R, \mathbb{C}) \cap\{\|\mu\|<$ $k\} \rightarrow C^{n+\alpha}(r) \cap C^{\alpha}(\mathbb{D}, \mathbb{D})$ given by $\mu \mapsto f^{\mu}$ is C^{∞}.

We now prove Theorems 1.1 and 1.3. Let g be a riemannian metric in a small C^{r} neighborhood of g_{0}. Then the map $F: S_{g} M \rightarrow \Sigma M$ of Section 1.6 is a C^{r} conjugacy between the geodesic flow
of g and the flow of $X(g)$. In particular, F maps strong stable and strong unstable manifolds of the geodesic flows to strong stable and strong unstable manifolds of $X(g)$.

Let $\psi(g)$ be the geodesic flow of g and $\varphi(g):=F \circ \psi(g) \circ F^{-1}$. Let $\pi: T M \rightarrow M$ be the projection. Let $P_{g}: S_{g} M \rightarrow \mathbb{R}$ be $P_{g}(X)=\log K_{g}(\pi \tilde{X}, \pi \psi(g)(\tilde{X}, 1), \tau \tilde{M})$ where \tilde{X} is a lift of X under $p: T \tilde{M} \rightarrow T M$. Let μ_{g} be the equilibrium state of P_{g} for $\psi(g)$. Consider the measure $\nu_{g}:=$ $F^{*}\left(\mu_{g}\right), \nu_{g}(A)=\mu_{g}\left(F^{-1}(A)\right)$. We have for the metric entropies that $h_{\nu_{g}}(\varphi(g))=h_{\mu_{g}}(\psi(g))$. Since the conjugacy F is differentiable, we have that the Lyapunov exponents of v_{g} and μ_{g} coincide $\lambda^{+}\left(\nu_{g}\right)=\lambda^{+}\left(\mu_{g}\right)$.

In particular, the Hausdorff dimension of the conditional measures on local strong manifolds are equal:

$$
H D^{u}\left(v_{g}\right)=H D^{u}\left(\mu_{g}\right)=\frac{h_{\mu_{g}}\left(\psi_{g}\right)}{\lambda^{+}\left(\mu_{g}\right)}=\frac{h_{v_{g}}\left(\varphi_{g}\right)}{\lambda^{+}\left(v_{g}\right)}
$$

For any $\varphi(g)$-invariant measure ν, we have that

$$
h_{\nu}\left(\varphi_{g}\right)+\int_{\Sigma M} p_{g} \circ F^{-1} d \nu=h_{\mu}\left(\psi_{g}\right)+\int_{S_{g} M} P_{g} d \mu
$$

where $v=F^{*}(\mu)$, i.e., $\mu\left(F^{-1}(A)\right):=v(A)$. Therefore, the maximum of these numbers is attained at $\nu=\nu_{g}=F^{*}\left(\mu_{g}\right)$. Hence, ν_{g} is the equilibrium state of $G_{g}=P_{g} \circ F^{-1}$ for φ_{g}. We have that

$$
\begin{aligned}
G_{g}(X) & =P_{g} \circ F^{-1}(X)=P_{g}\left(\frac{X}{\|X\|_{g}}\right) \\
& =\log K_{g}\left(\pi\left(\frac{\tilde{X}}{\|X\|_{g}}\right), \pi \tilde{\psi}_{h}\left(\frac{\tilde{X}}{\|X\|_{g}}, 1\right), \tau_{g} \tilde{X}\right) \\
& =\log K_{g}\left(\pi(\tilde{X}), \pi \tilde{\varphi}_{g}(\tilde{X}, 1), \tau_{g} \tilde{X}\right) \\
& =\log \mathbb{P}\left(f_{g}(\pi \tilde{X}), f_{g}\left(\pi \tilde{\varphi}_{g}(\tilde{X}, 1)\right), f_{g} \tau_{g} \tilde{X}\right)
\end{aligned}
$$

where \mathbb{P} is the euclidean Poisson kernel on \mathbb{D} and we consider $\pi: T \tilde{M} \rightarrow \tilde{M} \approx \mathbb{D}$. In order to apply Proposition 1.13 we need to see that $g \mapsto G_{g} \circ u_{X(g)} \in C^{\beta}(\Sigma M, \mathbb{R})$ is C^{r-2} for some $\beta>0$, where $u_{X(g)}$ is the topological equivalence of Proposition 1.13.

Fix a fundamental domain of $p: \mathbb{D} \approx \tilde{M} \rightarrow M$ and its corresponding lift $q: M \rightarrow \mathbb{D}$. Since the C^{r} or $C^{\alpha}, 0<\alpha<1$ norms of maps are equivalent to sums of C^{r} or C^{α} norms of local restrictions of the maps, we do not bother with the discontinuities of this lift q. We have that

$$
\begin{equation*}
G_{g} \circ u_{X(g)}(V)=\log \mathbb{P}\left(f_{g} \pi q u_{g}(V), f_{g} \pi \tilde{\varphi}_{g}\left(q u_{g}(V), 1\right), f_{g} \tau_{g} q u_{g}(V)\right) \tag{1.16}
\end{equation*}
$$

By the structural stability theorem, the \tilde{g}_{o}-geodesic of $q(V)$ and the \tilde{g}-geodesic of $q\left(u_{g}(V)\right)$ remain at bounded distance of each other. In particular, their limit on $\overline{\mathbb{D}}$ as $t \rightarrow+\infty$ is the same:

$$
\Theta(V):=\tau_{g} q u_{g}(V)=\tau_{g_{o}} q(V) \quad \text { for all } g \text { near } g_{o}
$$

By Lemma 1.9 (ii), the map $\Theta: \Sigma M \rightarrow S^{1}$ is Hölder continuous. By Theorem 1.15 , for some $0<\alpha<1$, the map $g \mapsto f_{g} \in C^{\alpha}\left(S^{1}, S^{1}\right)$ is C^{∞}. Therefore, for some $0<\beta<1$ the map $g \mapsto f_{g} \circ \Theta \in C^{\beta}\left(S^{1}, S^{1}\right)$ is C^{∞}.

By Proposition 1.13 and Lemma 1.12, for some $0<\gamma<1$, the map $g \mapsto u_{g} \in C^{\gamma}(\Sigma M, \Sigma M)$ is C^{r-2}. The maps $\pi: T \tilde{M} \rightarrow T \tilde{M}$ and $q: M \rightarrow \mathbb{D}$ are C^{r} and by Theorem 1.15 and Lemma 1.8, the map $g \mapsto f_{g} \in C^{r-1+\alpha}(|z|<R, \mathbb{D})$ is C^{∞} for some $0<R<1$ such that

$$
\left\{w \mid \tilde{d}_{g}(w, q(M)) \leq 4, \text { for some } g \in \mathcal{V}\right\} \subseteq[|z|<R]
$$

where \mathcal{V} is a neighborhood of g_{o} and \tilde{d}_{g} is the \tilde{g}-distance in $\tilde{M} \approx \mathbb{D}$. Therefore, the map $g \mapsto$ $f_{g} \circ \pi \circ q \circ u_{g} \in C^{\delta}(\Sigma M, \mathbb{D})$ is C^{r-2} for some $0<\delta<1$. Observe that we used here the derivatives of f_{g}. For $\delta=0$, this map is C^{r-1}.

By Corollary 1.14 , the map $g \mapsto \tilde{\psi}_{g}\left(q u_{g}(\cdot), 1\right)=q \circ \varphi_{g}\left(u_{g}(\cdot), 1\right) \in C^{\beta}(\Sigma M, \mathbb{D})$ is C^{r-2} for some $0<\beta<1$ and it is C^{r-1} for $\beta=0$. Since $g \mapsto f_{g} \in C^{r-1+\alpha}(|z|<R, \mathbb{D})$ is C^{∞}, we have that the second component of (1.16): $g \mapsto f_{g} \circ \pi \circ q \circ \varphi_{g}\left(u_{g}(\cdot), 1\right) \in C^{\delta}(\Sigma M, \mathbb{D})$ is C^{r-2} for some $0<\delta<1$ and it is C^{r-1} for $\delta=0$.

Since \mathbb{P} is C^{∞}, from Equation (1.16) we get that the map $\mathcal{A}^{r}(M) \supseteq \mathcal{U} \ni g \mapsto G_{g} \circ u_{X(g)} \in$ $C^{\alpha}(\Sigma M, \mathbb{R})$ is C^{r-2} for some $0<\alpha<1$ and it is C^{r-1} for $\alpha=0$. Applying Theorem 1.6, we have that $g \mapsto h\left(\nu_{g}\right)=h\left(\mu_{g}\right)$ is $C^{r-2}, g \mapsto \lambda^{+}\left(\nu_{g}\right)=\lambda^{+}\left(\mu_{g}\right)$ is C^{r-3} and also that $g \mapsto P\left(\varphi_{g}\right)$ is C^{r-1}, where $P\left(\varphi_{g}\right)$ is the pressure of G_{g} for ψ_{g}.

2. Regularity of quasiconformal mappings

Our aim here is to prove (cf. Theorem 1.15) that if $f^{\mu}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is a μ-quasiconformal map normalized by $f(0)=0, f(1)=1, f(\infty)=\infty$, then the map $\mu \mapsto f^{\mu}$ is C^{∞}; where μ varies in the space of C^{k} maps and f^{μ} in the space of $C^{k+\alpha}$ maps. We obtain similar results for solutions of non-homogeneous Beltrami equations (cf. Corollary 2.38).

Bers [5] proved that f^{μ} is $C^{k+1+\alpha}$ if μ is $C^{k+\alpha}$. Ahlfors and Bers [2] proved that the map $\mu \mapsto f^{\mu}$ is C^{1} when μ is in \mathcal{L}_{∞} and f^{μ} is Hölder continuous. In order to get the second derivative, we are forced to deal with derivatives of non-homogeneous Beltrami equations.

The proof that the map $\mu \mapsto f^{\mu}$ is C^{∞} relies in the fact that its derivative satisfies a nonhomogeneous Beltrami equation and that the derivatives of such equations can be expressed again in terms of non-homogeneous Beltrami equations. In fact, if $f_{\bar{z}}^{\mu}=\mu f_{z}^{\mu}$, the derivative $\frac{d}{d \mu} f^{\mu} \cdot h=\omega$ satisfies [2] $\omega_{\bar{z}}=\mu \omega_{z}+h f_{z}$. Consider the map $F(\mu, \sigma)=\omega^{\mu, \sigma}$, where $\omega=\omega^{\mu, \sigma}$ satisfies $\omega_{\bar{z}}=\mu \omega_{z}+\sigma$. Since F is linear on σ we will have that

$$
\frac{\partial F}{\partial \sigma} \cdot h=F(\mu, h)
$$

A formal computation shows that the derivative $\lambda=\frac{\partial F}{\partial \mu} \cdot h$ should satisfy $\lambda_{\bar{z}}=\mu \lambda_{z}+h \omega_{z}$. So that

$$
\frac{\partial F}{\partial \mu} \cdot h=F(\mu, h \cdot F(\mu, \sigma))
$$

We will prove that F is C^{1}. Then a recursive argument will give that F is C^{∞} and then $\mu \mapsto f^{\mu}$ is C^{∞}.

2.1. Preliminaries

Given a C^{1} function $f(x, y)$ defined on a region $\Omega \subseteq \mathbb{R}^{2}$ with values on \mathbb{C}, define the derivatives

$$
\begin{equation*}
f_{z}:=\frac{1}{2}\left(f_{x}-i f_{y}\right) \quad, \quad f_{\bar{z}}:=\frac{1}{2}\left(f_{x}+i f_{y}\right) \tag{2.1}
\end{equation*}
$$

If $f: \Omega \rightarrow \mathbb{C}$ is locally integrable, then we say that f_{z} and $f_{\overline{\bar{z}}}$ are the generalized derivatives of f if they are locally integrable and satisfy

$$
\begin{align*}
& \iint_{\Omega} f_{z} \varphi d x d y=-\iint_{\Omega} f \varphi_{z} d x d y \\
& \iint_{\Omega} f_{\bar{z}} \varphi d x d y=-\iint_{\Omega} f \varphi_{\bar{z}} d x d y \tag{2.2}
\end{align*}
$$

for all $\varphi \in C^{1}$ with compact support in Ω. The following lemma is well known:
Lemma 2.3. If $f_{\bar{z}} \equiv 0$, then f is holomorphic.
More precisely, there exists a holomorphic function which is almost everywhere equal to f. Define the following operators

$$
\begin{aligned}
(P h)(w) & =-\frac{1}{\pi} \iint_{\mathbb{C}} h(z)\left[\frac{1}{z-w}-\frac{1}{z}\right] d x d y, z=x+i y \\
(H h)(w) & =-\frac{1}{\pi} \iint_{\mathbb{C}} \frac{h(z)-h(w)}{(z-w)^{2}} d x d y, \quad z=x+i y \\
& =-\frac{1}{\pi} \lim _{\epsilon \rightarrow 0} \iint_{|z|>\epsilon} \frac{h(z)-h(w)}{(z-w)^{2}} d x d y
\end{aligned}
$$

Lemma 2.4. Suppose that $g \in \mathcal{L}_{p}(\mathbb{C}), p>2$. Then $P g$ exists everywhere as an absolutely convergent integral and $H g$ exists almost everywhere as a Cauchy principal limit. The following relations hold:

$$
\begin{align*}
(P g)_{\bar{z}} & =g \quad, \quad(P g)_{z}=H g \tag{2.4.1}\\
\left|P g\left(z_{1}\right)-P g\left(z_{2}\right)\right| & \leq K_{p}\|g\|_{p}\left|z_{1}-z_{2}\right|^{1-\frac{2}{p}} \tag{2.4.2}\\
\|H g\|_{g} & \leq C_{p}\|g\|_{p} \tag{2.4.3}
\end{align*}
$$

Actually, (2.4.3) holds for $p>1$ and for $p=2$ and it can be replaced by

$$
\begin{align*}
\|H g\|_{p} & =\|g\|_{2} \tag{2.4.4}\\
\lim _{p \rightarrow 2} C_{p} & =1 \tag{2.4.5}\\
\text { Write } \partial g & =g_{z}, \bar{\partial} g=g_{\bar{z}} ; \text { then the operators } \partial, \bar{\partial}, \text { and } H \text { commute. } . \tag{2.4.6}
\end{align*}
$$

The relation (2.4.3) is a deep result called Calderon-Zygmund's inequality. The proof of this lemma can be found in [1].

We now see the behavior of the operator H on small discs. For $0<R<1$, define the operator

$$
\begin{aligned}
H_{R} h(w) & =-\frac{1}{\pi} \iint_{|z|<R} \frac{h(z)-h(w)}{(z-w)^{2}} d x d y \quad, \quad z=x+i y \\
& =-\frac{1}{\pi} \lim _{\epsilon \rightarrow 0} \iint_{\epsilon<|x|<R} \frac{h(z)-h(w)}{(z-w)^{2}} d x d y \\
P_{R} h(w) & =-\frac{1}{\pi} \iint_{|z|<R} h(z)\left[\frac{1}{z-w}-\frac{1}{z}\right] d x d y
\end{aligned}
$$

Define the norm

$$
\|h\|_{R, p}=\left(\iint_{|z|<R}|h(z)|^{p} d x d y\right)^{\frac{1}{p}} .
$$

Let $C^{\alpha}\left(D_{R}, \mathbb{C}\right)=C^{\alpha}(R)$ be a Banach space of α-Hölder continuous functions on the disc $D_{R}:=\{z \in \mathbb{C}| | z \mid<R\}$, provided with the norm

$$
\begin{aligned}
{[[h]]_{R, p} } & :=\|h\|_{R, \infty}+[h]_{R, \alpha} \\
\|h\|_{R, \infty} & :=\sup _{|z|<R}|h(z)| \\
{[h]_{R, \alpha} } & :=\sup _{|z-w|<1} \frac{|h(z)-h(w)|}{|z-w|^{\alpha}} .
\end{aligned}
$$

Observe that

$$
[[g \cdot h]]_{R, \alpha} \leq 2[[g]]_{R, \alpha}[[h]]_{R, \alpha} .
$$

For $R>0, p>2, n \geq 0$ define

$$
\begin{aligned}
W^{n, p}(R, 0) & :=\left\{h: \mathbb{C} \rightarrow \mathbb{C} \mid h \in C^{n-1}(\mathbb{C}, \mathbb{C}),\left\|D^{n} h\right\| \in \mathcal{L}_{p}\left(D_{R}\right)\right. \text { and } \\
h(z) & =0 \text { for }|z|>R\} \\
W^{n, p}(R) & :=\left\{h: D_{R} \rightarrow \mathbb{C} \mid h \in C^{n-1}\left(D_{R}, \mathbb{C}\right),\left\|D^{n} h\right\| \in \mathcal{L}_{p}\left(D_{R}\right)\right\} \\
\|h\|_{W^{n, p}(R)} & :=\|h\|_{C^{n-1}(R)}+\left\|D^{n} h\right\|_{R, p} \\
\|h\|_{C^{n-1}(R)} & :=\sum_{k=0}^{n-1}\left\|D^{k} h\right\|_{R, \infty} \\
\left\|D^{k} h\right\|_{R, \infty} & :=\sum_{i+j=k}\left\|\partial^{i} \bar{\partial}^{j} h\right\|_{R, \infty}
\end{aligned}
$$

On both $W^{n, p}(R, 0)$ and $W^{n, p}(R)$ consider the norm $\left\|\|_{W^{n, p}(R)}\right.$. Observe that for $0<R<1$, we have

$$
[[h]]_{R, \alpha} \leq\|h\|_{R, \infty}+\|D h\|_{R, \infty}=\|h\|_{R, \infty}+\|\partial h\|_{R, \infty}+\|\bar{\partial} h\|_{R, \infty}
$$

Lemma 2.5.

(a) For all $0<\alpha<1$ there exists $C(\alpha)>0$ such that

$$
\left[\left[H_{R} h\right]\right]_{R, \alpha} \leq C(\alpha)[[h]]_{R, \alpha} R^{\alpha} \text { for all } 0<R<1
$$

Moreover, if $h \in C^{\alpha}\left(D_{R}, \mathbb{C}\right)$, then $P_{R} h$ is $C^{1+\alpha}$ and

$$
\left(P_{R} h\right)_{\bar{z}}=h \quad, \quad\left(P_{R} h\right)_{z}=H h \text { on } 0<R<1
$$

(b) For all $0<\alpha<1$ there exists $D(\alpha)>0$ such that

$$
\left[\left[P_{R} h\right]\right]_{R, \alpha} \leq D(\alpha)[[h]]_{R, \alpha} R^{1-\alpha}
$$

(c) For all $p>2$ there exists $A(p)>1$ such that for all $0<R<1$ and $h \in W^{n, p}(R, 0)$,

$$
\begin{aligned}
\left\|H_{R} h\right\|_{C^{n-1}(R)} & \leq A(p) R^{1-\frac{2}{p}}\|h\|_{W^{n, p}(R)} \\
\left\|D^{n} H_{R} h\right\|_{R, p} & \leq C_{p}\left\|D^{n} h\right\|_{R, p}
\end{aligned}
$$

In particular, the operator $H_{R}: W^{n, p}(R, 0) \rightarrow W^{n, p}(R)$ is continuous and has norm $\left\|H_{R}\right\|_{W^{n, p}(R)} \leq A(p)$.
(d) For all $p>2$ there exists $B(p, R)>0$ such that for $h \in W^{n, p}(R, 0)$

$$
\left\|P_{R} h\right\|_{W^{n+1, p}(R)} \leq B(p, R)\|h\|_{W^{n, p}(R)}
$$

in particular, the operator $P_{R}: W^{n, p}(R, 0) \rightarrow W^{n+1, p}(R)$ is continuous.
The proof of part (a) of this lemma can be found in [5].
Proof. (b) Let $p>2$ be such that $\alpha=1-\frac{2}{p}$. By Lemma 2.4 we have that

$$
\begin{aligned}
{\left[P_{R} h\right]_{R, \alpha} } & \leq K_{p}\|h\|_{R, p} \leq K_{p}\|h\|_{R, \infty}\|1\|_{R, p} \\
& \leq K_{p}[[h]]_{R, \alpha} \pi^{\frac{1}{p}} R^{\frac{2}{p}} \\
\left\|P_{R} h\right\|_{R, \infty} & \leq\left|P_{R} h(0)\right|+\left[P_{R} h\right]_{R, \alpha} R^{\alpha} \\
& \leq K_{p}[[h]]_{R, \alpha} \pi^{\frac{1}{p}} R^{\frac{2}{p}} R^{\alpha}
\end{aligned}
$$

because $P_{R} h(0)=0$. Now observe that $\frac{2}{p}=1-\alpha$ and $R^{\alpha}<1$ to get (b).
(c) Given $0 \leq k<n$, let $\delta^{k} h$ be a k th partial derivative of $h, \delta^{k} h=\partial^{i} \bar{\partial}^{j} h, i+j=k$. Then

$$
\begin{equation*}
\delta^{k} h=P\left(\delta^{k} h_{\bar{z}}\right)+F \tag{2.6}
\end{equation*}
$$

where $F: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic. Since $\delta^{k} h \in \mathcal{L}_{p}(\mathbb{C})$ and by Lemma 2.4. (2.4.2), $P\left(\delta^{k} h_{\bar{z}}\right)$ is $\mathcal{O}\left(|z|^{2}\right)$ when $|z| \rightarrow \infty$, then F is constant. In particular, for $\alpha=1-\frac{2}{p}$,

$$
\begin{aligned}
{\left[\delta^{k} h\right]_{R, \alpha} } & =\left[P\left(\delta^{k} h_{\bar{z}}\right)\right]_{R, \alpha} \leq K_{p}\left\|\delta^{k} h_{\bar{z}}\right\|_{p}=K_{p}\left\|\delta^{k} h_{\bar{z}}\right\|_{R, p} \\
{\left[\left[\delta^{k} h\right]\right]_{R, \alpha} } & \leq\left\|\delta^{k} h\right\|_{R, \infty}+K_{p}\left\|\delta^{k} h_{\bar{z}}\right\|_{R, p}
\end{aligned}
$$

By Lemma 2.4. (2.4.6), $\delta^{k} H h=H \delta^{k} h$ and

$$
\begin{aligned}
\left\|\delta^{k} H h\right\|_{R, \infty} & =\left\|H_{R} \delta^{k} h\right\|_{R, \infty} \leq\left[\left[H_{R} \delta^{k} h\right]\right]_{R, \alpha} \\
& \leq C(\alpha) R^{\alpha}\left[\left[\delta^{k} h\right]\right]_{R, \alpha} \\
& \leq C(\alpha) R^{\alpha}\left(\left\|\delta^{k} h\right\|_{R, \infty}+\left\|\partial \delta^{k} h\right\|_{R, \infty}+\left\|\bar{\partial} \delta^{k} h\right\|_{R, \infty}\right) \text { if } k \leq n-2, \\
& \leq C(\alpha) R^{\alpha}\left(\left\|\delta^{n-1} h\right\|_{R, \infty}+K_{p}\left\|\delta^{n-1} h_{\bar{z}}\right\|_{R, p}\right) \text { if } k=n-1 .
\end{aligned}
$$

Adding over all k th partial derivatives, we get

$$
\|H h\|_{C^{n-1}(R)} \leq C(\alpha)\left(3+K_{p}\right) R^{\alpha}\|h\|_{W^{n, p}(R)}
$$

For $k=n$, we have that

$$
\begin{aligned}
\left\|\delta^{n} H_{R} h\right\|_{R, p} & =\left\|H_{R} \delta^{n} h\right\|_{R, p} \leq C_{p}\left\|\delta^{n} h\right\|_{R, p} \\
\left\|D^{n} H_{R} h\right\|_{R, p} & \leq C_{p}\left\|D^{n} h\right\|_{R, p} \\
\left\|H_{R} h\right\|_{W^{n, p}(R)} & \leq\left(C_{p}+C(\alpha)\left(K_{p}+3\right) R^{\alpha}\right)\|h\|_{W^{n, p}(R)}
\end{aligned}
$$

(d) Let $\delta=\partial^{i} \bar{\partial}^{j}$, then

$$
\begin{aligned}
\partial^{i} \bar{\partial}^{j} P_{R} h & =\partial^{i} \bar{\partial}^{j-1} h & & \text { if } j \geq 1, \\
& =\partial^{i-1} \bar{\partial}^{j} H h & & \text { if } i \geq 1 .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|P_{R} h\right\|_{W^{n+1, p}(R)} & \leq \max \left\{\|h\|_{W^{n, p}(R)},\|H h\|_{W^{n, p}(R)},\left\|P_{R} h\right\|_{R, p},\left\|P_{R} h\right\|_{R, \infty}\right\} \\
& \leq B(p, R)\|h\|_{W^{n, p}(R)}
\end{aligned}
$$

for $B(p, R):=\sum\left\{1, A(p), K_{p} \pi^{\frac{1}{p}} R, K_{p} R^{1-\frac{2}{p}}, \pi^{\frac{1}{p}} R^{\frac{2}{p}}\right\}$.
For $\omega: \mathbb{C} \rightarrow \mathbb{C}$ and $p>2$, let $\alpha=1-\frac{2}{p}$ and

$$
\|\omega\|_{B_{p}}=\sup _{z_{1} \neq z_{2}} \frac{\left|\omega\left(z_{1}\right)-\omega\left(z_{2}\right)\right|}{\left|z_{1}-z_{2}\right|^{\alpha}}+\left(\iint_{\mathbb{C}}\left|\omega_{z}\right|^{p}\right)^{\frac{1}{p}}+\left(\iint_{\mathbb{C}}\left|\omega_{\bar{z}}\right|^{p}\right)^{\frac{1}{p}}
$$

and define B_{p} as the space of maps $\omega: \mathbb{C} \rightarrow \mathbb{C}$ with $\omega(0)=0$ and $\|\omega\|_{B_{p}}<\infty$, endowed with the norm $\left\|\|_{B_{p}}\right.$.

Lemma 2.7. Given $\mu \in \mathcal{L}_{\infty}(\mathbb{C}),\|\mu\|_{\infty}<k<1, \sigma \in \mathcal{L}_{p}(\mathbb{C})$ with $k C_{p}<1$. Then there exists a unique solution $\omega^{\mu, \sigma}$ of $\omega_{\bar{z}}=\mu \omega_{z}+\sigma$ with $\omega(0)=0$ and $\omega_{z} \in \mathcal{L}_{p}(\mathbb{C})$. Moreover,
(i) There exists $K=K(k, p)$ such that $\|\omega\|_{B_{p}} \leq K(k, p)\|\sigma\|_{\mathcal{L}_{p}}$.
(ii) If $\mu_{n} \rightarrow \mu$ almost everywhere, $\left\|\mu_{n}\right\|_{\infty}<k$ and $\sigma_{n} \rightarrow \sigma$ in \mathcal{L}_{p}, then $\omega^{\mu_{n}, \sigma_{n}} \rightarrow \omega^{\mu, \sigma}$ in B_{p}.
(iii) The unique solution of $\omega_{\bar{z}}=\mu \omega_{z}+\sigma$ such that $\omega(0)=a \in \mathbb{C}$ and $\omega_{z} \in \mathcal{L}_{p}$ is $\omega(z)=$ $a+\omega^{\mu, \sigma}(z)$.

The proof of all of this lemma except item (iii) can be found in [2]. Uniqueness in item (iii) is proved by substracting two such solutions and obtaining a solution of the homogeneous problem which is zero by (i).

Theorem 2.8 (Ahlfors-Bers) [2] .

Given $\mu: \mathbb{C} \rightarrow \mathbb{C}$ measurable with $\|\mu\|_{\infty}<k<1$ and $p>2$ with $k C_{p}<1$. Then there exists a unique homeomorphism $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $f_{\bar{z}}=\mu f_{z}, f(0)=0, f(1)=1, f(\infty)=\infty$. Moreover,
(i) f is $\alpha=1-\frac{2}{p}$ Hölder continuous on $S^{2}=\mathbb{C} \cup\{\infty\}$.
(ii) f_{z} is locally of class \mathcal{L}_{p}.
(iii) $f_{z} \neq 0$ almost everywhere.
(iv) f^{-1} is $\alpha=1-\frac{2}{p}$ Hölder continuous and has generalized derivatives which are locally of class \mathcal{L}_{p}.
(v) $\left(f^{-1}\right)_{z}$ and $\left(f^{-1}\right)_{\bar{z}}$ are determined by the classical formulas.
(vi) f and f^{-1} transform measurable sets into measurable sets.
(vii) Integrals are transformed according to the classical rule.
(viii) If $\varphi_{\bar{z}}=\mu \varphi_{z}$ on a region $\Omega \subseteq \mathbb{C}$, then $\varphi \circ f^{-1}$ is holomorphic on $f(\Omega)$.

The solution f of Theorem 2.8 will be denoted by f^{μ} through the rest of the paper.

Lemma 2.9 [2].

Let $f=f^{\mu}, \Omega \subseteq \mathbb{C}$ bounded and suppose that $h_{z}, h_{\bar{z}} \in \mathcal{L}_{q}(f(\Omega)), q>2$. Then $h \circ f$ has generalized derivatives given by

$$
\begin{aligned}
(h \circ f)_{z} & =\left(h_{z} \circ f\right) f_{z}+\left(h_{\bar{z}} \circ f\right) \bar{f}_{z} \\
(h \circ f)_{\bar{z}} & =\left(h_{z} \circ f\right) f_{\bar{z}}+\left(h_{\bar{z}} \circ f\right) \bar{f}_{\bar{z}}
\end{aligned}
$$

and

$$
\left\|(h \circ f)_{z}\right\|_{r} \leq M\left(\left\|h_{z}\right\|_{q}+\left\|h_{\bar{z}}\right\|_{q}\right), \quad r=\frac{p q}{p+q-2},
$$

where the norms are over the corresponding bounded regions $\Omega, f(\Omega)$ and M is independent of h.

Corollary 2.10.

Let $f=f^{\mu}$ and suppose that $h_{\bar{z}}=v h_{\bar{z}}$, then
(i) $\left(f^{-1}\right)_{\bar{z}}=\lambda\left(f^{-1}\right)_{z}$ with $\lambda=-\left(\frac{f_{z}}{\bar{f}_{\bar{z}}} \mu\right) \circ f^{-1}, \bar{f}_{\bar{z}}=\overline{\left(f_{z}\right)}$.
(ii) If $(h \circ f)_{\bar{z}}=\eta(h \circ f)_{z}$, then $v=\left(\frac{\eta-\mathcal{v}}{1-\eta \bar{\mu}} \frac{f_{z}}{f_{\bar{z}}}\right) \circ f^{-1}$.
(iii) If $\overline{g(z)}=\frac{1}{f(1 / \bar{z})}$, then $g_{\bar{z}}=\lambda g_{z}$, with $\overline{\lambda(z)}=\mu\left(\frac{1}{\bar{z}}\right) \frac{\bar{z}^{2}}{\bar{z}^{2}}$.

Write

$$
\mathbb{D}:=\{z \in \mathbb{C}| | z \mid<1\} \quad, \quad S^{1}:=\{x \in \mathbb{C}| | z \mid=1\} .
$$

Corollary 2.11. If $\overline{\mu(z)}=\mu\left(\frac{1}{\bar{z}}\right) \frac{\bar{z}^{2}}{z^{2}}$, then $F:=f^{\mu}$ restricted to \mathbb{D} is the unique solution of $F_{\bar{z}}=\mu F_{z}$ on \mathbb{D} such that $F(0)=0, F(1)=1$ and $F(\mathbb{D})=\mathbb{D}$. We have that $f=f^{\mu}$ satisfies $\overrightarrow{f(z)}=\frac{1}{f(1 / \sqrt{z})}$. In particular, F is an $\alpha=1-\frac{2}{p}$ Hölder continuous homeomorphism of \mathbb{D}.

Proof. By Corollary 2.10. (iii) and the uniqueness of the solution in Theorem 2.8, we have that $\overline{f\left(\frac{1}{z}\right)}=\frac{1}{f(z)}$ and $f(0)=0$, therefore $f(\mathbb{D}) \subset \mathbb{D}$ and it is a solution for F. If there exists another solution G on \mathbb{D}, then $H=G \circ F^{-1}$ is analytic on \mathbb{D} and $H(0)=0, H(1)=1$. By Schwartz's lemma, $H(z)=\mathrm{e}^{i \theta} z$ for some $\theta \in[0,2 \pi[$. Since $H(1)=1$, then $\theta=0, H(z)=z$ and hence $G=F$.

Given $0<R<\infty$, let $B_{R, p}$ be the Banach space of functions ω : $\mathbb{C} \rightarrow \mathbb{C}$ with $\omega(0)=0$ and finite norm $\left\|\|_{B_{R, p}}\right.$:

$$
\|\omega\|_{B_{R, p}}=\sup _{\left|z_{1}\right|, z_{z} \mid \leq R} \frac{\left|\omega\left(z_{1}\right)-\omega\left(z_{2}\right)\right|}{\left|z_{1}-z_{2}\right|^{1-\frac{2}{p}}}+\left(\iint_{|z| \leq R}\left|\omega_{z}\right|^{p} d x d y\right)^{\frac{1}{p}} .
$$

The following theorems are due to Ahlfors and Bers:
Theorem 2.12 [2]. Suppose that $\|\mu\|_{\infty} \leq k,\|\mu\|_{\infty} \leq k,\|\nu\|_{\infty} \leq k, k C_{p}<1, p>2$. Then for all $R>0$,
(a) $\left\|f^{\mu}-f^{\nu}\right\|_{B_{R, p}} \leq c(R)\|\mu-\nu\|_{\infty}$, with $c(R)$ depending only on R, k, p.
(b) If $\mu_{n} \rightarrow \mu$ almost everywhere, then $\left\|f^{\mu_{n}}-f^{\mu}\right\|_{B_{R, p}} \rightarrow 0$.

Theorem 2.13 [2]. Let $t=\left(t_{1}, \ldots, t_{n}\right)$ and $s=\left(s_{1}, \ldots, s_{n}\right)$ be real vectors in \mathbb{R}^{n}. Suppose that for all t in some open set Δ we have

$$
\mu(s+t)=\mu(t)+\sum_{i=1}^{n} a_{i}(t) s_{i}+|s| \alpha(t, s)
$$

with $\|\mu(t)\|_{\infty} \leq k<1,\|\alpha(t, s)\|_{\infty} \leq c$ and $\alpha(t, s) \rightarrow 0$ almost everywhere as $s \rightarrow 0$. Suppose further that the norms $\left\|a_{i}(t+s)\right\|_{\infty}$ are bounded and that $a_{i}(t+s) \rightarrow a_{i}(t)$ almost everywhere for $s \rightarrow 0$. Then $\omega^{\mu(t)}$ has a development

$$
f^{\mu(s+t)}=f^{\mu(t)}+\sum_{i=1}^{n} \omega_{i}(t) s_{i}+|s| \gamma(t, s)
$$

with $\|\gamma(t, s)\|_{B_{R, p}} \rightarrow 0$ for $s \rightarrow 0$. Where $\omega_{i}(t)$ is the solution of

$$
W_{\bar{z}}=\mu(t) W_{z}+a_{i}(t) f_{z}^{\mu(t)}
$$

such that $W(0)=0, W(1)=0$ and $|W(z)|=\mathcal{O}\left(\left|f^{\mu(t)}\right|^{2}\right)$ as $z \rightarrow \infty$.

2.2. The local non-homogeneous Beltrami equation

From now on the functions μ are assumed to be measurable and with $\|\mu\|_{\infty} \leq k<1$ for some fixed k and p is assumed to be $p>2$ and such that $k C_{p}<1$ unless otherwise stated.

Lemma 2.14. Let $0<R<1$ and $p>2$. Let $\mu, \sigma \in W^{n, p}(R)$ be such that $\mu(z)=\sigma(z)=0$ for all $|z| \geq R$. Let ω be the solution of $\omega_{\bar{z}}=\mu \omega_{z}+\sigma$ such that $\omega(0)=0$ and $\omega_{z} \in \mathcal{L}_{p}(\mathbb{C})$. Suppose that $k:=\|\mu\|_{\infty}<1$ and

$$
\Theta:=\Theta\left(R, n, p,\|\mu\|_{W^{n, p}(R)}, k\right)=k C_{p}+2^{n}\|\mu\|_{W^{n, p}(R)} A(p) R^{1-\frac{2}{p}}<1
$$

with $A(p)$ from Lemma 2.5. Then $\omega \in W^{n+1, p}(R)$ and there exists $D(R, n)=D(R, n, p$, $\left.\|\mu\|_{W^{n, p}(R)}, k\right)>0$ such that

$$
\|\omega\|_{W^{n+1, p}(R)} \leq D(R, n)\|\sigma\|_{W^{n, p}(R)} .
$$

Proof. Let q be a solution of

$$
\begin{equation*}
q=\mu H q+\sigma \tag{2.15}
\end{equation*}
$$

in $\mathcal{L}_{p}(\mathbb{C})$. This is possible because the norm of the operator μH in $\mathcal{L}_{p}(\mathbb{C})$ is $\leq k C_{p}<1$ and hence $(I-\mu H)$ is invertible in $\mathcal{L}_{p}(\mathbb{C})$. Let

$$
\begin{equation*}
\omega=P q=P(I-\mu H)^{-1} \sigma . \tag{2.16}
\end{equation*}
$$

Then we have that $\omega_{z}=H q, \omega_{\bar{z}}=q=\mu H q+\sigma$. Therefore, ω is the unique solution of $\omega_{\bar{z}}=\mu \omega_{z}+\sigma$ with $\omega(0)=0, \omega_{z} \in \mathcal{L}_{p}(\mathbb{C})$ of Lemma 2.7.

Observe that we only need to use P_{R} and H_{R} in (2.16) because $q(z) \equiv 0$ on $|z| \geq R$ by (2.15) and μH sends $W^{n, p}(R, 0)$ into itself.

Now we estimate the norm of the operator $(I-\mu H)^{-1}$ on $W^{n, p}(R, 0)$:

$$
\begin{aligned}
\|\mu H(\sigma)\|_{W^{n, p(R)}} & \leq\|\mu\|_{R, \infty}\left\|D^{n} H(\sigma)\right\|_{R, p}+2^{n}\|\mu\|_{W^{n, p}(R)}\|H \sigma\|_{C^{n-1}(R)} \\
& \leq\|\mu\|_{R, \infty} C_{p}\left\|D^{n} \sigma\right\|_{R, p}+2^{n}\|\mu\|_{W^{n, p}(R)} A(p) R^{1-\frac{2}{p}}\|\sigma\|_{W^{n, p}(R)} \\
& \leq \Theta \sigma \|_{W^{n, p}(R)},
\end{aligned}
$$

where $\Theta:=k C_{p}+2^{n}\|\mu\|_{W^{n, p}(R)} A(p) R^{1-\frac{2}{p}}<1$.

$$
\begin{aligned}
\|\omega\|_{W^{n+1, p}(R)} & =\left\|P_{R}(I-\mu H)^{-1} \sigma\right\|_{W^{n+1, p}(R)} \\
& =\left\|P_{R}\left(\sum_{k=0}^{\infty}(\mu H)^{k}\right) \sigma\right\|_{W^{n+1, p}(R)} \\
& \leq B(p, R)\left(\sum_{k=0}^{\infty} \Theta^{k}\right)\|\sigma\|_{W^{n, p}(R)} \\
& \leq D(R, p)\|\sigma\|_{W^{n, p}(R)}
\end{aligned}
$$

where $D\left(R, n, p,\|\mu\|_{W^{n, p}(R)}\right)=\frac{B(p, R)}{1-\Theta}$.
Lemma 2.17. Let $\mathcal{W}:=W^{n, p}(R, 0) \cap\left[\|\mu\|_{W^{n, p}(R)}<a,\|\mu\|_{\infty}<k<1\right]$ with R small enough such that $\Theta(R, n, p, a, k)<1$, where Θ is from Lemma 2.14. Then the map $\mathcal{W} \times W^{n, p}(R, 0) \rightarrow$ $W^{n+1, p}(R)$, given by $(\mu, \sigma) \mapsto \omega^{\mu, \sigma}$, is continuous.

Proof. Let $(\mu, \sigma),\left(\mu_{o}, \sigma_{o}\right) \in \mathcal{W} \times W^{n, p}(R, 0)$. Let $\omega^{o}=\omega^{\mu_{o}, \sigma_{o}}$ and $\omega=\omega^{\mu, \sigma}$, i.e., $\omega_{\bar{z}}^{o}=$ $\mu \omega_{z}^{o}+\sigma_{o}$ and $\omega_{\bar{z}}=\mu \omega_{z}+\sigma$ in $\mathcal{L}_{p}(\mathbb{C})$. We have that

$$
\left(\omega-\omega^{o}\right)_{\bar{z}}=\mu\left(\omega-\omega^{o}\right)_{z}+\left(\mu-\mu_{o}\right) \omega_{z}^{o}+\left(\sigma-\sigma_{o}\right)
$$

with

$$
\left\|\left(\mu-\mu_{o}\right) \omega_{z}^{o}+\left(\sigma-\sigma_{o}\right)\right\|_{W^{n, p}(R)} \leq 2^{n}\left\|\mu-\mu_{o}\right\|_{W^{n, p}(R)}\left\|\omega_{z}^{o}\right\|_{W^{n, p}(R)}+\left\|\sigma-\sigma_{o}\right\|_{W^{n, p}(R)} .
$$

From Lemma 2.14, we get that

$$
\left\|\omega-\omega^{o}\right\|_{W^{n+1, p}(R)} \leq D(\Theta, k)\left(2^{n}\left\|\mu-\mu_{o}\right\|_{W^{n, p}(R)}\left\|\omega_{z}^{o}\right\|_{W^{n, p}(R)}+\left\|\sigma-\sigma_{o}\right\|_{W^{n, p}(R)}\right) .
$$

On $\mathcal{L}_{\infty}(\mathbb{C}) \cap W^{1, p}(R)$ consider the topology given by $\left\langle\mu_{n}\right\rangle \rightarrow \mu$ if $\mu_{n} \rightarrow \mu$ almost everywhere in \mathbb{C} and $\left\|\mu_{n}-\mu\right\|_{W^{1, p}(R)} \rightarrow 0$.

Corollary 2.19. Given $0<R<1,0<k<1, L>0$ with $k C_{p}<1$, there exists $0<r<$ $r(k, L)<R$ such that the map $\mu \mapsto \omega^{\mu}$:

$$
\mathcal{L}_{\infty}(\mathbb{C}) \cap W^{1, p}(R) \cap\left\{\mu \mid\|\mu\|_{\infty}<k,\|\mu\|_{W^{1, p}(R)}<L\right\} \rightarrow C^{1}(|z|<r, \mathbb{C})
$$

is continuous.
Proof. Let $\left\langle\mu_{n}\right\rangle$ be a sequence converging to μ_{o} in $\mathcal{L}_{\infty}(\mathbb{C}) \cap W^{1, p}(R)$ with $\left\|\mu_{n}\right\|_{\infty}<k$, $\left\|\mu_{n}\right\|_{W^{1, p(R)}}<L$. Let $\omega^{n}:=f^{\mu_{n}}-f^{\mu_{o}}, f^{o}:=f^{\mu_{o}}$. Since $\mu_{n} \rightarrow \mu_{o}$ a.e, then by Theorem 2.8, $\left\|\omega^{n}\right\|_{B_{R, p}} \rightarrow 0$. In particular $\left\|\omega^{n}\right\|_{W^{1, p}(R)} \rightarrow 0$. We have that

$$
\omega_{\bar{z}}^{n}=\mu_{n} \omega_{z}^{n}+\left(\mu_{n}-\mu_{o}\right) f_{z}^{o} .
$$

Let $\lambda: \mathbb{C} \rightarrow[0,1]$ be a C^{∞} function such that $\lambda(z) \equiv 1$ for $|z| \leq r$ and $f(z) \equiv 0$ for $|z| \leq 2 r$. Choose r such that $\Theta(2 r, n=1, p, L, k)<1$ where Θ is from Lemma 2.17 and $0<2 r<R$. We have

$$
\left(\lambda \omega^{n}\right)_{\bar{z}}=\widehat{\mu}_{n}\left(\lambda \omega^{n}\right)_{z}+\left(\lambda \bar{z}-\mu_{n} \lambda_{z}\right) \omega^{n}+\lambda\left(\mu_{n}-\mu_{o}\right) f_{z}^{o}
$$

where $\widehat{\mu}_{n}(z)=\mu_{n}(z)$ for $|z|<2 r$ and $\widehat{\mu}_{n}(z)=0$ for $\|z\| \geq 2 r$. Since the sequence $\left\|\mu_{n}\right\|_{W^{1, p}(2 r)}$ is bounded and $\left\|\omega^{n}\right\|_{W^{1, p}(R)} \rightarrow 0$, then $\left\|\left(\lambda_{\bar{z}}-\mu_{n} \lambda_{z}\right) \omega^{n}\right\|_{W^{1, p}(R)} \rightarrow 0$. Also $\left\|\lambda\left(\mu_{n}-\mu_{o}\right) f_{z}^{o}\right\|_{W^{1, p}(2 r)}$ $\rightarrow 0$. In particular

$$
\left\|\omega^{n}\right\|_{C^{1}\left(D_{r}, \mathbb{C}\right)} \leq\left\|\lambda \omega^{n}\right\|_{C^{1}\left(D_{2 r}, \mathbb{C}\right)} \leq\left\|\lambda \omega^{n}\right\|_{W^{2, p}(2 r)} \rightarrow 0
$$

2.3. Global non-homogeneous Beltrami equations

Lemma 2.21. If $0<R<+\infty$ and $h \in \mathcal{L}_{q}(|z|<R)$ for some $q>2$, then $h \in \mathcal{L}_{p}(|z|<R)$ for all $2<p<q$, and

$$
\|h\|_{R, p} \leq A\|h\|_{R, q}
$$

where $A=A(R, q)=\max \left\{1, \sqrt{\pi}^{1-\frac{2}{q}} R^{1-\frac{2}{q}}\right\}$.
Proof. Let $\alpha=\frac{q}{p}>1$ and $\frac{1}{\beta}+\frac{1}{\alpha}=1$, then

$$
\begin{aligned}
\int_{|z|<R}|h|^{p}=\int_{|z|<R}|h|^{\frac{q}{\alpha}} \cdot 1 & \leq\left[\int_{|z|<R}|h|^{q}\right]^{\frac{1}{\alpha}}\left[\int_{|z|<R} 1\right]^{\frac{1}{\beta}}, \\
\left(\|h\|_{R, p}\right)^{p} & \leq\left(\|h\|_{R, q}\right)^{\frac{q}{\alpha}}\left(\pi R^{2}\right)^{\frac{1}{\beta}} \\
\|h\|_{R, p} & \leq\|h\|_{R, q}\left(\pi R^{2}\right)^{\frac{1}{\beta p}}
\end{aligned}
$$

From this we get the lemma because $\left.\frac{1}{\beta p}=\frac{1}{p}-\frac{1}{q} \in\right] 0, \frac{1}{2}\left(1-\frac{2}{q}\right)[$.
Given $\epsilon>0$ and $q>2$, define

$$
\mathcal{D}_{\epsilon, q}:=\left\{\sigma: \mathbb{C} \rightarrow \mathbb{C} \left\lvert\, \sigma(z) \in \mathcal{L}_{q}\left(|z|<\frac{1}{\epsilon}\right)\right. \text { and } \sigma\left(\frac{1}{z}\right) \in \mathcal{L}_{q}(|z|<\epsilon)\right\}
$$

with the norm

$$
\|\sigma\|_{\mathcal{D}_{\epsilon, q}}:=\left(\iint_{|z|<\frac{1}{\epsilon}}|\sigma(z)|^{q} d x d y\right)^{\frac{1}{q}}+\left(\iint_{|z|<\epsilon}\left|\sigma\left(\frac{1}{z}\right)\right|^{q} d x d y\right)^{\frac{1}{q}}
$$

Lemma 2.22. For all $0<\epsilon<+\infty$ and $q>2$, we have that

$$
\mathcal{D}_{\epsilon, q}=\bigcap_{0<r<\infty} \bigcap_{2<p \leq q} \mathcal{D}_{r, p}
$$

Moreover, given $0<r<\infty$ and $2<p \leq q$, there exists $A=A(p, q, r, \epsilon)>0$ such that

$$
\|h\|_{\mathcal{D}_{r, p}} \leq A\|h\|_{\mathcal{D}_{\epsilon, q}}
$$

for all $h \in \mathcal{D}_{\epsilon, q}$.

Proof. One inclusion is trivial. For the other one, let $r>\epsilon$, then $\left[|z|<\frac{1}{\epsilon}\right] \subset\left[|z|<\frac{1}{r}\right]$ and hence $\sigma \in \mathcal{L}_{q}\left(|z|<\frac{1}{\epsilon}\right) \subseteq \mathcal{L}_{q}\left(|z|<\frac{1}{r}\right)$. We have that

$$
\begin{aligned}
\iint_{\epsilon<|z|<r}\left|\sigma\left(\frac{1}{z}\right)\right|^{q} & =\iint_{\frac{1}{r}<|w|<\frac{1}{\epsilon}} \frac{1}{|w|^{4}}|\sigma(w)|^{q} \leq \frac{1}{\epsilon^{4}} \iint_{\frac{1}{r}<|w|<\frac{1}{\epsilon}}|\sigma(w)|^{q} \\
& \leq \frac{1}{\epsilon^{4}}\|\sigma\|_{\mathcal{D}_{\epsilon, q}}<+\infty \\
\int_{|z|<r}\left|\sigma\left(\frac{1}{z}\right)\right|^{q} & =\int_{|z|<\epsilon}\left|\sigma\left(\frac{1}{z}\right)\right|^{q}+\int_{\epsilon<|z|<r}\left|\sigma\left(\frac{1}{z}\right)\right|^{q}<\left(1+\frac{1}{\epsilon^{4}}\right)\|\sigma\|_{\mathcal{D}_{\epsilon, q}} .
\end{aligned}
$$

Therefore, $\sigma \in \mathcal{D}_{r, q}$ and $\|\sigma\|_{\mathcal{D}_{r, q}} \leq A_{1}\|\sigma\|_{\mathcal{D}_{\epsilon, q}}$. By Lemma 2.21, we have that $\sigma \in \mathcal{D}_{r, p}$ and $\|\sigma\|_{\mathcal{D}_{r, q}} \leq A_{2}(p, q, r, \epsilon)\|\sigma\|_{\mathcal{D}_{\epsilon, q}}$ for all $r>\epsilon$ and all $2<p \leq q$. The case $0<r<\epsilon$ is similar to this case.

Lemma 2.23. Let $\epsilon>0, q>2, \sigma \in \mathcal{D}_{\epsilon, q}$. Then there exists a unique solution of $\Theta_{\bar{z}}=\sigma$, such that Θ is continuous, $\Theta(0)=0, \Theta(1)=0$ and

$$
\lim _{|z| \rightarrow \infty} \frac{\Theta(z)}{|z|^{2}}=0
$$

The solution satisfies
(i) $|\Theta(z)| \leq 2 K_{q}\|\sigma\|_{\mathcal{D}_{\epsilon, q}} \max \left\{|z|^{1-\frac{2}{q}},|z|^{1+\frac{2}{q}}\right\}$, for all $z \in \mathbb{C}$, where K_{q} is from Lemma 2.4. (2.4.2).
(ii) $\Theta \in B_{R, p}$ for all $R>0$ and all $2<p \leq q$.
(iii) $\Theta_{z} \in \mathcal{D}_{r, p}$ for all $2<p<q$ and all $r>0$.
(iv) For all $r>0$ and $2<p<q$ there exists $B=B(r, \epsilon, p, q)>0$, such that $\left\|\Theta_{z}\right\|_{\mathcal{D}_{r, p}}<$ $B\|\sigma\|_{\mathcal{D}_{\epsilon, q}}$.

Proof. Let $a(z)=\sigma(z)$ for $|z|<\frac{1}{\epsilon}$ and $a(z)=0$ for $|z|>\frac{1}{\epsilon}$, and let $b(z)=0$ for $|z|>\epsilon$ and $b(z)=\sigma\left(\frac{1}{z}\right) \frac{z^{2}}{\bar{z}^{2}}$ for $|z|<\epsilon$. Since $\sigma \in \mathcal{D}_{\epsilon, p}$ we have that $a \in \mathcal{L}_{q}(\mathbb{C})$ and $b \in \mathcal{L}_{q}(\mathbb{C})$. Define

$$
\begin{aligned}
\Theta^{a}(z) & :=P a(z)-z P a(1) \\
\Theta^{b}(z) & :=-z^{2} P b\left(\frac{1}{z}\right)+z P b(1) \\
\Theta(z) & :=\Theta^{a}(z)+\Theta^{b}(z)
\end{aligned}
$$

We have that $\Theta_{\bar{z}}^{a}=a, \Theta_{\bar{z}}^{b}=\sigma$ on $|z|>\frac{1}{\epsilon}$ and $\Theta_{\bar{z}}^{b}=0$ on $|z|<\frac{1}{\epsilon}$. Therefore, $\Theta_{\bar{z}}=\sigma$. Also $\Theta(0)=\Theta(1)=0$. Moreover,

$$
\begin{aligned}
|\Theta(z)| & \leq K_{q}\|a\|_{q}\left(|z|^{1-\frac{2}{q}}+|z|\right)+K_{q}\|b\|_{q}|z|^{2}\left|\frac{1}{z}\right|^{1-\frac{2}{q}}+K_{q}\|b\|_{q}|z| \\
& \leq 2 K_{q}\|\sigma\|_{\mathcal{D}_{\epsilon, q}} \max \left\{|z|^{1-\frac{2}{q}},|z|^{1+\frac{2}{q}}\right\}
\end{aligned}
$$

Suppose that φ is another solution. Let $h=\varphi-\Theta$. Then h is analytic on all \mathbb{C} because $h_{\bar{z}}=(\varphi-\Theta)_{\bar{z}}=0$. Also $h(0)=h(1)=0$ and $|h(z)|=\mathcal{O}\left(|z|^{2}\right)$ when $|z| \rightarrow \infty$. Therefore, $h \equiv 0$.

By Lemma 2.21, $\sigma \in \mathcal{D}_{\epsilon, p}$ for all $2<p<q$. Therefore, $a \in \mathcal{L}_{p}(\mathbb{C})$ and $b \in \mathcal{L}_{p}(\mathbb{C})$ for all $2<p<q$. Let $2<p<q$, we have that

$$
\begin{aligned}
\Theta_{z}^{a}(z) & =H a-P a(1) \\
\left\|\Theta_{z}^{a}\right\|_{\frac{1}{\epsilon}, p} & \leq\|H a\|_{p}+|P a(1)|\left(\pi \frac{1}{\epsilon^{2}}\right)^{\frac{1}{p}} \\
& \leq C_{p}\|a\|_{p}+K_{p}\|a\|_{p}\left(\frac{\pi}{\epsilon^{2}}\right)^{\frac{1}{p}} \\
\int_{|z|<\epsilon}\left|H a\left(\frac{1}{z}\right)\right|^{p} & =\int_{|w|>\frac{1}{\epsilon}} \frac{1}{|w|^{4}}|H a(w)|^{p} \leq \epsilon^{4}\left(\|H a\|_{p}\right)^{p} \\
\left\|\Theta_{z}^{a}\left(\frac{1}{z}\right)\right\|_{\epsilon, p} & \leq \epsilon^{\frac{4}{p}} C_{p}\|a\|_{p}+K_{p}\|a\|_{p}\left(\pi \epsilon^{2}\right)^{\frac{1}{p}} \\
\left\|\Theta_{z}^{a}\right\|_{\mathcal{D}_{\epsilon, p}} & \leq\left(1+\epsilon^{\frac{4}{p}}\right)\left(C_{p}+K_{p}\left(\frac{\pi}{\epsilon^{2}}\right)^{\frac{1}{p}}\right)\|a\|_{p}
\end{aligned}
$$

We write $C(p, q, \epsilon)$ for constants depending only on p, q, ϵ.

$$
\begin{aligned}
\Theta_{z}^{b} & =-2 z P b\left(\frac{1}{z}\right)+H b\left(\frac{1}{z}\right)+P b(1) \\
\int_{|z|<\frac{1}{\epsilon}}\left|H b\left(\frac{1}{z}\right)\right|^{p} & =\int_{|w|>\epsilon} \frac{1}{|w|^{4}}|H b(w)|^{p} \leq \frac{1}{\epsilon^{4}}\left(\|H b\|_{p}\right)^{p} \\
\int_{|z|<\frac{1}{\epsilon}}\left|2 z P b\left(\frac{1}{z}\right)\right|^{p} & \leq \int_{|z|<\frac{1}{\epsilon}}\left(2 K_{p}\|b\|_{p}|z|^{\frac{2}{p}}\right)^{p} \leq\left(C_{1}(p, \epsilon)\|b\|_{p}\right)^{p} \\
\left\|\Theta_{z}^{b}\right\|_{\frac{1}{e}, p} & \leq\left(C_{1}(p, \epsilon)+\frac{C_{p}}{\epsilon^{\frac{4}{p}}}+K_{p}\left(\frac{\pi}{\epsilon^{2}}\right)^{\frac{1}{p}}\right)\|b\|_{p} \\
\int_{|z|<\epsilon}|H b(z)|^{p} & \leq\left(C_{p}\|b\|_{p}\right)^{p}
\end{aligned}
$$

Since $\left|2 \frac{1}{z} P b(z)\right| \leq 2 K_{q}\|b\|_{q}|z|^{-\frac{2}{q}}$ and $p<q$, we have

$$
\begin{aligned}
\int_{|z|<\epsilon}\left|2 \frac{1}{z} P b(z)\right|^{p} & \leq\left(2 K_{q}\|b\|_{q}\right)^{p} \int_{|z|<\epsilon}|z|^{-\frac{2 p}{q}}<+\infty \\
\left\|\Theta_{z}^{b}\left(\frac{1}{z}\right)\right\|_{\epsilon, p} & \leq C_{2}(p, q, \epsilon)\|b\|_{q}+C_{p}\|b\|_{p}+\left(\pi \epsilon^{2}\right)^{\frac{1}{p}} K_{p}\|b\|_{p}
\end{aligned}
$$

Therefore, $\left\|\Theta_{z}^{b}\right\|_{\mathcal{D}_{\epsilon, p}}<+\infty$ and hence $\left\|\Theta_{z}\right\|_{\mathcal{D}_{\epsilon, p}}<+\infty$ for all $2<p<q$. Now use Lemma 2.22 to get (iii).

For (iv) observe that $\|\sigma\|_{\mathcal{D}_{\epsilon, q}}=\|a\|_{q}+\|b\|_{q}$ and that $\|a\|_{p} \leq A(\epsilon, q)\|a\|_{q},\|b\|_{p} \leq$ $A(\epsilon, q)\|b\|_{q}$ by Lemma 2.21. Now use the above estimates and Lemma 2.23.

The following notation will be useful for the next proposition: For $\epsilon>0, p>2, F: \mathbb{C} \rightarrow \mathbb{C}$, let

$$
\begin{aligned}
\mathcal{D}(\epsilon, p, F) & :=\left\{\sigma: \mathbb{C} \rightarrow \mathbb{C} \mid\left(\sigma \circ F^{-1}\right) F_{z}^{-1} \in \mathcal{D}_{\epsilon, p}\right\} \\
\|\sigma\|_{\mathcal{D}(\epsilon, p, F)} & :=\left\|\left(\sigma \circ F^{-1}\right) F_{z}^{-1}\right\|_{\mathcal{D}_{\epsilon, p}}
\end{aligned}
$$

Proposition 2.24. If $\mu \in \mathcal{L}_{\infty}(\mathbb{C}),\|\mu\|_{\infty}<k<1, k C_{q}<1, q>2$ and $\left(\sigma \circ\left(f^{\mu}\right)^{-1}\right)\left(f^{\mu}\right)_{z}^{-1}=$ $\left(\frac{\sigma}{f_{z}^{u}}\right) \circ\left(f^{\mu}\right)^{-1} \in \mathcal{D}_{\epsilon, q}$ for some $\epsilon>0$. Then there exists a unique solution of

$$
\omega_{\bar{z}}=\mu \omega_{z}+\sigma
$$

such that ω is continuous, $\omega(0)=0, \omega(1)=0$ and

$$
\lim _{|z| \rightarrow \infty} \frac{\omega(z)}{\left|f^{\mu}(z)\right|^{2}}=0
$$

Moreover,
(i) $\left(\omega_{z} \circ\left(f^{\mu}\right)^{-1}\right)\left(f^{\mu}\right)_{z}^{-1} \in \mathcal{D}_{r, p}$ for all $r>0$ and all $2<p<q$.
(ii) $\omega \in B_{R, p}$ for all $R>0$ and all $2<p \leq \frac{q^{2}}{q-2}$.
(iii) If $\sigma \in B_{R, p}, 2<p \leq q, 0<r<R$ and $\epsilon>0$, then there exists $C(R, r)=C(R, r, \epsilon, p, k)$ such that

$$
\|\omega\|_{B_{r, p}} \leq C(R, r)\left(\|\sigma\|_{\mathcal{D}\left(\epsilon, p, f^{\mu}\right)}+\|\sigma\|_{R, p}\right) .
$$

(iv) For all $r>0$ and $2<p<q$, there exists $A(r, p)=A(r, \epsilon, p, q)>0$ such that

$$
\left\|\omega_{z}\right\|_{\mathcal{D}\left(r, p, f^{\mu}\right)} \leq A(r, p)\|\sigma\|_{\mathcal{D}\left(\epsilon, q, f^{\mu}\right)} .
$$

(v) If $\mu, \sigma \in W^{n, p}(R), 2<p \leq q, 0<r<R$ and $\epsilon>0$, then there exists $D(R, r)=$ $D\left(R, r, n, p, \epsilon,\|\mu\|_{W^{n, p}(R)}\right)$ such that

$$
\|\omega\|_{W^{n+1, p}(r)} \leq D(R, r)\left(\|\sigma\|_{\mathcal{D}\left(\epsilon, p, f^{\mu}\right)}+\|\sigma\|_{W^{n, p}(R)}\right) .
$$

Proof. We first prove the uniqueness of the solution. Suppose that u is another solution. Then $v:=\omega-u$ satisfies $v_{\bar{z}}=\mu v_{z}, v(0)=v(1)=0$ and $|v(z)|=\mathcal{O}\left(\left|f^{\mu}(z)\right|^{2}\right)$ when $|z| \rightarrow \infty$. Let $h:=v \circ\left(f^{\mu}\right)^{-1}$. Then $h(0)=h(1)=0$, by Theorem 2.8 (viii) we have that h is holomorphic on all \mathbb{C} and

$$
\lim _{z \rightarrow \infty} \frac{|h(z)|}{|z|^{2}}=\lim _{z \rightarrow \infty} \frac{\left|v\left(f^{-1}(z)\right)\right|}{|z|^{2}}=\lim _{y \rightarrow \infty} \frac{|v(y)|}{|f(y)|^{2}}=0
$$

where $f=f^{\mu}$. Therefore, $h \equiv 0$.
For the existence, write $\omega=\Theta \circ f^{\mu}$. Using the formulas of Lemma 2.9, and that

$$
\bar{f}_{z}=\overline{\left(f_{\bar{z}}\right)}=\bar{\mu} \overline{\left(f_{z}\right)}=\bar{\mu} \bar{f}_{\bar{z}}
$$

we see that ω is a solution of the problem if and only if, for $f=f^{\mu}$, we have

$$
\begin{equation*}
\Theta_{\bar{z}}=\left(\frac{1}{1-|\mu|^{2}} \frac{\sigma}{\bar{f}_{\bar{z}}}\right) \circ f^{-1}=: \rho, \tag{2.25}
\end{equation*}
$$

$\Theta(0)=0, \Theta(1)=0$ and $\lim _{z \rightarrow \infty} \frac{\Theta(z)}{|z|^{2}}=0$. Since $\bar{f}_{\bar{z}}=\overline{f_{z}}$, we have by hypothesis that $\rho \in \mathcal{D}_{\epsilon, q}$. By Lemma 2.23 , such Θ exists and is unique.

For (i) observe that, for $f=f^{\mu}$,

$$
\begin{align*}
\omega_{z} & =\left(\Theta_{z} \circ f\right) f_{z}+\left(\Theta_{\bar{z}} \circ f\right) \bar{f}_{z} \\
\omega_{z} & =\left(\Theta_{z} \circ f\right) f_{z}+\left(\frac{1}{1-|\mu|^{2}} \frac{\sigma}{\bar{f}_{\overline{\bar{z}}}}\right) \bar{\mu} \bar{f}_{\bar{z}} \\
\left(\omega_{z} \circ f^{-1}\right) f_{z}^{-1} & =\left(\frac{\omega_{z}}{f_{z}}\right) \circ f^{-1}=\Theta_{z}+\left(\frac{\bar{\mu}}{1-|\mu|^{2}} \frac{\sigma}{f_{z}}\right) \circ f^{-1} . \tag{2.26}
\end{align*}
$$

By the hypothesis on σ and μ and by Lemma 2.22, we have that ($\omega_{z} \circ f^{-1}$) $f_{z}^{-1} \in \mathcal{D}_{r, p}$ if and only if $\Theta_{z} \in \mathcal{D}_{r, p}$; but this is true by Lemma 2.23.
(iv) From (2.25), (2.26), and Lemmas 2.23 and 2.22, we get that

$$
\left\|\omega_{z}\right\|_{\mathcal{D}\left(r, p, f^{\mu}\right)} \leq\left(\frac{B}{1-k^{2}}+\frac{A k}{1-k^{2}}\right)\|\sigma\|_{\mathcal{D}_{\left(\epsilon, q, f^{\mu}\right)}} .
$$

This proves (iv).
For (ii) we know that $f \in B_{R, p}$ for all $2<p \leq q$ and by Lemma 2.23, $\Theta \in B_{R, p}$ for all $2<p \leq q$. Now use Lemma 2.9.

We now prove (iii). Let $\lambda: \mathbb{C} \rightarrow[0,1]$ be a C^{∞} function such that $\lambda(z)=1$ on $|z| \leq r$ and $\lambda(z)=0$ on $|z| \geq R$. We have that

$$
(\lambda \omega)_{\bar{z}}=\mu(\lambda \omega)_{z}+\left(\lambda_{\bar{z}}-\mu \lambda_{z}\right) \omega+\lambda \sigma .
$$

By Lemma 2.23, there exists $C_{1}(R)=C_{1}(R, p, \epsilon)$ such that for $\Theta=\omega \circ f^{-1}, f=f^{\mu}$, we have

$$
\|\Theta\|_{R, \infty} \leq C_{1}(R)\left\|\left(\frac{1}{1-|\mu|^{2}} \frac{\sigma}{\overline{f_{\bar{z}}}}\right) \circ f^{-1}\right\|_{\mathcal{D}_{\epsilon, p}} .
$$

Let $A=A(R, k)>0$ be such that $f(|z|<R) \subseteq[|z|<A]$. Writing $\Xi:=\left(\sigma \circ f^{-1}\right) f_{z}^{-1}$, we have

$$
\begin{aligned}
\|\omega\|_{R, \infty} & =\|\Theta \circ f\|_{R, \infty} \leq C_{1}(A, k)\|\Xi\|_{\mathcal{D}_{\epsilon, p}}, \\
\|\omega\|_{R, p} & \leq C_{3}(R, k, p, \epsilon)\|\Xi\|_{\mathcal{D}_{\epsilon, p}}, \\
\|\lambda \sigma\|_{\mathcal{L}_{p}} & \leq\|\sigma\|_{R, p}, \\
\left\|\left(\lambda \bar{z}-\mu \lambda_{z}\right) \omega\right\|_{\mathcal{L}_{p}} & \leq C_{4}(R, r)\|\Xi\|_{\mathcal{D}_{\epsilon, p}} .
\end{aligned}
$$

By Lemma 2.7, we have that

$$
\|\lambda \omega\|_{B_{p}} \leq K(k, p)\left(C_{4}\|\Xi\|_{\mathcal{D}_{\epsilon, p}}+\|\sigma\|_{R, p}\right) .
$$

Therefore,

$$
\|\omega\|_{B_{r, p}} \leq C(R, r, p, k, \epsilon)\left(\|\Xi\|_{\mathcal{D}_{\epsilon, p}}+\|\sigma\|_{R, p}\right) .
$$

(v) The case $n=0$ is proved in item (iii). Suppose by induction that it holds for $n-1$. Cover the disc $|z| \leq r$ by a finite number of discs of radius δ such that the corresponding discs of radius 2δ are all contained in $|z|<R$. Choose δ small enough so that

$$
\Theta\left(2 \delta, n, p,\|\mu\|_{W^{n, p}(R)}\right)<1
$$

where Θ is from Lemma 2.14. Choose one of these discs, say $|z-a|<\delta$. Let $\lambda: \mathbb{C} \rightarrow[0,1]$ be a C^{∞} function such that $\lambda(z) \equiv 1$ on $|z-a| \leq \delta$ and $\lambda(z) \equiv 0$ on $|z-a| \geq 2 \delta$. Let

$$
u(z):=\lambda(z)(\omega(z+a)-\omega(a)) .
$$

Then $u(0)=0, u_{z} \in \mathcal{L}_{p}(\mathbb{C})$ and

$$
u_{\bar{z}}=\mu u_{z}+\left(\lambda_{\bar{z}}-\widehat{\mu} \lambda_{z}\right)(\widehat{\omega}-\omega(a))+\lambda \widehat{\sigma}_{z},
$$

where $\widehat{\mu}(z)=\mu(z+a), \widehat{\omega}(z)=\omega(z+a), \widehat{\sigma}(z)=\sigma(z+a)$. By Lemma 2.14 we have that

$$
\|u\|_{W^{n+1, p}(2 \delta)} \leq D_{1}(a)\left(\left\|\left(\lambda_{\bar{z}}-\mu \lambda_{z}\right)(\widehat{\omega}-\omega(a))\right\|_{W^{n, p}(R)}+\|\lambda \widehat{\sigma}\|_{W^{n, p}(2 \delta)}\right),
$$

where D_{1} depends on $2 \delta, p, n,\|\mu\|_{W^{n, p}(R)}$. We have

$$
\begin{aligned}
\left\|\left(\lambda_{\bar{z}}-\widehat{\mu} \lambda_{z}\right)(\widehat{\omega}-\omega(a))\right\|_{W^{n, p}(2 \delta)} \leq & 2^{n}\left\|\lambda_{\bar{z}}-\widehat{\mu} \lambda_{z}\right\|_{W^{n, p}(R)}\|\widehat{\omega}-\omega(a)\|_{W^{n, p}(2 \delta)} \\
\leq & 2^{n}\left(\|\lambda\|_{C^{n}}+2^{n}\|\lambda\|_{C^{n}}\|\mu\|_{W^{n, p}(R)}\right) \\
& \|\widehat{\omega}-\omega(a)\|_{W^{n, p}(R)} \\
\leq & D_{2}(a)\|\omega\|_{W^{n, p}(R)} \\
\leq & D_{2}(a) D(R, n-1)\left(\|\sigma\|_{\mathcal{D}\left(\epsilon, p, f^{\mu}\right)}+\|\sigma\|_{W^{n-1, p}(R)}\right)
\end{aligned}
$$

where in the first inequality we used that $\left\|\left\|_{W^{n, p}(2 \delta)} \leq\right\|\right\|_{W^{n, p}(R)}$, on the second inequality we used that

$$
\|\widehat{\omega}-\omega(a)\|_{W^{n, p}(2 \delta)} \leq 2\|\omega\|_{W^{n, p}(R)}
$$

because $D^{k}(\widehat{\omega}-\omega(a))=D^{k} \omega$ for $k>0$ and and $\|\widehat{\omega}-\omega(a)\|_{2 \delta, \infty} \leq 2\|\omega\|_{R, \infty}$, and on the last inequality we used the induction hypothesis. Also

$$
\|\lambda \sigma\|_{W^{n, p}(2 \delta)} \leq 2^{n}\|\lambda\|_{C^{n}}\|\sigma\|_{W^{n, p}(R)}
$$

Combining these inequalities, we get that

$$
\|u\|_{W^{n+1, p}(2 \delta)} \leq D_{3}\left(\|\sigma\|_{\mathcal{D}\left(\epsilon, p, f^{\mu}\right)}+\|\sigma\|_{W^{n, p}(R)}\right)
$$

In particular

$$
\begin{aligned}
\|\omega\|_{W^{n+1, p}(|z-a|<\delta)} & \leq\|u\|_{W^{n+1, p}(2 \delta)}+|\omega(a)| \\
& \leq\|u\|_{W^{n+1, p}(2 \delta)}+\|\omega\|_{R, \infty} \\
& \leq D_{4}\left(\|\sigma\|_{\mathcal{D}\left(\epsilon, p, f^{\mu}\right)}+\|\sigma\|_{W^{n, p}(R)}\right)
\end{aligned}
$$

Adding the estimates of each ball, we get

$$
\begin{aligned}
\left(\left\|D^{n+1} \omega\right\|_{r, p}\right)^{p} & =\sum_{a} \int_{|z-a|<\delta}\left\|D^{n+1} \omega\right\|^{p}=\sum_{a}\left(\left\|D^{n+1} \omega\right\|_{|z-a|<\delta, p}\right)^{p} \\
\left\|D^{n+1} \omega\right\|_{r, p} & \leq \sum_{a}\left\|D^{n+1} \omega\right\|_{|z-a|<\delta, p} \leq \sum_{a}\|\omega\|_{W^{n+1, p}(|z-a|<\delta)} \\
\|\omega\|_{C^{n}(r)} & \leq \sup _{a}\|\omega\|_{C^{n}(|z-a|<\delta)} \leq \sum_{a}\|\omega\|_{W^{n+1, p}(|z-a|<\delta)} \\
\|\omega\|_{W^{n+1, p}(r)} & \leq D_{5}\left(\|\sigma\|_{\mathcal{D}\left(\epsilon, p, f^{\mu}\right)}+\|\sigma\|_{W^{n, p}(R)}\right)
\end{aligned}
$$

Lemma 2.27. Let $\lambda \in \mathcal{L}_{\infty}(\mathbb{C}),\|\lambda\|_{\infty}<k<1$ and let $h=f^{\lambda}$. Let $K>1,0<\alpha<1$ and $0<\epsilon<1$ be such that

$$
\left|h^{-1}(z)\right|<K|z|^{\alpha} \text { for all }|z|<\frac{1}{\epsilon}
$$

Let $p_{o}>2$ be such that $k C_{p_{o}}<1$. Let $q_{o}>2$ and

$$
p=\frac{p_{0} q_{0}}{p_{o}+q_{o}-2} .
$$

(i) If $A \in \mathcal{L}_{q_{o}}\left(|z|<\frac{K}{\epsilon}\right)$, then $\left(A \circ h^{-1}\right) h_{z}^{-1} \in \mathcal{L}_{p}\left(|z|<\frac{1}{\epsilon}\right)$ and

$$
\left\|\left(A \circ h^{-1}\right) h_{z}^{-1}\right\|_{\frac{1}{\epsilon}, p} \leq \frac{1}{\left(1-k^{2}\right)^{\frac{1}{p}-\frac{1}{q_{o}}}}\|A\|_{\frac{K}{\epsilon}, q_{o}}\left(\left\|h_{z}^{-1}\right\|_{\frac{1}{\epsilon}, p_{o}}\right)^{1-\frac{2}{q_{o}}}
$$

(ii) Let $k(z)=1 / \overline{h\left(\frac{1}{\bar{z}}\right)}$ and suppose that there exists $a>1$ and $Q>1$ such that

$$
\begin{aligned}
|k(z)| & <a|z| \quad \text { for all }|z|<\epsilon \text { and } \\
\left|k^{-1}(z)\right| & <Q|z|^{\alpha} \quad \text { for all }|z|<\epsilon .
\end{aligned}
$$

If $A\left(\frac{1}{z}\right) \in \mathcal{L}_{q}(|z|<a \epsilon)$, then $\left(\left(A \circ h^{-1}\right) h_{z}^{-1}\right)\left(\frac{1}{z}\right) \in \mathcal{L}_{p}(|z|<\epsilon)$ and

$$
\left\|\left(\left(A \circ h^{-1}\right) h_{z}^{-1}\right)\left(\frac{1}{z}\right)\right\|_{\epsilon, p} \leq \frac{a^{2}}{\left(1-k^{2}\right)^{\frac{1}{p}-\frac{1}{q_{o}}}}\left\|A\left(\frac{1}{z}\right)\right\|_{Q \epsilon^{\alpha}, q_{o}}\left(\left\|h_{z}^{-1}\right\|_{\epsilon, p_{o}}\right)^{1-\frac{2}{q_{o}}} .
$$

Proof. Let $p=\frac{p_{o} q_{o}}{p_{o}+q_{o}-2}$ and let $q, r>0$ be such that

$$
p q=q_{o} \quad \text { and } \quad(p-2) r+2=p_{o}
$$

In particular

$$
\frac{1}{q}+\frac{1}{r}=1, \quad \frac{p_{o}}{p r}=1-\frac{2}{q_{o}} \quad \text { and } \quad \frac{1}{p r}=\frac{1}{p}-\frac{1}{q_{o}}
$$

We prove (i) first. We have

$$
I:=\int_{|z|<\frac{1}{\epsilon}}\left|A \circ h^{-1}\right|^{p}\left|h_{z}^{-1}\right|^{p}=\int_{|z|<\frac{1}{\epsilon}}\left|A\left(h^{-1}(z)\right)\right|^{p} \frac{1}{\left|h_{z}\left(h^{-1}(z)\right)\right|^{p}}
$$

Write $w=h^{-1}(z)$. Using the Jacobian

$$
\text { Jac } h=\left|h_{z}\right|^{2}-\left|h_{\bar{z}}\right|^{2}=\left(1-|\lambda|^{2}\right)\left|h_{z}\right|^{2} \leq\left|h_{z}\right|^{2}
$$

we have that

$$
\begin{aligned}
I & \leq \int_{h^{-1}\left[|z|<\frac{1}{\epsilon}\right]}|A(w)|^{p} \frac{1}{\left|h_{z}(w)\right|^{p}}\left|h_{z}(w)\right|^{2} d w \\
& \leq\left[\int_{h^{-1}\left[|z|<\frac{1}{\epsilon}\right]}|A|^{p q}\right]^{\frac{1}{q}}\left[\int_{h^{-1}\left[|z|<\frac{1}{\epsilon}\right]} \frac{1}{\left|h_{z}\right|^{(p-2) r}}\right]^{\frac{1}{r}} .
\end{aligned}
$$

But

$$
\begin{aligned}
\int_{h^{-1}\left[|z|<\frac{1}{\epsilon}\right]} \frac{1}{\left|h_{z}\right|^{(p-2) r}} & =\int_{h^{-1}\left[|z|<\frac{1}{\epsilon}\right]} \frac{\|\left. h_{z}\right|^{2}}{\left|h_{z}\right|^{(p-2) r+2}} \\
& \left.\leq \frac{1}{1-k^{2}} \int_{|z|<\frac{1}{\epsilon}}\left|h_{z}^{-1}\right|^{(p-2) r+2}=\frac{1}{1-k^{2}} \int_{|z|<\frac{1}{\epsilon}} \right\rvert\, h_{z}^{-1} \|^{p_{o}} .
\end{aligned}
$$

Therefore,

$$
I^{\frac{1}{p}} \leq\left[\int_{h^{-1}\left[|z|<\frac{1}{\epsilon}\right]}|A|^{q_{o}}\right]^{\frac{1}{q_{o}}}\left[\frac{1}{1-k^{2}}\right]^{\frac{1}{p r}}\left[\int_{|z|<\frac{1}{\epsilon}}\left|h_{z}^{-1}\right|^{p_{o}}\right]^{\frac{1}{p r}}
$$

Since $h^{-1}\left[|z|<\frac{1}{\epsilon}\right] \subseteq\left[|w|<\frac{K}{\epsilon^{\omega}}\right] \subseteq\left[|w|, \frac{K}{\epsilon}\right]$, we have

$$
I^{\frac{1}{p}} \leq\left[\frac{1}{1-k^{2}}\right]^{\frac{1}{p}-\frac{1}{q_{o}}}\|A\|_{\frac{K}{\epsilon}, q_{o}}\left(\left\|h_{z}^{-1}\right\|_{\frac{1}{\epsilon}, p_{o}}\right)^{1-\frac{2}{q_{0}}} .
$$

For (ii) consider

$$
\mathbf{I}:=\int_{|z|<\epsilon}\left|A \circ h^{-1}\left(\frac{1}{z}\right)\right|^{p}\left|h_{z}^{-1}\left(\frac{1}{z}\right)\right|^{p}=\int_{|z|<\epsilon}\left|A \circ h^{-1}\left(\frac{1}{\bar{z}}\right)\right|^{p}\left|h_{z}^{-1}\left(\frac{1}{\bar{z}}\right)\right|^{p} .
$$

Write $\frac{1}{\bar{w}}=h^{-1}\left(\frac{1}{\bar{z}}\right)$, i.e., $z=k(w)$. We have

$$
h_{z}^{-1}\left(\frac{1}{\bar{z}}\right)=\frac{1}{h_{z}\left(h^{-1}\left(\frac{1}{\bar{z}}\right)\right)}=\frac{1}{h_{z}\left(\frac{1}{\bar{w}}\right)} .
$$

By Corollary 2.10 , we have that $k_{\bar{z}}(w)=\overline{\lambda\left(\frac{1}{\bar{w}}\right)} \frac{w^{2}}{\bar{w}^{2}}$, hence

$$
\frac{1}{1-k^{2}}\left|k_{z}\right|^{2} \leq \operatorname{Jac}(h) \leq\left|k_{z}\right|^{2},
$$

then

$$
\begin{aligned}
\mathbf{I} & \leq \int_{k^{-1}[|z|<\epsilon]}\left|A\left(\frac{1}{\bar{w}}\right)\right|^{p} \frac{1}{\left|h_{z}\left(\frac{1}{\bar{w}}\right)\right|^{p}}\left|k_{z}(w)\right|^{2}, \\
& \leq\left[\int_{k^{-1}[|z|<\epsilon]}\left|A\left(\frac{1}{w}\right)\right|^{p q}\right]^{\frac{1}{q}}\left[\int_{k^{-1}[|z|<\epsilon]} \frac{\left|k_{z}(w)\right|^{2 r}}{\left|h_{z}\left(\frac{1}{\bar{w}}\right)\right|^{p r}}\right]^{\frac{1}{r}} .
\end{aligned}
$$

Since $k(w)=1 / \overline{h\left(\frac{1}{\bar{w}}\right)}$, we have that

$$
\begin{aligned}
k_{z}(w) & =\frac{\bar{h}_{\bar{z}}\left(\frac{1}{\bar{w}}\right)\left(-\frac{1}{w^{2}}\right)}{\overline{h\left(\frac{1}{\bar{w}}\right)^{2}}=-\bar{h}_{\bar{z}}\left(\frac{1}{\bar{w}}\right) \frac{k(w)^{2}}{w^{2}}} \\
\left|h_{z}\left(\frac{1}{\bar{w}}\right)\right| & =\left|\bar{h}_{\bar{z}}\left(\frac{1}{\bar{w}}\right)\right|=\left|k_{z}(w)\right| \frac{|w|^{2}}{|k(w)|^{2}} \\
\frac{\left|k_{z}(w)\right|^{2 r}}{\left|h_{z}\left(\frac{1}{\bar{w}}\right)\right|^{p r}} & =\frac{\left|k_{z}(w)\right|^{2 r}}{\left|k_{z}(w)\right|^{p r}} \cdot \frac{|k(w)|^{2 p r}}{|w|^{2 p r}} \leq a^{2 p r} \frac{1}{\left|k_{z}(w)\right|^{(p-2) r}} \\
\int_{k^{-1}[|z|<\epsilon]} \frac{\left|k_{z}(w)\right|^{2 r}}{\left|h_{z}\left(\frac{1}{\bar{w}}\right)\right|^{p r}} & \leq a^{2 p r} \int_{k^{-1}[|z|<\epsilon]} \frac{1}{\left|k_{z}(w)\right|^{[p-2) r}} \\
& \leq a^{2 p r} \int_{k^{-1}[|z|<\epsilon]} \frac{\left|k_{z}(w)\right|^{2}}{\left|k_{z}(w)\right|^{(p-2) r+2}} \\
& \leq \frac{a^{2 p r}}{1-k^{2}} \int_{|z|<\epsilon]} \frac{1}{\left|k_{z} \circ k^{-1}\right|^{p_{o}}}=\frac{a^{2 p r}}{1-k^{2}} \int_{|z|<\epsilon}\left|k_{z}^{-1}\right|^{p_{0}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|\left(\left(A \circ h^{-1}\right) h_{z}^{-1}\right)\left(\frac{1}{z}\right)\right\|_{\epsilon, p} & \leq\left\|A\left(\frac{1}{w}\right)\right\|_{Q_{\epsilon}, q_{o}}\left(\frac{a^{2 p r}}{1-k^{2}}\right)^{\frac{1}{p r}}\left(\left\|k_{z}^{-1}\right\|_{\epsilon, p_{o}}\right)^{\frac{p_{o}}{p r}} \\
& \leq \frac{a^{2}}{\left(1-k^{2}\right)^{\frac{1}{p}-\frac{1}{q_{o}}}}\left\|A\left(\frac{1}{w}\right)\right\|_{Q_{\epsilon, q_{o}}}\left(\left\|h_{z}^{-1}\right\|_{\epsilon, p_{o}}\right)^{1-\frac{2}{q_{o}}} .
\end{aligned}
$$

Given $\mu \in \mathcal{L}_{p}(\mathbb{D}), \mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$, extend it to $\mathcal{L}_{\infty}(\mathbb{D})$ by

$$
\mu(z)=\overline{\mu\left(\frac{1}{\bar{z}}\right)} \frac{z^{2}}{\bar{z}^{2}},
$$

denote by $\widehat{\mu}$ this extension and consider $\mathcal{L}_{\infty}(\mathbb{D})$ as a subspace of $\mathcal{L}_{\infty}(\mathbb{C})$ by these extensions. On $\mathcal{L}_{\infty}(\mathbb{C}) \cap W^{1, p}(\epsilon)$ consider the norm

$$
\|\mu\|_{L E}:=\|\mu\|_{\mathcal{L}_{\infty}(\mathbb{C})}+\|\mu\|_{W^{1, p}(\epsilon)}
$$

and on $\mathcal{D}(\epsilon, p, F) \cap \mathcal{L}_{p}\left(D_{R}\right)$ consider the norm

$$
\|\sigma\|_{D P}:=\|\sigma\|_{\mathcal{D}(\epsilon, p, F)}+\|\sigma\|_{R, p} .
$$

Proposition 2.28. Suppose that $\mu_{o} \in \mathcal{L}_{\infty}(\mathbb{C}) \cap W^{1, p_{o}}(\epsilon),\left\|\mu_{o}\right\|<k<1, k C_{p_{o}}<1, p_{o}>2$ and let $F=f^{\widehat{\mu}_{o}}$. Then the map

$$
\left(\mathcal{L}_{\infty}(\mathbb{D}) \cap W^{1, p}(\epsilon)\right) \times\left(\mathcal{D}(\epsilon, p, F) \cap \mathcal{L}_{p}\left(D_{R}\right)\right) \rightarrow B_{r, p}
$$

given by $(\mu, \sigma) \mapsto \omega^{\widehat{\mu}, \sigma}$, is differentiable for μ in a neighborhood of μ_{o}, for all $0<r<R$ and any $2<p<p_{o}$.

Proof. Write $\omega^{o}:=\omega^{\widehat{\mathcal{L}}_{o}, \sigma_{o}}$ and for $(\mu, \sigma) \in\left(\mathcal{L}_{\infty}(\mathbb{D}) \cap W^{1, p}(\epsilon)\right) \times\left(\mathcal{D}\left(\epsilon_{o}, p, F\right) \cap \mathcal{L}_{p}\left(D_{R}\right)\right)$ write $\omega=\omega^{\widehat{\mu}, \sigma}$. For simplicity write $\mu=\widehat{\mu} \in \mathcal{L}_{\infty}(\mathbb{C})$. Let $v:=\mu-\mu_{o}$ and $\rho:=\sigma-\sigma_{o}$. By Proposition 2.24(i), $\omega_{z}^{o} \in \mathcal{D}\left(\epsilon_{o}, p, F\right)$ for all $2<p<p_{o}$ and hence there exists a solution of

$$
\begin{equation*}
\ell_{\bar{z}}=\mu_{o} \ell_{z}+\nu \omega_{z}^{o}+\rho \tag{2.29}
\end{equation*}
$$

such that $\ell(0)=\ell(1)=0$ and $|\ell(z)|=\mathcal{O}\left(|F(z)|^{2}\right)$ when $|z| \rightarrow \infty$. Moreover, since

$$
\begin{align*}
\left\|\nu \omega_{z}^{o}+\rho\right\|_{\mathcal{D}\left(\epsilon_{o}, p, F\right)} & \leq\|\nu\|_{\infty}\left\|\omega_{z}^{o}\right\|_{\mathcal{D}\left(\epsilon_{o}, p, F\right)}+\|\rho\|_{\mathcal{D}\left(\epsilon_{o}, p, F\right)}, \\
\left\|\nu \omega_{z}^{o}+\rho\right\|_{R, p} & \leq\|\nu\|_{\infty}\left\|\omega_{z}^{o}\right\|_{R, p}+\|\rho\|_{R, p} . \tag{2.30}
\end{align*}
$$

By Proposition 2.24 (i), $\left\|\omega_{z}^{o}\right\|_{\mathcal{D}_{(\epsilon, p, F)}}<+\infty$ and by Proposition 2.24 (iii), $\left\|\omega_{z}^{o}\right\|_{R, p}<+\infty$. Therefore, by Proposition 2.24 (iii), the linear map $L(\nu, \rho)=\ell \in B_{R, p}$ is continuous. In particular, for all $2<p<p_{o}$, we have that

$$
\begin{equation*}
\lim _{\substack{\mu \rightarrow \mu_{o} \\ \sigma \rightarrow \sigma_{o}}}\|\ell\|_{B_{R, p}}=0, \quad \lim _{\substack{h \rightarrow \mu_{o} \\ \sigma \rightarrow \sigma_{o}}}\left\|\ell_{z}\right\|_{R, p}=0 . \tag{2.31}
\end{equation*}
$$

By Proposition 2.24 (iv) we also have that

$$
\lim _{\substack{\dot{l} \rightarrow \mu_{o} \\ \sigma \rightarrow \sigma_{o}}}\left\|\ell_{\mathcal{Z}}\right\|_{\mathcal{D}(\epsilon, p, F)} \leq A \lim _{\substack{\hat{\mu} \mu_{o} \\ \sigma \rightarrow o_{o}}}\left\|\nu \omega_{z}^{o}+\rho\right\|_{\mathcal{D}\left(\epsilon_{o}, p, F\right)}=0,
$$

and by Lemma 2.22,

$$
\begin{equation*}
\lim _{\substack{h \rightarrow \mu_{o} \\ \sigma \rightarrow \sigma_{o}}}\left\|\ell_{z}\right\|_{\mathcal{D}_{(r, p, F)}}=0 \quad \text { for all } r>0,2<p<p_{o} . \tag{2.32}
\end{equation*}
$$

Let $h:=\omega^{\mu, \sigma}-\omega^{\mu_{o}, \sigma_{o}}-\ell$, then

$$
\begin{equation*}
h_{\bar{z}}=\mu h_{z}+v \ell_{z} . \tag{2.33}
\end{equation*}
$$

Let $H^{\mu}=H:=f^{\lambda}$, where

$$
\lambda=\lambda^{u}:=\left(\frac{\mu-\mu_{o}}{1-\mu \mu_{o}} \frac{F_{z}}{\bar{F}_{\bar{z}}}\right) \circ F^{-1},
$$

where $F=f^{\mu_{0}}$. We have that $F^{\mu}:=f^{\mu}=H^{\mu} \circ F$.
We now see that we can use H^{μ} on Lemma 2.27. Let $\eta_{2}>0$ be such that $\left\|\lambda^{\mu}\right\|_{\infty}<k$ for all $\left\|\mu-\mu_{o}\right\|<\eta_{2}$. From Corollary 2.19, we obtain that $\mu \mapsto H^{\mu} \in C^{1}\left(\epsilon_{2}\right)$ is continuous for some $0<\epsilon_{2}<\epsilon_{o}$. In particular, there exists $0<\eta_{3}<\eta_{2}$ and $a>1$ such that

$$
\left|H^{\mu}(z)\right|<a|z| \text { for all }|z|<\epsilon_{3}:=\frac{\epsilon_{2}}{2} \text { and all }\left\|\mu-\mu_{o}\right\|<\eta_{3} .
$$

From the definition of $\lambda=\lambda^{\mu}$ we get that $\lambda(z)=\overline{\lambda\left(\frac{1}{\bar{z}}\right)} \frac{z}{\bar{z}}^{2}$ for almost every $z \in \mathbb{C}$. Therefore, writing $G^{\mu}(z):=1 / \overline{H^{\mu}\left(\frac{1}{\bar{z}}\right)}$, we have that $G^{\mu}=H^{\mu}$.

Observe that $\lambda^{\mu_{o}} \equiv 0$ and $H^{\mu_{o}}=I d$. By Corollary 2.10, we have that $\left(H^{\mu}\right)^{-1}=f^{\hat{\lambda}}$, where $\widehat{\lambda}=-\left(\lambda \frac{H_{2}}{\overline{H_{z}}}\right) \circ H^{-1}$. In particular, for any $0<\delta<1$, there exists $0<\eta_{4}=\eta_{4}(\delta)<\eta_{3}$ such that $\left\|\widehat{\lambda}^{\mu}\right\|_{\infty}=\left\|\lambda^{\mu}\right\|_{\infty}<\delta$ for all $\left\|\mu-\mu_{o}\right\|<\eta_{4}$. By Theorem 2.12 (a), for any $r_{o}=r_{o}(\delta)>0$ with $\delta C_{r_{o}(\delta)}<1$ and some $K=K\left(\epsilon_{3}, \delta, r_{o}\right)>1, C=C\left(\epsilon_{3}, \delta, r_{o}\right)>1$, we have that

$$
\begin{aligned}
\left|\left(H^{\mu}\right)^{-1}(z)\right| & <K|z|^{1-\frac{2}{r_{o}(\delta)}} \\
\left\|\left(H^{\mu}\right)_{z}^{-1}\right\|_{\frac{1}{\epsilon_{3}}, r_{o}(\delta)} & \text { for all }|z|<C\left(\epsilon_{3}, k\right) \\
\epsilon_{3} & \text { for all }\left|\mu-\mu_{o}\right|<\eta_{4},
\end{aligned}
$$

with $r_{o}(\delta) \rightarrow \infty$ when $\delta \rightarrow 0$ and $\eta_{4} \rightarrow 0$.
Therefore, the conditions on Lemma 2.27 are satisfied by H^{μ} with uniform constants a, K, ϵ_{3} for all $\left\|\mu-\mu_{o}\right\|<\eta_{4}$ and with $\alpha=1-\frac{2}{r_{o}(\delta)}$.

For any g we have that

$$
\left(g \circ\left(F^{\mu}\right)^{-1}\right)\left(F^{\mu}\right)_{z}^{-1}=\left(h \circ\left(H^{\mu}\right)^{-1}\right)\left(H^{\mu}\right)_{z}^{-1}
$$

where $h=\left(g \circ F^{-1}\right) F_{z}^{-1}, F=f^{\mu_{o}}$.
Given $0<p<p_{o}$ choose $0<\delta<1$ (hence $\left.\eta_{4}(\delta)>0\right)$ and $p<q_{o}=q_{o}(p)<p_{o}$ such that

$$
0<p \leq \frac{q_{o} r_{o}(\delta)}{q_{o}+r_{o}(\delta)-1} .
$$

Applying Lemma 2.27, we have that $\ell_{z} \in \mathcal{D}\left(\epsilon_{3}, p, f^{\mu}\right)$ and

$$
\left\|\ell_{z}\right\|_{\mathcal{D}\left(\epsilon_{3}, p, f^{\mu}\right)} \leq \frac{a^{2}}{\left(1-k^{2}\right)^{\frac{1}{p}-\frac{1}{q_{o}}}}\left(\left\|\ell_{z}\right\|_{\mathcal{D}\left(\frac{K}{\epsilon_{3}}, q_{o}, F\right)}+\left\|\ell_{z}\right\|_{\mathcal{D}\left(K \epsilon^{\alpha}, q_{o}, F\right)}\right) \cdot C\left(\epsilon_{3}, k\right)
$$

In particular, by Lemma 2.22 and (2.32), we have that

$$
\begin{equation*}
\lim _{\substack{\mu \rightarrow u_{o} \\ \sigma \rightarrow o_{o}}}\left\|\ell_{z}\right\|_{\mathcal{D}\left(\epsilon_{3}, p, f^{\mu}\right)}=0 \text { for all } 2<p<p_{o} \tag{2.34}
\end{equation*}
$$

By Proposition 2.24 and (2.33), we have that

$$
\begin{aligned}
\|h\|_{B_{r, p}} & \leq C(R, r)\left(\left\|\nu \ell_{z}\right\|_{\mathcal{D}\left(\epsilon_{3}, p, f^{\mu}\right)}+\left\|\nu \ell_{z}\right\|_{R, p}\right) \\
& \leq C(R, r)\left(\|\nu\|_{\infty}\left\|\ell_{z}\right\|_{\mathcal{D}\left(\epsilon_{3}, p, f^{\mu}\right)}+\|v\|_{\infty}\left\|\ell_{z}\right\|_{R, p}\right) \\
\frac{\|h\|_{B_{r, p}}}{\|\nu\|_{\infty}} & \leq C(R, r)\left(\left\|\ell_{z}\right\|_{\mathcal{D}\left(\epsilon_{3}, p, f^{\mu}\right)}+\left\|\ell_{z}\right\|_{R, p}\right)
\end{aligned}
$$

for all $R>0$ and any $2<p<p_{o}$. From (2.31) and (2.34) we get that

$$
\lim _{\substack{\mu \rightarrow \mu_{o} \\ \sigma \rightarrow \sigma_{o}}} \frac{\|h\|_{B_{r, p}}}{\|\nu\|+\|\rho\|_{\mathcal{D}\left(\epsilon_{3}, p, F\right)}} \leq \lim _{\substack{\mu \rightarrow \mu_{o} \\ \sigma \rightarrow \sigma_{o}}} \frac{\|h\|_{B_{r, p}}}{\|\nu\|_{\infty}}=0
$$

By Proposition 2.24 (iv) and Lemma 2.22, we also have that for $2<p<p_{1}<p_{o}$,

$$
\begin{align*}
&\left\|\ell_{z}\right\|_{\mathcal{D}(\epsilon, p, F)} \leq A\left\|v \ell_{z}\right\|_{\mathcal{D}\left(\epsilon, p_{1}, F\right)} \leq A\|v\|_{\infty}\left\|\ell_{z}\right\|_{\mathcal{D}\left(\epsilon_{3}, p_{1}, F\right)} \\
& \lim _{\substack{\mu \rightarrow \mu_{o} \\
\sigma \rightarrow \sigma_{o}}} \frac{\left\|h_{z}\right\|_{\mathcal{D}(\epsilon, p, F)}}{\|v\|+\|\rho\|_{\mathcal{D}\left(\epsilon_{3}, p, F\right)}} \leq A \lim _{\substack{\mu \rightarrow \mu_{o} \\
\sigma \rightarrow o_{o}}}\left\|\ell_{z}\right\|_{\mathcal{D}\left(\epsilon_{3}, p_{1}, F\right)}=0 . \tag{2.35}
\end{align*}
$$

On $\mathcal{L}_{\infty}(\mathbb{C}) \cap W^{n, p}(R)$ and on $\mathcal{D}(\epsilon, p, F) \cap W^{n, p}(R)$ consider the norms

$$
\begin{aligned}
\|\mu\|_{L W} & :=\|\mu\|_{\mathcal{L}_{\infty}(\mathbb{C})}+\|\mu\|_{W^{n, p}(R)} \\
\|\sigma\|_{D W(F)} & :=\|\sigma\|_{\mathcal{D}(\epsilon, p, F)}+\|\sigma\|_{W^{n, p}(R)}
\end{aligned}
$$

Proposition 2.36. Suppose that $\mu_{o} \in \mathcal{L}_{\infty}(\mathbb{D}) \cap W^{n, p_{o}}(R),\left\|\mu_{o}\right\|_{\infty}<k<1, k C_{p_{o}}<1, p_{o}>2$ and let $F=f^{\mu_{o}}$. Then the map $(\mu, \rho) \mapsto \omega^{\mu, \rho}$,

$$
\left(\mathcal{L}_{\infty}(\mathbb{D}) \cap W^{n, p_{o}}(R)\right) \times\left(\mathcal{D}\left(\epsilon, p_{o}, F\right) \cap W^{n, p_{o}}(R)\right) \rightarrow W^{n+1, p}(r)
$$

is differentiable for μ in a neighborhood of μ_{o} for all $0<r<R$ and any $2<p<p_{o}$.
Proof. We have the same Equations (2.29), (2.30), (2.33), and (2.34) from Proposition 2.28. Also,

$$
\left\|v \omega_{z}^{o}+\rho\right\|_{W^{n, p}(R)} \leq 2^{n}\|v\|_{W^{n, p}(R)}\left\|\omega_{z}^{o}\right\|_{W^{n, p}(R)}+\|\rho\|_{W^{n, p}(R)} .
$$

By Proposition 2.24 (v), $\left\|\omega_{z}^{o}\right\|_{W^{n, p(r)}}$ is finite for all $0<r<R$ and $2<p<p_{o}$. Using (2.30) and Proposition 2.24 (v), we get that

$$
\begin{equation*}
\lim _{\substack{\mu \rightarrow \mu_{o} \\ \sigma \rightarrow \sigma_{o}}}\|\ell\|_{W^{n+1, p}(r)}=0 \tag{2.37}
\end{equation*}
$$

for all $0<r<R, 2<p<p_{o}$. In particular, the linear map $L(\nu, \rho)=\ell \in W^{n+1, p}(r)$ is continuous. From Equation (2.33) and Proposition 2.24 (v) we have that, for $S:=\frac{R+r}{2}$,

$$
\begin{aligned}
\|h\|_{W^{n+1, p}(r)} & \leq C(S, r)\left(\left\|\nu \ell_{z}\right\|_{\mathcal{D}\left(\epsilon_{3}, p, f^{\mu}\right)}+\left\|v \ell_{z}\right\|_{W^{n, p}(S)}\right) \\
& \leq C(S, r)\left(\|v\|_{\infty}\left\|\ell_{z}\right\|_{\mathcal{D}\left(\epsilon_{3}, p, f^{\mu}\right)}+2^{n}\|\nu\|_{W^{n, p}(R)}\left\|\ell_{z}\right\|_{W^{n, p}(S)}\right) \\
\frac{\|h\|_{W^{n+1, p}(r)}}{\|v\|_{W^{n, p}(r)}} & \leq C(S, r)\left(\left\|\ell_{z}\right\|_{\mathcal{D}\left(\epsilon_{3}, p, f^{\mu}\right)}+2^{n}\left\|\ell_{z}\right\|_{W^{n, p}(S)}\right)
\end{aligned}
$$

By (2.34) and (2.37) we have that

$$
\lim _{\substack{h \rightarrow \mu_{o} \\ \sigma \rightarrow \sigma_{o}}} \frac{\|h\|_{W^{n+1, p}(r)}}{\|v\|_{L W}+\|\rho\|_{D W(F)}} \leq \lim _{\substack{v \rightarrow 0 \\ \rho \rightarrow 0}} \frac{\|h\|_{W^{n+1, p}(r)}}{\|v\|_{W^{n, p}(r)}}=0
$$

for all $2<p<p_{o}$ and $0<r<R$. This completes the proof.
Corollary 2.38. The maps of Propositions 2.28 and 2.36 are C^{∞}.
Proof. We prove the corollary for the map in Proposition 2.36, the proof for the other map is similar. Define the following Banach spaces: $\mathbf{E}:=\mathcal{L}_{\infty}(\mathbb{C}) \cap W^{n, p}(R), \mathbf{F}:=\mathcal{D}(\epsilon, p, F) \cap W^{n, p}(R)$, $\mathbf{G}:=W^{n+1, p}(r) \cap \mathcal{F}(\epsilon, p, F), \mathcal{F}(\epsilon, p, F):=\left\{\ell \mid \ell_{z} \in \mathcal{D}(\epsilon, p, F)\right\}$ with $\|\ell\|_{\mathcal{F}}:=\left\|\ell_{z}\right\|_{\mathcal{D}(\epsilon, p, F)}$ and $\mathcal{L}(\mathbf{E} \times \mathbf{F}, \mathbf{G}):=\{L: \mathbf{E} \times \mathbf{F} \rightarrow \mathbf{G} \mid \mathcal{L}$ linear $\}$.

There is no map $\mathbf{G} \rightarrow \mathbf{F}$ given by $\omega \rightarrow \omega_{z}$ because $r<R$. We leave to the reader the technicalities that appear with this problem. Define the maps $F: U \times \mathbf{F} \subseteq \mathbf{E} \times \mathbf{F} \rightarrow \mathbf{G}, F(\mu, \sigma)=$ $\omega^{\mu, \sigma}$ where $U \subseteq \mathbf{E}$ is the open subset defined in Proposition 2.36. Let $\bar{F}: U \subseteq \mathbf{E} \rightarrow \mathcal{L}(\mathbf{F}, \mathbf{G})$, $\bar{F}(\mu) \cdot \sigma=\omega^{\bar{\mu}, \sigma}$; and $D: U \times \mathbf{F} \rightarrow \mathcal{L}(\mathbf{E} \times \mathbf{F}, \mathbf{G}), D(\mu, \sigma)(\nu, \rho):=\ell$, the derivative on Equation (2.29) of Proposition 2.28. Let $B: \mathbf{E} \times \mathbf{G} \rightarrow \mathbf{F}$ be the linear map $B(\nu, \omega)=v \omega_{z}$. We have that

$$
\begin{align*}
D(\mu, \sigma)(\nu, \rho) & =\bar{F}(\mu) \circ B(v, F(\mu, \sigma))+\bar{F}(\mu)(\rho) \\
D(\mu, \sigma) & =\bar{F}(\mu) \circ B\left(\pi_{1}, F(\mu, \sigma)\right)+\bar{F}(\mu) \circ \pi_{2} \tag{2.39}
\end{align*}
$$

where $\pi_{1}: \mathbf{E} \times \mathbf{F} \rightarrow \mathbf{E}$ and $\pi_{2}: \mathbf{E} \times \mathbf{F} \rightarrow \mathbf{F}$ are the projections. We have that

$$
\begin{aligned}
\|B(v, \omega)\|_{\mathbf{F}} & =\left\|v \omega_{z}\right\|_{D W^{n}} \leq\|v\|_{\infty}\left\|\omega_{z}\right\|_{\mathcal{D}(\epsilon, p, F)}+2^{n}\|\nu\|_{W^{n}}\left\|\omega_{z}\right\|_{W^{n}} \\
& \leq 2^{n}\|\nu\|_{W^{n}}\left(\|\omega\|_{\mathcal{F}}+\|\omega\|_{W^{n+1}}\right) \\
& \leq 2^{n}\|\nu\|_{\mathbf{E}}\|\omega\|_{\mathbf{G}}
\end{aligned}
$$

Therefore, the bilinear map B is C^{∞}. By Proposition 2.36 and the limit (2.35) in the proof of Proposition 2.28, we have that $F: U \times \mathbf{F} \rightarrow \mathbf{G}$ is differentiable. Using the notation of Propositions 2.28 and 2.36, we have that

$$
\begin{aligned}
\|\bar{F}(\mu+\nu)(\sigma)-\bar{F}(\mu)(\sigma)-\ell\|_{\mathbf{G}} & =\|h\|_{W^{n+1}}+\|h\|_{\mathcal{F}} \\
& \leq A_{1}(\mu)\left\|\nu \ell_{z}\right\|_{D W^{n}} \\
& \leq A_{1}(\mu)\left(\|v\|_{\infty}\left\|\ell_{z}\right\|_{\mathcal{D}(\epsilon, p, F)}+2^{n}\|v\|_{W^{n}}\left\|\ell_{z}\right\|_{W^{n}}\right) \\
& \leq A_{1}(\mu)\|\nu\|_{W^{n}} 2^{n}\left(\left\|\ell_{z}\right\|_{\mathcal{D}(\epsilon, p, F)}+\|\nu\|_{W^{n}}\right) \\
& \leq A_{1}(\mu)\|\nu\|_{\mathbf{E}} A_{2}(\mu)\left\|v \omega_{z}^{o}+(\rho \equiv 0)\right\|_{D W^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq A_{3}(\mu)\|\nu\|_{\mathbf{E}}\left(\|\nu\|_{\infty}\left\|\omega_{z}^{o}\right\|_{\mathcal{D}(\epsilon, p, F)}+2^{n}\|\nu\|_{W^{n}}\|\omega\|_{W^{n+1}}\right) \\
& \leq A_{4}(\mu)\|\nu\|_{\mathbf{E}}\|\nu\|_{\mathbf{E}}\|\sigma\|_{\mathbf{F}} \\
\lim _{\|\nu\|_{\mathbf{E}} \rightarrow 0} \frac{1}{\|\nu\|_{\mathbf{E}}} \max _{\sigma}\left\{\frac{\|h\|_{\mathbf{G}}}{\|\sigma\|_{\mathbf{F}}}\right\} & \leq \lim _{v \rightarrow 0} A_{4}(\mu)\|\nu\|_{\mathbf{E}}=0
\end{aligned}
$$

Therefore, the map \bar{F} is differentiable and its derivative is given by $(D \bar{F}(\mu) \cdot \nu)(\sigma)=$ $D(\mu, \sigma)(\nu, 0)$, or

$$
\begin{equation*}
D \bar{F}(\mu) \cdot v=D(\mu, \cdot)(\nu, 0) \tag{2.40}
\end{equation*}
$$

Suppose that F and \bar{F} are r-times differentiable. Then from formula (2.39) we have that D is r-times differentiable. But D is the derivative of F so that F is $(r+1)$-times differentiable. Formula (2.40) implies that \bar{F} is also $(r+1)$-times differentiable. We conclude that F is C^{∞}.

Theorem 2.41.

(i) Let $0<k<1$ and $p>2$ with $k C_{p}<1$. Then for any $R>0$, the map

$$
\left\{\mu \in \mathcal{L}_{\infty}(\mathbb{D}) \mid\|\mu\|_{\infty}<k\right\} \longrightarrow B_{R, p}
$$

given by $\mu \mapsto f^{\widehat{\mu}}$ is C^{∞}.
(ii) Let $0<k<1$ and $p>2$ with $k C_{p}<1$. Then the map

$$
\mathcal{L}_{\infty}(\mathbb{D}) \cap W^{n, p}(R) \cap\left\{\|\mu\|_{\infty}<k\right\} \longrightarrow W^{n+1, p}(r)
$$

given by $\mu \mapsto f^{\widehat{\mu}}$ is C^{∞} for any $0<r<R$.
(iii) In particular, for any $n \geq 1$ and any $0<r<S<R$ the map

$$
\mathcal{L}_{\infty}(\mathbb{D}) \cap C^{n}(S) \cap\left\{\|\mu\|_{\infty}<k\right\} \rightarrow C^{n+1-\frac{2}{p}}(r) \cap C^{1-\frac{2}{p}}(R)
$$

given by $\mu \mapsto f^{\widehat{\mu}}$ is C^{∞}.
Proof. Define the spaces $\mathbf{E}, \mathbf{F}, \mathbf{G}, \mathcal{L}(\mathbf{F}, \mathbf{G})$ and the maps $\bar{F}(\mu) \cdot \sigma=\omega^{\mu, \sigma}$ and $B: \mathbf{E} \rightarrow \mathcal{L}(\mathbf{F}, \mathbf{G})$, $B(v, \omega)=v \omega_{z}$ as in the proof of Corollary 2.38. We have that \bar{F} and B are C^{∞}. Define the map $H: \mathbf{E} \rightarrow \mathbf{G}$ by $H(\mu):=f^{\mu}$.

Claim. H is differentiable and $D H(\mu) \cdot \nu=\omega^{\mu, \nu} f_{z}^{\mu}$, i.e.,

$$
\begin{equation*}
D H(\mu)=\bar{F}(\mu) \circ B(\cdot, H(\mu)) \tag{2.42}
\end{equation*}
$$

Suppose that the claim is true. From formula (2.42) we have that if H is r-times differentiable, then $D H$ is r-times differentiable and hence H is $(r+1)$-times differentiable. By the claim, the induction starts at $r=1$ and then H is C^{∞}.

Proof of the Claim. Let $\mu, v \in \mathbf{E}, \omega:=\omega^{\mu, \nu f_{z}^{\mu}}, h:=f^{\mu+\nu}-f^{\mu}-\omega$. Then

$$
\begin{aligned}
& h_{\bar{z}}=(\mu+v) h_{z}+v \omega_{z} \\
& \omega_{\bar{z}}=\mu \omega_{z}+v f_{z}
\end{aligned}
$$

with $h(0)=h(1)=\omega(0)=\omega(1)=0,|\omega(z)|=\mathcal{O}\left(\left|f^{\mu}(z)\right|^{2}\right)$ and $|h(z)|=\mathcal{O}\left(\left|f^{\mu+\nu}(z)\right|^{2}\right)$. We have that

$$
\begin{aligned}
\|H(\mu+\nu)-H(\mu)-\omega\|_{\mathbf{G}} & =\|h\|_{W^{n+1}}+\|h\|_{\mathcal{F}} \\
& \leq A\left(\left\|\nu \omega_{z}\right\|_{W^{n}}+\left\|\nu \omega_{z}\right\|_{\mathcal{D}\left(\epsilon, p, f^{\mu}\right)}\right) \\
& =A\|B(\nu, \omega)\|_{\mathbf{F}} \\
& \leq 2^{n} A\|\nu\|_{\mathbf{E}}\|\omega\|_{\mathbf{G}} \\
& \leq 2^{n} A\|\nu\|_{\mathbf{E}} A\left\|\nu f_{z}^{\mu}\right\|_{\mathbf{F}} \\
& \leq 2^{n} A\|\nu\|_{\mathbf{E}} A 2^{n}\|\nu\|_{\mathbf{E}}\left\|f^{\mu}\right\|_{\mathbf{G}}
\end{aligned}
$$

with $\|f\|_{G}=\|f\|_{W^{n+1}}+\left\|f_{z}\right\|_{\mathcal{D}\left(\epsilon, p, f^{\mu}\right)}$. By considering small bump functions λ as in Proposition 2.24 (v), one can show that $f \in W^{n+1, p}(R)$, hence $\|f\|_{W^{n+1}}<+\infty$. We have that $\left\|f_{z}\right\|_{\mathcal{D}\left(\epsilon, p, f^{\mu}\right)}=\|1\|_{\mathcal{D}_{\epsilon, p}}<+\infty$. Therefore,

$$
\lim _{\nu \rightarrow 0} \frac{\|H(\mu+\nu)-H(\mu)-\omega\|_{\mathbf{G}}}{\|\nu\|_{\mathbf{E}}} \leq \lim _{\nu \rightarrow 0}\left(2^{n} A\right)^{2}\|\nu\|_{\mathbf{E}}\|f\|_{\mathbf{G}}=0
$$

And the linear map $D H(\mu): \nu \mapsto \omega$ is continuous because

$$
\|\omega\|_{\mathbf{G}} \leq A\left\|v f_{Z}^{\mu}\right\|_{\mathbf{F}} \leq 2^{n} A\left\|f^{\mu}\right\|_{\mathbf{G}}\|v\|_{\mathbf{E}}
$$

This proves the claim.

Acknowledgments

I want to thank F. Ledrappier for proposing the problem and P. Jones for some useful comments.

References

[1] Ahlfors, L.V. Quasiconformal Mappings, Van Nostrand Co., New York, 1966.
[2] Ahlfors, L.V. and Bers, L. Riemann's mapping theorem for variable metrics, Ann. Math., 72, 385-404, (1960).
[3] Anderson, M.T. The Dirichlet problem at infinity for manifolds of negative curvature, J. Diff. Geom., 18, 701-721, (1983).
[4] Anderson, M.T. and Schoen, R. Positive harmonic functions on complete manifolds of negative curvature, Ann. Maths., 121, 429-461, (1985).
[5] Bers, L. Riemann Surfaces, Courant Institute Notes. New York University Press, New York, 1957-1958.
[6] Ballman, W., Gromov, M., and Schoeder, V. Manifolds of Non-Positive Curvature; Birkhäuser, Boston, 1985.
[7] Bowen, R. and Ruelle, D. The ergodic theory of Axiom A flows, Invent. Math., 29, 181-202, (1975).
[8] Chavel, I. Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.
[9] Contreras, G. Regularity of topological and metric entropy for hyperbolic flows, Mathematische Zeitschrift, 210, 97-111, (1992).
[10] Doubrovine, B., Novikov S., and Fomenko, A. Géométrie Contemporaine Methods et Applications, Ed., Mir, 1982.
[11] Farkas, H.K. and Kra, I. Riemann Surfaces, Graduate Texts in Math., 71, Springer-Verlag, Berlin, 1979.
[12] Ghys, E. Flots d'Anosov sur les 3-variétés fibrées en cercles, Erg. Th. Dynam. Syst., 4, 67-80, (1984).
[13] Hirsh, M., Pugh, C., and Shub, M. Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin, 1977.
[14] Hurder, S. and Katok, A. Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Publ. Math. I.H.E.S., 72, 5-61, (1990).
[15] Katok, A. Four applications of Conformal Equivalence to Geometry and Dynamics, Erg. Th. Dynam. Syst., 8*, 139-152, (1988).
[16] Kaimanovich, V.A. Brownian motion and harmonic functions on covering manifolds. An entropy approach, Soviet Math. Doklady, 33, 812-816, (1986).
[17] Kifer, Y. Brownian motion and positive harmonic functions on complete manifolds of non-positive curvature, in Pitman Research Notes in Math., Logman, 187-232, (1986).
[18] Kifer, Y. Harmonic Functions on Riemannian Manifolds, in Contemporary Mathematics, 159-172, 1988.
[19] Klingenberg, W. Riemannian manifolds with geodesic flow of Anosov type, Ann. Math., 99(2), 1-13, (1974).
[20] Kifer, Y. and Ledrappier, F. Hausdorff dimension of harmonic measures on negatively curved manifolds, Trans. Am. Math. Soc., 318, 2, 685-704, (1990).
[21] Ledrappier, F. Ergodic properties of Brownian motion on covers of compact negatively-curved manifolds, Boletim da Soc. Bras. Mat., 19, 115-140, (1988).
[22] Ledrappier, F. and Young, L-S. The metric entropy of diffeomorphisms. Part I: Characterization of measures satisfying Pesin's entropy formula. Ann. Math., 122, 509-539, (1985).
[23] Manning, A. A relation between Lyapounov exponents, Hausdorff dimension and entropy. Erg. Th. Dynam. Syst., 1, 451-459, (1981).
[24] Mañé, R. On a theorem of Klingenberg. On Dynamical Systems and Bifurcation Theory (Rio de Janeiro, 1985). Pitman Research Notes Ser., 160, 319-345, (1987). Logman Sci. Tech., Harlow, (1987).
[25] Nag, S. The Complex Analytic Theory of Teichüller Spaces, John Wiley \& Sons, New York, 1988.
[26] Prat, J.J. Etude asymptotique et convergence angulaire du movement brownien sur une variet'e à courbure négative, C.R.A.S. Paris.
[27] Rohlin, V.A. On the fundamental ideas of measure theory. A.M.S. Translations, 10(1), 1-52, (1962).
[28] Sullivan, D. The Dirichlet problem at infinity for a negatively curved manifold, J. Diff. Geometry, 18, 723-732, (1983).
[29] Varopoulos, N.T. Information theory and harmonic functions, Bull. Sc. Math., 2nd serie, 110, (1986).
[30] Young, L-S. Dimension, entropy and Lyapunov exponents, Ergod. Th. Dynam. Syst., 2, (1982).

Received May 15, 1992

CIMAT, P.O. Box 402, 36.000 Guanajuato, GTO, Mexico
e-mail: gonzalo@cimat.mx

