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The Hausdorff Dimension of the Harmonic 
Class on Negatively Curved Surfaces 

B y  Gonzalo Contreras 

ABSTRACT. We study the regularity o f  the Hausdorff dimension of  the harmonic class of  a surface M of  

negative curvature as a function of  the riemannian metric. We prove that it is a C r-3 function of  the metric 

in the Banach manifold of  C r riemannian metrics on M. We also prove regularity results for  some asymptotic 

quantities associated to the Brownian motion on l~I. 

1. Regularity of the harmonic class 

1.1. Introduction 

In the last years there has been increasing interest in potential theory on simply connected man- 
ifolds ~r of  bounded negative curvature. Anderson [3], Anderson and Schoen [4], and Sullivan [28] 
have proven that the Dirichlet problem on Af can be solved for continuous data on the sphere at 
infinity S ( ~ )  of ~r. In [17]. Kifer gives a probabilistic proof of this result, relating it to the Brow- 
nian motion on M. When M is the universal cover of  a closed manifold of  negative curvature M, 
Ledrappier [21] related some asymptotic quantities associated to the Brownian motion on M with 
ergodic quantities associated to the geodesic flow of M and obtained rigidity results tbr the metric 
on M (see Theorem 1.2). For example, if (p, 0) ~ ]R + x {v c Tx~ll [vl = 1 } are the geodesic 
polar coordinates about x of  a point z : exp x p 0 c 34, and A(x, z) is the function defined by 

dV(z) = A(x, z) dp dO, where dV is the volume element of  Af, then for almost every Brownian 
path &(t) on M we have the same limit: 

)~ = lim log A (x, &(t)) 
, - + ~  d ( x , ~ ( t ) )  ' 

where d(x, y) is the distance function on ~/. We restrict ourselves to the case of  the universal cover 
of  a closed surface and consider )~ as a function of the riemannian metric g. We prove that the map 
g ~-+ )~(g) is C r-3 when g varies in the C r topology. 

Solving the Dirichlet problem on A) for boundary data on S ( ~ )  gives rise to harmonic measures 
COx associated to each point x of  M. All these measures are absolutely continuous with respect to 
each other and define a measure class on S ( ~ ) .  Since, in the case of  surfaces, the sphere at infinity 
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has a natural C 1 structure, the Hausdorff dimension of the harmonic class HD(wg) is well defined. 
It gives a measure of the deviation of g from a metric of constant curvature (cf. Katok [15]). We 
prove that the map g ~+ HD(wg) is C r 3 varying g in the C ~ topology. 

The actual condition that we need on the riemannian metric g on M is that the geodesic flow ofg  
is Anosov. This allows some sets of positive curvature but not conjugate points (cf. Klingenberg [19] 
or Marl6 [24]). We state the theorems in this setting. 

1.2. Notations and statements of results 

Let (M, g) be a closed surface of genus g > 2 endowed with a riemannian metric whose 
geodesic flow is Anosov, for example, a metric with variable negative curvature - b  2 < K < - a  2. 
Let rc : 3) --+ M be its universal cover with the metric induced by ~z and (M, g). Let SgM (resp. 

Sg3)) be the unit tangent bundle of (M, g) (resp. (3), ~ the lift of g) with the natural projection 

p : SgM -+ M (resp. /5 : Sg~i --+ 3)). Let F = 7rl (M) be the group of deck transformations of 3). 

The harmonic class 

Two geodesics y and ~ in 3) are said to be equivalent if supt_> 0 d(y  (t), 77 (t)) < +oo. The space 

of equivalence classes is called the sphere at infinity and is denoted by S(cx~) (see, e.g., [6]). For 2 
in S/I) let Y2 be the geodesic in 37/defined by (Y2 (0), y~ (0)) = 2.  Denote by r : $3) -+ S ( ~ )  the 

map that associates to each 2 ,  the class of Y2" For x in 3), the restriction rx of r to Sx3) =/5-1{x} 

is a homeomorphism between Sx3) and S (~ ) .  The cone topology on 3) U S(ec) is obtained by 
adding to the topology of 3) and S(ec) the open sets C(A, R) := r(A) N Nt>R expy(tA), where A 

is an open subset of S~3). 

Let q~ : $3) x R --+ $3) be the geodesic flow of (3), ~), ~t(X) = (y2(t), y'2(t)) and r : 

SM x IR --+ SM be the geodesic flow of (M, g). Given 2 c $3), the weak stable manifold of 2 is 
defined by 

#s(2) := { ~? s 3 )  sup < }. 
t>0 

I~ s (2)  is a C 1 submanifold of $3) homeomorphic to R 2. The stable foliation y s  = { W s (X) I X 
$3) } is F-invariant and projects onto the stable foliation U s = {WS(X)[X ~ SM }, Ws(TrX) := 

Jr (1~ s (J))), for the Anosov flow Ct on SM. Since dim M = 2, the foliations 5 ~s, 5 cs are C 1 (see [13] 
or [14]). The strong unstable manifold 

is the negative horosphere passing through 2 ,  which is a F-invariant embedded submanifold of $3) 
homeomorphic to IR and projects onto the strong unstable manifold WUU(rcX) = (ffz uu (2))  for 

rr(X). They form a foliation ~_uu = { ffzuu(x)[ X E $3) }, called the strong unstable foliation 
or the horospheric foliation which is transversal to the stable foliation. The spheric foliation S = 
{ S x M l x  ~ M}  is also transversal to ys .  The restrictions r : I~uu(2) ~ S(ee) - {r ( -X)}  
and Vx : Sx)(4 --+ S(oc) are homeomorphisms whose transition maps r[ffz,,(2 ) o (v[~uu(~)) -1, 

r ]ffz,, (2) o Ty ~ , rx o r~ 1 are the holonomy maps of the stable foliation, i.e., the diagram 
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commutes. Since the holonomy maps of 5 s a r e  C 1 , this gives a natural C 1 s t r u c t u r e  to S(ec).  

The Laplacian operator on ~Q is the operator A~0 = div(grad(9)) on C2(~/,  R), where 

(grad(q)), X) = J~(9), YX e T M  and div(F)  is the trace of Y ~-+ VyF,  the riemannian con- 
nection on a vectorfield F : ~Q --+ T~r.  The Dirichlet problem Ag) = 0, q)ls(~) = f can be solved 
for any f : S(ee) ~ R continuous (see [3, 4, 28], or [17]). Let H f  = q) be the solution to the 
problem. For x c 217/, the harmonic measure at x is the unique Borel measure COx on S(ec) such that 

f 
( H f ) ( x )  = I f dwx 

Js (co) 

for any f ~ C ~  R). All these measures are absolutely continuous with respect to each other. 

Their equivalence class is called the harmonic class of ~r. 

Given a subset K of a separable metric space (~2, d), the Hausdorffdimension of K is defined 
to be 

H D ( K )  

ms(K) 

:=  i n f { 3 > O [ m , ~ ( K ) = O } ,  

:: liminf{  diov  },  o 
v~o 

where the infimum on ms (K) is taken over all open covers 69 of K with diam (_9 < E. Given a Borel 
probability measure/z  on (f2, d), the Hausdorff dimension of /z  is defined to be 

HD(I*) := inf { H D ( A )  [/z(A) = 1 } .  

This number is constant in an equivalence class of (absolutely continuous) probabilities. 

Since C 1 maps preserve Hausdorff dimension and HD(Un~=IKn) = SUpne~ I HD(Kn),  we 
can define the Hausdorffdimension of the harmonic class to be HD(co) := HD(cox o r y  1) = 

HD(cox o (rl#,,u(2)) -1)  for any x, y 6 3), 2 6 $57/. We write HD(cog) when we want to make 
explicit the dependence of HD(co) on the riemannian metric g of M. 

Kifer and Ledrappier [20] proved that for a simply connected complete riemannian manifold 37I 
of  bounded negative sectional curvatures - b  2 < K < - a  2, the Hausdorffdimensions HD(cox o rx -1) 

(which a priori depend on x e ~r because the maps rx o r y  1 are only H61der continuous) are all 
positive. Actually, they are all equal by Remark 1.5. 

Let R r (M) be the Banach manifold of  C r riemannian metrics on M with the C r topology and 
let A ~ (M) be the open subset of C r metrics whose geodesic flow is Anosov, in particular, metrics 
with negative curvature. Here we prove the following: 

T h e o r e m  1.1. The map A r (M) 9 g ~+ HD(cog) c • is C r-3, r >_ 3. 
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The Brownian motion 

Let (M, g) be as above. Denote by ~ = C~ +oo[ ,  A)) the space of continuous paths on 3) 
with the topology given by uniform convergence on compact subsets. For x ~ M let Px be the Borel 
probability on ~2z := [ (5 ~ ~ I (5(0) = x ] defined by 

Px [(5 e ~ 1(5(0) = x, cS(t) E A ] = fA p(t, x, y) drag(y) 

for any t > 0 and any Borel subset A C 5), where m e is the volume element of/~r  and P : 

R x M x 3) --> R is the fundamental solution of the heat equation on 3): 

Op 
- -  + V p ( t , . , y )  = 0,  
Ot 

l i m l p ( t ,  x, y) f ( y )  dmg(y) = f ( x ) ,  
t$o J ~l 

for any continuous function f : /1) --+ R. Since the heat kernel satisfies (see [8, Theorem VIII.4, 
VIII.5]): 

(i) p(t, y , x )  = p( t , x ,  y) > O, V t >0, V x, y c iVI , 

(ii) f; t  p ( t , x , y ) d m g ( y ) =  l, Vg >0, V x, y e 3 )  , 
(iii) f ~  p ( s , x , y ) p ( t , y , z ) d m g ( y ) = p ( s + t , x , z ) ,  Vs, t>O,  Vx, y , z ~ 3 ) ;  

we have that the family 7 ) = { Px Ix ~ 3) } of probability measures defines a continuous Markov 
process on 3) called the Brownian motion on M. The induced probabilities P~r(2) = Pz o 7r on 

~2 = C~ +ec[ ,  M) define the Brownian motion on M. 

Since the geodesic flow Ct is Anosov, 3) cannot have conjugate points and exPx Tx3) --+ 3) 
is a diffeomorphism for every x E M (see [19] or [24]). For x ~ /17/, we consider geodesic polar 
coordinates about x, i.e., we identify Tx 3) with ]0, +oo[  x Sx 37/U {0} and a point z c M is described 
by the polar coordinates of exp21 (z). For (5 E ~,  denote by (r((5, t), 0((5, t)) the geodesic polar 

coordinate about x of the point (5(t)= For x 6 3), let )~x be the Lebesgue measure on Sx M and denote 
by Ag(x, z) the function on M x M such that 

dmg (expz t~) : A (x, (t, ~)) dtd)~x(~) 

for ~ e Sx 3). Let Vg (x, t) be the volume of the ball of radius t about x: 

Vg(x, t) = Ag (x, (s, ~)) d)~x(~) ds. 
10 

The following theorem has been proved by several people: 

Theorem 1.2. 

[26] For all x ~ 1(4, Px-a.e. (5 E ~2, 0((5, t) converges as t goes to infinity towards some limit 
0((5, +e~) e SxM. 
The induced measure on S(ec) ~ Sxi(/i byO(., +oo) : ([2, Px) --+ Sx3) is the harmonic 
m e a s u l ' e  09 x . 

[29] There exists a number a > 0 such that for all x E iVI, Px-a.e. (5, 
1 r((5,  t )  = a ( g ) .  lira 7 

t - + + o o  
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[16] There exists a numberfi > 0 such thatforallx ~ M, Px-a.e. ~o, 
I log p( t ,  x,  Fa(t)) = fl(g).  lira - 7  

t--++r 

[21] There exists a number ;I > 0 such that for all x c M, Px-a.e. if), 
1 log a(x ,  (5(t)) = v(g). lim 7 

t-++r 

[21] In general fi < g and fi < ot h, where h is the topological entropy of  the geodesic Bow on 
SM. 

[21] Each of  the equalities fi = V or fl = oth hold i f  and only i f  the surface M has constant 
curvature. 

We prove the following slightly more general result than Theorem 1.1: 

Theorem 1.3. 

fi(g) c r - 2 .  (i) The mapA r(M) ~ g ~  ~ E R i s  

?/(g) c r -  3. (ii) The map A r (M) ~ g ~+ ~(g) E R is 

(iii) The Hansdorff dimension of  the harmonic measure is H D(cog) = ~(g) g(g) " 

Since for surfaces the harmonic measure on Sx~I .~ S(cx)) is absolutely continuous with respect 
to the Lebesgue measure only in the case of constant (negative) curvature and in this case H D  (o)) = 1, 
then HD(cog) can be seen as a measure of  the deviation of g from a metric of  constant curvature 
(cf. [15]). 

1.3. Equi l ibr ium states 

Given a H61der continuous function F : SM -+ R, there exists a unique ~b-invariant probability 
measure/ZF on SM, called the equilibrium state of (q~, F)  such that it maximizes the functional 

v v-+ hv (~bl) q- f Fdlz  

over all the ~b-invariant Borel probability measures on SM, where hv (~bl) is the entropy of r with 
respect to v (see [7]). 

For X ~ SM define the local stable and strong unstable manifolds of X by 

w:(x) : v t>o}  

W~u(x) = t ] Y E SM d(X, Y) <_e and 2 ~ d ( ( p - t ( X ) ' * - t ( Y ) )  = 0 [ .  
t l 

If  e > 0 is sufficiently small, then they are transversal embedded discs in S M with dim W s (X) = 2, 
dim W uu (X) = 1. For e > 0 small there exists a partition ~ of S M with diam ~ < e such that it is 
subordinate to 5 cuu, i.e., ~(X) C W~ uu (X) for all X ~ S M (see [22]) and such that it is a measurable 
partition, i.e., the quotient space SM/~ is separated by a countable number of measurable sets 
(see [27]). Then (cf. [27]) there exists a system of conditional measures associated to it, i.e., for #-  
a.e. X E SM there exists a probability measure/xx --/X~(x) on ~(X) such that for any Borel set A on 
SM, the function X ~ lz~(x)(A M ~(X)) is measurable and #(A)  = fSM IX~(x) (A n ~(X)) dlz(X). 

If /z  F is an equilibrium state and 12 is the holonomy map of the stable foliation 5 cs from (a subset 
F and F 12-1 of) ~(X) to ~(q~t(X)): s = W~(Y) N ~(~bt(X)), then the measures/Z~(x) /x~(r o 
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are equivalent on ~(X) M s  (~(~bt(X))). It follows that the measure v on ~(X) defined by v(A) = 
~F (i jyc A W s (Y)) is equivalent to F /Z~(x). 

Observe that if H f  = ~0 is the solution of  A~p = 0, ~P[s(~) = f on &t and F E r ,  then 
H ( f  o F) = (F f )  o F so that the harmonic measures satisfy cOt(x) = COx o f , - 1  where f" is the 

extension of F to S ( ~ ) .  Since for )~ E S/~/, Zlw~.(nr.2) o DF  = f" o r]w~.(2), we have that the 

measures v2 :--- C0p(2) o rw~.(~) satisfy VDr.2 = ~)2 o DF and hence the system { ~2 [ )( E S~t  } 
projects to a family of measures {vx IX E SM, }, v ~2 o D~z = ~)2, that we call the horaspheric 
harmonic measure on SM. 

Theorem 1.4 [21]. 

1. The horospheric harmonic measures are equivalent to the conditional measures on local 
strong unstable manifolds of  the equilibrium state #F of  the function 

F(r rX)  = log K(y2(O), g2(1) ,  r ( J f ) ) ,  (1.4.1) 

where K : 3) x M x S(oc) -+ R is the Poisson kernel of  YI (see Section 1.5): tt~(x)F ~ vX for all 
X E S M .  

2. We have, for the Brownian motion in if.l, that y = a f ju dl~F, where 

Ju(X) = ~d [log [det DettTxW~.<x)l]t=O 

In particular ~ is the positive Lyapunov exponent of  (SM, {(~t, t e R},/zF).  

3. We have fl = a h~(~). 

Since Dz~ is a C 1 map and the Hausdorffdimension HD(tt~(x) ) is constant for/z-a.e. X ~ S M  

(cf. [23]), then we have that HD(wg) = HD(vx)  = HD(tt~(x) ), /z-a.e. X 6 SM. Ledrappier, 

Manning, and Young (cf. [22, 23, 30]) proved that HD(tzg(x) ) = h,(r  where )~(/x) is the 
positive Lyapunov exponent of  (~b, #) .  In particular, we have that H D (a)g) = fl (g)/g (g). 

R e m a r k  1.5. Ledrappier and Young [22] proved that in higher dimensions, dim SM > 4, the 
Hausdorff dimension of conditional measures on W uu, HD(tt~(x)), of invariant probabilities it, are 
the same #-a.e. X c SM. This implies that in dim M > 2, even when the holonomy maps of  the 
stable foliation ~s  are only H61der continuous and hence the sphere at infinity has only a H61der 
structure, the Hausdorff dimension of the harmonic class is well defined (and positive). [ ]  

We are going to use the following: 

Theorem 1.6 [9], 

Let X be a C r vectorfield on a compact manifold N whose flow is Anosov. Let ~r (N) be the 
Banach space of  C r vectortields on N and Ca(N, R) be the Banach space of  ~-H61der continuous 
functions on N. Let ~ : V c ?U (N) -+ C~ N) be a continuous map from a neighborhood); 
of  X o f  vector~elds whose flows are Anosov. For Y E V let ur be the topological equivalence of  
Proposition 1.13, and suppose that the map F(Y)  := ~(Y)  o ur is such that F : V C ~r (N) --~ 
C ~ (N, R) is C s-1 , s <_ r. For Y ~ V, let tzy be the equilibrium state for (Y, ~p (Y)) and h (tzr) the 
metric entropy of  Y with respect to/zy. Then there exists a neighborhood U C )2 of  X & )U (N) 
such that the maps 
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(i) Lt ~ Y ~ h(Izy) E R is C s-1 , 

(ii) bl 9 Y ~--> Ixy c ( C a ( N , R ) ) *  i s C  s-1 , 

(iii) bl ~ Y e+ k ( / z g ) : =  f ~ [ l o g l d e t  D(r  c R is C t with t : =  
min{s - 1, r - 2}, 

where (p, t) w-> ( r  is the llow o f Y  e H and E}" (p )  = TpW~U(p) C TpN is the unstable 
subspace for Y at p. 

Moreover, i f F  :)2 C 2Er(N) -+ Ca(N,  IR) is C s-1 and F :)2 C 2U(N) --+ Ca(N,  R ) i s  C s, 

then the m a p H  ~ Y ~+ P ( F ( Y ) )  ~ R is C s, where P ( F ( Y ) )  is the pressure function e ( r )  for the 
ltow o f  Y. 

Sketch of the proof of Theorems 1.1 and 1.3 

We will apply Theorem 1.6 to our case: let Rr(M)  be the Banach manifold of  C r riemannian 
metrics on M. Given g ~ Rr(M) ,  the geodesic flow of (M, g) is generated by a C r-1 vectorfield 
X (g). Fix a riemannian metric go ~ A t ( M )  and a small neighborhood go c "12 C ,Ar (M). Let 
Z M  = SgoM be the go-unit tangent bundle. For g c )2, using the orthogonal projection SgM -+ 
E M ,  conjugate the geodesic flow for g to a flow on E M  with vectorfield Y(g).  Since this projection 
is differentiable, entropies and Lyapunov exponents for Y(g)  are the same as the corresponding ones 
for X(g) .  We will prove (cf. Lemma 1.12) that the map TU(M) ~ g w-~ Y(g)  ~ Y f - I ( E M )  is 
C ~ .  Let Fg be the function defned  in Theorem 1.4. In Section 1.7 we will prove that the map 
7"~r(M) ~ g e+ Fg o Ug C Ca(P~M, R) is C r - 2  for some 0 < a < 1 and the map 7U(M) 9 g 
Fg o Ug ~ C ~  R) is C r-1.  Then using Theorem 1.4 and Theorem 1.6, we obtain Theorems 1.1 
and 1.3. [ ]  

1.4. Conformal equivalence 

Given an initial riemannian metric go on M, the existence of isothermal coordinates (see below) 
implies that we can find an oriented atlas on M in which locally we can write go = f (x, y) (dx |  + 
dy @ dy ), where f is a smooth scalar function. Writing z = x + iy we obtain an analytic atlas. Indeed, 
for other isothermal charts (u, v), writing w = u + iv and go = h(u, v) (du | du + dv @ dr)  we 

have that the derivatives of  the transition maps w o z -  1 must satisfy r 0 (u, v) ] r ~ (., v) ] T f(x,y) Id,  
LO(x,y)J k a(-7~,y) / h(u,v) 

which gives the Cauchy-Riemann equations for dw 27x' 

This gives to M and/1) the structure of  riemann surfaces. The uniformization theorem [11] 
implies that 117/is conformally equivalent to D = {z ~ C I Izl < 1 } with the euclidean metric. We 
identify D ~ 3) so that the covering map 7r : D --+ (M, go) is conformal, the deck transformations 
are holomorphic and the lifted metric go can be written as go = Po (dx | dx  + dy | dy) ,  where 
Po : D --> ]R is a positive smooth function. Denote by z = x + iy : M --> D this coordinate system. 

Consider the lift ~ to 37/of another riemannian metric g on M. We look for coordinates 
w : a )  --+ D such that "~ = p [dz + l* dgl 2 where p : ~r  _+ R + a n d / ,  : A1 --+ C is a smooth 
function such that I/x(p)l < 1 for all p ~ a).  Writing ff in the coordinates z = x + iy as 

= A d x  | dx  + 2 B d x  |  + D d y  | d y ,  

we have 

+,.,2),dz,2 +2 Re( dz2) 
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1 with p - ~. Form this we get that 

A - - D  B A --]- D 
- - - z  , / ~ = - z  , l + l j ,  I 2 -  

4 2 B 
- - - - f t .  

We choose the solution 

(A -~ D) - -  2 v / ~  - B 2 

fl = 2 B (A ec D) 2 - -  4 (AD --  B 2)  = 2 B 

2 B  A - - D  

P + q  P + q  

p - - q  
p2 _ q2 

( t .7)  

wherep :=A+o>Oandq:=2av / -a - f -ZB2>Obecause thema t r i xA=IA  B D B I is p~ 

definite. Observe that we get that 

2 p  2 
1 + [/zl 2 - -  - - - -  ~ 2  q_ p + q  l + p  

because q > 0, and then I/z[ < 1. 

Let Ck(r) be the Banach space of C k functions f : { z ~ C [ Izl < r ] ~ D with the C k norm 
and let C~ D) be the space of continuous functions of  the open disc to itself with the C o norm. 

L e m m a  1.8. F o r a l l O  < r < 1 andallk >_ O, themaplz : 7-Ok(M) - +  C~(r )  A C~ D) given 
by g w-~ Ix(g) o Z - 1  is C ec. 

P r o o f .  From formula (1.7) it is clear that the map /z  : T@(M) --~ Ck(r) is C ~ .  Observe that the 
equation ~ = p [dz + IZ d-i] 2 has exactly two solutions for/z at each point, one with J/z] > 1 and one 
with I/x] < 1. We choose the one with I/x] < 1. Let h be a deck transformation and write w = h(z). 
The map h is holomorphic, so that h2 = 0. Since h is a g-isometry, we have that 

p Idz + I* d2[ = p(w) Idw + l*(w) d~[ 

dz nzh~ d2 = (poh)Ihzl + ( / z o h )  7 -  . 

Therefore, 
h z 

/x o h = / z _ - - .  
hg 

Let 7) be a fundamental domain and choose r0 > 0 such that D C [ ]zl < r0 ]. Choose any 
point/5 ~ D =/17/, then 

hz(q) 
Ilz(gD (/5) - / z ( g 2 )  (/3)1 = I /z (g0  (q) - / z ( g 2 )  (q)l 

= [/z(gl)(q) - # (g2) (q) l ,  

where h is a deck transformation such that/5 ~ h(D) and q ~ D is such that h(q) =/5 .  Therefore, 

II~z (gl)  - t* (g2)llco(~,~) _ IIp~ (gl)  -- /* (g2)llc0(r) �9 

This implies that T~k(M) --+ C~ ]I)) is C c~ 
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1.5. T h e  Po i s son  kerne l  

Given a riemannian metric g on M, the Laplace-Beltrami operator can be written in local 
coordinates as 

A=F  iJ Oxia J 
i,j k 

where 
3gim 3gmj Ogij ) gmk 

OX i OX m 

are the Christoffel's symbols of  g and [gij ] = [gij ]-1 is the inverse matrix of  the local representation 

of g = ~ gij (dx i | dxJ).  If  we multiply a metric g on M by a smooth function )~ : ~Q ~ R +, the 
Laplace-Beltrami operator for )~g takes the form: 

A)~g 
0 2 O ) 

i,j k 

- g , o x - - - ;  

1 

- X Ag.  

so that the set of harmonic functions for g coincides with the set of  harmonic functions for Xg. 

The Poisson kernel on 3), K : ~r x 3) x S((x~) -+ R is defined as the Radon-Nikodym 
derivative of the harmonic measures: 

doAy 
K (x, y, O) :=  - ; - ~ ( 0 ) .  

ao)x 

Fix a riemannian metric go on M and its lift go to ~Q. Suppose that its geodesic flow is Anosov. 
Fix an isothermal chart z : 0Q, go) --+ (D, e), where e is the euclidean metric (actually its conformal 
type) on ID. 

L e m m a  1.9. 

There exists a neighborhood bl o f  go in the C3-topology such that for all g ~ bl the chart z 
induces a homeomorphism z : Sg(oe) --+ S 1 = 3D C C o f  the sphere at inlinity o f  g and S 1 by 
Z[yg] :=  lim z o yg(t). 

t--++ec 

Moreover, 

(i) The extension z : ~I U Sg (cr --~ ~ is a homeomorphism. 

(ii) The map z : Sgo(OC ) -~ S 1 is H61der continuous. 

Proof .  

(i) In [12] it is proved that for any metric on M whose flow is Anosov, the map z : M U Sg(o0) ~ ]I} 
is a homeomorphism. It is also proved that any two Anosov geodesic flows for M are topologically 
equivalent. 



542 Gonzalo Contreras 

(ii) Let 4) : Sg~l x R --+ Sg2~/l be the lift of  the geodesic flow for g and let p be the g-distance on 

Sg~i. Let ap �9 E M  x R --+ Z~Q be the lift of the geodesic flow for the metric gl with constant 

curvature K = - 1  and let d be the hyperbolic distance on N3)  = SglM. Let h : SgM --+ E M  be 

a topological equivalence of the geodesic flows for g and gl, and let/z : Sgi(4 --+ E M  be its lift. 

Since Sg(eO) is compact, it is enough to prove that for any w ~ Sg~l, the map H �9 ~ '""(w,  4)) 

Sg (oe) z> S1 ~ ffzuu (h(w), ap) is H61der continuous on a neighborhood of w. We use local strong 
unstable manifolds: 

I ~ ( p ,  ap) := {q e E/f /  d ( p , q ) < f i a n d  t~-c~lim d (ap t (p ) ,ap t (q ) )=O} .  

We have that H = Po/~whereP : Do c E~I---> W~U(h(w), ap) is the projection along the flow lines 

of !/r, Do = { z E l~U(h(w), ap)! d(z, h(w)) < 0 }, and ffZU(h(w), ap) = Utc~t apt(VC""(h(w), ap)) 
is the weak unstable manifold of h(w). Fix e > 0 small and such that if p, q E ffZ"(h(w), ap), 
d(p,  h(w)) < e and d(q, h(w)) < E, then there exists exactly one point in the intersection 

{w}=W~r  ap) A{apt(p)l  - 4 ~  < t  < 4E} ~ r  

Let 0 := 12~. For the hyperbolic metric gl we know that P is C 1. Let B > 0 be such that 
d(P(x) ,  P(y))  < B p(x, y) for all x, y E DO. We need the following: 

Claim. 

(a) There exists 0 < a < A such that i f  x ~ Sg =A/I at2d s (x ) > 0 is such that/z(4)(x, 1)) = 
A ap(h(x), s(x) ), then 2a < s(x ) < -f . 

(b) There exists 0 < a < A such that i f  x E Sg~I, T > 2 and s(x, T) > 0 is such that 
h(4)(x, T)) = ap(h(x),s(x, T)), t henaT  < s(x, T) < A T .  

[] 

P r o o f .  For (a) use the continuity of h and the compactness of Sg M. For (b), suppose that T = n +8,  
with n E Z + and 8 E [0, 1[. From item (a) we get that 2a ~ < 2a n < s(x, T) < A n + A < A 2T. 
[ ]  

Let )~ > 0 be such that p(4)t(x), 4)t(y)) <_ e zt p(x,  y) for all t > 0 and all x, y E Sg~I. Let 

> 0 be such that p(x,  y) < 27 implies d(h(x),  h(y))  < E. If x, y E Vg~U(w, 4)) with 8 < e-3Zr/, 
let T := min{ s > O lp(4Js(X), 4)s(Y)) = r/}. This number exists by the expansivity of  4) if ~7 is 

small enough (in fact for any ~/using the conjugacy h). We have that T > 3 and p(x, y) > 0 e-~T. 

There exist continuous functions a, r : R ---> R such that a(0)  = 0 = r(0)  and h(4)(x, s)) = 
ap(h(x), a(x)) , / t (4)(y) ,  t) = ap(h(y), T(t)). By the claim, aT < r(T) _< AT and aT <_ a(T) <_ 
AT.  Since x, y ~ W~"(w, 4)), then/~(x) and/z(y) are in the weak unstable manifold WU([z(w), ap) 

of h(w). Write p := h(x),  q :=/~(y)  and let 

Then 

m : =  W~UU(h(y) )N[apth(x)[ -4e  < t  < 4 E } .  

d (ap~(r~(q), ap~(r)(m)) 

d (O,~r~(P), O~(r~(q)) 

> e r(r) d(q, m) > e a r  d(q, m) 

= d ( h 4 ) T ( x ) , h ~ T ( y ) ) < E  
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e ar d(q, m) < d ( ~ ( r ) ( p ) ,  7tr(r)(q)) + d (gr~(r)(p), apr(r)(m)) 

< e + l ( r ( T ) - r ( T ) l + d ( p , m )  

_< e + 2 A T + 4 e  

d(q ,m)  < ( 5 e + 2 A T )  e -aT < e - ~  T 

if T > To := To(e, A, a) > 0. If  we choose 0 < 8 < e -zr~ then x, y ~ W~U(w, O) implies that 
T > To. In particular 

d(q ,m)  < e-~ r <_ (rle-Zr) ~ rl-~ <_ rl-C~ p(x ,y )~  

foroe = 2~" We have that d(h(w),  m) < d(h(w),  p) + d ( p ,  m) <_ e + 4 ~  < 12E = 0. Then 

d (H(x),  H(y))  = d (P(p) ,  P(q))  = d (P(m), P(q)) 

< Bd(q ,  m) < B rl -~ p(x, y)C~. 

This proves Lemma 1.9. [ ]  

Let g 6 / g  be another metric on M and ~ i t s  lift to 3). Suppose that f : (D, S 1) -+ (D, S 1) is 
a homeomorphism which is differentiable on D and satisfies 

fz = ~(g) L ,  

where/x(g) is from Section 1.4. Then for w = f o z, the metric ~ is written as }" = 3~ [dw [2. By the 
remark above, the ~-harmonic functions on D in the coordinates w are the harmonic functions for 
the euclidean Laplacian on II). 

From now on we ident i fy /~  ~ II) and Sg(eo) ~ S 1 for any metric g on/g,  using z. 

L e m m a  1.10. The Poisson kernel for ~ on ~3 U S 1 ~ ~i U Sg(cx~) is given by 

k(x, y, O) = P ( f ( x ) ,  f ( y ) ,  f(O)) 

for any x, y ~ D, 0 ~ S 1, where ~ is the Poisson kernel for the euclidean Laplacian 

( e i~ + w e g~ - z ) 
P(z, w, 0) = Re \ ~ - 7 ~ w  �9 eiO 

P r o o f .  For z 6 D, let co z be the ~-harmonic measure at z and )~z be the euclidean harmonic 
measure at z. Let ~o : S 1 -~ 1R be a continuous function. By Lemma 1.9, it corresponds to a 

continuous function Sg(eC) --~ R. Let ~o(z) be its ~-harmonic extension to ~ ,  A~(~0) = 0. Let 
4~(w)  = ~o ( f  -~  ( w ) )  be the function ~o, written in the coordinates w = f(z). L e t  A be the euclidean 
Laplacian on D. Then Aq~ = 0 and hence 

f 9 dp ( f ( y ) )  = f rk(O) d)~f(y)(0) da) y ~o(y) 
Js 1 

= fS ~ ~ 1 7 6  1 d)~f(y) 

t11 ~o o f - l ( O )  I ? ( f ( x ) ,  f ( y ) ,  O) d)~f(x)(O) 

fs1 (~9of-1) ( k o f - l )  d)~f(x) ~ fsl~O.k da)x 
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where k(O) := I?(f (x), f (y), f (O)). Therefore, 

dcoy 
k(x, y, O) := : - - - ( 0 )  = ]? ( f  (x), f (y), f (O)) . 

aCOx 
[] 

1.6. Stability of the geodesic flow 

Fix a C r riemannian metric go ~ A ~ (M) C 7~ r (M) such that the geodesic flow of go is 
Anosov. Let E M  be the go-unit tangent bundle E M  := { v ~ T M  I go(V, v) = 1 }. Given another 
riemannian metric g ~ 7~r(M) and its unit tangent bundle SuM = { v ~ T M  I g(v,  v) = 1 }, define 

1 
the map F : SgM --~ E M  by F(v) = v (go(V, v)) -~ �9 Let ~t be the geodesic flow for g and define 

~t :=  F o ~t o F -1.  Then F is a C r conjugacy between ~t and ~bt. 

Given a chart x : U __c M --~ ~2, consider the chart (~, y) = (x, dx) : TU -+ ]R 2 x R 2, with 
~(v) = (Yl, Y2) if v = ~ Yi o~7. In this chart, the geodesic flow for g satisfies 

dx k dyk ~-~FkijYiYj , k = l  2" 
dt =Yk , dt = -  ' ' 

ij 

where 
( Ogje Oei Ogij ) gek 

e 

are the Christoffel symbols for g = y~ gij(dx i | dx j) and [gke] = [gij]-l. 
1 

Let )~(s) = (p(s), {)(s)) e Tp(s)M be an orbit of 7ts. Then F(X(s)) = (p(s), v(s)(go)-7), 
go := go(~(s), ~(s)), and 

d(Fo)O ( d p  1 d~ ~ d 
ds -- -~s ' ~ ds 2(go)3 dsg~ 

d 
-~sgo (?)(s), {)(s)) 

1 ~ F.k.1) iv j  0 
.-e/-Y2 ~ ~J Ox k 

ij 

d vi 
-- ds Y~gi~(P(S)) (s) uJ(s) 

ij 

- -  3 "-~s g ~  
2 (go)7 

~ v  kv iv y - 2  E g~JPike vk vevy" 
Ox 

ijk ijkg. 

If t~(s) = F({;(s)), then ~(s) t~ and x/go(V, v) = ~ We have 

dw , 1 ,~/-~F~..wiwJ 0 Cv 3 i~i~ (Og~j ) " " 
ds ~/-gvr~ z''~ *J Ox k \'~x~ - 2 E g~kp~ij ij 2~Cg (go) ~ "" g 

This is the vectorfield of  7ts, denote it by X(g). Let 3~r-l(]~M) be the Banach space of C r-1 
vectorfields on Z M  with the C r norm. The formula above proves the following lemma. 

L e m m a  1.12. The map ~r  (M) --+ yr-1 (~M) is C ~176 



The Hausdorff Dimension of the Harmonic Class on Negatively Curved Surfaces 545 

We will need the following version of the structural stability theorem: 

Proposition 1.13 [9]. 

Let  X ~ ~r-1 (EM)  be an Anosov  flow, then there exists a neighborhood l; C ~r-1 ( E M ) ,  

0 < ~ < 1 andC ~-2 maps) )  --+ C~r E M ) :  V ~ uy and);  --+ C ~ ( E M ,  [1, + ~ [ ) :  y 
~,/r such that Y o u r  = gr D4~ur. 

Moreover, the corresponding maps Y ~ uy and Y ~-+ Fr for fi = 0 are C r - I  . 

Where C ~ ( E M ,  EM)  is the space of fi-H61der continuous functions u �9 E M  -+ E M  such 

that du(gh(p))lt=O exists and it is fl-H61der continuous endowed with the norm [[u~fi = ]]ull/~ + 

II d~ (u o ct)l] ~ where I[ l[ ~ is the fl-H61der norm for a fixed C r riemannian metric and C~ (r~ M, r~ M) 

is the space of continuous functions u : Z M  --~ E M  such that d ( u  o ~bt) exists, with the norm 

: II u II sup + II ( u o  ll 

Corollary 1.14. For Y E )2 consider the map cry : M --+ JR+ defined by ~ry(uy(p) ,  1) = 
ur  o q~(p, cry(p)), where 7tr is the f low o f Y .  Then 

(i) The m a p L t - +  C ~ ( N M ,  R +) : Y ~-+ cry is C r-2. 

(ii) In particularthe m a p s H  -+ C ~ ( Z M ,  E M )  : Y ~-~ Csr(ug(p),  1) is C r-2. 

(iii) The corresponding maps for fi = 0 are C ~-1 . 

ds V (r (p)).  Consider the Proof. From the equation O(u(p) ,  t) = u ( r  s( t )))we get that 37 -- 

map F : H x C ~ ( E M ,  R +) ---> C ~ ( E M ,  R +) given by F(Y,  cr)(p) = f o  1 ds. Then the ~'r (q~s (p)) 
function cry is characterized by F(Y, cry) = 1. Observe that ( - ~ .  r )  (p) = (gr ( (Os(p) ) ) - l z (p)  

is invertible because gr (r (p)) > 0. Since F is C r, the implicit function theorem implies that 
Y ~-~ cry c C f i ( Z M ,  R +) is C ~-2. The case/3 = 0 is similar. 

For (ii) use the fact that ~r(EM)  ~ C •  x JR, E M )  : Y ~-~ ~g is C r-2 for 0 < y < 1 
and 5Er(EM) --~ C ~  x R, EM)  : Y ~ ~y is C r-1. [] 

1.7. Proof of Theorems 1.1 and 1.3 

We will need the following generalization of a theorem by Ahlfors and Bers which will be 
proved in Section 2. 

Theorem 1.15. Given # : D --+ D measurable with II~ll~ < k < 1 there exists a unique 
homeomorphism o f  the closed disk f ~  = f : D --~ D satisfying f~ = IZ fz ,  with generalized 
derivatives fz ,  fz ,  such that f ( 0 )  = 0, f ( 1 )  = 1, f ( S  1) = S 1 . Moreover 

(i) The map f is HOlder continuous on D and i f  O < r < 1 and # ~ cn(lzl < r, D) then 
f 6 Cn+~(Izl < r, D) f o r someO < e~ = or(k) < 1. 

(ii) F o r a n y n  > 1 andanyO < r < R < 1, t h e m a p L ~ ( D )  n f ~ ( I z l  < R , C )  n {ll/zl[ < 
k } ~ cn+~(r)  M C~(D, D) given b y #  ~-~ f ~  is C ~ .  

We now prove Theorems 1.1 and 1.3. Let g be a riemannian metric in a small C r neighborhood 
of go. Then the map F : SgM ~ E M  of Section 1.6 is a C r conjugacy between the geodesic flow 
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of g and the flow of  X (g). In particular, F maps strong stable and strong unstable manifolds of  the 
geodesic flows to strong stable and strong unstable manifolds of X(g). 

Let Vt(g) be the geodesic flow o f g  and ~0(g) :=  F o ~k(g) o F -~. Let rc : T M  ~ M be the 
projection. Let Pg : Sg M -+ R be Pg (X) = log Kg (Jr X, ~v 7t (g)(X, 1), r~l)) where 2 is a lift of  X 

under p : T M  --+ TM. Let ]~g be the equilibrium state of  Pg for ~(g) .  Consider the measure Vg :=  
F*(l~g), vg(A) = I~g(F -I(A)).  We have for the metric entropies that hvg (~o(g)) = hug (go(g)). 
Since the conjugacy F is differentiable, we have that the Lyapunov exponents of  Vg and/Xg coincide 
)~+(Vg) = )~+(/Zg): 

In particular, the Hausdorff dimension of  the conditional measures on local strong manifolds 
are equal: 

For any ~o(g)-invariant measure v, we have that 

hv(~Og)§ f~ z pgoF-ldv=hlz(l[tg)§ fs Pgdtz, 
M gM 

where v = F* (/x), i.e.,/z ( F - I ( A ) )  :=  v (A). Therefore, the maximum of these numbers is attained 

at v = Vg = F*(lZg). Hence, Vg is the equilibrium state of Gg = Pg o F -1 for ~0g. We have that 

Gg(X) = 

= loggg  ~ ,rr~h ,1 ,rgJ? 

= logKg@(X) , r~ (Og( fg ,  1 ) , vgX)  

: 1)), 
where I? is the euclidean Poisson kernel on D and we consider Jr : T3)  --+ if/ ,-~ D. In order to 
apply Proposition 1.13 we need to see that g P+ Gg o UX(g) E Cfl(~M, R) is C r-2 for some fl > 0, 
where Ux(g) is the topological equivalence of  Proposition 1.13. 

Fix a fundamental domain of  p : II3 ~ ill --~ M and its corresponding lift q : M --+ D. 
Since the C r or C a, 0 < ol < 1 norms of  maps are equivalent to sums of  C r or C a norms of  local 
restrictions of the maps, we do not bother with the discontinuities of this lift q. We have that 

Ggoux(g ) (V)=log]? ( fgyrqug(V) ,  f s Y r ( O g ( q u g ( V ) , l ) , f s r g q u g ( V ) )  �9 (1.16) 

By the structural stability theorem, the ~o-geodesic of  q(V) and the ~-geodesic of q (Ug (V)) remain 

at bounded distance of each other. In particular, their limit on D as t --+ + o c  is the same: 

o(g) := ~2g q ug(V) = rg o q(V) for all g near go �9 

By Lemma 1.9 (ii), the map | : ~ M  -+ S 1 is H61der continuous. By Theorem 1.15, for some 
0 < a < 1, the map g ~ fg ~ Ca(S 1, S 1) is C c~. Therefore, for some 0 < fl < 1 the map 
g ~  f g o |  1,S 1) i s C  ~ .  
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By Proposition 1.13 and Lemma 1.12, for some 0 < ~, < 1, the map g ~ Ug e C Y ( E M ,  E M )  

is C r-~. The maps 7r : T M  -+ TiV/and q : M -+ II3 are C r and by Theorem 1.15 and Lemma 1.8, 
the map g ~ fg ~ cr-~+~ < R, D) is C ~ for some 0 < R < 1 such that 

w I[tg (w, q (M) )  < 4, for some g e 12 } ___ [Izl < R], 

where 12 is a neighborhood of go and s162 is the ~-distance in k~/ ~ II3. Therefore, the map g ~+ 
f g o Jr o q o U g ~ C ~ ( ~ M,  II3) is C r -  2 for some 0 < 3 < 1. Observe that we used here the derivatives 
of fg. For ~ = 0, this map is C r-~. 

By Corollary 1.14, the map g ~ ~g(q Ug(.), 1) = q o q)g(Ug(.), 1) 6 C~ ( E M ,  lI)) is C r-2 

for some 0 < fi < 1 and it is C r-1 for fi = 0. Since g ~ fg 6 cr - l+~( I z l  < R , D )  is C ~ ,  we 

have that the second component of (1.16): g ~ fg o re o q o ,:pg(Ug(.), 1) ~ C ~ ( E M ,  II3) is C r-2 

for some 0 < ~ < 1 and it is C r - 1  for ~ = 0. 

Since P is C ~ ,  from Equation (1.16) we get that the map A r ( M )  D_ H ~ g ~-+ Gg o UX(g) 
Cc~(EM, R) is C ~-2 for some 0 < 0t < 1 and it is C r-1 for o~ = 0. Applying Theorem 1.6, we 
have that g w-~ h(vg) = h(lzg) is C r-2, g ~-+ )~ +(Vg) = )~+(/Xg) is C r-3 and also that g ~ P(q)g) 
is C r- l ,  where P(qgg) is the pressure of Gg for ~rg. [] 

2. Regularity of quasiconformal mappings 

Our aim here is to prove (cf. Theorem 1.15) that if f a  : C --~ C is a/~-quasiconformal map 
normalized by f ( 0 )  = 0, f ( 1 )  -- 1, f ( ~ )  = ~ ,  then the map/~ ~-~ f a  is C ~ ;  where/z  varies in 
the space of C k maps and f ~  in the space of C k+~ maps. We obtain similar results for solutions of  
non-homogeneous Beltrami equations (cf. Corollary 2.38). 

Bets [5] proved that f ~  is C/c+l+c~ if /~ is C k+c~. Ahlfors and Bers [2] proved that the map 
/~ ~+ f a  is C 1 when/~ is in s  and f/~ is H61der continuous. In order to get the second derivative, 
we are forced to deal with derivatives of  non-homogeneous Beltrami equations. 

The proof that the map /~  ~-~ f/z is C ~ relies in the fact that its derivative satisfies a non- 
homogeneous Beltrami equation and that the derivatives of  such equations can be expressed again in 
terms of non-homogeneous Beltrami equations. In fact, if f ~  = / ~  f ~ ,  the derivative ~ f ~ .  h : co 
satisfies [2] ~ = # coz + h fz. Consider the map F(/~, ~)  = co#,~, where co = ~ , ~  satisfies 
co~- = / z  coz + or. Since F is linear on ~r we will have that 

OF 
- -  �9 h = F ( l ~ , h ) .  
Oa 

OF . h should satisfy ~.~ )~z + h coz. So that A formal computation shows that the derivative )~ = -g-ff = / z  

OF 
- -  �9 h = F ( I z ,  h . F ( I z ,  o r ) ) .  
Olz 

We will prove that F is C 1 . Then a recursive argument will give that F is C ~ and then/z w-~ f ~  is 
C c~" 

2.1. Preliminaries 

Given a C 1 function f (x, y) defined on a region f2 _ N 2 with values on C, define the derivatives 

fz:=l(fx--ify) , fg:=l(fx+ify). (2.1) 
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f f 2 f z q ) d x d y  = - f f ~  

f s  f ~ g d x d y = -  f s  

If f : f2 --+ C is locally integrable, then we say that fz and f~- are the generalized derivatives 
of f if they are locally integrable and satisfy 

f ~o z dx dy 

f q~ dx dy (2.2) 

for all ~0 6 C 1 with compact support in S2. The following lemma is well known: 

L e m m a  2.3. I f  f~ - O, then f is holomorphic. 

More precisely, there exists a holomorphic function which is almost everywhere equal to f .  
Define the following operators 

lfs [ _1 l l d x d y  , z = x + i y ,  
(Ph)(w)  - Jr z w z 

1 f f  h(z)-h(w) 
(Hh)(w)  -- 7r a a c ; - ~ z - - w - ~  d x d y  , z = x + i y ,  

1 lim f f  h(z)-h(w) 
= - r r  E~oJJizl>e ( z - w )  2 d x d y .  

L e m m a  2.4. Suppose that g 
convergent integral and H g exists 
relations hold: 

s  p > 2. Then Pg exists everywhere as an absolutely 
almost everywhere as a Cauchy principal limit. The following 

(Pg)2 = g , (Pg)z = H g .  (2.4.1) 
2 

] P g ( z l ) -  Pg(z2)] < Kp I[gllp I z l -  z 2 1 1 - 7  �9 (2.4.2) 

Ilngl[g <_ Cp Ilgllp. (2.4.3) 

Actually, (2.4.3) holds for p > 1 and for p =- 2 and it can be replaced by 

I[Hg[Ip = Ilglla. (2.4.4) 

lim Cp = 1. (2.4.5) 
p--+2 

Write Og = gz, -Og = gg; then the operators O, O, and H commute. (2.4.6) 

The relation (2.4.3) is a deep result called Calderon-Zygmund's inequality. The proof of this 
lemma can be found in [1]. 

We now see the behavior of the operator H on small discs. For 0 < R < 1, define the operator 

1 f f  h(z) -  h(w) 
HRh(W) = -- - -JJIz  d x d y  z = x + i y  n I<R (z--  w) 2 

1 lim f f  h(z) - h(w) dx dy .  
- -  Jr e ~ 0  < l x [ < e  ( Z  - -  W) 2 

l f s  [ 1 ) ]  PRh(W) -- h(z) - d x d y .  
7r I<R Z W 
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Define the no rm 
1 dxdy) . 

Let  C a (DR, C) = C a (R)  be  a Banach  space of  a-H61der  cont inuous funct ions on the disc 
DR : =  { Z E C [ [z[ < R }, p rov ided  with the no rm 

[[h]]R,p : :  IlhllR,~ -'1- [h]R, a , 

IlhllR,~ : =  sup I h ( z ) l ,  
IzI<R 

Ih(z) - h (w) l  
[h]R, a : =  sup 

Iz-wl<l ]z - w[ a 

Observe  that 

[[g" h]]R,a < 2 [[g]]R,a [[h]]R,a �9 

For  R > 0, p > 2, n ~ 0 d e f i n e  

Wn'P (R, O) 

h(z) 

Wn'P(R) 

Ilhllwn,p(R) 

Ilhllcn-~(R) 

IID~hllR,~ 

:= {h:C-->Clh<cn-'(C,C), IID"hll ~Z:~(DR)and 
= 0 f o r  Izl > R }  , 

: =  {h:DR~Clh~Cn-'(OR, C),llonhll~s 
: =  Ilhllcn-l(R)+ IlonhllR,p, 

~-~ [[Ogh := E~=o IIR,~, 

: =  E oi oJ h R,~ " 
i§  

On both Wn,p(R,  

we have 

[[h]]R,a 

Lemma 2.5. 

O) and w n ' p ( R )  consider  the no rm II II wn,p(R) �9 Observe  that  for  0 < R < 1, 

_< IlhllR,~ + IIDhIIR,~ = IlhllR,~ + I[0hllR,~ + [[Ohl[R, ~ . 

(a) For all O < ot < 1 there exists C (ot ) > O such that 

[[HRh]]R, a < C(ot) [[h]]R,a R a forall  0 < R < 1.  

Moreover, i f h  ~ Ca(DR,  C), then PRh is C l+a  and 

( P R h ) ~ = h  , ( P R h ) z = H h  on O < R  < 1.  

(b) For all O < ~ < 1 there exists D(a)  > 0 such that 

[[PR h]lR,a < D(a)  [[h]]R,a R 1-a  �9 

(c) For all p > 2 there exists A (p )  > 1 such that for allO < R < 1 and h ~ Wn'p(R,  0), 

1 _2_ 
[[HR hllcn-l(R ) < A(p)  R p [Ih]lw~,p(R) , 

Ilo~nRhlle,p <_ Cp IID%IIR, p 
In particular, the operator HR : wn 'p (R ,  O) --+ wn 'P(R)  is continuous and has norm 

][HRIIw.,P(R) < A(p) .  
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(d) Forallp > 2 thereexistsB(p, R) > 0 such thatforh ~ wn'p(R, O) 

IIPR hllwn+l,~XR) < B(p, R) Ilhllw,,,p(R) �9 

in particular, the operator PR : wn'P( R, O) --+ wn+I'P(R) is continuous. 

The proof  of  part (a) of  this lemma can be found in [5]. 

2 P r o o f .  (b) Let p > 2 be such that a = 1 - ~. By Lemma 2.4 we have that 

[PRh]R,a 5 Kp [[h[[g, p <_ Kp []h[[R,c~ ][1]]R, p 
1 2 

5 Kp[[h]]R,~JrTRT 

HPRhlIR,cc < IPRh(O)I+[PRh]R,~ R ~ 
1 2 

< Kp [[h]]g,~ 7VP RP R u,  

2 : 1 - oe and R ~ < 1 to get (b). because PRh(O) = 0. Now observe that 

(c) Given 0 _< k < n, let 3kh be a kth partial derivative of h, 3kh = oi-oJh, i + j = k. Then 

~h  = P @kh~) + F ,  (2.6) 

where F : C ---> C is holomorphic. Since 3kh E s and by Lemma 2.4. (2.4.2), P(~kh~) is 

O(Izl 2) when ]z[ ---> oc, then F is constant. In particular, for a = 1 2 p'  

R , p  

By Lemma 2.4. (2.4.6), S~Hh = HSkh and 

< C(~ ( ~l~h R,oo-I-OSkh R,oo-I- OSl~h R , o o ) i f k _ < n - 2 ,  

C(el) R ~ (  ~n-lh R,oo -I-Kp ~n-lhg R,p) if k = n - 1 .  <_ 

Adding over all kth partial derivatives, we get 

IlHhlic,, I(R ) --< C(ol) (3 + gp) R ~ Ilhilwn,p(R) . 

For k = n, we have that 

II n RhllR,  
IIDnHRhIIR,p 
1[ HR h II w~ , ,  (R) 

= IIH  nhllR,  II  hllR,  
Cp IlonhllR,~ 

<_ (Cp + C(a) (Kp + 3) R a) Ilhllw,,,,,(R) �9 
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(d) Let 3 = oio J, then 

oio j PRh = o i o j - l h  if j > 1,  

= o i - lOJHh if  i > 1.  
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Therefore, 

II PRh II wn+I,p(R) < max{ Ilhllw~,~(R), Ilnhllw~,~(R), IIeRhllR,p, IIPNhllR,~ } 
< n(p, R) Ilhllw~,p(R) 

2 1 2 

f o r B ( p , e )  := ~ { 1 ,  Z ( p ) ,  Kpzr~  R ,  K p R I - ~ ,  zrg R~ }. [ ]  

2 and For o) �9 C -+  C and p > 2, let o~ = 1 - 

I~ (zl) - ~0 (z2)l 
IIc0118~ = sup 

z~#z2 I z l - z 2 ?  

1 1 

and define Bp as the space of maps o9 �9 C --~ C with oJ(O) = 0 and ]tw]]sp < ~ ,  endowed with the 

norm II IIs.. 

L e m m a  2.7. G i v e n #  ~ s I[~ll~ < k < 1, o- e s  w i t h k C p  < 1. Then there exists 
a unique solution co ~,~ ofco5 = tzo~ z + ~r with w(O) = 0 andco z ~ s  Moreover, 

(i) There exists K = K (k, p)  such that llo)llB p ~ K (k, p)  Ilcrllc~. 
(ii) I f  lzn --> tz almost everywhere, II~nll~ < k and an --+ cr in s  then ogm.~n --~ o~,~ in 

8;. 
(iii) The unique solution o f  o~z = tz o9 z + cr such that co(O) = a ~ C and o~ z c s is co(z) = 

a + co~'~ 

The proof  of  all of  this lemma except i tem (iii) can be found in [2]. Uniqueness in i tem (iii) 

is proved by substracting two such solutions and obtaining a solution of the homogeneous problem 
which is zero by (i). 

Theorem 2.8 (Ahlfors-Bers) [2]. 

Given tz : C --> C measurable with [[/z[[~ < k < 1 and p > 2 with k Cp < 1. Then there 
ex i s t saun iquehomeomorph i smf  : C --> C s u c h t h a t f ~  = tZfz,  f(O) = O, f ( 1 )  = 1, f ( c ~ )  = oe. 
Moreover, 

(i) 
(ii) 

(iii) 
(iv) 

(v) 
(vi) 

(vii) 

(viii) 

2 f is ot = 1 - 7 H61der continuous on S 2 = C O {~}.  

fz is locally o f  class s  

fz ~: 0 almost everywhere. 
2 f -  1 is o~ = 1 - -~ H61der continuous and has generalized derivatives which are locally o f  

class s  

( f - l )  z and ( f - 1 ) ~  are determined by the classical formulas. 

f and f - 1  transform measurable sets into measurable sets. 

Integrals are transformed according to the classical rule. 

I f  ~ = # ~o z on a region s c_ C, then ~o o f -  1 is holomorphic on f (~2). 
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The solution f of  Theorem 2.8 will be denoted by flz through the rest of  the paper. 

Lemma 2.9 [2]. 

Let f = f~ ,  f2 c_ C bounded and suppose that h z, h z ~ s  (f2)), q > 2. Then h o f has 
generalized derivatives given by 

(ho f )z  = (hzo f )  f z + ( h g o  f )  f z  

(ho f )g  = (h zo f )  f 2 + ( h 2 o  f ) - f g  

and 

II(h o f)zllr  ~ M (llhzllq + Ilhsllq), 
Pq F= 

p + q  - 2 '  

where the norms are over the corresponding bounded regions f2, f (f2) and M is independent of  h. 

Corollary 2.10. 

Let f = f ~  and suppose that hg = v h z, then 

(ii) I f ( h o  f ) 5 = ~ ( h o  f )z ,  t h e n v =  ~ o 

(iii) I f  g(z) - 1 then )~ gz, with L(z) (1 )  3 2 f (1 /5) '  gz  = = / z  ~ .  

Write 

D:={z<cllz,<l} SI := {x  ~ C I [ z I =  I } . 

(1) Z2 then F :=  f ~  restricted to D is the unique solution of  Corollary 2.11. I f  lz(z) Iz y ,  

F2 = IzF z on D such that F(0) = 0, F(1) = 1 and F(D)  = II). We have that f = f ~  satisfies 
f (z) -- f(1/5) " 1  In particular, F is an ~ = 1 - 72 H61der continuous homeomorphism of ID. 

P r o o f .  By Corollary 2.10. (iii) and the uniqueness of  the solution in Theorem 2.8, we have that 

( 1 )  1 and f ( 0 ) =  0, therefore f ( D )  C D and i t i s  a solution for F. If there exists another f = f ~ 5  
solution G on D, then H = G o F -1 is analytic on D and H(0)  = 0, H(1)  = 1. By Schwartz's 
lemma, H(z) = ei~ for some 0 6 [0, 27r[. Since H(1)  = 1, then 0 = 0, H(z) = z and hence 

G = F. [] 

Given 0 < R < oc, let BR,p be the Banach space of  functions o) : C ~ C with o)(0) = 0 and 

finite norm 1[ II BR.~ : 

1 

][O)HBRp= sup I O ) ( Z l ) -  0)(Z2)I ( f f z  ) , 12_ + IO)zl p d x d y  ~ 
IzII'Iz2I<-R ]Zl --  z21 P I-<R 

The following theorems are due to Ahlfors and Bers: 

Theorem 2.12 [ 2 ] .  Suppose that [I/zH~ <_ k, IIlzll~ <_ k, [Ivll~ <_ k, k Cp < 1, p > 2. Then 
for all R > O, 
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(a) [If ~ -- f~ll~R,p -- c ( e )  II/z - vl[~, with c(R)  depending only on R, k, p. 

(b) I f  lz~ --+ # almost everywhere, then IIf ~n - f~llBR,p --+ O. 

Theorem 2.13 [ 2 ] .  Let  t = (tl . . . . .  tn) ands  = (Sl . . . . .  s,~) be real vectors in R ~. Suppose 
that for all t in some open set A we have 

n 

tz(s + t) = Iz(t) + E ai(t) si + Is[ a ( t , s )  
i=1 

with [I/z(t)[Ic~ _< k < 1, I[ot(t, s)[[~ <_ c and et(t ,s)  -+ 0 almost evelywhere as s --+ O. Suppose 
further that the norms [lag(t + s)l l~ are bounded and that ai(t + s) --+ ai(t) almost everywhere for 
s -+ O. Then w € has a development 

flz(s+t) _: flz(t) q_ E c o i ( t  ) Si -]-Is) y(t ,  s) 
i=1 

with ][ y (t, s)II BR,p --+ 0 for s --+ O. Where coi (t) is the solution o f  

W2 = IZ(t) W z + ai(t) fz ~(t) 

such that W(O) = O, W(1) = 0 and IW (z)l = o(If 12) as z ~ 

2.2. The local non-homogeneous Beltrami equation 

From now on the functions/z are assumed to be measurable and with II/zLl~ _ k < 1 for some 
fixed k and p is assumed to be p > 2 and such that k Cp < 1 unless otherwise stated. 

L e m m a 2 . 1 4 .  LetO < R < 1 andp  > 2. Lettz ,  cr c w n ' p ( R )  besuchthat tz (z )  = ~r(z) = Ofor 
all Izl >_ R. Let  co be the solution o f  o~z = iz co z + cr such that co(O) = 0 and w z c s  Suppose 
thatk :=  II/zll~ < 1 and 

1__ 2 
| :=  |  Illzllwn,,,(R),k) = k C p  + 2  n Iltzllw,,p(R) A ( p ) R  p < 1 

with A(p )  from Lemma 2.5. Then co ~ Wn+I,p(R) and there exists D(R ,  n) = D(R ,  n, p,  

II/zllwn,,,(R>, k) > 0 such that 

Ilcollw~,§ ~ D(R,  n) [Io-Ilwn,z, ce> �9 

Proo f .  Let q be a solution of  

q = tz Hq  + cr (2.15) 

in s  This is possible because the norm of the operator # H  in s  is < k Cp < 1 and hence 
(I - / z H )  is invertible in s  Let 

09 = Pq = P ( I  - / z H ) - l ~ r .  (2.16) 

Then we have that w z = Hq,  o~z = q = tz H q  + or. Therefore, 09 is the unique solution of  
= / z  coz + o- with 09 (0) = 0, coz E s  (C) of  Lemma 2.7. 

Observe that we only need to use PR and HR in (2.16) because q(z)  =- 0 on Izl _ R by (2.15) 
and /zH sends wn 'p (R ,  0) into itself. 
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Now we estimate the norm of the operator (I  - / z H )  -1 on wn 'p (R ,  0): 

Illzn(cr)ilwn,PCR ) <-- [I~IIR,~ IID H( )IIR +2 n IIt~liwn,~CR)[In~llcn-~(R) 

_< Illzlle,~ Cp [[oncr[[R, p + 2  ~ Iltzliw~,~iR)a(P) RI-~ II~rllw.,~(e) 

_< O Ilcrllwne(R), 

where O := k Cp + 2 n ][/zl[wn,P(R ) A(p)  R 1-2 < 1. 

Ilcollwn+l,p(R) = ][Pe(I  - ~ t / )  

- -  IIPR 
<_ n(e, R) (E~=o Ok) [Io-IIw~,~(R) 
<_ D(R, p) Ilo-Ilwn,~(R) 

B(p,R) [] 
where D(R,  n, p, []/Z[]W~,Z(R)) -- 1-0 �9 

L e m m a 2 . 1 7 .  L e t W  := Wn'P(R,  O)N[ ][t~][w,,,p(R) < a ,  H~[]~ < k < 1 ] with R smallenough 
such that O ( R , n, p, a, k) < l, where 0 is from Lemma 2.14. Then the map W • wn '  p ( R , O) ----> 
W~+ I'p ( R), given by (#,  or) ~-> co ~,~, is continuous. 

o P r o o f .  Let (/z, o% (/,to, O-o) E }~2 • wn 'p (R ,  0). Let co ~ = co~o,~o and co = colz,,r, i.e., co~- = 
/z coo + O-o and ~ = / z  coz + cr in s  (C). We have that 

(co_coo) = (co-co~ z + ,o)co~ + 

with 

II(tz - IZo) co~ + (a -Cro)llwn,p(R) < 2n -  o[Iw o<R> [Ico~ + - a~ �9 

From Lemma 2.14, we get that 

I]co--co~ <- O ( O , k )  (2 n [ [ , -  I~oHwn,p<R> IIcoZIIWn,,~(R) + 110 --~~ [] 

On/2~  (C) fq WI'p (R) consider the topology given by (/Zn } - + / z  if/z~ --+/~ almost everywhere 

in C and IIt~ - ~]]wap(R) --+ O. 

C o r o l l a r y  2.19. Given 0 < R < 1, 0 < k < 1, L > 0 with k Cp < 1, there exists 0 < r < 

r(k,  L) < R such that the map lz e--> co~ : 

/ : c~ (C)  f') WI'P(R) A {/~1 Illzll~ < k, []iZllwl,p(R) < Z } --+ C 1 ([Z] < r, C) 

is continuous. 

P r o o f .  Let (# . )  be a sequence converging to kto in s  N WI'P(R)  with [[~n]]~ < k, 
[[[.I,n[lwl,p(R) < L. Let co n := f ~  - f~o ,  f o  :_  ftZo. Since/Z n ~ /Z o a.e, then by Theorem 2.8, 

11 (_Or/[I BR,p ~ O. In particular [I co~ ]1W 1,p (R) ~ 0. We have that 

I'l 1"l f O  co~ = lz~ coz + (IZn - #o) z �9 
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Let )~ : C ~ [0, 1] be a C ~ function such that 3.(z) -- 1 for Izl _ r and f ( z )  - 0 for Izl _ 2r. 
Choose r such that |  n = 1, p,  L, k) < 1 where | is from Lemma 2.17 and 0 < 2r < R. We 
have 

()~ o)n)~ : ~ n  O~o)n)z -]- (Z'z-- ]J~n )~z) gOn -]- ~" (]zn - ~~  f z  ' 

where ~n (z) = / z n  (z) for I zl < 2r and ~'n (z) = 0 for IIz II >-- 2r. Since the sequence II/Zn II W l.P(2r) is 

b o u n d e d  and I1~o n II W',e(R) --> 0, then II (z~- - rtn ;~z) ~~ II WLP(R) ~ O. Also [I X (/zn - / Z o )  f o  II WI,p(2r) 
---> 0. In particular 

2.3. Global non-homogeneous Beltrami equations 

Lemma 2 .21 .  I f 0  < R < + o o  andh �9 s < R) forsomeq > 2, thenh �9 s < R) for 
a l l 2 <  p < q, and 

Ilhl[R,p < A IlhllR,q , 

w h e r e A  A ( R , q )  m a x { l ,  1 2 1 2 = = ~ - q  R - q  }. 

P r o o f .  Let ~ = q > 1 and + ~ = 1, then 

f z  'h[P = f z  [hlq " l ,<R 

(llhlle,p) p <_ 

Ilhlle,p <_ 

1 _ 1 i From this we get the lemma because tip p q 

Given e > 0 and q > 2, define 

with the norm 

(][h[IR,q) ~ (~ R2) ~ 
1 

Hh[lR,q (~  R2) ~ �9 

�9 ]o, 1(1- ~)[. 

: =  + q 

Lemma 2.22. For all 0 < ~ < + o o  and q > 2, we  have  that 

DE,q = A A Dr, p .  
0 < r < ~  2<p<q 

Moreover,  g iven 0 < r < oo and 2 < p <_ q, there exis ts  A = A (p  , q, r, E) > 0 such that 

[[hl[Dr.p < a [[h[[D~.q 

for  all h �9 D~,q. 

[ ]  
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Proof. 
cr c s < ~) c_ s < ~). We have that  

ff = 

E<lzl<r 

Gonzalo Contreras 

One inclusion is trivial. For the other one, l e t r  > E, then [Izl < ~] C [Izl < ! ]  andhence  

Izl<r 

.< 

f f  1 1 f f  iwl 4 I~ ~ ~ I~ 

1 
IIcrllD,.~ < + ~ ,  

(~) q-I- f ~ ( ~ ) q <  (lq- ~4) I Io - I I~ ,q .  
Izl<~ e<lzl<r 

Therefore,  a E •r,q and II~ll~,.q 5 A1 II~[I.~,q. By  L e m m a  2.21, we have that  a 6 D~,p and 
Iio [[7~r,q < A2(p, q, r, E) Iio-[[7~.q for  all r > e and all 2 < p < q. The case 0 < r < E is s imi lar  to 

this case. [ ]  

L e m m a  2 .23 .  Let E > O, q > 2, ~r ~ DE,q. Then there exists a unique solution of  (32 = or, such 
that| is continuous, (3(0) = O, (3(1) = 0 and 

(3(z) 
l im - 0 .  

Izl--+~ Izl 2 

The solution satisfies 

6) le (z ) l  ~ 2Kq [Io-IID~.q max  '/Izl 1-2,  [zll+2l,forall z l  G C, whefegq is from Lemma 2.4. 

(2.4.2). 
(ii) (3 E BR,pforal lR > Oandall2 < p <_ q. 

(iii) | c 79r, p forall2 < p < q andallr > O. 

(iv) For all r > O and 2 < p < q there exists B = B(r, E, p, q) > O, such that [lOzllDr.p < 
B IIollD~.~ �9 

1 and let b(z) = 0 for  Izl > ~ and 1 and a ( z ) =  0 for  Izl > ~, P r o o f .  Let  a(z) = o'(z)  for  [zl < ~ 
( 1 )  z2 b(z) = cr ~ ff  for  Izl < ~. Since  c r e  79E,p we have that  a e s  a n d b  ~ s  Define 

| : =  P a ( z ) - z P a ( 1 )  

|  : =  - z 2 p b ( ~ ) + z P b ( 1 )  

(3(z) : =  (3a(z) + (3b(z) �9 

1 Therefore ,  |  or. A l so  1 and b = 0 on Izl < ~. = We have that  (3a = a ,  (3_b = cr on Izl > ~ e~- z z 
(9(0) = (3(1) = 0. Moreover ,  

1-2 
[O(Z)] < gq HaHq ([z[ 1-�88 -~- Iz 0 -1- Kq []bl]q Izl 2 i q q- Kq IIb[lq 

1 

Izl 

_< [ Izl 1-~,  Izl +q J] 2KqllCrll.p,,q maX[ 2 1 2 
B 

Suppose  that ~o is another  solution.  Let  h = ~o - O. Then h is analyt ic  on all C because  
h5 = (~o - | = 0. Also  h(0)  = h(1)  = 0 and Ih(z)l = O(Izl 2) when Iz[ --+ co.  Therefore ,  

h = 0 .  
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By Lemma 2.21, cr e Dcp for all 2 < p < q. Therefore, a E L~p(C) and b ~ s for all 
2 < p  < q .  L e t 2 < p < q ,  wehavethat 

a 
~3 z (z) = 

ilo l, < ~,p -- 

Ha - Pa(1) 

[[Hal]p + [Pa(1)[ (~ ~ ) ~  

1 

<_ Cp [lallp + Kp Ilallp \ , 2 ]  

fw 1 64 I>~ Iwl 4 IHa(w)lP < (IIHalIP)P 

4 1 
<_ 6-~ Cp Ilallp + gp Ilallp (7/'62) 7 

< ( 1 +  4 ) ( C p + K p  (~)1)[[al lp .  

We write C(p, q, ,) for constants depending only on p, q, ,.  

Oz _- 

fzl<~ 2 z P b ( ~ )  p < 

| i < 
~,P 

fz  IHb(z)lP < 
I<~ 

1 
I>~ Iw[ 4 IHb(w)lP < ~ (IIHb[IP)P 

Cp rc 
Cl(p,,) -I- ~ + Kp ~ Ilbllp 

, P  

(Cp Ilbllp) p 

2 ] Pb(z) 2 Since z < 2Kq [Ib[Iq IzI-V andp < q, wehave 

fzl<E 2 1 Pb(z) p < 
Z 

L 2p 
(2Kq Ilbllq) p Izl q < + ~ ,  

i<e 
1 

C2(p, q, 6)Ilbllq + Cp Ilbllp + (:r 62) ~ gp Ilbllp �9 

Therefore, IIO b II~,p < + ~  and hence IIOz I1~,,, < + ~  for all 2 < p < q. Now use Lemma 2.22 
to get (iii). 

For (iv) observe that IIo-[ID~,q : Ilallq + I[bllq and that Ilallp ~ A(, ,q)  I[allqr Ilbllp 
A(E, q) ]lb]lq by Lemma 2.21. Now use the above estimates and Lemma 2.23. []  

let 
The following notation will be useful for the next proposition: For ,  > 0, p > 2, F : C -+ C, 

D~,p" 
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P r o p o s i t i o n 2 . 2 4 .  /f /z e s  II/zll~ < k < 1,kCq < 1,q > 2 a n d ( a  o ( f , ) - l )  ( f , )~- I  = 

( - ~ )  o ( f /~)- I  C DE,q fo r some~  > O. Then thereexistsa uniquesolution o f  

co~ = IZ coz + rr 

such thatco is continuous, co(O) = O, co(l) = 0 and 

Moreover, 

co(z) 
lim 

Izl-+~ If~(z)l  2 
- 0 .  

(i) (coz o ( f f z ) - l ) ( f fZ )z l  E Dr, p for all r > 0 and all 2 < p < q. 
q2 

(ii) w E BR,p fo ra l lR  > 0 anda / /2  < p _< q-2 '  

(iii) I f a 6 B R , p , 2 < p < q , O < r  < R a n d e > O ,  t h e n t h e r e e x i s t s C ( R , r ) = C ( R , r , E , p , k )  

such that 

IlcollBr,,, <-- C(R, r) (llo-II~(<p,f,,)+ I[allR,p) �9 

(iv) Foral lr  > 0 a n d 2  < p < q, thereex i s t sA(r ,p )  = A ( r , e , p , q )  > Osuchthat  

[[coz[[D(r,p,f~) < a(r,  p)  ]]a]]7~(<q,fU ) . 

(v) I l l  z, a E Wn'P(R),  2 < p < q, 0 < r < R and ~ > O, then there exists D ( R ,  r) = 

D(R ,  r, n, p, ~, ]]/Z]lWn.P(R )) such that 

Ilcol[w,§ < D(R,  r) (l[o-]lT)(<p,f,) + IIo-IIw.,~(R)) �9 

P r o o f .  We first prove the uniqueness of the solution. Suppose that u is another solution. Then 
v :=  co - u satisfies v~- = tzvz, v(0) = v(1) = 0 and Iv(z)l = O(If~(z)l 2) when Izl -+ co. Let 

h :=  v o ( f ~ ) - l .  Then h(0) = h(1) = 0, by Theorem 2.8 (viii) we have that h is holomorphic on 

all C and 

lim Ih(z)l = lim Iv(f-~(z))[- lim Iv(y)l - 0 ,  
z-+co iz[ 2 z-+~ Izl 2 y--+oo if(y)12 

where f = f " .  Therefore, h - 0. 

For the existence, write co = 19 o f ~ .  Using the formulas of  Lemma 2.9, and that 

-f  z = (f~) = -fi ( fz)  = -ff f g , 

we see that co is a solution of  the problem if and only if, for f = f " ,  we have (1 
~ -  = o f - 1  = :  p (2.25) 

1 - [ / x l  2 

19(0) = 0, 19(1) = 0 and limz_+co O(z) = 0. Since f ~  = ~zz, we have by hypothesis that p 6 D<q. 
Izl 2 

By Lemma 2.23, such 19 exists and is unique. 

For (i) observe that, for f = f u ,  

COZ 

COZ ~--" 

z, = 

m 

(| o f )  fz + (| f )  f z  ( '  
(@z ~ f )  fz + 1 - [ I z [  2 

o = O z +  -1 -T I2 o �9 (2.26) 
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By the hypothesis on ~r and/z and by Lemma 2.22, we have that (coz o f - 1 ) f z l  ~ Dr, p if and only 
if 19z ~ Dr, p; but this is true by Lemma 2.23. 

(iv) From (2.25), (2.26), and Lemmas 2.23 and 2.22, we get that 

[[O)z 79(r p,ftz) <-- ~ + ~ l[o'llT)(e,q,f.) �9 

This proves (iv). 

For (ii) we know that f c BR,p for all 2 < p _< q and by Lemma 2.23, 19 a BR,p for all 
2 < p _< q. Now use Lemma 2.9. 

We now prove (iii). Let )~ : C ~ [0, 1] be a C ~ function such that )~(z) = 1 on [z[ _< r and 
)~(z) = 0 on [z[ >_ R. We have that 

0~co)~- = ix @OJ)z + ()~ -/Z)~z) o~ + )~o-. 

By Lemma 2.23, there exists C1 (R) = C1  (R, p, 

111911R,~ -< CI(R) \ (1  

E) such that for 19 = co o f - l ,  f = f g ,  we have 

_ I/zl  2 o f - 1  . 

Let A = A(R, k) > 0 be such that f ( lz l  < R) 

IIo)lIR,~ = 
II~ollR,p _< 

IlZo'llcp _ 
I1()~-- IZ;~z) o)llc,~ --- 

By Lemma 2.7, we have that 

Therefore, 

Elzl < A]. Writing E :=  (o- o f - l )  fz-1, we have 

1119 o f l lR ,~  -- el(A,  k) IlEIIz~,~ , 

C3(R,k,p,~) 11,~1179~,~ , 

IIo-IIR,p , 

c 4 ( e ,  r)  II~llz~,~ �9 

IIZo~IIBp ~ g(k,  p) @4 IIZlI~,,~ + IIo-IIR,p) �9 

IIo~IIB~,~ ~ C(R, r, p,  k, E) ( l lZ l l~ ,~  + II~IIR,p) �9 

(v) The case n = 0 is proved in item (iii). Suppose by induction that it holds for n - 1. Cover the 
disc [z[ _< r by a finite number of  discs of  radius 3 such that the corresponding discs of  radius 23 are 
all contained in [z] < R. Choose 3 small enough so that 

19 (23, n, p, Ilizllwn,p(R)) < 1, 

where 19 is from Lemma 2.14. Choose one of these discs, say Iz - a l < 3. Let )~ : C --+ [0, 1] be a 
C ec function such that )~(z) -= 1 on Iz - al < 6 and )~(z) = 0 on Iz - al > 26. Let 

u(z) :=  Z(z) (o~(z + a) - oJ(a)) . 

Then u(0) = 0, Uz ~ Ep(C) and 

u~ = lZ Uz + (z~ - ~Zz) (~  - ~o(a)) + Z~z ,  

where ~(z)  = / z ( z  + a), ~(z) = co(z + a), ~(z)  = cr(z + a). By Lemma 2.14 we have that 

Ilullwn+1,p(2s) <_ Ol(a)  (ll(;~z - IZ)~z) ( ~ -  o~(a))llwn,p(R) + II)~'llwn,e(2~)), 
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where D1 depends on 2 s  p,  n, I[Izl]w,,,p(R ). We have 

I1@~- ~)~z) ( ' ~ -  co(a))llw~,,(2~ -< 2 ~ II)~ - ~)~zllwnp(R) [1~-- co(a)llw~,P(2~) 

< 2n (ll)~llc~ + 2~ II;~llc~ Illzllwnp(e)) 
I1~ - 02 (a)II W~,~(R) 

< D2(a) Ilcollw~<R~ 
<_ D2(a) D(R,n  - 1) (llo-11~9(,,p,f~ + Ilcrllw~-a p(R>) 

where in the first inequality we used that [I ]]w~,p(2~) < II IIw,, ~(R>, on the second inequality we 
used that 

I1~-  co(a)llw~,p(2~) < 2 Ilcollw~,p(R), 

because D k ( ~  - co(a)) = D k co for k > 0 and and I1~ - co(a)ll2~,~ _< 2 Ilcolle,~, and on the last 
inequality we used the induction hypothesis. Also 

II)~rllw,,,)<2~ _< 2 n II;qlc,, IIc~llw~,)<R> 

Combining these inequalities, we get that 

Ilullw,+~,,,(2a~ -< D3 (lIerllv(.,p,f.) + Ilallw,,,p<e>) �9 

In particular 

Ilcollw~§ ) 
< 

< 

Adding the estimates of  each ball, we get 

IIo § < r,p -- 

IlcollC',(r~ --< 

Ilcol[w~+l,p(r) < 

Ilullwn ~ p(2~) + Ico(a)l 
[lullwn§ + IlcollR,~ 

04 (]lo'llT)(c,p,f~)+ Ilcrllw~,pCR)) 

/llon+lcoll V Ilon§ = E a  V ,z 

E IIDn+lcolllz-al<a, p <- E Ilcollwn§ 
a a 

sup IlcollC"(b~-al<~ --< ~ IlcolIW~+LP(Iz-aI<~ 
a a 

D5 (llo'll~(~,p,/~)+ II~rllw~ p(R)) [] 

L e m m a  2 . 2 7 .  Le t  )~ ~ s  II)~ll~ < k < 1 and le t  h = f z .  L e t  K > 1, 0 < ~ < 1 and 
0 < ~ < l be such that 

h -  1 1 (Z) < K [zff f o ra l l  Iz[ < - "  
E 

L e t  Po > 2 be such that k Cpo < 1. L e t  qo > 2 and 

Po qo 

P =  p o + q o - 2 "  

(i) I r A  C Cqo(lzl < K ) , t h e n ( A o h - 1 ) h z  1 ~/2p(lZ[ < 1) and 

( t 1 A ~ h -1  h z l  l - 1 

(1-k21  

1 - !  

7- ,qo ,Po 
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(ii) Letk(z) = i / h  ( l  ] andsupposethatthereexistsa > l and Q > l suchthat 

Ik(z)l < a Izl for~l  Izl < E and 

k-l(z) < Q Izl  ~ fora11 Iz[ < e . 

If fA ( 1 )  E/~q(lZl < a~), the//((Ao h -1) hz 1) (I)  E ~p(lZl < E)a//d 

<-- a 2 h - 1 qo 
( ( A ~  h z l ) ( ~ ) E , p  ( l _ k 2 ) ~  - 1  Z ( ~ ) Q e ~ , q o  ( z ~,po) 1-2- 

P r o o f .  Let p = po qo and let q, r > 0 be such that po+qo-2 

P q = q o  and ( p - 2 )  r + 2 = p o .  

In particular 
1 1 Po 2 1 1 1 
- + -  = 1 ,  - -  = 1 - - -  and - 
q r pr qo pr P qo 

We prove (i) first. We have 

i := ~zl<�88 A o h _ l  p hzl  P=  fzt<l A(h_ l ( z ) )  p 1 
Ihz(h-l(z))lP 

Write w = h -  1 (z). Using the Jacobian 

Jach = Ihzl 2 -Ih~[ 2 = (1 -[XI 2) Ihzl 2 < Ihzl 2 , 

we have that 

I < 

< 

fh-I[Izl<{] IA(w)IP ~lhz(w)lP Ihz(w)l 2 dw 

1 

_l[[zl<l][A[pq 1 -l[Fzl< 1] Ihzl (p-2)r 

But  

Therefore, 

f 
h l[izl< ] 

Ihzl(P'2) r 
_ f Ilhzl: 

Ihz [(p-2)r+2 
h-lDzl<~] 

1 flz (p-2)r+2 < 1 s  2 1<I hI1 
1 

1 -k 2 flzl<�88 hfl 

1 [/h 1 r• l p < ]A[ q~ 
- _,[iz,<l] LI-~2J 

1 

Po 

561 
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Since h-1 [[zl < 1] _C [IWl < K] __C [IWl, K], we have 

1 1 

17 < IIA[I K hz 1 
- 7 ' q o  1 ,po  

l_& 
qo 

For (ii) consider 

I:=fzl<E Z ~  ( ~ ) P  h[' ( ~ ) P = f z l < E  Z o h ' l  ( ~ ) P  hz I ( ~ )  P . 

1 = h - l ( 1 ) i . e . , z = k ( w ) .  Wehave Write w 

hzl ( ~ )  = 1 1 

(1) w2 hence By Corollary 2.10, we have that ks(w) = ~. ~ ,  

1 
1 - k 2 Ikzl2 < Jac(h) < Ikzl 2 , 

then 

I < 

< 

fk_l[iz,<~ ] A ( 1 )  p 1 

[ Ikz(w)12r 
Ifk-l[Iz,<~] Z ( 1 )  pq] fk-l[lz,<,] hz (1) pr 

Since k(w)= 1/h  ( I ) ,  we have that 

kz(W) = 

 z(1) = 

Ikz (W)12r 

h z ( }  ) pr 

Ikz(w)l 2r < 
fk_l[izl<e ] hz(1  ) pr -- 

-~ __~_ ( 1 ) k ( 1 / ) )  2 w  2 

Iwl 2 
f i ~ (1 )  ='kz(w)l ,k(w),2 

Ikz(w)l 2r Ik(w)12P r <-- a2pr . 1 
Ikz(w)l pr IwlZp r Ikz(w)l(P-z)r 

a2pr fk 1 
-l[Izl<E ] Ikz(w)l (p-2)r 

a2P r [ Ikz(w)12 < 
- Jk-l[Izl<~] Ikz(w)l (p-2)r+2 

a2pr f z  1 a2prfz kzlPO 
< iC~2 I<, Ikzok-ll p~ - 1-7~2 I<, 
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Therefore, 

1 { a2P r "~-~ ~rr 
( ( Z ~  h z l ) ( z )  ~,p <- A ( 1 ) Q ~ , q o  I , T ~  ] ( kzl E,po) 

a2 A ( 1 ) Q e , q o (  hz  1 ) 1 - -  
-< (1_ ,,po 

2 
qo []  

Given Ix e /Zp(D) ,  D = { z e C [ Izl < 1 }, extend it to s  by 

I x (Z )  = Ix ~2  ' 

denote by ~ this extension and consider Z;~ (ID) as a subspace of s  (C) by these extensions. On 
s  A W1,P(e) consider the norm 

IlIxllLe := IIIxlI,coo(C) + IIIxlIw~,,,(,) 

and on 79(e, p, F) A/2p(DR) consider the norm 

[[O'[[Dp : =  []O'[]7)(E,p,F ) § [[O']]R,p �9 

Propos i t ion  2.28. Suppose thatixo e s  n WI,po@), I1~oll < k < 1, kCpo < 1, Po > 2 
and let F = f~o. Then the map 

(/~c~z(~I~) f"l W I ' P ( ~ ) )  • CD(,, p ,  F)  f-l J2, (DR))  -.-+ Br, p 

given by (Ix, a) ~-~ o) ~,~, is differentiable for Ix in a neighborhood of Ixo, for all O < r < R and any 
2 < p < p o .  

P r o o f .  Write o) ~ := o9~o,~o and for (IX, ~r) E (s  A WI,p@)) • ("s p, F) 0 s ) 
write co = o)~,~,. For simplicity write IX = ~" E s  Let v :=  IX - Ixo and p := cr - ~ro. By 

o E D(eo, p, F) for all 2 < p < Po and hence there exists a solution of Proposition 2.24(i), w z 

s = Ixo ~z + v w z + p (2.29) 

such that g(0) = ~(1) = 0 and [e(z)[ = O([F(z)[2) when ]zl --+ ~ .  Moreover, since 

IIv  +pllR,p -< I1~11~ II  [l p + (2,300 

O) ~ By Proposition 2.24 (i), < §  and by Proposition 2.24 (iii), II zll ,p < §  
Therefore, by Proposition 2.24 (iii), the linear map L(v, p) = e E BR,p is continuous. In particular, 
for all 2 < p < Po, we have that 

lim IlellBR~ = 0  , lim IlezllR,p=O. (2 .31)  
/,t-+No ' /z ~,U,o 
O---~ cr o O--+ o- o 

By Proposition 2.24 (iv) we also have that 

lira 
Iz-+/~o 
O'~CT o 

Ilezll~>(r --< A lim [IV~Oz + PlID( o, ,F> =0, 
/z-->#o 
(9"-+0" o 
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and by Lemma 2.22, 
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l im IlgzllT~(r,p,F) = 0 
# ~ l Z o  

cr  - -+  f f  o 

for a l l r  > 0 ,  2 < p < p o .  (2.32) 

Let h :=  o) a'~ - co a~176 - ~, then 

hg = / z  h z + v gz. (2.33) 

Let H a = H :=  f z ,  where 

# -  IZo Fz ) 
) ~ = ) ~ " : = \ l - ~ l Z ~ - o  ~ ~  

where F = fao.  We have that F a : =  f a  = H a o F .  

We now see that we can use H a on Lemma 2.27. Let/]2 > 0 be such that II)~all~ < k for all 
II~ - #oil </]2 .  From Corollary 2.19, we obtain that /z  w+ H a 6 C1(62) is continuous for some 
0 < 62 < 6o. In particular, there exists 0 </ ]3  </ ]2  and a > 1 such that 

62 and all II/~ - # o i l  < / ] 3  �9 IHa(z)l < a Izl for all Izl < 63 : =  ~-  

From the definition of )~ = )~" we get that )~(z) = )~ ff for almost every z ~ C. Therefore, 

writing G a ( z ) : = l / H a  ( 1 ) ,  we have that G a = H a. 

Observe that ;~ao =_ 0 and H a~ = Id.  By Corollary 2.10, we have that ( H a )  - ]  = f~ ,  where 

~ = - ( ~ )  o H  - I .  In particular, for any 0 < a < 1, there exists 0 < /]4 =/ ]4(~)  < /]3 suchthat  

II a II _= [IZall~ < ~ for all I 1 # -  #oll < / ]4 .  By Theorem 2.12 (a), for any ro = ro(a) > 0 with 
S Cro(a) < 1 and some K = K(63, 3, ro) > 1, C = C(63, 3, ro) > 1, we have that 

1 2 
" "~n~) -~ ( z )  < g l Z l - r ~ Z ~  

( H a ) z l  ~,ro(?J) < C(63,  k) 

1 
for all [z] < - -  and all [ [ /z- /z0[i  < /]4, 

63 

for all ]/z - /Zo [  < / ] 4 ,  

with ro(3) -+ ~z when ~ -+  0 and/]4 ~ 0. 

Therefore, the conditions on Lemma 2.27 are satisfied by H Iz with uniform constants a,  K,  63 

for all il/z - / Z o  II < /74 and with a = 1 2 ro (?J)" 

For any g we have that 

where h = (g o F - ] )  F z  1, F = fao.  

Given 0 < p < Po choose 0 < 6 < 1 (hence/]4(3) > 0) and p < qo = qo(P) < Po such that 

qo ro(8) 
O < p < _  

qo + ro(6) - 1 
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Applying Lemma 2.27, we have that gz 6 D(E3, p, f~ )  and 

a2 ( ) 
116 ~ ) ( 6 3  P f " )  ~ (1 1 1 ' " _ / 2 ) 7 - ;  Ilezllv(~,qo,F) + [Igzllv(Ke,,qo,F) " C(e3 k) 

In particular, by Lemma 2.22 and (2.32), we have that 

lim 
/z--+/z o 

cr---~ o- o 

I]~zllv(~3,p,f~) : 0 for all 2 < p < po �9 (2.34) 

By Proposition 2.24 and (2.33), we have that 

Ilhl[Br, p ~ C ( R , r )  (llPezl[~(~3,p,f.) + IIv611R,p) 

< c ( e ,  r) (llvll~ Ilezllz~(.3,p,f~) + Ilvll~ 116[IR,p), 
IlhllBrp 

' < C(R,  r) (116 Z~(~ p f~> + 11611R,p) 
Ilvll~ - 

for all R > 0 and any 2 < p < Po. From (2.31) and (2.34) we get that 

IlhllBr.p IlhllBr,~ 
lim < lim 

.-, .o Ilvll + IlPllT)(.3,p,f) - ~-~o Ilvll~ cr ---~ o- o ff --+G o 
m - - 0 .  

By Proposition 2.24 (iv) and Lemma 2.22, we also have that for 2 < p < Pl < Po, 

[]~zIID(E,p,F) ~ A ]lvs ~ A Ilvll~ IIs 
H i l l  

lira IlnzlIZ~(e'P'F) < A lim Ilgzll~(~3,p~,F) = O. 
~-.~o Ilvll + [IPIID(Eg,p,F) .-~o 0"--+(70 0---->(70 

(2.35) 

On s  N w n ' p ( R )  and on D(e, p, F) n w n ' p ( R )  consider the norms 

IIIXlILw := IIIxlIc~<q + Ilixllwn,p(e) , 

[I~IIDw(F) := [I~[ID(E,p,F) + [IcrlIwn,P(R) �9 

Proposition 2.36. Suppose that ~o e Z;~(D)n W n,po (R), Ilixo I1~ < k < 1, k Cpo < 1, Po > 2 
and let F = fao.  Then the map (IX, p) ~-~ coa,P, 

(s n wn'P~ • ( ~ ( E ,  Po, F) n wn'P~ -+ wn+l'P(r) 

is differentiable for tx in a neighborhood o f  Ixo for all 0 < r < R and any 2 < p < Po. 

Proof .  We have the same Equations (2.29), (2.30), (2.33), and (2.34) from Proposition 2.28. Also, 

II v,o~ + PlIwn <R>--< 2n Ilvllw,,, (R> II~ + Ilpllwn,P(R> �9 

By Proposition 2.24 (v), IIo zll opr is finite for all 0 < r < R and 2 < p < Po. Using (2.30) and 
Proposition 2.24 (v), we get that 

lim Ilellgn+l,~(r) = 0 (2.37) 
/z---~/z o 

O- --~ O" 0 
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for a l l 0  < r < R, 2 < p < Po. In particular, the linear m a p L ( v , p )  = ~ e W~+LP(r) is 
R+r continuous. From Equation (2.33) and Proposition 2.24 (v) we have that, for S :=  2 , 

II h II W.+t,p (r) 

Ilhllw,+l,p(r) 

II v II w.,~ (r) 

C(S, r) ([Iv gzl[79(+3,p,fU) + IIv 611wn,~(s)) 
<_ C(S , r )  (llvlloo IlgzllT~(e3,p,f~) + 2 ~ Ilvllw+,P(R)1[611w.,v(s)) 

< CCS, r) (ll61lD<+3,p,f~) + 2n 11611w~,~<s)) �9 

By (2.34) and (2.37) we have that 

Ilhllwn+LV(r) 
lim < lira 

,~-,,~o IlvllLw + IIPI[DW(F) ~+0 a--+Cro p--+O 

I[ h II wn+l,v Or) 

IlVllw~.P(r) 
- 0  

for all 2 < p < Po and 0 < r < R. This completes the proof. [] 

Corollary 2.38. The maps of  Propositions 2.28 and 2.36 are C ~176 

P r o o f .  We prove the corollary for the map in Proposition 2.36, the proof for the other map is 
similar. Define the following Banach spaces: E :=  s (C) A W n,p (R), F :=  D@, p, F) N W n'p (R), 
G :=  wn+l'p(r) f) .~(~, p, F), ~(~,  p, F) :=  { g l ez ~ Z~(+, p, F) } with Ilgll:r- :=  116 IIv(~,p,F) 
and C(E x F, G) :=  { L : E x F -+ G I s  linear }. 

There is no map G ~ F given by co --+ o9 z because r < R. We leave to the reader the 
technicalities that appear with this problem. Define the maps F : U x F c E x F --+ G, F ( # ,  o9 = 
co ~,~ where U _ E is the open subset defined in Proposition 2.36. Let F : U c E --+ s  G), 
F(/z)  �9 cr = o)~+'r and D : U x F --+ /2(E x F, G), D(/z, cr)(v, p) :=  s the derivative on 
Equation (2.29) of  Proposition 2.28. Let B : E • G ---> F be the linear map B(v, co) = v o) z. We 

have that 

DO+t, r p) = F(# )  o B (v, F(Iz, ~r)) + F(l+t)(p) 

D(/~, or) = ffC/z) o B (7rl, FC/z, or)) -F F(/z) o Jr2 (2.39) 

where ~1 : E • F -+ E and Jr2 : E • F --~ F are the projections. We have that 

liB(v, co)lit = IIv~ozllown ~ Ilvlloo II~ozllv(~,p,F) + 2n Ilvllw,, II~ozllw. 

< 2 n Ilvllwn (llo~llT+ll~ollwn+l) 

< 2 n IIvlIE II~ollc. 

Therefore, the bilinear map B is Coo. By Proposition 2.36 and the limit (2.35) in the proof of  
Proposition 2.28, we have that F : U x F --+ G is differentiable. Using the notation of  Proposi- 

tions 2.28 and 2.36, we have that 

= Ilhllw~+~ + IlhlI.T 

< Al(/Z)IIv611DW~ 

< Ai(/z) (llvll~ 11611~<~,p,y)+ 2n IIvllw~ 116llw.) 

_< AI(~)I lv l lw~ 2 n (ll~llz~(~,/,,v)+ Ilvllw~) 

< AI(/z) IlvllE A2(/z) HvoJz-[- (p =O)HDwn 
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1 [ IlhllG | 
lim max ~ - -  

Ilvll~-+0 ~ cr [ Ilallv / 

567 

< co o 2 n Ilcollwn+l) _ Z3(/z) llvllE(llvll~ll zlb(,,p,F)+ II llwo 
_< A4(Iz) IlvllE IlvllE IIo'11~ 

< lim A4(/z) IIVlIE = 0 .  
v--+0 

Therefore, the map F is differentiable and its derivative is given by (DF(Iz )  �9 v ) (a)  = 

D(Iz,  a )(v, 0), or 
D F ( t z ) .  v = D(/z, .)(v, 0) .  (2.40) 

Suppose that F and f f  are r-times differentiable. Then from formula (2.39) we have that D is r-times 
differentiable. But D is the derivative of  F so that F is (r + 1)-times differentiable. Formula (2.40) 
implies that f f  is also (r + 1)-times differentiable. We conclude that F is C ~ .  [ ]  

T h e o r e m  2 . 4 1 .  

(i) Le t  0 < k < 1 and p > 2 with k Cp < 1. Then for  any R > O, the map 

{ /z  ~ Z;~(D)  I Illzll~ < k ] ~ nR,p 

given by tz ~-+ f '~  is C ~ .  

(ii) Le t  0 < k < 1 and p > 2 with k C p < 1. Then the map 

(iii) 

s n w',P(R) n { II/zll~ < k} > wn+i'P(r) 

given by lz ~ f ~  is C cc for anyO < r < R. 

In particular, for  any n > 1 and any 0 < r < S < R the map 

2 1_2 
s  < k }  > C ~ + l - 7 ( r )  O C  p ( g )  

given by tx ~+ f g  is C c~. 

Proof. Define the spaces E, F, G, s  G) and the maps ff(lz) �9 a = cou,o and B : E ~ s  G), 
B(v,  co) = v coz as in the proof of  Corollary 2.38. We have that F and B are C ~ .  Define the map 
H : E --+ G by H(/z)  := f u .  

C l a i m ,  H is differentiable and D H ( I z ) .  v = cog'v fz#, i.e., 

m 

D H  (Iz) = F(iz)  o B (., H(/z))  . (2.42) 

[] 

Suppose that the claim is true. From formula (2.42) we have that if H is r-times differentiable, 
then D H  is r-times differentiable and hence H is (r + 1)-times differentiable. By the claim, the 
induction starts at r = 1 and then H is C ~ .  [ ]  

Proof of the Claim. Let/z,  v s E, co := w ~,vfz", h :=  f ~ + v  - f u  _ co. Then 

h~ -- (Iz + v) h z q- v coz 

o)g z = I Z c o z + V f z  
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with h(0) = h(1) = co(0) = 09(1) = 0, Ico(z)l : O ( I f ~ ( z ) l  2) and [h(z)l = O([f~+V(z)[2).  We 
have that 

IlH(tz -t- v) - H(/z) - collG : Ilhllwn--~ + Ilhll~- 

< A (llvcozllwn + IIv~oz ~(~ p f , ) )  

= A IIB(v,o~)llr 

< 2hA IIvlIE IIoJIIG 

< 2 n Z Ilv[IE Z I1~ fz II~ 

< 2 h a  ]lVl[E A 2  n IIvllE IIf'll  

with IIfllG : 
sition 2.24 (v), one can show that f ~ wn+I 'p(R) ,  hence I[fllw,+t < + ~ .  
Ilfzll~(~,p,f.) = I]ll[z>+,v < +ec .  Therefore, 

lim I[H(/z  + v) - H ( / z )  - cOllG < lim (2 n A) 2 IIVlIE IlfllG = 0 .  
~-~o IlvllE - ~ o  

And the linear map DH(tz )  : v ~ co is continuous because 

Ilco]lG < a Ilv f~l[lr < 2n a [[flzll G IIvllE �9 

This proves the claim. 

II f II wn+~ + fz ~(~ p f . ) .  By considering small bump functions )~ as in Propo- 

We have that 

[ ]  
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