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The Hausdorff Dimension of the Harmonic
Class on Negatively Curved Surfaces

By Gonzalo Contreras

ABSTRACT.  We study the regularity of the Hausdorff dimension of the harmonic class of a surface M of
negative curvature as a function of the riemannian metric. We prove that it is a C r=3 function of the metric
in the Banach manifold of C” riemannian metrics on M. We also prove regularity results for some asymptotic
quantities associated to the Brownian motion on M.

1. Regularity of the harmonic class

1.1. Introduction

In the last years there has been increasing interest in potential theory on simply connected man-
ifolds M of bounded negative curvature. Anderson [3], Anderson and Schoen [4], and Sullivan [28]
have proven that the Dirichlet problem on M can be solved for continuous data on the sphere at
infinity S(o0) of M. In [17] Kifer gives a probabilistic proof of this result, rélating it to the Brow-
nian motion on M. When M is the universal cover of a closed manifold of negative curvature M,
Ledrappier [21] related some asymptotic quantities associated to the Brownian motion on M with
ergodic quantities associated to the geodesic flow of M and obtained rigidity results for the metric
on M (see Theorem 1.2). For example, if (0,0) € R x {v € T M| Jv| = 1} are the geodesic
polar coordinates about x of a point z = exp, p0 € M, and A(x, z) is the function defined by
dV(z) = A(x, z)dp df, where dV is the volume element of M, then for almost every Brownian
path &(t) on M we have the same limit:

h= lim 28 A® 60)
t—oo  d(x,o())

where d(x, y) is the distance function on M. We restrict ourselves to the case of the universal cover

of a closed surface and consider A as a function of the riemannian metric g. We prove that the map
g > A(g) is C"~3 when g varies in the C” topology.

Solving the Dirichlet problem on M for boundary data on S(o0) gives rise to harmonic measures
w; associated to each point x of M. All these measures are absolutely continuous with respect to
each other and define a measure class on S(oc0). Since, in the case of surfaces, the sphere at infinity
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has a natural C! structure, the Hausdorff dimension of the harmonic class H D(wyg) is well defined.
It gives a measure of the deviation of g from a metric of constant curvature (cf. Katok [15]). We
prove that the map g —> H D(w;) is C” —3 varying g in the C” topology.

The actual condition that we need on the riemannian metric g on M is that the geodesic flow of g
is Anosov. This allows some sets of positive curvature but not conjugate points (cf. Klingenberg [19]
or Maiié [24]). We state the theorems in this setting.

1.2. Notations and statements of results

Let (M, g) be a closed surface of genus g > 2 endowed with a riemannian metric whose

geodesic flow is Anosov, for example, a metric with variable negative curvature —b?* < K < -4

Let 7 : M — M be its universal cover with the metric induced by 7 and (M, g). Let Sg M (resp.
Sy M) be the unit tangent bundle of (M, g) (resp. (M, 3) the lift of g) with the natural projection
p:SgM — M (resp. p: SgM — M). Let T = 71 (M) be the group of deck transformations of M.

The harmonic class

Two geodesics y and n in M are said to be equivalent if sup,-( d (y ), n(t)) < 400, The space
of equivalence classes is called the sphere at infinity and is denoted by S(00) (see, e.g., [6]). For X
in SM let vy be the geodesic in M defined by (yX ), Y5 (0)) X. Denoteby 7 : SM — § (o0) the
map that associates to each X, the class of Yg. For x in M, the restriction 7 of 7 to Sy M = P x)
is a homeomorphism between S, M and §(co). The cone topology on M U S(00) is obtained by
adding to the topology of M and S(o0) the open sets C(A, R) := t(A) NNy g expz(tA), where A
is an open subset of Sz M.

Let ¢ : SM x R — SM be the geodesic flow of (M, 3), ¢:(X) = (VX(I)’ y}’z(t)) and ¢ :

SM x R — SM be the geodesic flow of (M, g). Given XeSM , the weak stable manifold of Xis
defined by

W (%) :={f/ € SM

sup d (¢ (X), (X)) < +oo} :

>0

W*(X) isa C! submanifold of SM homeomorphic to R?. The stable foliation F* = { W*(X) | X €
SM } is T-invariant and projects onto the stable foliation F° = {WS X)X eSM }, W nX) =
T (WS (5()), for the Anosov flow ¢; on SM. Since dim M = 2, the foliations ]—N'S, FS are C! (see [13]
or [14]). The strong unstable manifold

Wty = {7 e sit| Tim d(@-(R),¢-)) =0]

is the negative horosphere passing through X, which is a T-invariant embedded submanifold of § M
homeomorphic to R and prOJects onto the strong unstable manifold W**(z X) = (W”” (X)) for
7(X). Ti hey form a foliation Fun — { P (X)X € SM } called the strong unstable foliation
or the horospheric foliation which is transversal to the stable foliation. The spheric foliation & =
{SxM|x € M} is also transversal to Z°. The restrictions t W””(X) — S(e0) — {t(— X)}
and 7, : SyM — S(o0) are homeomorphisms whose transitlon maps | {u &) © (Tl gruu (Y))_ ,

Tl (g © Ty > T 0 T, | are the holonomy maps of the stable foliation, i.c., the diagram
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holonomy
e

WHs(X) Wus(Y)

commutes. Since the holonomy maps of F* are C', this gives a natural C! structure to S(00).

The Laplacian operator on M is the operator Ap = div(grad(go)) on C2(M,R), where

(grad(e), X=X (), VX € TM and div(F) is the trace of Y > VyF, the riemannian con-
nection on a vectorfield F : M — T M. The Dirichlet problem Ap =0, ¢|s(0) = f can be solved
for any f : S(co) — R continuous (see [3, 4, 28], or [17]). Let Hf = ¢ be the solution to the
problem. For x € M, the harmonic measure at x is the unique Borel measure w, on S(o0) such that

(Hf)(x) = / fdwy
S{oc)

forany f € CY (S (00), ]R). All these measures are absolutely continuous with respect to each other.
Their equivalence class is called the harmonic class of M.

Given a subset K of a separable metric space (2, d), the Hausdor(f dimension of K is defined
to be

HD(K) := inf{§>0|ms(K)=0},
ms(K) = 1iggf { Z (diam V)° } ,
VeO ,

where the infimum on ms(K) is taken over all open covers O of K with diam O < €. Given a Borel
probability measure 1 on (€2, d), the Hausdorff dimension of w is defined to be

HD(w) :=inf {HD(A) | (A) =1} .

This number is constant in an equivalence class of (absolutely continuous) probabilities.

Since C! maps preserve Hausdorff dimension and H D(UflLKn) = sup,.y HD(K,), we
can define the Hausdorff dimension of the harmonic class to be HD(w) := HD(w, o T, =
HD(w, o (r|v7,uu(2))_l) forany x, y € M,Z € SM. We write H D(w,) when we want to make
explicit the dependence of H D(w) on the riemannian metric g of M.

Kifer and Ledrappier [20] proved that for a simply connected complete riemannian manifold M
of bounded negative sectional curvatures —b% < K < —a?, the Hausdorff dimensions H D(wyot, 1)
(which a priori depend on x € M because the maps Tx o T, ! are only Holder continuous) are all
positive. Actually, they are all equal by Remark 1.5.

Let R” (M) be the Banach manifold of C” riemannian metrics on M with the C" topology and
let A" (M) be the open subset of C” metrics whose geodesic flow is Anosov, in particular, metrics
with negative curvature. Here we prove the following:

Theorem 1.1. The map A"(M) > g > HD(w,) € RisC™ =3, r > 3.
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The Brownian motion

Let (M, g) be as above. Denote by Q= C0([0, +oo[, M ) the space of continuous paths on M
with the topology given by uniform convergence on compact subsets. Forx € M let Py be the Borel
probability on 2, := [® € Q| ®(0) = x ] defined by

P [oe|a0) =x, at) eA]= /Ap(t,x, y) dmg(y)

for any r+ > O and any Borel subset A C M, where m ¢ 1is the volume element of Mand P :
R x M x M — R is the fundamental solution of the heat equation on M:

ap
— Vplt, -, = 0,
8t+ pt, - y)

lim / plt,x,y) f(y)dmg(y) fx),
t10 M

for any continuous function f : M — R. Since the heat kernel satisfies (see [8, Theorem VIIL4,
VIIL5]):

@) p(t,y,x) = p(t,x,y) >0, Vi >0, Vx,y €M,
(1) Ji p@ x,y)dmg(y) =1, Vg >0, Vx,y €M,
(i) [y pe,x,y)pt,y, 2)dmg(y) = p(s +1,x,2), Vs,t>0, Vx,y,z€M;

we have that the family P = { P, |x € M} of probability measures defines a continuous Markov
process on M called the Brownian motion on M. The induced probabilities P = P;om on

(%)
Q= CO([O, +-00[, M) define the Brownian motion on M.

Since the geodesic flow ¢, is Anosov, M cannot have conjugate points and exp, M — M
is a diffeomorphism for every x € M (see [19] or [24]). For x € M, we consider geodesic polar
coordinates about x, i.e., we identify T, M with ]O +00[ % S, M U {0} and apointz € M is described
by the polar coordinates of exp, Y(z). For @ € Q, denote by (r (@, 1), 6(w, t)) the geodesic polar

coordinate about x of the point &(z). Forx € M, let A, be the Lebesgue measure on S, M and denote
by Ag(x, z) the function on M x M such that

dmg (exp, 1£) = A (x, (1, §)) dt dh(€)

for & € Sy M. Let Vi (x, t) be the volume of the ball of radius # about x:

t
Vg(x, 1) =f </ _Ag(x, (5,8)) d)»x(é)> ds
0 \JS i

The following theorem has been proved by several people:

Theorem 1.2.

[26] Forallx € M, P,-ae. & € SNZ, 0(&, t) converges as t goes to infinity towards some limit
(&, +00) € S, M.
The induced measure on S(oc) ~ S, M by 8(-, +00) : (2, P;) — lel;I is the harmonic
measure wy.
[29] There exists a number a > 0 such that for all x € M, P.-ae. &,
im 1r@, 1) =alg).
> 400
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[16] There exists a number 8 > 0 such that for all x € M, P,-ae. &,
lim —1log p(t, x, &(1) = B(g).

=400
[21] There exists a number y > 0 such that for all x € M, P.-ae o,
lim %log A(x, (Z)(t)) =y(g).
t—+00

[21] Ingeneral B <y and B < o h, where h is the topological entropy of the geodesic flow on
SM.

[21] Each of the equalities 8 = y or 8 = ah hold if and only if the surface M has constant
curvature.

We prove the following slightly more general result than Theorem 1.1:

Theorem 1.3.

(i) ThemapA"(M)> g+

B eRiscr2,
(i) The map AT(M) > g > L&)
P 8 Gtg

X8 e R js C 3.

(iii) The Hausdorff dimension of the harmonic measure is H D(w g) = %.

Since for surfaces the harmonic measure on S, M = §(c0) is absolutely continuous with respect
to the Lebesgue measure only in the case of constant (negative) curvature and in this case H D(w) = 1,
then HD(wg) can be seen as a measure of the deviation of g from a metric of constant curvature
(cf. [15]).

1.3. Equilibrium states

Given a Holder continuous function F : SM — R, there exists a unique ¢-invariant probability
measure i r on SM, called the equilibrium state of (¢, F) such that it maximizes the functional

v»hv<¢1>+/qu

over all the ¢-invariant Borel probability measures on SM, where h, (¢1) is the entropy of ¢, with
respect to v (see [7]).

For X € SM define the local stable and strong unstable manifolds of X by

WiX) = {Y € SM ‘ A($,(X), p(V)) <€, Vi 0]
Wex) = {¥esM|dx,v) <eand Jim_d(¢-(X), (1)) =0}.

If € > 0is sufficiently small, then they are transversal embedded discs in SM with dim W (X) = 2,
dim W2*(X) = 1. For € > 0 small there exists a partition & of SM with diam & < ¢ such that it is
subordinate to F**, i.e., £E(X) C W (X) forall X € SM (see [22]) and such that it is a measurable
partition, i.e., the quotient space SM/& is separated by a countable number of measurable sets
(see [27]). Then (cf. [27]) there exists a system of conditional measures associated to it, i.e., for -
a.e. X € SM there exists a probability measure py = pg(x) on £(X) such that for any Borel set A on
SM, the function X — pg(x) (A N é(X)) is measurable and p(A) = fSM Heon (A N S(X)) du(X).

If 1 is an equilibrium state and £ is the holonomy map of the stable foliation F* from (a subset
of) £(X) to &(¢,(X)): L(Y) = W*(Y) N £(4:(X)), then the measures “5@0 and u{( 00 ° L7
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are equivalent on £(X) N L1 (S (P (X ))). It follows that the measure v on £(X) defined by v(A) =
uF (Uyea W (Y)) is equivalent to “?(X)'

Observe that if Hf = ¢ is the solution of Ag = 0, ¢lswe) = f on M and T € T, then
H(f oI') = (Ff) oT" so that the harmonic measures satisfy wr() = wx o ', where I is the
extension of T to S(00). Since for X € SM, IIWW(DF_X) oDI'=To TlW””(f()’ we have that the
MEAsUIEs Vg 1= @, %) © Ty (g) satisfy f’Dri{ = 175( o DT and hence the system {v5 | X € SM }
projects to a family of measures {vx | X € SM,}, v 3 o Dr = ¥y, that we call the horospheric
harmonic measure on SM.

Theorem 1.4 [21].

1. The horospheric harmonic measures are equivalent to the conditional measures on local
strong unstable manifolds of the equilibrium state u” of the function

F(nX) =log K (yz(0), yz (1), 1(X)) , (1.4.1)

where K : M x M x S(00) — R is the Poisson kernel of M (see Section 1.5): ll,g(x) = vy for all
XeSM.

2. We have, for the Brownian motion in M ,thaty = « f Jhd ,uF , Where

y d
7' = [log |det Do |7y wex)|] g -

In particular £ is the positive Lyapunov exponent of (SM, {¢r, t € R}, uh).
3. We have 8 = ah, ().

Since D is 2 C! map and the Hausdorff dimension H D( ,ug( x) is constant for p-a.e. X € SM
(cf. [23]), then we have that HD(wg) = HD(vx) = HD(,uSF(X)), u-a.e. X € SM. Ledrappier,

Manning, and Young (cf. [22, 23, 30]) proved that H D(/Lg( x)) = hu(@) /1), where A(n) is the
positive Lyapunov exponent of (¢, 1). In particular, we have that H D(wg) = B(g)/v ().

Remark 1.5. Ledrappier and Young [22] proved that in higher dimensions, dim SM > 4, the
Hausdorff dimension of conditional measures on W**, H D(,ug( X)), of invariant probabilities y, are
the same p-a.e. X € SM. This implies that in dim M > 2, even when the holonomy maps of the
stable foliation F° are only Holder continuous and hence the sphere at infinity has only a Holder
structure, the Hausdorff dimension of the harmonic class is well defined (and positive). il

We are going to use the following:

Theorem 1.6 [9].

Let X be a C” vectorfield on a compact manifold N whose flow is Anosov. Let X" (N) be the
Banach space of C" vectorfields on N and C*(N, R) be the Banach space of «-Hoélder continuous
functions on N. Let : V C X' (N) — CY%N,R) be a continuous map from a neighborhood V
of X of vectorfields whose flows are Anosov. ForY € V let uy be the topological equivalence of
Proposition 1.13, and suppose that the map F(Y) := y(Y) ouy issuch that F : V C X"(N) —
CY(N,R)isC*~!,s <r. ForY €V, let iy be the equilibrium state for (Y, ¥ (Y)) and h(uy) the
metric entropy of Y with respect to uy. Then there exists a neighborhood Y C YV of X in X" (N)
such that the maps
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A USY > hpy) eRisCs1,
(i) U>3Y > pye (CON,R) isC1,

(i) U3 Y > Muy) = [ 4[log|det D(¢:(Y))|pupy|],_o dur(p) € Ris C* witht =
min{s — 1,7 — 2},

where (p, t) = (¢:(Y))(p) is the flow of Y € U and E%"(p) = T,W“(p) C T,N is the unstable
subspace for Y at p.

Moreover, if F 1V C ¥ (N) — C%(N,R)isC* L and F : V C X" (N) — C*%(N,R) is C%,
then the mapU 5 Y + P(F(Y)) € Ris C*, where P(F(Y)) is the pressure function F(Y) for the
flow of Y.

Sketch of the proof of Theorems 1.1 and 1.3

We will apply Theorem 1.6 to our case: let R” (M) be the Banach manifold of C” riemannian
metrics on M. Given g € R"(M), the geodesic flow of (M, g) is generated by a C"~! vectorfield
X(g). Fix a riemannian metric g, € A"(M) and a small neighborhood g, € V C A" (M). Let
XM = S,,M be the g,-unit tangent bundle. For g € V, using the orthogonal projection S, M —
XM, conjugate the geodesic flow for g to a flow on M with vectorfield Y (g). Since this projection
is differentiable, entropies and Lyapunov exponents for Y (g) are the same as the corresponding ones
for X(g). We will prove (cf. Lemma 1.12) that the map R" (M) > g — Y(g) € ¥ N=M)is
C. Let Fy be the function defined in Theorem 1.4. In Section 1.7 we will prove that the map
R’(M) >5g¢t> Fyoug € C*(XM,R)is C"~ 2 for some 0 < & < 1 and the map R"(M) > g —
Fooug € C%EZM,R)is C"\. Then using Theorem 1.4 and Theorem 1.6, we obtain Theorems 1.1
and 1.3. 0

1.4. Conformal equivalence

Given an initial riemannian metric g, on M, the existence of isothermal coordinates (see below)
implies that we can find an oriented atlas on M in which locally we can write g, = f(x, y) (dx®dx+
dy®dy), where f is a smooth scalar function. Writing z = x +iy we obtain an analytic atlas. Indeed,
for other isothermal charts (i, v), writing w = u -+ iv and g, = h(u, v) (du @ du —|— dv ® dv) we

have that the derivatives of the transition maps w o z~! must satisfy [g&’;;] [g&‘gg] {: 8: Z)) 1d,
dw

which gives the Cauchy-Riemann equations for ¥

This gives to M and M the structure of riemann surfaces. The uniformization theorem [11]
implies that M is conformally equivalent to D = {z € C| |z]| < 1} with the euclidean metric. We
identify D ~ M so that the covering map 7 : D — (M, g,) is conformal, the deck transformations
are holomorphic and the lifted metric g, can be written as g, = p, (dx @ dx +d y ® dy), where
po : D — R is a positive smooth function. Denote by z = x + iy : M — D this coordinate system.

Consider the lift 3 to M of another ricmannian metric g on M. We look for coordinates
w: M — D such that g = p Idz+,udz|2 where p : M — RY and 4 : M — C is a smooth
function such that |u(p)| < 1forall p € M. Writing g in the coordinates z = x + iy as

g=Adx®dx+2Bdx ®dy+Ddy®dy,

we have
ldz + pudz) = (1 + Iulz) ldz|? +2 Re (ﬁdzz) =¥
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with p = % Form this we get that

A+D

B
= Ao, B=-xr, 1 2= .
o ) B > + |l B
We choose the solution
8 B(A+D)—2VAD—B2 oy P4
(A+D)?—4(ap—82) ~ p?-gq?
2B A—D
B = . a= (1.7)
p+gq p+gq

where p ;= A+ D > 0 and g := 2+/AD — B2 > 0 because the matrix A = [ ;: E :| is positive
definite. Observe that we get that

2 2
T4l =2 _
p+qg 1+

<2

q
P
because % > 0, and then |u| < 1.

Let C*(r) be the Banach space of C* functions f : {z € C| |z| < 7} — D with the C* norm
and let CO(ID, D) be the space of continuous functions of the open disc to itself with the €% norm.

Lemma 1.8. Forall0 <r < 1 and allk > 0, the map u : R*(M) — C*(r) n CO(D, D) given
by g > u(g) oz~ is C*®.

Proof. From formula (1.7) it is clear that the map u : R¥(M) — C*(r) is C*°. Observe that the
equationg = p |dz + 1 dz|* has exactly two solutions for u at each point, one with || > 1 and one
with |i| < 1. We choose the one with || < 1. Let & be a deck transformation and write w = a(2).
The map h is holomorphic, so that z7z = 0. Since # is a g-isometry, we have that

pldz+pdzl = pw) |dw+ w(w)dw|
E_
= (poh) |h dz+(M0h)h—de )
Z
Therefore,
h h:
on=u—"-
w u P

LetDbea ~fundamental domain and choose rg > 0 such that D C [|z| < rg]. Choose any
point p € D = M, then
h(q)

hz(q)

lu(g1) (p) — 1 (g2) (P I (g1) (g) — u(g2) (@)

= lu(g(g) — n(g)(@l,
where A is a deck transformation such that p € k(D) and g € D is such that k(g) = p. Therefore,
e (g1) — n@)llcommy < I (81) — 1 (8l cogy -

This implies that R*(M) — C%(D, D) is C™.
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1.5. The Poisson kernel

Given a riemannian metric g on M, the Laplace-Beltrami operator can be written in local

coordinates as
ij
A= Zg <8x’3xJ Z ij axk)

where
gim agm] agij mk
zz(axf T ) £

are the Christoffel’s symbols of g and [g"/] = [g; 1 1 is the inverse matrix of the local representatlon

of g =3 g (dx' ® dx/). If we multiply a metric g on M by a smooth function A : M — R™, the
Laplace—Beltrami operator for Ag takes the form:

Z(Wf( s —Z " (08) —)
LJ
1 2 —dimM ar )
— —A . - . A mk -
PR < 2 ) 22 mXIQ oxm & xk

1
= XAg.

Ajg

I}

so that the set of harmonic functions for g coincides with the set of harmonic functions for Ag.

The Poisson kernel on M , K M x M x S(o0) — R is defined as the Radon-Nikodym
derivative of the harmonic measures:

dwy
K(x,y,0) = T
X

Fix ariemannian metric g, on M and its lift goto M. Suppose that its geodesic flow is Anosov.
Fix an isothermal chart z : (M, g,) — (D, e), where e is the euclidean metric (actually its conformal
type) on D.

Lemma 1.9.

There exists a neighborhood U of g, in the C3-topology such that for all g € U the chart 7
induces a homeomorphism z : Sg(00) — § I'= 8D < C of the sphere at infinity of g and S' by
2yl = lim z oy, ().

Moreover,
(i) The extensionz : M U Sg(00) — Disa homeomorphism.
(i) Themapz: Sy, (00) — St is Holder continuous.

Proof.

(1) In[12] it is proved that for any metric on M whose flow is Anosov, the map z : M U S, (00) — D
is a homeomorphism. It is also proved that any two Anosov geodesic flows for M are topologically
equivalent.
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(i) Letg : S gM xR—>S§ gM be the lift of the geodesic flow for g and let p be the g-distance on
SgM . Let ¢ : M x R — XM be the lift of the geodesic flow for the metric g; with constant
curvature K = —1 and let d be the hyperbolic distance on M = SgIM .Leth:S;M — T M be
a topological equivalence of the geodesic flows for g and g;, and let ke SgM — M be its lift.
Since S, (00) is compact, it is enough to prove that for any w € ng’\Z’ ,themap H : W““(w, ) ~

Sy (00) —> ST~ WHe (h(w), ¥) is Holder continuous on a neighborhood of w. We use local strong
unstable manifolds:

Wy, v) i={ g € 2H | d(p.q) < pand lim d W(p).vi(@) =0} .

We havethat H = Pohwhere P : Dy € XM — VT’E” (ﬁ(w), 1/f) is the projection along the flow lines

of ¥, Dy = {z € W¥(h(w), ¥) | d(z, h(w)) <0}, and W (h(w), ¥) = Uscr V(W (hw), ¥))
is the weak unstable manifold of #(w). Fix € > 0 small and such that if p,q € W*(h(w), ¥),
d(p, ﬁ(w)) < € and d{(gq, fz(u))) < ¢, then there exists exactly one point in the intersection

(w) = Wik(q, ) N (p)| —de <t <4de}#9p.
Let 6 := 12€. For the hyperbolic metric g1 we know that P is C I, Let B > 0 be such that
d(P(x), P(y)) < B p(x,y) forall x, y € Dy. We need the following:

Claim.

(a) Thereexists) < a < A suchthatifx € S, = M and s(x) > 0 is such tbatfz(d;(x, ) =
¥ (h(x), s(x)), then2a < s(x) < 4

(b) There exists 0 < a < A such that if x € SgM, T > 2 and s(x,T) > 0 is such that
h(p(x, T)) = ¢(h(x),s(x,T)), thenaT < s(x,T) < AT.

]

Proof. For (a) use the continuity of & and the compactness of S; M. For (b), suppose that 7 = n+94,
withn € ZT and § € [0, 1[. From item (a) we get that 2a % <2an<s(x,T) < 2 nt 5 4 < A 2T.

O

Let & > 0 be such that p(¢;(x), ¢:(y)) < € p(x,y) forallt > Oandall x, y € SgM. Let

n > 0 be such that p(x, y) < 2n implies d(h(x), h(y)) < €. Ifx,y € Wg‘”(w, @) with § < e 3*p,
let T := min{s > 01p(ds(x), os(»)) =1 }. This number exists by the expansivity of ¢ if 7 is
small enough (in fact for any 5 using the conjugacy h). We have that T > 3 and p(x, y) > ne™*T

There exist continuous functions o, T : R — R such that ¢ (0) = 0 = 7(0) and ﬁ(qb (x,5)) =
Y(h(x), o (x)), h(¢(y) 1) = w(h(y) 7(t)). By the claim, aT < 7(T) < AT and aT < o(T) <
AT. Since x, y € Wi(w, ¢), then h(x) and h(y) are in the weak unstable manifold W* (h(w) 1//)
of h(w). Write p = h(x), q:= h(y) and let

m = Wi (h(y) N {Yeh(x) | —de <t <4e}.
Then
e*Md(g,m) > e*T d(g,m)
a (hgr(x), hor () < e

d (Yo ) (@), Yy (m))
d (Ysy(p)s Yoy (@)

v
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eTdig.m) < d{Vor) (D) Ye(@) +d (Vory(p), Ye(ry(m))
< e+o(T) — (D) +d(p,m)
< €+42AT +4e¢
d(g,m) < (Se+24T)e T <e 5T

if T > Ty := To(e, A, a) > 0. If we choose 0 < § < %07, then x, y € Wi (w, ¢) implies that
T > Tg. In particular

a

dig.m)<e 5T < (ne‘”)ﬁ TR <07 p(x, y)*
for @ = £. We have that d(h(w), m) < d(h(w), p) +d(p,m) < € + 4¢ < 12¢€ = 6. Then

d (H(x), H(y)) d(P(p), P(q)) =d (P(m), P(q))
Bd(g,m) < Bn % p(x, y)*.

il

A

This proves Lemma 1.9. L]

Let g € U be another metric on M and g its lift to M. Suppose that f : (D, S1) — D, $!) is
a homeomorphism which is differentiable on ID and satisfies

fz=ug fr,

where /4(g) is from Section 1.4. Then for w = f o z, the metric g is written as § = A |dw|*. By the
remark above, the g-harmonic functions on I in the coordinates w are the harmonic functions for
the euclidean Laplacian on D.

From now on we identify M ~ D and Sg(00) = § ! for any metric g on i, using z.
Lemma 1.10. The Poisson kernel for3 onD U ' ~ M U S (00) is given by
k(x,y,0) =P (f(x), £(), £(6))

foranyx,y € D, 0 € S', where P is the Poisson kernel for the euclidean Laplacian

il Ly ef g,
PGz, w,0) =Re | ——— - — .
@ w,0) e<eza_w oif +z>

Proof. For z € D, let w, be the g-harmonic measure at z and A, be the euclidean harmonic
measure at z. Let ¢ : S' — R be a continuous function. By Lemma 1.9, it corresponds to a
continuous functlon Sg(00) — R. Let ¢(z) be its g-harmonic extension to D, A (@) = 0. Let
@ (w) = o(f~L(w)) be the function @, written in the coordinates w = f(z). Let A be the euclidean
Laplacian on D. Then A¢ = 0 and hence

/(pda)y

00 =GO = [ 66)drr0)
= / vo f dhyse)
st

= [ 00O PU®.101.0) drpwm®

./Sl (¢0f—1>(kof—1) d)\f(x)=/51g0~k dw,
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where k(0) := P(f(x), f(), f(6)). Therefore,

d
k(x,y,0) = dwy =P(f), fO), FO)) . []

1.6. Stability of the geodesic flow

Fix a C’ riemannian metric g, € A" (M) C R (M) such that the geodesic flow of g, is
Anosov. Let £ M be the g,-unit tangent bundle *M :={v € TM | g,(v, v) = 1}. Given another
riemannian metric g € R’ (M) and its unit tangent bundle S, M = {v € TM | g(v, v) = 1}, define

1
the map F : S;M — EM by F(v) = v (go(v, v)) 2. Let ¢, be the geodesic flow for g and define
¢: = F o, o F~1. Then F is a C” conjugacy between v, and ¢;.

Given a chart x : U € M — RZ, consider the chart (X, 5) = (x,dx) : TU — R? x R?, with
) =1, y)ifv=>3y % In this chart, the geodesic flow for g satisfies

dx*
7=)’k Z ,]}’t)’] s _1a2;

where 5 5
8 it | i 9gij\ m
—22(8)& ax ax‘f)g k
are the Christoffel symbols for g = 3 g;; (dx' ® dx7) and [g*] = [g,-j]_l.

Let A(s) = (p(s), ﬁ(s)) € Tp(s)M be an orbit of ¥;. Then F(A(s)) = (p(s), Z(S)(go)"%),
gO = gO('B(S)v 6(‘;))7 and

d(F o) dp 143§ d
ds " V8o ds Z(go)% ds%°

-

v d
8xk 2 (go )2 ds

%go(ﬁ(s),ﬁ(s)) = a;gioj(p(S)) v (s) v/ (5)

gl .. .
J ki opi .k L.
E PR 2 E giilev v

ijk ijke
If i(s) = F(i(s)), then §(s) = —=— and /3,3, 9) = YL We have

dw w 1 .0 W g;
— = I‘k w'w! — L2 gol ) wiw/w
ds \VB' VEVE S 27 (g0 %; (3xk Z

This is the vectorfield of v, denote it by X (g). Let X7 —1(Z M) be the Banach space of C” -1
vectorfields on M with the C” norm. The formula above proves the following lemma.

Lemma 1.12. The map R"(M) — X HEM) isC™.
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We will need the following version of the structural stability theorem:

Proposition 1.13 [9].

Let X € ¥"~1(SM) be an Anosov flow, then there exists a neighborhood V C X' "1 (M),
0<p<1andC™"2mapsV — C4(EM,EM) Y > uy andV — CH(SM, [}, +o0) : ¥ >
vy such thatY ouy = yy Dguy.

Moreover, the corresponding maps Y +> uy andY > yy for f =0 are C"~!.

Where Cf (XM, ¥ M) is the space of B-Holder continuous functions # : ¥M — XM such
that %M(dh (P)]:=0 exists and it is B-Holder continuous endowed with the norm [ullg = [u| gt
|| g—t (u o @) ” 5 where || [|4 is the B-Holder norm for a fixed C” riemannian metric and Cg(E M, M)
is the space of continuous functions u# : XM — X M such that %(u o ¢,) exists, with the norm
[ello = llullsup + || 2 0 60|

sup’

Corollary 1.14. For Y € V consider the map oy : M — R™ defined by Yy (uy(p),1) =
Uy o ¢(p, ay(p)), where Yy is the flow of Y. Then

(i) ThemapU.— CE(EM ,R"):Y > oy isC" 2.
(i) In particular the mapsU — CP(SM, M) : Y + ¢y (uy(p), 1) is C" 2.
(iii) The corresponding maps for =0 are C"~1.

Proof. From the equation w(u(p), t) = u(¢ (p, s(t)))we get that ‘é—i = (qbs (p)). Consider the

map F : U x CP(EM,R") — CP(EM,R") given by F(Y,0)(p) = [y Wls(—pﬁds. Then the

function oy is characterized by F(Y,oy) = 1. Observe that (%GE . r) (p) = (yy (s (p)))_lr(p)
is invertible because yy (gbs ( p)) > 0. Since F is C”, the implicit function theorem implies that
Y > oy € CB(ZM,RY) is C"2. The case 8 = 0 is similar.

For (ii) use the fact that X" (¥M) — C7(TM xR, ZM) : Y + ¥y is C""2 for 0 < y <1
and X" (ZM) — CHUIM xR, M) : Y > ¢y is C" L. O

1.7. Proof of Theorems 1.1 and 1.3

We will need the following generalization of a theorem by Ahlfors and Bers which will be
proved in Section 2.

Theorem 1.15. Givenyu : D — D measurable with ||ull, < k < 1 there exists a unique
homeomorphism of the closed disk f* = f : D — D satisfying f; = u f,, with generalized
derivatives f, fz, such that f(0) =0, f(1) = 1, f(§') = §'. Moreover

(i) The map f is Holder continuous on D and if0 < r < 1 and u € C"(|z| < r,D) then
f e C"™(|z| < r,D) for some0 < o = a(k) < 1.

(i) Foranyn > 1 andany0 < r < R < 1, the map Lo(D) N C"(lz| < R,C) N {|lul <
k} — C"re(r) N C*(D, D) given by u > f* is C.

We now prove Theorems 1.1 and 1.3. Let g be a riemannian metric in a small C” neighborhood
of go. Then the map F : S, M — XM of Section 1.6 is a C” conjugacy between the geodesic flow
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of g and the flow of X (g). In particular, F maps strong stable and strong unstable manifolds of the
geodesic flows to strong stable and strong unstable manifolds of X (g).

Let ¥ (g) be the geodesic flow of g and ¢(g) := Foyr(g) o F~'. Letw : TM — M be the
projection. Let Py : SgM — Rbe Po(X) = log Ko (n X, myr (g)(X, 1), TM) where X is a lift of X
under p : TM — TM. Let g be the equilibrium state of P, for y(g). Consider the measure v, :=
F*(ug), vg(A) = ,ug(F_l(A)). We have for the metric entropies that h,,(¢(g)) = hy, (¥ (8)).
Since the conjugacy F is differentiable, we have that the Lyapunov exponents of v, and u, coincide
)‘4+(Vg) = )¥+(Mg)-

In particular, the Hausdorff dimension of the conditional measures on local strong manifolds
are equal:

hug (¥) _ v, (¢5) ]
() )

HD" (vg) = HD" (1g) =

For any ¢(g)-invariant measure v, we have that

hy (¢g)+/ pgoF_ldv=hM(l/fg)+f Podu,
M SeM

8

where v = F*(u), ie., ,u(F _I(A)) := v(A). Therefore, the maximum of these numbers is attained
atv = vy = F*(u,). Hence, vg is the equilibrium state of Gy = Pg o F ~1 for ¢y. We have that

X
Go(X) = PoF '(X)=P, (W)
8

log K —X— T Yn i, 1), X
# X1, X1 ¢
= logk, (71 (f() , T Pg (X, 1) , rg)z)

togP (f (w%). £y (72 (%.1)). fime)

where P is the euclidean Poisson kernel on D and we consider 7 : TM — M ~ D. In order to
apply Proposition 1.13 we need to see that g > G oux(y) € CP(M,R)is C"~2 for some § > 0,
where ux g) is the topological equivalence of Proposition 1.13.

Fix a fundamental domain of p : D = M — M and its corresponding lift g : M — D.
Since the C" or C%, 0 < a < 1 norms of maps are equivalent to sums of C™ or C* norms of local
restrictions of the maps, we do not bother with the discontinuities of this lift g. We have that

Ggouxy(V) =10gP (fom qug(V), fom @y (que(V), 1), fotgqug(V)) X (1.16)

By the structural stability theorem, the g,-geodesic of g(V) and the g-geodesic of g (u g (V)) remain
at bounded distance of each other. In particular, their limit on I as ¢ — 400 is the same:

OV) =1que(V) =1,,q(V) forall g nearg,.

By Lemma 1.9 (ii), the map ® : M — S! is Holder continuous. By Theorem 1.15, for some
0 <o <l themap g — f; € Ce(S1, §1) is C®. Therefore, for some 0 < B < 1 the map
gr> fr00 e CP(S, shisC™.
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By Proposition 1.13 and Lemma 1.12, for some 0 < y < 1, themap g — ug € CY (XM, T M)
is C"~2. The maps 7 : T™M - TM and g : M — D are C" and by Theorem 1.15 and Lemma 1.8,
the map g — f, € C"17(|z| < R, D) is C* for some 0 < R < 1 such that

{wl&g(w,q(M))§4, forsomegeV} Cllz] < R],

where V is a neighborhood of g, and d~g is the g-distance in M ~ . Therefore, the map g ~>
fgomoqoug € C3(EM,D)is C"2 forsome 0 < 8 < 1. Observe that we used here the derivatives
of f,. For 8 = 0, this map is C"~!.

By Corollary 1.14, the map g — ﬁg(q ug(-), 1) =qo gog(ug(-), 1) e CB(TM,D)is C"2
for some 0 < B < 1anditis C"~! for B = 0. Since g > f, € C"~17%(|z|] < R, D) is C*, we
have that the second component of (1.16): g — fz o7 0 g 0 g (ug()),1) € C}(EM, D) is €2
for some 0 < § < 1 anditis C" ! for § = 0.

Since P is C°°, from Equation (1.16) we get that the map A" (M) 2 U 3 g Ggoux(y) €
C*(ZM,R)is C"2 for some 0 < o < 1 anditis C"~! for @ = 0. Applying Theorem 1.6, we
have that g > h(vg) = h(ug) is C"2, g = AT(vy) = AT (i) is C" 2 and also that g > P(gp,)
is C"~!, where P(g,) is the pressure of G, for ¥r,. ]

2. Regularity of quasiconformal mappings

Our aim here is to prove (cf. Theorem 1.15) that if f# : C — C is a p-quasiconformal map
normalized by f(0) =0, f(1) = 1, f(c0) = o0, then the map u +— f* is C*; where u varies in
the space of C* maps and f* in the space of C*¥** maps. We obtain similar results for solutions of
non-homogeneous Beltrami equations (cf. Corollary 2.38).

Bers [5] proved that f# is CF+1+¢ if i is C¥+*. Ahlfors and Bers [2] proved that the map
w > f#is C' when pisin Lo and f* is Holder continuous. In order to get the second derivative,
we are forced to deal with derivatives of non-homogeneous Beltrami equations.

The proof that the map p +— f# is C* relies in the fact that its derivative satisfies a non-
homogeneous Beltrami equation and that the derivatives of such equations can be expressed again in
terms of non-homogeneous Beltrami equations. In fact, if f2' =y f}*, the derivative [’;—M f“h=o
satisfies [2] wy = pw; + h f,. Consider the map F(u, o) = w*?, where o = 07 satisfies
wz = ww; + o. Since F is linear on o we will have that

aF
-~ h=F(uh).

oo
A formal computation shows that the derivative A = g—ﬁ - h should satisfy Az = p A, + k w,. So that
oF
9 ch=F(u,h-F(u,o0)).
"

We will prove that F is C!. Then a recursive argument will give that F' is C* and then u > f#* is
Cc*>,
2.1. Preliminaries

GivenaC! function f (x, y) defined on aregion  C R? with values on C, define the derivatives

E :=%(fx"“ify) ; f3:=%(fx +ify) . 2.1
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If f : © — C is locally integrable, then we say that f, and f; are the generalized derivatives
of f if they are locally integrable and satisfy

//;zfzqodxdy:—/gf(pzdx'dy

f/ fzqodxdy=—/ feozdxdy (2.2)
Q Q

for all ¢ € C! with compact support in . The following lemma is well known:
Lemma 2.3. If f; =0, then f is holomorphic.

More precisely, there exists a holomorphic function which is almost everywhere equal to f.
Define the following operators

(PRYw) = —lf/h@[L_l] dxdy | z=x-+iy,
w Z
(Hh)(w) = __// h(z) - h(;U) drdy | z=x+iy,
c Z—w)

1 h(z) — h(w)
o eh—>0/f|z|>e (z — w)? drdy.

Lemma 2.4. Suppose that g € L,(C), p > 2. Then Pg exists everywhere as an absolutely
convergent integral and Hg exists almost everywhere as a Cauchy principal limit. The following
relations hold:

(Pgz = g , (Pg);=Hg. 24.1)

2
1Pg(z1) — Pez)l < K, lgl, 21—zl 77 (242)
IHel, < Cpligl, - (243)

Actually, (2.4.3) holds for p > 1 and for p = 2 and it can be replaced by

IHegll, = lgl . (244)
limC, = 1. (24.5)
p—>2
Writedg = g,, 08 = gz; then the operators , 9, and H commute . (2.4.6)

The relation (2.4.3) is a deep result called Calderon—Zygmund’s inequality. The proof of this
lemma can be found in [1].

We now see the behavior of the operator H on small discs. For 0 < R < 1, define the operator

Hrph(w) = —_f_/|. h(z) h(w) dxdy , z=x-+iy

<x @—w?

= —— h // ___h(z) h(;U) dxdy.
7T e>0JJe<|x|<R (z—w)

1 1 1
Prh(w) = —J—T—//ll Rh(z) I:Z“w—;il dxdy.
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ik, = <//|| P dxdy)” :

Let C*(Dg,C) = C%(R) be a Banach space of «-Hélder continuous functions on the disc
Dp :={z € C| |z| < R}, provided with the norm

Define the norm

[[h]]R,p = ”h”R,oo + [h]R,oz s
Illg0o = sup |h(2)],
|z|<R
h(z)—h
o h(2) = h(w)|

lz=w|<1 |z — w|®

Observe that
[lg - Allr.« <2 lgllR,e [[A]IR,o -

For R > 0, p > 2, n > 0 define

WhP(R,0) = {h:C—ClheC'(C,C), [D"h| € £, (Dr) and
h(z) = Ofor|z| >R},
WhPR) = |h:Dr—Clhe "™ (D, C), | D" € £, (Dp) | .
Vellwnrey = Wlleniggy + [ D",
Whllerigy = Xizo D% g o -
DR = 3 ’a’a’hwm.

i+j=k

On both W™#(R, 0) and W™ P(R) consider the norm || lwn.r (). Observe thatfor 0 < R < 1,
we have

[[111R .0 < 1hllR,00 + I DAl g 0o = IAll g0 + 19RlI k.00 + |30 5 o -
Lemma 2.5,

(a) Forall0 < o < 1 there exists C(a) > 0 such that
[[HrAR o < C(e) [[A]lg,o R¥ forall 0 <R < 1.
Moreover, ifh € C*(Dg, C), then Prh is C'1® and
(Prhy;=h , (Prh);=Hh onO<R<1.
(b) Forall® < o < 1 there exists D(«) > 0 such that
[[P& h]lg, < D(@) [[h)ra R' ™.
(c) Forall p > 2 there exists A(p) > 1 such that forall0 < R < 1 andh € WP (R, 0),

A

1Bl < AG)R'T Ilynocr,
|D"Hrhlp, < Cp |D'h|y, -

IA

In particular, the operator Hg : W"P(R,0) — W™P(R) is continuous and has norm
| Hr llwn.r ) < A(p).
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(d) Forall p > 2 there exists B(p, R) > 0 such that forh € W*?(R, 0)
I PR Bllwn+1pry < B(p, R) Ikllwnr(ry -
in particular, the operator Pg : W"P(R,0) — wntLP(R) is continuous.
The proof of part (a) of this lemma can be found in [5].

Proof. (b)letp > 2besuchthate =1 — %. By Lemma 2.4 we have that

[Pr h]R,(x

IA

Kp Ihlirp < Kp BllR,c0 111, p

2
< K,[lh]lgan? R?
IPrhllgos < |PRAO)]+[PrhAlgo R

IA

K, (Uhllga 77 R? RY,
because Prh(0) = 0. Now observe that % =1—« and R* < 1 to get (b).
(¢) Given 0 < k < n, let 5% be a kth partial derivative of , §kh = afﬁjh, i+ j =k Then
§h =P (5%) +F, 2.6)

where F : C — C is holomorphic. Since 8h € L,(C) and by Lemma 2.4. (2.4.2), P(§*nz) is
O(|z|*) when |z| — oo, then F is constant. In particular, for o = 1 — %,

[P = [P (), = 50 Jot0e
[T L R

By Lemma 2.4. (2.4.6), 8*Hh = H8*h and

=K Ha"h—
4 p ‘ R,p

IA

R,p )

|smn], = lmesta], < {[mmetn]]
- cor 1],
< C@ER” ( akhuR _+ Has’“hHR o+ HﬁakhﬂR Oo) ifk<n-—2,
< C(@)R* ( 8”‘1h”R LKy 8" 'z . p) if k=n—1.

Adding over all kth partial derivatives, we get
IHRllcn-1 gy < C@) (34 Kp) R |llwrpg) -

For k = n, we have that

|7 Hgh|y, = |Hr&"hlg, < Cp 8"k,
|D"Hi kg, = Cp[D"h|g,
|Hrhllwnry < (Cp+C@) (Kp+3) R%) Ihllynocr) -

IA

A
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(d) Let5 = 873, then
33 Prh = 89 h i j>1,
= % Hn fi>1.
Therefore,

IPrANlynsrory < max{|Blynrcry . |Hhllwnrry, | PrAIR,p » I PrAIR oo }
< B(p,R) l|hllwrr(r)

1 12
for B(p, R) :=Z{1,A(p),Kpn5R,KpRl_P,nERﬂ}. [J

Forw:C—>Candp>2,leta:1—%and

1 1
lolls, = sup LE @@ (// ""Z'p>p+</f “"f‘p)p
i 71722 |21 — 22| C

and define B, as the space of maps » : C — C with »(0) = 0 and |w|| B, < 09, endowed with the
norm || ||,

Lemma 2.7. Given p € Loo(C), llulloo < k < 1,0 € L,(C) withk C, < 1. Then there exists
a unique solution w*° of w7 = pw; + o withw(0) =0 and w, € L,(C). Moreover,

(i) There exists K = K (k, p) such that IIwIIBp < Kk, p) ||or||[;p.
(i) If u, — p almost everywhere, |\uqllo < k and o, — o in Ly, then 0t — w7 in
By.
(ifi)  The unique solution of w7 = L w; + o such that w(0) =a € Candw, € L, is w(z) =
a+ o™ (2).

The proof of all of this lemma except item (iii) can be found in [2]. Uniqueness in item (iii)
is proved by substracting two such solutions and obtaining a solution of the homogeneous problem
which is zero by (i).

Theorem 2.8 (Ahlfors-Bers) [2] .

Given p : C — C measurable with ||illo < k < 1 and p > 2 withk C, < 1. Then there
exists a unique homeomorphism f : C — Csuchthat fz = 1 f;, f(0) =0, f(1) =1, f(o0) =
Moreover,

i fisa=1- % Holder continuous on §* = C U {o0}.
(ii)  f, islocally of class L.
(iii) f; # 0 almost evezywbere

Gv) flisa=1- F Holder continuous and has generalized derivatives which are locally of
class L.

) (f~Y), and (f ~1)7 are determined by the classical formulas.
(vi) f and f~! transform measurable sets into measurable sets.
(vii) Integrals are transformed according to the classical rule.
(viii) If oz = L, on aregion 2 C C, then ¢ o f~! is holomorphic on f(S2).
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The solution f* of Theorem 2.8 will be denoted by f# through the rest of the paper.

Lemma 2.9 [2].
Let f = f*, Q € C bounded and suppose that h;, hz € L;(f(2)), q > 2. Thenh o f has
generalized derivatives given by
(hof)y = (hzof) fr+(hzo f) f,
(ho f)z (heo f) fot(hzo f) f7

I

and 'y
”(h o f)Z”r S M (”hZ”q + ”hZ”q) ’ r = m ’
where the norms are over the corresponding bounded regions 2, f(S2) and M is independent of h.

Corollary 2.10.
Let f = f* and suppose that hz =v hy, then

O (S Or =, withh == (£ u)o £ T =T,
i) If(ho f)s =n(ho f),, thenv = ( n=v_ I—) o f1.

l=np f:

— R 2
(iii) Ifg(2) = f—(llﬁ then gz = A g, withA(z) = i (%) %

Write
D:={zeC|lzl <1} , Sl:z{xe(c|lz|:1}.

Corollary 2.11. Ifu(z) = u (l> Z—z then F := f" restricted to D is the unique solution of

F; = ,uF on D such that F(0) = 0, F(l) = 1 and F(D) = . We have that f = f* satisfies
f@) = f . Inparticular, F isano =1 — = Holder continuous homeomorphism of .

Proof. By Corollary 2.10. (iii) and the uniqueness of the solution in Theorem 2.8, we have that
f <1> fﬁ and f(0) = 0, therefore (D) C D and it is a solution for F. If there exists another

solution G on D, then H = G o F~lis analytic on D and H(0) = 0, H(1) = 1. By Schwartz’s
lemma, H(z) = €97 for some 6 € [0, 2[. Since H(l) =1, then & = 0, H(z) = z and hence
G=F. O

Given 0 < R < 00, let B, , be the Banach space of functions o : C — C with @(0) = 0 and
finite norm || ”BR,,,:

lo (z1) — @ (22)] (zz)l

lollg,, = sup oo |” dix dy
lzil,lz21<R |71 — ZZ| lzi<R

The following theorems are due to Ahlfors and Bers:

Theorem 2.12 [2]. Suppose that || <k, Il <k, IVl <k, kCp <1, p > 2. Then
forall R > 0,
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@ | f* = fYlisy, < c®) lu — v, with c(R) depending only on R, k, p.
(b) If pp — p almost everywhere, then || f» — f#|g, ~— 0.

Theorem 2.13 [2]. Lett=(n,...,t;) ands = (sy, ..., s,) be real vectors in R". Suppose
that for all t in some open set A we have '

pis+1) = pn®)+ Y ai®) s + sl alt,s)

i=1

with |[i(H)lle <k < 1, lla(t, s)llo < c and a(t,s) — O almost everywhere as s —> 0. Suppose
further that the norms ||a; (t + ) || are bounded and that a;(t + s) — a;(t) almost everywhere for
s — 0. Then w*") has a development

n
FEED = O LN i) s+ Is] v, 8)
i=1

with ||y (¢, )| ,, , 0 fors — 0. Where w;(¢) is the solution of
Wz = () We +a; () £

such that W(0) =0, W(1) = 0 and |W(2)| = (’)(|f“(’)|2) asz — 00.

2.2. The local non-homogeneous Beltrami equation
From now on the functions u are assumed to be measurable and with ||}, < k < 1 for some

fixed k and p is assumed to be p > 2 and such that k C;, < 1 unless otherwise stated.

Lemma2.14. LetO <R <1landp > 2. Letu,o0 € WP (R) be such that 1(z) = o (z) = 0 for
all |z| =z R. Let  be the solution of w7 = ww, + o such that »(0) = 0 and w, € L,(C). Suppose
thatk = |ullo < 1 and

_2
© 1= O (R, n, p, Il wmor) - ) =k Cp +2" llitlynrry A(p)R'™7 < 1

with A(p) from Lemma 2.5. Then o € W"TLP(R) and there exists D(R,n) = D(R,n, D,
“/’L”W’LIJ(R) , k) > 0 such that

lollwne1.pgy < DR, 1) lollwnr gy -
Proof. Let g be a solution of
g=uHg+o (2.15)
in £,(C). This is possible because the norm of the operator uH in £,(C)is < kC » < 1 and hence
(I — nH) is invertible in £,(C). Let
w=Pqg=P(I—-puH) o. (2.16)

Then we have that w, = Hg, w; = ¢ = pHgq + o. Therefore, @ is the unique solution of
wz = o, + 0o withw(0) =0, w, € L,(C) of Lemma 2.7.

Observe that we only need to use Pr and Hp in (2.16) because g(z) = 0 on |z| > R by (2.15)
and wH sends WP (R, 0) into itself.
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Now we estimate the norm of the operator (I — uH Y~ on W"P(R, 0):

I HOlwrory < Mt [D"HO) g, +2" Mitllwnoiry 1HE lewcay
. 1-2
< il Cp |00 g, +2" Mtlwnoey ARYR? o liwnnr)
<

O llollwnrr) »

2
where @ 1=k Cp, + 2" ||ttlwnr(g) A(p)R? < 1.

lolyrsiogmy = [PRU =) 0| gusipry
= [[Pr (CRomE)Y) o]l oy
< B(p, B) (720" llollwnrry
< D(R, p) llollwrr(r)
where D(R, n, p, || illwnr(r)) = Bl({)fel)e)' -

Lemma2.17. LetW := W"?(R,ON[ lltllwnsry <a, Il < k < 1] with R small enough
such that ®(R, n, p, a, k) < 1, where © is from Lemma 2.14. Then the map W x W™P(R,0) —
Wr+LP(R), given by (u, o) = w7, is continuous.

Proof. Let (1, 0), (ito, 0,) € W x W"P(R,0). Let 0° = o*>% and 0 = o7, ie,, wg =
p? 40, and wz = po; + 0 in L,(C). We have that

(0—0%)y = b (0 o), + (4= o) + (0 — 0)
with
" (m— o) @ + (0 — ‘70)" Wrp(R) = 2" ”“ — Mo “ Wnr(R) 124 “ wnpR) T ”‘7 — “W”rP(R) :

From Lemma 2.14, we get that

"w — o’ “ Wetlo(R)y = D(®. k) <2n ““ — Mo ” WP (R) ”‘"Z " wer@®) T "" ~ % “W"’p(R)) - U

On Lo (C)NWLP(R) consider the topology given by {i,) — p if u, — p almosteverywhere
in C and ”Hzn - M”Wll’(R) - 0

Corollary 2.19. Given0 < R < 1,0 <k < 1,L > O withkCp < 1, there exists 0 < r <
r(k, L) < R such that the map . — o*:

Lo@NW'PR) N {1 il <k Itllwrogy <L} — C' izl <7,0)
is continuous.
Proof. Let (u,) be a sequence converging to i, in Loo(C) N WLP(R) with |unllee < ks

linllwroepy < L. Let " = fla — fHo  fO:= fHo_ Since f, — jio a.¢, then by Theorem 2.8,
[l™ ”BR,p — 0. In particular [|@"||y1.5 gy — 0. We have that

W = phn @ + (n — o) f7 -
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Let A : C — [0, 1] be a C™ function such that A(z) = 1 for |z| < r and f(z) = 0 for |z] < 2r.
Choose r such that ©(2r,n = 1, p, L, k) < 1 where ® is from Lemma 2.17 and 0 < 2r < R. We
have

(7)), o = ) = ) 1
where 1, (2) = pn(2) for |z| < 2r and &, (z) = O for ||z|| > 2r. Since the sequence 4 llwir oy is

bounded and||w” lly1.5(gy — 0, then |z = tan A2) " [ yyi.p gy — 0 Also & (i = 10) £2 | yy1pary
— 0. In particular

o ”cl(D,,C) < 1" ”Cl(DZr,(C) < |ro" "WZ»P(2r) = 0. O

2.3. Global non-homogeneous Beltrami equations

Lemma 2.21. If0 < R < +oo andh € L,(|z| < R) forsomeq > 2, thenh € Ly(Iz| < R) for
all2 < p < q, and

2R, <A lRlRg

1-2 12
where A = A(R,q) =max {1, /& ¢« R 4}

—4 14,1 __
Proof. Leta = 5> land}6 + 5 =1, then

[ owr=[ wmia s [ Ihlq} [/ ] ,
lz|<R lzl<R |zl<R lz|<R
4q 1
(I8lzp)" = (Ihllg)* (x R?)?
1
ik, < lhlgg (R?)P .
From this we get the lemma because 3117 = % —é elo, 1(1- —)[ O

Given € > 0 and g > 2, define

Dy i= [G:C%C’U(z) e L, (Izl < —i—) andaG) e L,z <e)},

()

with the norm

lolp,, = f/l eI dxdy)" /f|
z<— zl<e

Lemma 2.22. Forall0 < € < 400 and q > 2, we have that

Deg= [] [) Drop-

O<r<oo2<p=<q

dxdy)é .

Moreover, given0 < r < o0 and2 < p < gq, there exists A = A(p, q, 1, €) > 0 such that

Itlp,, < A llklp,,

forallh € D 4.
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Proof. One inclusion is trivial. For the other one, letr > €, then []zl < é] C [lzl < %] and hence
o€ Ly(lz] < é) C Ly(lz| < }). We have that

/f “(%)q // ﬁw(w)ﬂseé [[ o

1 1 1 1
e<|z|<r T<lwl<z s<lw|<z
< _1
= 7z lelp,, <+oo,

JRO = TFON [ O -G 2) v

lzf<r |z]<e e<|z|<r
Therefore, 0 € D, , and ||o*||Dr‘q < Aj ”U“De,q- By Lemma 2.21, we have that ¢ € D, , and
||U||D,,q < Ax(p,q,r,€) ”UHDS,Q forallr > eandall2 < p < g. The case 0 < r < ¢ is similar to

this case. ]

I

Lemma 2.23. Lete > 0,q9 > 2,0 € Dc 4. Then there exists a unique solution of ©z = ¢, such
that ® is continuous, ®(0) =0, ®(1) =0 and

lzl>o0 |z]?

The solution satisfies

() 10 <2k, lolp,, max {|z|1‘§, |z|1+5},fora11z € C, where K, is from Lemma 2.4.
2.4.2).
(i) ©® € BppforallR >0andall2 < p <gq.
(i) ©,€D,p,forall2 < p <qandallr > 0.
(iv) Forallr > 0and2 < p < q there exists B = B(r, €, p,q) > 0, such that ||®z||D,,,, <
B |olip,, -

Proof. Leta(z) = o(z) for |z| < & and a(z) = 0 for |z| > %, and let b(z) = O for |z| > € and

b(z) =0 (%) ;—z for |z| < €. Since o € Dk, , we have thata € L,(C) and b € L;(C). Define

©%(z) = Pa(z) —zPa(l)
;) = —7*Pb (%) +z Pb(1)
() = 0%()+6Q.

We have that @;l = a, @? = o on |z| > é and @g =0onlz] < é Therefore, ©; = ¢. Also
®(0) = ©(1) = 0. Moreovet,

_2

17
Z' K, b, 12l

A

_2
©@1 < Ky llally (12177 +1al) + K 1l |2

IA

1-2 1+2
2K, lolp,, max{ 1z|'" @, |z Te } .

Suppose that ¢ is another solution. Let A = ¢ — ©. Then A is analytic on all C because
hz = (p — ©)7 = 0. Also h(0) = k(1) = 0 and |h(2)| = O(Izlz) when |z| — oo. Therefore,
h=0.
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By Lemma 2.21, 0 € D, , forall 2 < p < g. Therefore, a € £,(C) and b € £,(C) for all
2 < p <gq.Let2 < p < ¢, we have that

®%(z) = Ha— Pa(l)
1,1
[&5],, = IHal,+Pa)l(x )7
1
TN\
< Cpllal, +Kpllal, 6_2)’
[t <1>p [ o iHatp <€ (1#al,)”
at - = —— |Ha(w)|? < ¢ a
|z|<e Z |w|>§ |w|4 p
« (2 7 2\
07 | - < € Cpllall, +Kplall, (7<)
Z &p
1
4 _—
[e2lp,, = (1+€7) <C,,+K,, (6—2)") lal, .

We write C(p, g, €) for constants depending only on p, g, €.

1 1
@) = —2zpPb <—> + Hb (—) + Pb(1)
Z Z
1\|? 1 1
(L) = / L by < = (18b],)"
/|z|<g (z) wi>e [w]* o (IHel,)

IA

/|z|<1

€

1
2z Pb (—)
Z

Jet

p 2\P
fl . (2K, b1, 1217) < (C1 (. ) IB1,)?

C 1
(cmp, O+4+K (5) ) 11,

€r

IA

1
P

f \Hb@)I?
|z|<e

Since ’2% Pb(Z)I < 2K, |bll, Izl

IA

(CplIDll,)”

E1eY

and p < ¢, we have

1 b » _
2-Pbd)| < (2K4Ibl,) f lz]7 7 <400,
lz]<e z |z]<€
b 1 2 »
‘@Z (—) < Cap.g. O Iblly + Cp Il + (7€) Kp B, -
Z €p

Therefore, ||@§”De,p < 400 and hence ||®;|p, , < +ocforall2 < p < g. Now use Lemma 2.22
to get (iii).

For (iv) observe that |lo|lp,, = llall, + |[bll, and that [lall, < A(e, g) llallg, Ibl, <

A(e, q) IIb]l; by Lemma 2.21. Now use the above estimates and Lemma 2.23.
The following notation will be useful for the next proposition: Fore > 0,p > 2, F: C — C,
let

Dee,p.F) = {a:@ecl(aoF—I)FZ“leDG,p}

(7o r) |
D,

6p

lolipe, p, )
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Proposition2.24. Ifp € Loo(C), Il <k < 1,kCy < 1,4 >2and(o o Nt =
(}’7) o(f “)”1 € Deyq for some € > 0. Then there exists a unique solution of

w7 =l +0
such that w is continuous, w(0) = 0, w(1) = 0 and

w(2)
m =U.
lzl=o0 | f1(z)[?

Moreover,

@ (w0 (FH N, €Dy forallr > 0andall2 < p < gq.

(i) € B forallR >0andall2 < p < 2.

(iii) Ifo € Bg p,2 < p <q,0 <r < Rande > 0, thenthereexistsC(R,r) = C(R, r, €, p, k)
such that

lolls,, < C(R, 1) (lo D p, oy + lollg,p) -
(iv) Forallr > 0and2 < p < q, there exists A(r, p) = A(r, €, p, q) > 0 such that

“wz “'D(r,p,fﬂ-) E A(r’ p) ”O—”D(e,q’fﬂ) .
(v) Ifu,o0 € W"P?(R),2 < p <q,0 <r < R and € > 0, then there exists D(R,r) =
D(R,r,n, p, €, |llwnrry) such that
loll 1oy < DR, 1) (lolpe,p, oy + o lwnpwy) -

Proof. We first prove the uniqueness of the solution. Suppose that u is another solution. Then
v := o — u satisfies vz = p v, v(0) = v(l) = 0 and |v(z)| = O(If"(z)iz) when |z] — o0. Let
h:=vo (f*)~. Then h(0) = k(1) = 0, by Theorem 2.8 (viii) we have that A is holomorphic on
all C and .

tim PO _ @] Z(Z))i —1im 2Oy

2200 g =00 g y=oo | f(y)l

where f = f#. Therefore, h = 0.
For the existence, write @ = © o f#. Using the formulas of Lemma 2.9, and that
f.=R=R{f)=0fz
we see that @ is a solution of the problem if and only if, for f = f*, we have
Or=(——5 Z)or ' =p (225)

7 = =] 0 = p0, .
C\L-lul fz

©(0) =0, ©(1) = 0 and lim,_, o % = 0. Since f = f;, we have by hypothesis that p € D 4.

By Lemma 2.23, such ® exists and is unique.

For (i) observe that, for f = f*,

w, = (0;0f) fz+(®2°f)7z

0: = @0 fit (= ) BT
(a)z o f‘1> o= (%) ofl=0,+ (1 —E|M|2 %) o fL. (2.26)



The Hausdorff Dimension of the Harmonic Class on Negatively Curved Surfaces 559

By the hypothesis on o and u and by Lemma 2.22, we have that (w, o f~1) fz_1 € D, if and only
if ®, € D, p; but this is true by Lemma 2.23.

(iv) From (2.25), (2.26), and Lemmas 2.23 and 2.22, we get that

B Ak
|, ”D(r,p,f#) = -2 + 1% lolDe.q, o) -
This proves (iv).

For (ii) we know that f € Bg,, forall2 < p < g and by Lemma 2.23, ® € Bg,, for all
2 < p < gq. Now use Lemma 2.9.

We now prove (iii). Let A : C — [0, 1] be a C* function such that A(z) = 1 on |z]| < r and
A(z) =0o0n |z| > R. We have that

Aw)z = p (o) + (hz — ur) o + Ao .
By Lemma 2.23, there exists C1(R) = C|(R, p, €) such that for ® = wo f~!, f = f#, we have

1 I
(1—|M|2 ?z) !

Let A = A(R, k) > Obesuch that f(|z] < R) € [|z] < A]. Writing E := (6o f™1) fz“l, we have

lollroe = 100 flige = Ci(4,k) |Elp,,
lollz, =< CiR.k p,€) |Elp,,
Irollz, = lolz,p .
Iz —piz) wllz, < Ca(R,7) |ElD,, -

1©lr,cc < C1(R)

De,p

By Lemma 2.7, we have that

Irwlp, < K& p) (Co IBlp, , +lolg,)

Therefore,
015, < CR,7, p.k,©) (IElD,, +Iollzp)

(v) The case n = 0 is proved in item (iii). Suppose by induction that it holds for n — 1. Cover the
disc |z] < r by a finite number of discs of radius § such that the corresponding discs of radius 28 are
all contained in |z| < R. Choose § small enough so that

© (28,1, p, lulwermy) <1,

where © is from Lemma 2.14. Choose one of these discs, say |z —a| < 8. Let A : C — [0, 1]be a
C function such that A(z) = lon |z —a| <8 and A(z) =0on [z — a| > 2. Let

u(z) 1= A2) (@(z+a) —w(@) .
Then u(0) =0, u, € £,(C) and
uz = Pz + (Az — iia;) (@ — w(a)) + A7,
where [i(z) = u(z + a), ®(z) = w(z + a), 5(z) = o(z + a). By Lemma 2.14 we have that

||M||Wn+1,p(25) < Di(a) (“0\2 ) (@— w(“))”wn,p(m + ||)~6'\”Wn,p(25)) )
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where Dy depends on 26, p, n, || illwn.r(g). We have

Gz — ) (@ — o@)llwrros = 2" |laz — I, lwn.p (R @ — w(@)lwnr s
< 2" (IMien + 2" BAllen Nielliwory)
1@ — w(@)llwn.rr)
< Dia) |lollwnrr(r
< Dy(a)DR,n—1) (||U||D(e,p,f#) + ||C7HWn—1,p(R))

where in the first inequality we used that || [yn.p2sy < || [lwn.r(g)> On the second inequality we
used that

1@ — (@) lwrras <2 lolwnrg)

because D*(@ — w(a)) = D* o for k > 0 and and ||@ — 0(@)ll25,.00 < 2 l@||g,c0- and on the last
inequality we used the induction hypothesis. Also

Ao lwnrs < 2" Aller lollwnrg) -
Combining these inequalities, we get that

lullwrsirs) < D3 (lo e, p, oy + o lwnocry) -

In particular

lollwntiegmg<sy = [ulwrripos + lw@)]
< Nullwnrires + l@llg 0o
< Dy (lolpe.p, ) + lollwnrry) -

Adding the estimates of each ball, we get

p 4
(17l,,)" = S [ Il =S (1P el,)
a

z—af<d

Il

+1 +1
[, < 2 Do,y < ; leollwns1.p(2—a1<s)
lolcngy < sup [@llenz—ai<sy < 22 Nollwrtipoz—ai<s)
a a
lollwntirgy =< Ds (lo Ipe.p, fy + o llwnrcry) - O

Lemma 2.27. Leth € Loo(C), [Aloo <k < 1 andleth = f*. LetK > 1,0 < a < 1 and
0 < € < 1 be such that

1
’h_l(z)‘ < K [2I" forall l2] < -
Let p, > 2 be such thatk Cp, < 1. Letq, > 2 and

p= Poqo )
Potqo—2

(@) IfAeLy(lzl <X), then(Aoh™)h7l € L(lzl < {) and

€
N (A ° h—l) ny!

2

L)
L.po

-1
hZ

< —— lAllx (
’%,p (1 _ k2)%_q% 4o
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(ii) Letk(z) =1 / h (%) and suppose that there exists a > 1 and Q > 1 such that

k(z)| < a |z forall |z] < € and
|k“1(z)‘ < Qz1* forall|z] <e.

1A (1) € £(1z) < ae), then (Ao = h71) (1) € £,(12] < €) and

(o)) () G

Proof. Let p = —£29 andlet ¢, r > 0 be such that

2
612

h—l

0€%,qo <‘

7

€p B (1 — kz)%_qlo

Potgo—2
pPg=qo and (p—2)r+2=p,.
In particular
Iyl ke 02 g L2101
qg r pr 9o pr P 4

We prove (i) first. We have

1 :=/ |th*1‘p
lz]< ]

€

hy!

A(h—l(z))lp o (h—ll(z))lp .

! /
lzl<1

Write w = h~1(2). Using the Jacobian
JYac h = I = hzf* = (1= (W) [h. < Ihe?

we have that

I < / AP —— ) duw
T I <] Az (w)I?

1

1 1
p |’ oy
|:/h—1[|z|<§] Al :| li/;rl[;z|<é] |hz|(p—2)r:| '

IA

But
T b,
|| P72 g | P22
<) i fi<]
1 (p—2)r+2 1 Po
< —2/ ‘h;1| :.__2/ Bl
1—k lzj<1 -k lej<?

Therefore,

-2
€,Po

561
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Since k! [lzl < %] C [lwl < £] < [lwl, £], we have

L 1 %‘%
Elrme) M
For (ii) consider

1\ |? 1\|?
I:—_—/ Aoh™! (—) hy! (—) =/
lz]<e z z |z|<e

Wnte=_h < ) ie., z = k(w). We have

h—l

4

%
Lpo )
1 P
A (o] h_l (:)
Z

p

< (3)

! (%) T (h“11 ®) hz(l )

gl—

By Corollary 2.10, we have that kz(w) = (-) 32 , hence

1
1—k2

[t ()
kM{lz]<e] w
Lol (5)
< Al —
k= iz| <€l w

Since k(w) = l/h (%) we have that

k1> < Jac(h) < |k, |? ,

then
P 1

Jne ()]
qu f e, (w) >
k1|7 <€] hz(1>ipr

==
IA

|kZ(w)|2 ’

gll—

~ =

EII'—

ky(w) = EE( )<_L> e é k(wz)z
L

gll—

h<l)‘— ()—1()1 hwl®
\w N
k@) )P k@ o, 1
h, (é) 7 k. (w)|”" Jw(?Pr T Ik, (w)| P2

IA

e () - 1
Pr 4 =2y
kM lzl<el |, (%) 1zl <el [k (w)]

o / Ik, (w)[?
k1[jzl<e] [y (w)| P2 +2

a2pr / 1 a2pr / '
1_k |z|<e Ik ok~ 1|l70 1_k2 fz|<e

IA

_1|Pe
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1 Po
= [+(3) )
€,p w €,Do

2
2 1—;/;
.U
€,Po

Therefore,

H((A o) 1) (1)

(o) (i
0¢,q, 1- k2 )
1
@), (B
w 0¢,9,

Givenp € L,(D), D = {z eCllzl <1 } extend it to L (D) by

1 2
(@) =M<:> f—z
)7

denote by 7z this extension and consider Lo, (D) as a subspace of L4 (C) by these extensions. On
Lo(C) N WhP(€) consider the norm

a

(1 _kz)%—q%

Ille == el 2oy + lelwire
and on D(e, p, F) N L,(Dg) consider the norm

lolipp == lollpe p,r) + lolir,, -

Proposition 2.28. Suppose that i, € Loo(C) N Wl’Pﬂ.(e), loll <k <1, kCp, <1, pp >2
andlet F = f"o. Then the map

(L@ MW7) x (Dee, p, F)N £, (D)) — Brp

given by (i, o) > W™ js differentiable for w in a neighborhood of [, for all0 < r < R and any
2<p<po

Proof. Write 0° := w#>% and for (i1, o) € (Loo(D) N WHP(e)) x (D(eo, p, F) N L(Dr))
write @ = w*°. For simplicity write u = I € L(C). Letv := 4 — u, and p := 0 — 0,. By
Proposition 2.24(i), @ € D(e,, p, F) forall2 < p < p, and hence there exists a solution of

b =pio b +val+p (2.29)

such that £(0) = £(1) = 0 and [4(2)] = C’)(lF(z)[z) when |z| — co. Moreover, since

Wloo [0l pe, p.ry + 101D, p. )
Wloo @], + Iolg,p - (2.30)

[ve?+p ”D(en,p,F)

”vwg_'_p”R,p

IA

By Proposition 2.24 (i), ”wg ”D(e o F) < +oc and by Proposition 2.24 (iii), ”a)g || Rp < +00.
Therefore, by Proposition 2.24 (iii), the linear map L(v, p) = £ € By, p is continuous. In peirticular,
forall2 < p < p,, we have that

,}3}}0 1elpz, =0 lim €zllg,, =0. (2.31)
>0, o—>0,

By Proposition 2.24 (iv) we also have that

. . . ~
Jim 1elpe,pry < A lim Jvel +o]pe =0,

o—>0, >0y
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and by Lemma 2.22,

/}g‘lr}o I|€Z||D(,’p7F) =0 forallr >0, 2<p<p,

(2.32)
g—0,
Leth := o*% — @M% — ¢, then
hz=ph, +vi,. (2.33)
Let H* = H := f*, where

T (u g)oF-l,
l—ppo Fz

where F' = f'o. We have that F* := f* = H* o F.

We now see that we can use H# on Lemma 2.27. Let 12 > 0 be such that [A*{,, < k for all

|t — poll < n2. From Corollary 2.19, we obtain that u > H#* € C 1(ey) is continuous for some
0 < €3 < €,. In particular, there exists 0 < 73 < 12 and a > 1 such that

€
|H ()| < a |z] forall |z] < €3 := 32 and all Jlu — poll < n3 .

From the definition of A = A* we get that A(z) = A (%)

;—z for almost every z € C. Therefore,
writing G*(z) := I/HM (%), we have that G* = H*.

Observe that %o = 0 and H* = Id. By Corollary 2.10, we have that (H*)™! = fx, where
h=- (A %) o H~!, In particular, for any 0 < § < 1, there exists 0 < n4 = 74(8) < 73 such that
[

|c>O = [|[A*|loo < 8 forall | — poll < n4. By Theorem 2.12 (a), for any r, = r,(8) > 0 with
§Cr,5) < 1 and some K = K(e€3,8,75) > 1, C = C(e3, 8,70) > 1, we have that

i(H”)_l(z)l < K |20

()]

1
forall |z] < — and all || — uoll <ma,
€3

. < Cl(es, k) forall |1 — uol < ma,
aaro(‘s)

with r,(8) — oo when § — O and n4 — 0.

for all | — o)l < g4 and wither =1 — 2

Therefore, the conditions on Lemma 2.27 are satisfied by H* with uniform constants a, K, €3
ro{(8)"

For any g we have that
(go (P ) ()" = (no () ™") (%)
where h = (go FTY) F7L F = fto.

Given 0 < p < p, choose 0 < § < 1 (hence n4(8) > 0) and p < g, = go(p) < p, such that

0<p< qgro(a) ]
T qot+ro(8) — 1
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Applying Lemma 2.27, we have that £, € D(e3, p, f*) and

2
a
12l ey p. iy < ———— (neznp(g,w + uezumea,qa,n) Cles, k)

(] — k2) P 0
In particular, by Lemma 2.22 and (2.32), we have that

Hm (1€ lpge, p, puy = 0 forall 2 < p < p, . 2.34)

g—>0g

By Proposition 2.24 and (2.33), we have that

Iklls, < CR.7) (Ivelpe p o+ VLR )
< CR, 1) (IVllos 1:lipies p. sy + 1Wlloo 12Nk p) »
12,
——% < CR, 1) (I€lpes.p, iy + 12llz ) »
”V”oo

forall R > Oand any 2 < p < p,. From (2.31) and (2.34) we get that

h h
S L T | P

< lim
e Il +lellpes pry ~ 3 IVl

By Proposition 2.24 (iv) and Lemma 2.22, we also have that for 2 < p < p; < p,,

Welpepry = A IVElDep.ry =4 Weo 1elDies,py, )
1Al .
i 2IDe,p, F) < A lm [€llpe,, p,m =0. (2.35)
(}TL:;%‘:, lvil + “p”D(Q,p’F) ét:;;g;

On Loo(C) N WP (R) and on D(e, p, F) N WP (R) consider the norms

lullew = Tl + Mtllwreg) »
ol pwr)

lolpe,p,ry + o llwnr(r) -

Proposition 2.36. Suppose that p, € Loo(D) N W™Po(R), || ttolloo < k < 1, kCp, <1,po>2
and let F = f#o. Then the map (i, p) = wh?,

(LooD) N WP (R)) x (D€, po, F) N WP (R)) ~ WHLP(r)

is differentiable for j1 in a neighborhood of (i, for all0 < r < R and any 2 < p < p,.

Proof. We have the same Equations (2.29), (2.30), (2.33), and (2.34) from Proposition 2.28. Also,
[vel + p“Wﬂ,p(R) <2" llwney [ waocry T 1o lwne gy -

By Proposition 2.24 (v), |@? | s, i finite forall 0 < < Rand 2 < p < p,. Using (2.30) and
Proposition 2.24 (v), we get that
l}g{}g el wntlpy = 0 (2.37)

O~>0,



566 Gonzalo Contreras

forall0 <r < R,2 < p < p,. In particular, the linear map L(v, p) = £ € WHLP(r) is

confinuous. From Equation (2.33) and Proposition 2.24 (v) we have that, for § := 5?,
hllgniiegy < €. 1) (W E&lpe pmy + 1V Elwnacs))
< CS.1) (Voo Wcllpey,p,pmy +2" IV lwnery 1€cllwms(s))
Vllyret.og
o = G (Il +27 L llwnncsy) -
”V“W"m(r) ( 2l D(e3, p, f4) Ziw p(s))

By (2.34) and (2.37) we have that

sy o Wil _
e vlliew + ellowr) ey vllwn.e ()
forall2 < p < p, and 0 < r < R. This completes the proof. O

Corollary 2.38. The maps of Propositions 2.28 and 2.36 are C*°.

Proof. We prove the corollary for the map in Proposition 2.36, the proof for the other map is
similar. Define the following Banach spaces: E := Loo(C)NW™?(R), F := D(¢, p, F)NW™?(R),
G := WL (r) N F(e, p, F), Fle, p, F) := {£]£, € D(e, p, F) } with |€ll 7 := €]l pe,p, p)
and L(E x F,G) = {L:E xF — Glﬁlinear}.

There is no map G — F given by o — w, because r < R. We leave to the reader the
technicalities that appear with this problem. Define the maps F : U xF CExF — G, F(u,0) =
w*° where U C E is the open subset defined in Proposition 2.36. Let F:UCE > LEF.G),
F(w -0 = o*°;and D : U xF — LE x F,G), D(u,0)(v, p) = £, the derivative on
Equation (2.29) of Proposition 2.28. Let B : E x G — F be the linear map B(v, ») = vw,. We
have that

D(u,0)w,p) = F(u)oB v, F(u, o)+ F(u)p)
D(u,0) = F(u)oB(m, F(u,0o))+ F(u)om (2.39)

where 71 : E x F — E and 75 : E x F — F are the projections. We have that

1B, ®)|Ir

v @ ll pwn < Vlloo l@zllpe,p, 7y +2° IVl Nzllwn
2" [l (lolz + lollyn)
2" lg llelg -

INIA

Therefore, the bilinear map B is C*. By Proposition 2.36 and the limit (2.35) in the proof of
Proposition 2.28, we have that F : U x F — G is differentiable. Using the notation of Proposi-
tions 2.28 and 2.36, we have that

[Fu+v)0) —Fu)@) — L] = lhllynn +lklF
< A v &l pwn
< AW (Voo 1€:lpee,pry +2" 1Vwn 1€ 1)
< A Wlwe 2 (I1€:lpe.p.ry + IV 1wn)
< A vl A2w) vl + (0 =0 py
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IA

4360 1l (19l [0 ey + 2" 10l Dol
Aa() Ivllg Ivllg ol

1 h
lim max{" “G} < lim As(w) vllg = 0.
ig—0 lvlg <o Lol v—0

IA

Therefore, the map F is differentiable and its derivative is given by (DF(u) - v)(o) =
D(u, o) (v, 0), or .
DF(u)-v = D(u,)(v,0). (2.40)

Suppose that F and F are r-times differentiable. Then from formula (2.39) we have that D is r-times
differentiable. But D is the derivative of F so that F is (r + 1)-times differentiable. Formula (2.40)
implies that F is also (r 4+ 1)-times differentiable. We conclude that F is C*°. UJ

Theorem 2.41.
(i) LetO <k <1landp > 2withkC), < 1. Then for any R > 0, the map
{ime Lo llnlleo <k} —> Br,p

given by . fF is C®.
(i) Let0 <k <1andp > 2 withk Cp < 1. Then the map

Loo@ NWP(R) N { | ptllog < k} — W20

given by . — % is C*® forany0 <r < R.
(iii) In particular, for anyn > 1 and any0 < r < § < R the map

n ntl—2 1-2
Lo@NC" S N {llptleo <k} —>C*77()NCT7(R)
given by i — ¥ is C®.
Proof. Define the spaces E, F, G, L(F, G) and the maps F (i) ‘0 ="’ and B : E — L(F,G),
B(v, w) = v w, as in the proof of Corollary 2.38. We have that F and B are C*. Define the map
H:E— Gby H(u) := f+.
Claim. H is differentiable and DH (i) - v = o™V f¥, ic.,
DH(u) = F(uw) o B (-, H(w)) . (2.42)
]

Suppose that the claim is true. From formula (2.42) we have that if H is r-times differentiable,
then DH is r-times differentiable and hence H is (r + 1)-times differentiable. By the claim, the
induction starts at » = 1 and then H is C°. []

Proof of the Claim. Letp, v e E, w:= o*" b= fHTY — f# — . Then

he = wWtvh +tvo;
wz = po;t+vf
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with 1(0) = h(1) = ©(0) = &(1) = 0, |o(2)| = O(f*@)) and |h2)| = O(| F*H @)|*). We
have that

H(w+v)~Hp —olg = [hlly +lIklz
< A (vl +lIveorlpe, )
= A |B, o)l
< 2"A g lolg
< 2AIIE A v g
< 2Alvie A2" Ivle | f*]g
with | fllg = I fllws+1 + | fzllDge, p, ). By considering small bump functions A as in Propo-

sition 2.24 (v), one can show that f € wrtLP(R), hence | fllwntt < +oo. We have that
I £l pe, p, £y = Ilip, , < +o0. Therefore,

i |H(u+v) — H(u) —olg
im
V=0 vig

. 2

< lim (2" A)” |vllg I fllg =0.
v—>0

And the linear map DH (i) : v + o is continuous because

lollg <A v lg <2 A | f*]g VllE -

This proves the claim. L]
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