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Abstract

Let ¸ be a C� convex superlinear Lagrangian on a closed manifold M. We show that if the number of
static classes is "nite, then there exist chains of semistatic orbits that connect any two given static classes.
Using this property we show that if there is only one static class, then the homoclinic orbits to the set of static
orbits generate over � the relative homology of the pair (M,;), where ; is a su$ciently small connected
neighborhood of the set of static orbits in M. We show that generically in the sense of Man� eH (in: F.
Ledrappier, J. Lewowicz, S. Newhouse (Eds.), International Congress on Dynamical Systems in Montevideo
(a tribute to Ricardo Man� eH ), Pitman Research Notes in Mathematics, Vol. 362, 1996, pp. 120}131 (reprinted
in Bol. Soc. Bras. Mat. 28(2) (1997) 141}157) the set of semistatic orbits coincides with the support of
a uniquely minimizing measure, therefore generically, the homoclinic orbits to the support of the minimizing
measure generate over � the relative homology of the pair (M,;), where ; is a su$ciently small connected
neighborhood of the projection of the support of the measure to M. This last result was obtained*with
a di!erent proof*by Bolotin (Proceedings of the International Congress of Mathematics, Vol. 1,2, ZuK rich,
1994, BirkhaK user, Basel, 1995, pp. 1169}1178; in: V.V. Kozlov (Ed.), Dynamical Systems in Classical
Mechanics, American Mathematical Society Translation Series 2, Vol. 168, American Mathematical Society,
Providence, RI, 1995, pp. 21}90) assuming the existence of a C����� function f :MP� such that
¸#c!df*0, where c is the critical value of ¸. Finally, we obtain two consequences. The "rst one says that
if M is a closed manifold with "rst Betti number *2 then there exists a generic set OLC�(M, �) such that if
�3O the Lagrangian ¸#� has a unique minimizing measure and this measure is uniquely ergodic. When
this measure is supported on a periodic orbit, this orbit is hyperbolic and the stable and unstable manifolds
have transverse homoclinic intersections. The second consequence says that if M is a closed manifold with
"rst Betti number di!erent from zero and if ¸ is a symmetric Lagrangian, then there exists a generic set
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OLC�(M, �) such that if �3O, then ¸#� has a unique minimizing measure and this measure is supported
on a hyperbolic "xed point whose stable and unstable manifolds have transverse homoclinic intersec-
tions. � 2002 Elsevier Science Ltd. All rights reserved.

MSC: 58F05; 58F11

1. Introduction

Let M be a closed connected smooth manifold and let ¸ : ¹MP� be a smooth convex
superlinear Lagrangian. This means that ¸ restricted to each ¹

�
M has positive de"nite Hessian

and that for some Riemannian metric we have that

lim
�����

¸(x, v)
�v�

"R,

uniformly on x3M. Since M is compact, the extremals of ¸ give rise to a complete #ow
f
�
:¹MP¹M called the Euler}Lagrange #ow of the Lagrangian. The extremals are solutions of the

Euler}Lagrange equation which in local coordinates is given by

d
dt

�¸

�v
"

�¸

�x
. (E}L)

The energy E : ¹MP� is de"ned by

E(x, v)"
�¸

�v
(x, v)v!¸(x, v).

Since ¸ is autonomous, E is a "rst integral of the #ow f
�
.

Recall that the action of the Lagrangian ¸ on an absolutely continuous curve � : [a, b]PM is
de"ned by

A
�
(�)"�

�

�

¸(�(t), �� (t)) dt.

Given two points, x
�
and x

�
in M and ¹'0 denote by C

	
(x

�
, x

�
) the set of absolutely continuous

curves � : [0,¹]PM, with �(0)"x
�

and �(¹)"x
�
. For each k3� we de"ne the action potential

�


:M�MP� by

�


(x

�
,x

�
)"inf�A��


(�): �3 �
	��

C
	
(x

�
, x

�
)�.

The critical value of L, which was introduced by Man� eH [10], is the real number c(¸) de"ned as the
in"mum of k3� such that for some x3M, �



(x, x)'!R. Since ¸ is convex and superlinear and

M is compact such a number exists and it has various important properties that we review in
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Section 2. We brie#y mention a few of them since we shall need them below. For any k*c(¸), the
action potential �



is a Lipschitz function that satis"es a triangle inequality. In general, the action

potential is not symmetric but if we de"ne d


:M�MP� by setting

d


(x, y)"�



(x, y)#�



(y, x),

then d


is a distance function for all k'c(¸) and a pseudo-distance for k"c(¸).

Since d


*0, for every absolutely continuous curve � : [a, b]PM and all k*c(¸) we have

A
��


(�)*�


(�(a), �(b))*!�



(�(b), �(a)). (1)

Set c"c(¸). We say that an absolutely continuous curve � : [a, b]PM is semistatic if

A
���

(��
��� ��� �

)"�
�
(�(t

�
), �(t

�
))

for all a(t
�
)t

�
(b; and that it is static if

A
���

(��
��� ��� �

)"!�
�
(�(t

�
), �(t

�
))

for all a(t
�
)t

�
(b. Clearly, by (1) a static curve is semistatic. One could also say that ��

�����
is

static if it is semistatic and for all a(t
�
)t

�
(b, d

�
(�(t

�
), �(t

�
))"0. Semistatic curves are

solutions of the Euler}Lagrange equation because of their minimizing properties. Also it is not
hard to check that semistatic curves have energy precisely c [10,4]. The notions of semistatic and
static curves are closely related to Mather's notions of c-minimal trajectories and regular c-minimal
trajectories, respectively (see [13]).

Given a vector v3¹M we shall denote by x
�
:�PM the solution of the Euler}Lagrange

equation with x� (0)"v.
The set of vectors v in ¹M that give rise to static curves x

�
:�PM is a closed invariant set that

we shall denote by �K :"�K (¸). Similarly, the set of vectors v in ¹M that give rise to semistatic curves
x
�
:�PM is a closed invariant set that we shall denote by � :"�(¸). The set �K is chain recurrent

and the set � is chain transitive [10,4, Theorem V]. As we mentioned before �K L�. We need to
recall (cf. Section 3, Theorem 3.2) the following important Lipschitz graph property which was
shown in [10,4] and [13, Theorem 6.1] that generalizes the celebrated Lipschitz Graph Theorem of
Mather [12]: the set �K is a Lipschitz graph, that is, if � : ¹MPM denotes the canonical projection
then the map ���K :�K P�(�K ) is bijective with Lipschitz inverse. Using the graph property we can
de"ne an equivalence relation in �K by saying that two vectors v and w in �K are equivalent i!
d
�
(�(v), �(w))"0. The equivalence relation breaks �K into classes that we shall call static classes. Let

� be the set of static classes. De"ne a re#exive partial order ^ in � by
(a) ^ is re#exive.
(b) ^ is transitive.
(c) If there is v3� with the 	-limit set 	(v)-�


and 
-limit set 
(v)-�

�
, then �


^�

�
.

Theorem A. Suppose that the number of static classes is xnite. Then given �

and �

�
in �, we have that

�

^�

�
.

Theorem A could be restated by saying that if the cardinality of � is "nite, then given two static
classes �


and �

�
there exist classes �


"�

�
,2, �

�
"�

�
and semistatic vectors v

�
,2, v

�	�
3�
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Fig. 1. Connecting orbits between static classes. The three closed curves represent the static classes and the other curves
represent semistatic orbits connecting them.

such that for all 1)k)n!1 we have that 	(v


)-�



and 
(v



)-�


��
. In other words, between

two static classes there exists a chain of static classes connected by heteroclinic semistatic orbits (cf.
Fig. 1).

Let us assume now that �K contains only one static class. We shall see in Section 3 (cf. Proposition
3.4) that the static classes are always connected, thus if we assume that there is only one static class,
�K must be connected.

Given �'0, let ;� be the �-neighbourhood of �(�K ). Since �K is connected, the open set ;� is
connected for � su$ciently small. Let H

�
(M,;� ,�) denote the "rst relative singular homology

group of the pair (M,;�) with real coe$cients.
We shall say that an orbit of ¸ is homoclinic to a closed invariant set KL¹M if its 	 and 
-limit

sets are contained in K.
Observe that to each homoclinic orbit x :�PM to the set of static orbits �K we can associate

a homology class in H
�
(M,;� ,�). Indeed, since there exists t

�
'0 such that for all t with �t�*t

�
,

x(t)3;� , the class of x�
�	����� �

de"nes an element in H
�
(M,;� ,�). Let us denote by H the subset of

H
�
(M,;� ,�) given by all the classes corresponding to homoclinic orbits to �K .
In Section 4, we shall show the following result.

Theorem B. Suppose that �K contains only one static class. Then for any � suzciently small the set
H generates over � the relative homology H

�
(M,;� ,�). In particular, there exist at least

dimH
�
(M,;� ,�) homoclinic orbits to the set of static orbits �K .

In [11], Man� eH introduced the concept of generic property of a Lagrangian. A property P is said to
be generic for the Lagrangian ¸ if there exists a generic set O (in the Baire sense) of the set C�(M,�)
of all C� functions from M to � such that if �3O the Lagrangian ¸#� has the property P. One of
Man� eH 's objectives in [11] was to show that Mather's theory of minimizing measures becomes much
more accurate and stronger if one searches for generic properties.

Our next result describes a generic property of Lagrangians on closed manifolds. Let M(¸) be
the set of probabilities on the Borel �-algebra of ¹M that have compact support and are invariant
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under the #ow f
�
. We shall say that a measure 3M(¸) is minimizing if

�¸d"!c.

We shall denote by M�(¸) the set of minimizing measures. We say that a measure  is uniquely
minimizing if the setM�(¸) contains  only. It was shown in [10,4] that a measure  is minimizing if
and only if the support of  is contained in �K . Mather has shown in [13] that if  is a minimizing
measure then its support is contained in the set of Mather's regular c-minimal curves.

The following important generic property was proved in [5,11]. Given a Lagrangian ¸ there
exists a generic set OLC�(M,�) such that if �3O the Lagrangian ¸#� has a unique minimizing
measure in M�(¸#�) and this measure is uniquely ergodic. When this measure is supported on
a periodic orbit, this orbit is hyperbolic and if the stable and unstable manifolds intersect, they must
do it transversally. It is conjectured in [10] that the unique minimizing measure in M�(¸#�) is
always supported on a periodic orbit.

We will prove in Section 5:

Theorem C. Let

G
�
:"��3C�(M, �) �M�(¸#�)"�� and supp()"�K (¸#�)"�(¸#�)�.

Then,
(a) G

�
is generic in C�(M, �).

(b) If �
�
3G

�
, then lim����

d


(�K (¸#�),�K (¸#�

�
))"0, where d



is the Hausdorw metric between

compact subsets of TM.
(c) If �3C�(M, �), �3M�(¸#�) and �

�
3G

�
, then

lim
����

d


(supp(� ), supp(��

))"0.

Note that since  is also uniquely ergodic, the set supp() must be a static class. Therefore,
generically, the set of static orbits contains only one static class and it coincides with the support of
the uniquely minimizing measure.

Let us denote by ;� the �-neighborhood of the set supp(). From Theorems B and C we obtain
right away the following generic property.

Corollary 1. Given a Lagrangian L there exists a generic set OLC�(M, �) such that if �3O the
Lagrangian ¸#� has a unique minimizing measure  in M�(¸#�) and this measure is uniquely
ergodic. For any � suzciently small the set H of homoclinic orbits to supp() generates over � the
relative homologyH

�
(M,;� , �). In particular, there exist at least dimH

�
(M,;� , �) homoclinic orbits

to supp().

Bolotin has shown in [1, Theorem 3.4] and [2, Theorem 4.3] (cf. also [3]) that if there exists
a C����� function f :MP� such that

¸#c!df*0,

G. Contreras, G.P. Paternain / Topology 41 (2002) 645}666 649



then the set H of homoclinic orbits to supp() generates over �� the relative homology
H

�
(M,;� ,�). In particular, he gets at least 2 dimH

�
(M,;� ,�) homoclinic orbits to supp(), twice

as much as we do in Corollary 1. However, we do not know if his condition is generic.
Bolotin uses methods di!erent from ours. To prove Theorem B we consider "nite coverings

M
�
of M whose group of deck transformations is given by the quotient of H

�
(M,;� ,�)/(torsion) by

a "nite index subgroup. Using that the lifted Lagrangian ¸
�

has the same critical value as ¸, we
conclude that the number of static classes of ¸

�
must be "nite. Hence we can apply Theorem A to

¸
�

to deduce that the group generated by the homoclinic orbits to the set of static orbits of
¸ coincides with H

�
(M,;� , �).

We note that the homoclinic orbits that we obtain in Theorem B and Corollary 1 have energy
c but they are not semistatic orbits of ¸ (cf. Theorem C). However, they are semistatic for lifts of
¸ to suitable "nite covers.

Using Corollary 1, we shall show in Section 6:

Corollary 2. Let M be a closed manifold with xrst Betti number *2. Given a Lagrangian L there exists
a generic set OLC�(M, �) such that if �3O the Lagrangian ¸#� has a unique minimizing measure
inM�(¸#�) and this measure is uniquely ergodic. When this measure is supported on a periodic orbit,
this orbit is hyperbolic and the stable and unstable manifolds have transverse homoclinic intersections.

We say that a Lagrangian ¸ is symmetric if for all (x, v)3¹M, ¸(x, v)"¸(x,!v). Note that if ¸ is
symmetric and �3C�(M, �) then ¸#� is also symmetric.

Corollary 3. Let M be a closed manifold with xrst Betti number diwerent from zero. Given a symmetric
Lagrangian L there exists a generic set OLC�(M, �) such that if �3O, then ¸#� has a unique
minimizing measure in M�(¸#�) and this measure is supported on a hyperbolic xxed point whose
stable and unstable manifolds have transverse homoclinic intersections.

In [8] Albert Fathi has obtained independently results which have a considerable overlap with
Theorem B. He de"nes a set C

�
by

C
�
"�

�

dp(�
�
),

where the union is taken over all "nite and abelian Galois covers p :M
�
PM and �

�
is the set of

semistatic orbits of the lift of ¸ to M
�
. He shows that the connected invariant setC

�
is contained in

=�(�K )�=�(�K ) and that for any connected open set< containingC
�
one has H

�
(¹M,<, �)"0. As

a corollary, he also obtains the existence of at least dimH
�
(M,;� , �) homoclinic orbits to the set of

static orbits �K and without assuming that �K contains only one static class.
At this point, it seems useful to note that there are various terminologies in the literature for

several of the concepts that we use here. Fathi refers in [6}9] to the closure of the union of the
support of minimizing measures as the Aubry}Mather set. What we call here the static and
semistatic sets, Fathi calls the Peierls set and the ManJ e& set, respectively. As we mentioned before,
semistatic and static curves are closely related to Mather's notions of c-minimal trajectories and
regular c-minimal trajectories, respectively. The terminology we follow in this paper is that of Man� eH
in [10].
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2. Critical values, static and semistatic curves

Let M be a closed connected manifold and ¸ :¹MP� a convex superlinear Lagrangian.
The action of the Lagrangian ¸ on an absolutely continuous curve � : [a, b]PM is de"ned by

A
�
(�)"�

�

�

¸(�(t), �� (t)) dt.

Given two points, x and y in M and ¹'0 denote by C
	
(x, y) the set of absolutely continuous

curves � : [0,¹]PM, with �(0)"x and �(¹)"y. For each k3� we de"ne the action potential
�



:M�MP� by

�


(x, y)"inf�A��


(�) : �3 �
	��

C
	
(x, y)�.

Theorem 2.1 (Basic properties of the critical value; Contreras et al. [4]; Man� eH [10]). There exists
c(¸)3� such that

1. if k(c(¸), then �


(x

�
, x

�
)"!R, for all x

�
and x

�
in M;

2. if k*c(¸), then �


(x

�
, x

�
)'!R for all x

�
and x

�
in M and �



is a Lipschitz function;

3. if k*c(¸), then

�


(x

�
,x

�
))�



(x

�
,x

�
)#�



(x

�
, x

�
)

for all x
�
, x

�
and x

�
in M and

�


(x

�
,x

�
)#�



(x

�
,x

�
)*0,

for all x
�
and x

�
in M;

4. if k'c(¸), then for x
�
Ox

�
we have

�


(x

�
,x

�
)#�



(x

�
,x

�
)'0.

Observe that in general the action potential �



is not symmetric; however, de"ning
d


:M�MP� by

d


(x, y)"�



(x, y)#�



(y, x),

Theorem 2.1 says that d


is a metric for k'c(¸) and a pseudometric for k"c(¸). The number c(¸)

is called the critical value of ¸.
It is important for our purposes to indicate that the theorem above also holds for coverings ofM,

i.e. suppose MK is a covering of M with covering projection p. Take the lift of the Lagrangian ¸ to
MK which is given by

Ķ (x, v)"¸(p(x),dp(v)).

Then we de"ne for each k3� the action potential just as above and the results hold for Ķ . Thus, we
have a critical value for Ķ .
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Using the theorem it is straightforward to check that if M
�
and M

�
are coverings of M such that

M
�

covers M
�
, then

c(¸
�
))c(¸

�
), (2)

where ¸
�
and ¸

�
denote the lifts of the Lagrangian ¸ to M

�
and M

�
, respectively. Also we have the

following lemma.

Lemma 2.2. If M
�
is a xnite covering of M

�
then c(¸

�
)"c(¸

�
).

Proof. We know that c(¸
�
))c(¸

�
). Suppose that the strict inequality holds and let k be such that

c(¸
�
)(k(c(¸

�
). Hence, there exists a closed curve � in M

�
with negative (¸

�
#k)-action. Since

M
�

is a "nite covering of M
�

some iterate of � lifts to a closed curve in M
�

with negative
(¸

�
#k)-action which contradicts c(¸

�
)(k. �

Note that for every absolutely continuous curve �:[a, b]PM and all k*c(¸) Theorem 2.1
implies that

A
��


(�)*�


(�(a),�(b))*!�



(�(b), �(a)). (3)

Set c"c(¸). We say that an absolutely continuous curve �:[a, b]PM is semistatic if

A
���

(��
��� ��� �

)"�
�
(�(t

�
), �(t

�
))

for all a(t
�
)t

�
(b; and that is static if

A
���

(��
��� ��� �

)"!�
�
(�(t

�
), �(t

�
))

for all a(t
�
)t

�
(b. Clearly, by (3) a static curve is semistatic. One could also say that ��

�����
is

static if it is semistatic and for all a(t
�
)t

�
(b, d

�
(�(t

�
), �(t

�
))"0. Semistatic curves are

solutions of the Euler}Lagrange equation because of their minimizing properties. Also it is not
hard to check that semistatic curves have energy precisely c [10,4].

Given a vector v3¹M we shall denote by x
�
:�PM the solution of the Euler}Lagrange

equation with x� (0)"v.
The set of vectors v in ¹M that give rise to static curves x

�
:�PM is an invariant set that we

shall denote by �K :"�K (¸). Similarly, the set of vectors v in ¹M that give rise to semistatic curves
x
�
:�PM is an invariant set that we shall denote by � :"�(¸). As we mentioned before �K L�.

The continuity properties of A
���

and �
�
imply that � and �K are closed sets.

Lemma 2.3. Let p :M
�
PM

�
be a covering such that c(¸

�
)"c(¸

�
). Then any lift of a semistatic curve

of ¸
�
is a semistatic curve of ¸

�
. Also the projection of a static curve of ¸

�
is a static curve of ¸

�
. If in

addition, p is a xnite covering, then any lift of a static curve of ¸
�
is a static curve of ¸

�
.

Proof. Observe "rst that for any k3� we have that

��


(x, y)*��



(px, py),
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for all x and y in M
�
. Hence, if we write c"c(¸

�
)"c(¸

�
) we have

��
�
(x, y)*��

�
(px, py), (4)

for all x and y in M
�
.

Suppose now that x
�
:�PM

�
is a semistatic curve of ¸

�
and let x

�
:�PM

�
be any lift of x

�
to

M
�
. Using (4) and the fact that x

�
is semistatic we have for s)t,

��
�
(x

�
(s),x

�
(t)))A

����
(x

�
�
�����

)"A
����

(x
�
�
�����

)

"��
�
(x

�
(s),x

�
(t)))��

�
(x

�
(s),x

�
(t)).

Hence, x
�

is semistatic for ¸
�
.

Suppose now that x
�
:�PM

�
is a static curve of ¸

�
and let x

�
:�PM

�
be p�x

�
. Using (4) and

the fact that x
�

is static we have for s)t,

!��
�
(x

�
(t),x

�
(s))"��

�
(x

�
(s), x

�
(t))"A

����
(x

�
�
�����

)"A
����

(x
�
�
�����

)

*��
�
(x

�
(s), x

�
(t))*!��

�
(x

�
(t),x

�
(s))*!��

�
(x

�
(t),x

�
(s)).

Hence x
�

is static for ¸
�
.

Suppose now that p is a xnite covering and let x
�
:�PM

�
be a static curve of ¸

�
. Let

x
�
:�PM

�
be any lift of x

�
to M

�
. Since x

�
is static, given s)t and �'0, there exists a curve

	 : [0, ¹]PM
�

with 	(0)"x
�
(t), 	(¹)"x

�
(s) such that

A
����

(x
�
�
�����

)#A
����

(	))�.

Since p is a "nite covering, there exists a positive integer n, bounded from above by the number of
sheets of the covering, such that the nth iterate of x

�
�
����� *

	 lifts to M
�

as a closed curve. Hence,
there exists a curve � joining x

�
(t) to x

�
(s) such that

A
����

(x
�
�
�����

)#A
����

(�))n�,

and thus x
�

is static for ¸
�
. �

3. Proof of Theorem A

We shall endow M with a Riemannian metric and we consider in ¹M the associated Sasaki
metric. Let d

�
and d

	�
be the corresponding distance functions of these Riemannian metrics.

Given v3¹M denote by 	(v) and 
(v) its 	 and 
-limits, respectively. We recall the following:

Lemma 3.1 (Contreras et al. [4]). If v3� is semistatic, then 	(v)L�K and 
(v)L�K . Moreover, 	(v)
and 
(v) are each included in a static class.

Set

�� :"�w3¹M�x
�
: [0,�)PM or x

�
: (!�,0]PM is semistatic�.
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Theorem 3.2 (Graph Property, see Man� eH [10]; Contreras et al. [4]; Mather [13]). For all p3�(�K )
there exists a unique �(p)3¹

�
M such that (p, �(p))3��, in particular (p,�(p))3�K and �K "graph(�).

Moreover, there exist positive constants � and K such that if (p, v)3�K , (q,w)3�� and d
�
(p, q)(� then

d
	�

((p, v),(q,w))(Kd
�
(p, q).

In particular, the map � : �(�K )P� is Lipschitz.

Using the Graph Property we can de"ne an equivalence relation on �K by

u, v3�K , u,v� d
�
(�(u),�(v))"0.

The equivalence classes are called static classes. Let � be the set of static classes. De"ne a re#exive
partial order ^ in � by

(a) ^ is re#exive.
(b) ^ is transitive.
(c) If there is v3� with 	(v)-�


and 
(v)-�

�
, then �


^�

�
.

Let us begin with the proof of the theorem. We shall prove in Proposition 3.4 below that the
static classes are connected. Hence, if we assume that there are only "nitely many of them, the
connected components of �K are "nite and must coincide with the static classes. For �'0, let �K (�) be
the �-neighborhood of �K , i.e.

�K (�) :"�v3¹M � d
	�

(v, �K )(��.

Fix �'0 small enough such that �(� where � is the positive constant given by Theorem 3.2 and
such that the connected components of �K (�) are the �-neighborhoods of the static classes. Thus, for
0(�(�, �K (�)"����

��
�


(�), where �


(�) are disjoint open sets containing exactly one static class

and the number of components N(�) is "xed for all 0(�(�.
Now, suppose that the theorem is false. This means that there exists �3� such that the following

two sets are not empty:

� :" �
��

��� � �^�
�

�

�
�
, � :" �

��
��� � �k�

�
�

�
�
.

Given v3� with 	(v)-� and 0(�(�, de"ne inductively s


(v), t



(v), ¹



(v) as follows. Let

s
�
(v) :"inf�s3� � f

�
(v) � �(�)�3���#R�.

If s


(v)(#R, k*1, de"ne

t


(v) :"sup�t(s



(v) � f

�
(v)3�(�)�,

¹


(v) :"inf�t's



(v) � f

�
(v)3�(�)�.

Observe that s


(v)(#R implies that ¹



(v)(#R because by the de"nition of � and the

transitivity of ^ we have that 
(v)-�. De"ne

A


"A



(�) :"sup� � ¹



(v)!t



(v) � : v3�, 	(v)-�, s



(v)(#R�,
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if s


(v)"#R for all v3� with 	(v)-�, write Al(�),0 for all l*k. Now set

s

��

(v) :"inf�s'¹


(v) � f

�
(v) � �(�)�.

Observe that s


(v), t



(v) and ¹



(v) are invariant under f

�
.

We split the rest of the proof of Theorem A into the following claims:

Claim 1. A


(�)(#R for all k"1, 2,2 and all 0(�(�.

De"ne

� :"�v � v3�, 	(v)-��.

Claim 2. (a) ���O~.
(b) lim sup



A



(�)"sup



A



(�)"#R.

Claim 3. There exist sequences v
�
3�, 0(s

�
(t

�
such that v

�
Pu

�
3�, f

��
(v

�
)Pu

�
��(�), f

��
(v

�
)P

u
�
3� and d

�
(�u

�
, �u

�
)"0.

We now use Claim 3 to complete the proof of Theorem A. If u
�
3�

�
-�, we shall prove that

u
�
3�

�
��(�), obtaining a contradiction and thus proving Theorem A. It is enough to show that

d
�
(�u

�
, �u

�
)"0. Indeed

d
�
(�u

�
, �u

�
)"�

�
(�u

�
, �u

�
)#�

�
(�u

�
, �u

�
)

)�
�
(�u

�
, �u

�
)#�

�
(�u

�
, �u

�
)#�

�
(�u

�
, �u

�
)

"lim
�

[�
�
(�v

�
, �f

��
(v

�
))#�

�
(�f

��
(v

�
), �f

��
(v

�
))]#�

�
(�u

�
, �u

�
)

"lim
�

�
�
(�v

�
, �f

��
(v

�
))#�

�
(�u

�
, �u

�
)

"d
�
(�u

�
, �u

�
)"0,

where the fourth equality holds because v
�
is a semistatic vector. �

We need the following

Lemma 3.3 (Contreras et al. [4, Corollary 1.4]). There exists A'0 such that if p, q3M and
x3C

	
(p, q) satisfy

(a) A
�
(x)"min�A

�
(y) � y3C

	
(p, q)�;

(b) A
���

(x)(�
�
(p, q)#d

�
(p, q),

then �x� (t)�(A for all t3[0,¹].

Proof of Claim 1. Suppose that A

(#R for i"1,2, k!1 and A



"#R. The case k"1 is

similar. Then there exists v
�
3�, with 	(v

�
)L� and ¹



(v

�
)!t



(v

�
)P#R. We can assume that

t


(v

�
)"0 and that v

�
converges (� is compact). Let u"lim

�
v
�
3��(�). Then for all n we have

m�t(0 � f
�
(v

�
) ��(�)�)


	�
�
��

A

, (5)
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where m is the Lebesgue measure on �. We claim that 	(u)L�. To prove the claim it su$ces to
show that there is a sequence r

�
P!R such that f

��
(u)3�(�). (Recall that 	(u) must be contained

in a unique static class by Lemma 3.1.) Suppose that such a sequence does not exist. This means
that there exists R)0 such that for all t)R, f

�
(u) � �(�). Since v

�
Pu, there exists n su$ciently

large for which f
�
(v

�
) � �(�) for all t3[R!�
	�

��
A


!2,R!1]. This contradicts (5).

Since f
�
(v

�
) � �(�) for 0(t(¹



(v

�
) and ¹



(v

�
)P#R, then f

�
(u) � �(�) for all t'0 and hence


(u)-�. But then the orbit of u contradicts the de"nition of �. �

Proof of Claim 2. (a) Let p3��, q3��. For n'0, let x
��
:[a

�
, b

�
]PM be a solution of (E}L) such

that x
��
(a

�
)"p, x

��
(b

�
)"q and

A
���

(x
��
))�

�
(p, q)#

1
n
.

This implies that

A
���

(x
��

�
�����

))�
�
(x

��
(s), x

��
(t))#

1
n

(6)

for all a
�
)s)t)b

�
. We can assume that

inf�s'a
�
�x

��
(s)3��(�)�"0,

and that the sequence v
�
converges (cf. Lemma 3.3). Let u"lim

�
v
�
3�	�(���(�)). Taking limits in

(6), we obtain that x
�
�
�����

is semistatic for all lim inf
�
a
�
)s)t)lim sup

�
b
�
.

Any limit point w of x�
��
(a

�
)"f

��
(v

�
) satis"es �(w)"p3��, and by the Graph Property

(Theorem 3.2), w3�. Similarly, any limit point of f
��
(v

�
) is in �. Since ��� is invariant and

u � ���, then lim
�
a
�
"!R, lim

�
b
�
"#R. Hence u3�. Since f

�
(v

�
) � � (�) for all a

�
)t(0

and a
�
P!R, then f

�
(u) � �(�) for all t(0. Hence, 	(u)-� and thus u3�. Since

u3�	�(���(�)) there exists z3� such that d
�
(�(u),�(z)))�. Since z3�K and u3� by Theorem 3.2

we have

d
	�

((�(u),u),(�(z), z)))K �.

Thus u3���(K �). Letting �P0, we obtain that ���O~.
(b) By Claim 1 it is enough to show that sup



A



(�)"#R. If sup



A



(�)(¹, then

�-�(�,¹), where �(�,¹) is the compact set given by

�(�,¹)"�v3� � f
�		�	�

(v)��(�)O~�"f
�		�	�

(�(�)��).

Note that � (�, ¹)��"~, because � is invariant and ���(�)"~. On the other hand, since
�-�(�,¹) we have ���-�(�,¹)��"~. This contradicts item (a). �

Proof of Claim 3. Given 0(�(�, by Claim 2(b) there exists k'N(�) such that A


(�)'0.

Hence, there is v"v�3� with 	(v)L�, such that the orbit of v leaves �(�) and returns to �(�) at
least k times. Since k'N(�) there is one component �

�
(�)-�(�) with two of these returns,
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i.e. there exist �
�
(�)(s(�)(�

�
(�) with f�� (v)3�

�
(�), f

�
(v) ��(�) and f�� (v)3�

�
(�). We can choose

v� so that �
�
(�)"0. Now, there exists a sequence �

�
�0 such that the repeated component

�
�
L�

�
(�

�
) is always the same. Let s

�
:"s(�

�
), t

�
:"�

�
(�

�
), v

�
:"v�� and choose a subsequence such

that v
�
, f

��
(v

�
) and f

��
(v

�
) converge. Let u

�
"lim

�
v
�
3�

�
�

�
(�

�
)"�

�
, u

�
"lim

�
f
��
(v

�
)3�

�
and

u
�
"lim

�
f
��
(v

�
) � �(�). Since u

�
, u

�
3�

�
, then d

�
(�u

�
, �u

�
)"0. �

Proposition 3.4. Every static class is connected.

Proof. Let � be a static class and suppose that it is not connected. Let;
�
,;

�
be disjoint open sets

such that �-;
�
�;

�
and ��;


O~, i"1,2. Let p


3�(;


��), i"1,2. Since ;

�
and ;

�
are

disjoint sets we can take a solution x
��
: [a

�
, b

�
]PM, a

�
(0(b

�
of (E}L) such that

x
��
(0) � �(;

�
�;

�
), x

��
(a

�
)"p

�
, x

��
(b

�
)"p

�
and

A
���

(x
��
))�

�
(p

�
, p

�
)#

1
n
. (7)

Let u be a limit point of v
�
, then x

�
:�PM is semistatic (see the proof of Claim 2 item (a)). Then, for

a
�
)s)t)b

�
,

d
�
(p

�
, p

�
))�

�
(p

�
, x

��
(s))#�

�
(x

��
(s),x

��
(t))#�

�
(x

��
(t), p

�
)#�

�
(p

�
, p

�
),

therefore

d
�
(p

�
, p

�
))lim inf

�
[�

�
(p

�
,x

��
(s))#�

�
(x

��
(s),x

��
(t))#�

�
(x

��
(t), p

�
)]#�

�
(p

�
, p

�
)

)lim inf
�

A
���

(x
��
)#�

�
(p

�
, p

�
)

)d
�
(p

�
, p

�
)"0,

where in the last inequality we used (7). Hence,

�
�
(p

�
, x

�
(s))#�

�
(x

�
(s), x

�
(t))#�

�
(x

�
(t), p

�
)#�

�
(p

�
, p

�
)"0.

Combining the last equation with the triangle inequality we obtain

d
�
(x

�
(s),x

�
(t)))�

�
(x

�
(s),x

�
(t))#[�

�
(x

�
(t), p

�
)#�

�
(p

�
, p

�
)#�

�
(p

�
, x

�
(s))]"0.

So that u3�K . Moreover, for s"0, t"1:

d
�
(x

�
(0), p

�
))�

�
(p

�
,x

�
(0))#[�

�
(x

�
(0),x

�
(1))#�

�
(x

�
(1), p

�
)#�

�
(p

�
, p

�
)]"0.

Hence x
�
(0)3�(�). On the other hand, x

�
(0) � �(;

�
�;

�
). This contradicts the fact that

�-;
�
�;

�
. �
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Fig. 2. Creating homoclinic connections with "nite coverings and Theorem A.

4. Proof of Theorem B

Let ; ���
";� denote the �-neighborhood of �(�K (¸)), where �K (¸) is the set of static vectors of ¸.

Since we are assuming that �K (¸) contains only one static class, the set; is also connected for small
�. Let i :;PM be the inclusion map. The vector space H

�
(M,;,�) is isomorphic to the quotient of

H
�
(M,�) by i

H
(H

�
(;,�)).

Let G be the quotient of H
�
(M,;,�) by its torsion part. Since G is free we can write

G"� � 

2 � �, where k"dimH

�
(M,;,�). The group G can be seen as a lattice in H

�
(M,;,�).

Let J be a "nite index subgroup of G. There is a surjective homomorphism j :GPG/J given by the
projection.

If we take the Hurewicz map

�
�
(M)CH

�
(M,�),

and we compose it with the surjective homomorphisms H
�
(M,�)CH

�
(M,;,�), H

�
(M,;,�)CG

and j :GPG/J, we obtain a surjective homomorphism

�
�
(M)CG/J,

whose kernel will be the fundamental group of a "nite Galois covering M
�

of M with covering
projection map p :M

�
PM and group of deck transformations given by the "nite abelian group

G/J.
Observe that G/J acts transitively and freely on the set of connected components of p	�(;)

which coincides with the set of connected components of p	�(�(�K (¸))). Therefore, we have

Lemma 4.1. There is a one to one correspondence between elements in G/J and connected components
of p	�(�(�K (¸))).
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Observe that to each homoclinic orbit x :�PM to �K (¸) we can associate a homology class in G.
Indeed, since there exists t

�
'0 such that for all t with �t�*t

�
, x(t)3;, the class of x�

�	�� ��� �
de"nes

an element in H
�
(M,;,�) and hence in G. Let us denote by H the subset of G given by all the

classes corresponding to homoclinic orbits to �K (¸).

Lemma 4.2. For any J as above, the image of �H� under j is precisely G/J.

Proof. Let ¸
�

denote the lift of the Lagrangian ¸ to M
�
. Observe "rst that by Lemma 2.2,

c(¸)"c(¸
�
) and therefore by Lemma 2.3 we have

�
�
(�K (¸

�
))"p	�(�(�K (¸))), (8)

where �
�
: ¹M

�
PM

�
is the canonical projection of the tangent bundle ¹M

�
to M

�
.

Let us prove now that ¸
�

satis"es the hypothesis of Theorem A, that is, the number of static
classes of ¸

�
is "nite. In fact, we shall show that the projection to M

�
of a static class of

¸
�
coincides with a connected component of p	�(�(�K (¸))). Using (8) and Proposition 3.4 we see that

the projection of a static class of ¸
�

to M
�

must be contained in a single connected component of
p	�(�(�K (¸))). Hence, it su$ces to show that if x and y belong to a connected component of
p	�(�(�K (¸))) then d�

�
(x, y)"0. Since we are assuming that �K (¸) contains only one static class we

have that d
�
(px, py)"0. Since p:M

�
PM is a "nite covering there are lifts x

�
of px and y

�
of py

such that d�
�
(x

�
, y

�
)"0. Since static classes are connected x

�
and y

�
must belong to the same

connected component of p	�(�(�K (¸))) and thus there is a covering transformation taking x
�

into
x and y

�
into y which implies that d�

�
(x, y)"0 as desired.

Now Theorem A and (8) imply that every covering transformation in G/J can be written as the
composition of covering transformations that arise from elements in H, that is, j(�H�)"G/J. �

We shall need the following algebraic lemma.

Lemma 4.3. LetG"� �



2 ��. Given a xnite index subgroup JLG let us denote by j :GPG/J the

projection homomorphism.
Let A be a subgroup of G. If A has the property that for all J as above j(A)"G/J, then A"G.

Proof. The hypothesis readily implies that

A/A�J is isomorphic to G/J. (9)

� If the rank of A is strictly less than the rank of G, one can easily construct a subgroup
JLG with "nite index such that A-J and G/JO�0�. But this contradicts (9) because
A/A�J"�0�.
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� If the rank of A equals the rank of G, then A has "nite index in G and by (9) G/A"�0� and thus
G"A. �

Observe now that any setH of a free abelian group G of rank k such that the group generated by
H is G must have at least k elements. Therefore, if we combine Lemmas 4.2 and 4.3 with �H�"A,
we deduce that the set H of classes corresponding to homoclinic orbits generates G and must have
at least k elements thus concluding the proof of Theorem B. �

5. Proof of Theorem C

To prove the theorem we shall show "rst several lemmas. We will use the following notation:

� M�(¸)"minimizing measures of ¸;
� �(¸)" semistatic vectors of ¸;
� �K (¸)" static vectors of ¸;
� �(¸)" closure of ���M���

supp().

Recall that we always have �(¸)-�K (¸)-�(¸).

Lemma 5.1. The function C�(M,�)U �C c(¸#�) is continuous.

Proof. Suppose that �
�
P� and let c

�
:"c(¸#�

�
) and c :"c(¸#�). We will prove that c

�
Pc.

Fix �'0. Since c!�(c, by the de"nition of critical value there exists a closed curve
�:[0,¹]PM such that

A
�����	�(�)(0,

hence for all n su$ciently large

A
������	�(�)(0,

therefore for all n su$ciently large

c!�(c
�
,

and thus

c!�)lim inf
�

c
�
.

Since � was arbitrary we have

c)lim inf
�

c
�
.

Let us show now that lim sup
�
c
�
)c. Suppose that c(lim sup

�
c
�
. Take � such that

c(c#�(lim sup
�

c
�
. (10)
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Since �
�
P�, there exists n

�
such that for all n*n

�
,

!�)�
�
!�)�. (11)

By (10), there exists m*n
�

such that

c(c#�(c
�
.

By the de"nition of critical value there exists a closed curve � : [0,¹]PM such that

A
��������(�)(0,

and hence using (11) we have

A
�����

(�))A
��������(�)(0,

which yields a contradiction to the de"nition of the critical value c. �

This proof also shows that ¸Cc(¸) is continuous if we endow the set of Lagrangians ¸ with the
topology of uniform convergence on compact subsets of ¹M.

Lemma 5.2. lim���
�(¸#�)L�(¸), where lim���

�(¸#�) is the set of accumulation points of
sequences v

�
3�(¸#�

�
)L¹M with �

�
P0.

Proof. Let �
�
P0 and v

�
3�(¸#�

�
) with v

�
Pv. Let ¹'0 and write x

��
(t) :"��f ��

(v
�
),

x
�
(t) :"�� f�

(v), x
�
"x

��
(!¹), y

�
"y

��
(¹), x"x

�
(!¹), y"x

�
(¹), c

�
"c(¸#�

�
) and c"c(¸),

where f �
�
and f

�
are the Euler}Lagrange #ows of ¸#�

�
and ¸, respectively. Then

�
�
(x, y))A

���
(x

�
�
�		�	�

)"lim
�

A
�������

(x
��

�
�		�	�

)"lim
�

��
��
(x

�
, y

�
), (12)

where �� and � are the action potentials of ¸#�
�

and of ¸, respectively. Write
� :"lim

�
��

��
(x

�
, y

�
). We shall prove that �"�

�
(x, y), then (12) becomes an equality and hence

x
�
�
�		�	�

is semistatic. Since ¹'0 is arbitrary, then v3�(¸).
Suppose that �

�
(x, y)(�!�, then there exists a curve � : [0, S]PM with �(0)"x, �(S)"y and

A
���

(�)(�!�. Then

��
��
(x

�
, y

�
))A

�������
(�)#��

��
(x, x

�
)#��

��
(y, y

�
). (13)

Fix a Riemannian metric on M. Using a speed 1 geodesic from z
�
3M to z

�
3M, we get that

��
��
(z

�
, z

�
))� max

�����	�	 �����

�¸(x, v)�#max
���

��
�
(x)�#c

�� d
�
(z

�
, z

�
).

Hence, there exist K'0 such that for all n su$ciently large we have ��
��
(z

�
, z

�
))K d

�
(z

�
, z

�
).

Letting nPR on equation (13), we get that lim
�
��

��
(x

�
, y

�
))�!�. This contradicts the de"nition

of �. �
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Lemma 5.3. If M�(¸)"�� then �K (¸)"�(¸).

Proof. We show "rst that supp() is inside a static class. Since M�(¸)"��, then  is ergodic. In
particular, -almost every point has a dense orbit on supp(). Let v3supp() be such that it has
a dense orbit on supp(). Let u,w3supp() and let 0(r

�
(s

�
(t

�
be such that

lim
�
f
��
(v)"u"lim

�
f
��
(v) and lim

�
f
��
(v)"w. Then

d
�
(�f

��
(v),�f

��
(v)))A

���
(�f

��� ��� �
(v))#A

���
(�f

��� ��� �
(v))

"A
���

(�f
��
(v),�f

��
(v))

"�
�
(�f

��
(v),�f

��
(v))

and

d
�
(�u,�w)"lim

�
d
�
(�f

��
(v),�f

��
(v))

)lim
�

�
�
(�f

��
(v),�f

��
(v))"�

�
(�u,�u)"0,

and hence supp() is inside a static class.
Now let v3�(¸). For S,¹'0 consider the probabilities �

�	
de"ned by

�gd�
�	

"

1
S#¹�

	

	�

g(f
�
(v)) ds,

for any g : ¹MP� continuous. Since the 
 and 	-limits of v are in �K (¸) and any weak limit of
��

�	
�
��	��

is invariant, then by Theorem IV in [10,4], any weak* limit of �
�	

is minimizing and
hence it is .

Then 	-limit(v)Lsupp() and 
-limit(v)Lsupp(). Let u3	-limit(v), w3
-limit(v) and
S
�
, ¹

�
P#R such that lim

�
f
	��

(v)"u and lim
�
f
	�

(v)"w. For s, t'0 de"ne

�(s, t)"A
���

(�f
�	����

(v))#�
�
(�f

�
(v), f

	�
(v)). (14)

Then the triangle inequality for �
�
implies that �(!s, t) is increasing on s'0 and t'0. Also, since

v is semistatic, �(!s, t)"d
�
(�f

	�
(v), �f

�
(v))*0. But then, since supp() is inside a static class,

lim
�

�(!S
�
, ¹

�
)"d

�
(�u, �w)"0.

Hence, �(!s, t),0 for all s, t'0, and thus Eq. (14) implies that v3�K (¸). �

Lemma 5.4. Let

G
�
:"��3C�(M,�) �M�(¸#�)"�� and �K (¸#�)"supp()�.

Then

(a) G
�
is dense in C�(M,�).

(b) If �
�
3G

�
, then lim����

d


(�K (¸#�),�K (¸#�

�
))"0 where d



is the Hausdorw metric between

compact subsets of ¹M.
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(c) If �3C�(M,�), �3M�(¸#�) and �
�
3G

�
, then

lim
����

d


(supp(� ), supp(��

))"0.

Proof. Let us prove (a). By Theorem C in [11], the set

G
�
:"��3C�(M,�) � �M�(¸#�)"1�

is generic in C�(M,�). We shall see that if �
�
3G

�
, M�(¸#�

�
)"�� and �

�
3C�(M,�) is such

that �
�
*0 and �x : �

�
(x)"0�"�(supp()), then �K (¸#�

�
#�

�
)"supp() and

M�(¸#�
�
#�

�
)"��. This implies that G

�
is dense in C�(M,�).

Observe that 3M�(¸#�
�
#�

�
) and hence supp()-�K (¸#�

�
#�

�
). If v

�
3¹M and

�(v
�
) ��(supp()), we shall see that v

�
��K (¸#�

�
#�

�
). Then the Graph Property (cf. Theorem

3.2) implies that �K (¸#�
�
#�

�
)"supp(). Indeed, if v

�
"f�������

�
(v

�
), then

A
���������

(� f �������
�����

(v
�
))#��������

�
(� v

�
,� v

�
)

*�
�

�

�
�
(� f �������

�
(v

�
)) ds#�����

�
(� v

�
,� v

�
)#�����

�
(� v

�
,� v

�
)

'd����
�

(� v
�
,� v

�
)*0.

Hence v
�

is not static.
We now prove (b) and (c). From Lemmas 5.2 and 5.3, if �

�
3G

�
, then lim����

�K (¸#�)-
�K (¸#�

�
)"supp(��

). On the other hand the continuity of the critical value ensures that the
weak* limit of minimizing measures of ¸#� is minimizing for ¸#�

�
and hence

lim����
�K (¸#�).�K (¸#�

�
) and thus lim����

�K (¸#�)"supp(��
).

This implies that for any neighborhood ; of supp(��
) there is a neighborhood V of �

�
such

that �K (¸#�)-; for all �3V. Let d be the distance function of some Riemannian metric on ¹M.
Using neighborhoods

;� :"�z3¹M � d(z, supp(��
))(��,

one gets that

lim
����

sup
�������

d(z, supp(��
))) lim

����

sup
���K ����

d(z, �(¸#�
�
))"0. (15)

Given �'0, let �z
�
,2, z

�
�Lsupp(��

) be such that supp(��
)L��

��
B(z,�


), where

B(z,�) :"�w3¹M � d(z,w)(�� and let g

: ¹MP[0, 1] be a non-constant positive continuous

function with supp(g

)-B(z


, �). Then �g


d��

'0. The continuity of c(¸) implies that if �P�
�

and �3M�(¸#�) then �P��
weakly*. Hence, there is a neighborhood V of �

�
such that if

�3V and �3M�(¸#�), then �g

d�'0 for all i"1,2,N. Hence,

lim
����

sup
��
������� 

d(z, �(¸#�)))�.
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Since this holds for any �'0, then

lim
����

sup
���K ����� 

d(z, �K (¸#�))) lim
����

sup
��
������� 

d(z, �(¸#�))"0. (16)

From (15) and (16) we get that

lim
����

d


(�K (¸#�), �K (¸#�

�
))" lim

����

d


(�(¸#�), supp(��

))"0. �

To complete the proof of Theorem C we now show that G
�

is generic.
We claim that the set

U(�) :"��3C�(M, �) � d


(�K (¸#�), �(¸#�))(��

contains a neighborhood of G
�
.

This follows from parts (b) and (c) in Lemma 5.4 and the triangle inequality for the Hausdor!
distance, i.e. using that �K (¸#�

�
)"supp(��

) for �
�
3G

�
, we have that

d


(�K (¸#�), �(¸#�))

)d


(�K (¸#�), �K (¸#�

�
))#d



(supp(��

), �(¸#�)).

Since G
�

is dense, the set U(�) contains a open and dense set. Then

�
���

U�
1
n�"��3C�(M, �) � �K (¸#�)"�(¸#�)�

is generic. Since G
�
"G

�
�[�

���
U(1/n)] and G

�
is generic, then G

�
is generic. �

6. Proof of Corollaries 2 and 3

We need the following easy lemma.

Lemma 6.1. Let M be a closed manifold with xrst Betti number b
�
(M,�)*2. Then if ALM is

a closed submanifold diweomorphic to S� and ;� denotes the � neighborhood of A, we have that
H

�
(M,;� ,�) is non zero for all � suzciently small.

Proof. SinceA is di!eomorphic to a circle, the singular homology of the pair (M,;�) coincides with
the singular homology of the pair (M,A) and therefore the vector space H

�
(M,;� ,�) must have

dimension *b
�
(M, �)!1*1. �

We recall the following generic property proved in [5,11] that we already mentioned in the
introduction.

Theorem 6.2. Given a Lagrangian ¸ there exists a generic set OLC�(M,�) such that if �3O the
Lagrangian ¸#� has a unique minimizing measure in M�(¸#�) and this measure is uniquely
ergodic. When this measure is supported on a periodic orbit, this orbit is hyperbolic and if the stable and
unstable manifolds intersect, they must do it transversally.

664 G. Contreras, G.P. Paternain / Topology 41 (2002) 645}666



It is conjectured in [10] that the unique minimizing measure in M�(¸#�) is always supported
on a periodic orbit.

Observe now that if we combine Corollary 1, Lemma 6.1 and Theorem 6.2 we obtain
Corollary 2.

To prove Corollary 3 we need the following lemma. A proof can be found in [8, Proposition 8].

Lemma 6.3. If ¸ is a symmetric Lagrangian, then

c(¸)"! inf
���

¸(x,0),

and

�(¸)"�K (¸)"�(x,0) : ¸(x, 0)"!c(¸)�.

Moreover, the ergodic minimizing measures are the Dirac measures concentrated on the xxed points
(x,0) of the Euler}Lagrange yow with ¸(x,0)"!c(¸).

Finally observe that if we combine Corollary 1, Lemma 6.3 and Theorem 6.2 we obtain
Corollary 3. �
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