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Abstract

Let L be a C* convex superlinear Lagrangian on a closed manifold M. We show that if the number of
static classes is finite, then there exist chains of semistatic orbits that connect any two given static classes.
Using this property we show that if there is only one static class, then the homoclinic orbits to the set of static
orbits generate over R the relative homology of the pair (M, U), where U is a sufficiently small connected
neighborhood of the set of static orbits in M. We show that generically in the sense of Maifi¢ (in: F.
Ledrappier, J. Lewowicz, S. Newhouse (Eds.), International Congress on Dynamical Systems in Montevideo
(a tribute to Ricardo Maii¢), Pitman Research Notes in Mathematics, Vol. 362, 1996, pp. 120-131 (reprinted
in Bol. Soc. Bras. Mat. 28(2) (1997) 141-157) the set of semistatic orbits coincides with the support of
a uniquely minimizing measure, therefore generically, the homoclinic orbits to the support of the minimizing
measure generate over R the relative homology of the pair (M, U), where U is a sufficiently small connected
neighborhood of the projection of the support of the measure to M. This last result was obtained—with
a different proof—by Bolotin (Proceedings of the International Congress of Mathematics, Vol. 1,2, Ziirich,
1994, Birkhauser, Basel, 1995, pp. 1169-1178; in: V.V. Kozlov (Ed.), Dynamical Systems in Classical
Mechanics, American Mathematical Society Translation Series 2, Vol. 168, American Mathematical Society,
Providence, RI, 1995, pp. 21-90) assuming the existence of a C!*“P function f:M — R such that
L + ¢ — df = 0, where c is the critical value of L. Finally, we obtain two consequences. The first one says that
if M is a closed manifold with first Betti number > 2 then there exists a generic set ¢ = C*(M, R) such that if
Y € O the Lagrangian L +  has a unique minimizing measure and this measure is uniquely ergodic. When
this measure is supported on a periodic orbit, this orbit is hyperbolic and the stable and unstable manifolds
have transverse homoclinic intersections. The second consequence says that if M is a closed manifold with
first Betti number different from zero and if L is a symmetric Lagrangian, then there exists a generic set
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0 < C*(M, R)such thatif € @, then L +  has a unique minimizing measure and this measure is supported
on a hyperbolic fixed point whose stable and unstable manifolds have transverse homoclinic intersec-
tions. © 2002 Elsevier Science Ltd. All rights reserved.

MSC: 58F05; 58F11

1. Introduction

Let M be a closed connected smooth manifold and let L: TM — R be a smooth convex
superlinear Lagrangian. This means that L restricted to each T, M has positive definite Hessian
and that for some Riemannian metric we have that

. L(x,
lim (x,0) = o0,
|0l

[v] > o0

uniformly on xe M. Since M is compact, the extremals of L give rise to a complete flow
fi:TM — TM called the Euler-Lagrange flow of the Lagrangian. The extremals are solutions of the
Euler-Lagrange equation which in local coordinates is given by

doL OJL
The energy E: TM — R is defined by

E(x,v) = aa—I;(x, v)v — L(x,v).

Since L is autonomous, E is a first integral of the flow f,.

Recall that the action of the Lagrangian L on an absolutely continuous curve y:[a,b] - M is
defined by

b
Aaw=fLmawmm.
Given two points, x; and x, in M and T > 0 denote by % +(x1, x,) the set of absolutely continuous
curves y:[0, T] - M, with (0) = x; and y(T) = x,. For each ke R we define the action potential
M x M — R by

Di(xy,x3) = inf{ALJrk(y): VE U (gT(xth)}-
T>0
The critical value of L, which was introduced by Mané [ 10], is the real number ¢(L) defined as the
infimum of k € R such that for some xe M, @,(x,x) > — oo. Since L is convex and superlinear and
M is compact such a number exists and it has various important properties that we review in
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Section 2. We briefly mention a few of them since we shall need them below. For any k > ¢(L), the
action potential @, is a Lipschitz function that satisfies a triangle inequality. In general, the action
potential is not symmetric but if we define d; : M x M — R by setting

dk(x’ y) = ka(x, y) + gDk(ys X),

then d, is a distance function for all k > ¢(L) and a pseudo-distance for k = ¢(L).
Since d;, = 0, for every absolutely continuous curve y:[a,b] - M and all k = ¢(L) we have

A7) = Bi(y(a), p(b) = — Pr(y(b), 7(a)). (1)

Set ¢ = ¢(L). We say that an absolutely continuous curve y:[a,b] —» M is semistatic if

AL+c(V|[to,t1]) = ‘pc(V(to)a y(tl))

for all a < t, <t; < b; and that it is static if

AL+c(V|[z0,t1]) = — D(y(t1), y(to))

forall a <ty <t; <b. Clearly, by (1) a static curve is semistatic. One could also say that y|y s 1s
static if it is semistatic and for all a <ty <t; <b, d.(y(ty), y(t1)) = 0. Semistatic curves are
solutions of the Euler-Lagrange equation because of their minimizing properties. Also it is not
hard to check that semistatic curves have energy precisely ¢ [10,4]. The notions of semistatic and
static curves are closely related to Mather’s notions of c-minimal trajectories and regular c-minimal
trajectories, respectively (see [13]).

Given a vector ve TM we shall denote by x,:R — M the solution of the Euler-Lagrange
equation with x(0) = v.

The set of vectors v in T M that give rise to static curves x, : R — M is a closed invariant set that
we shall denote by := 2(L). Similarly, the set of vectors v in TM that give rise to semistatic curves
x,:R — M is a closed invariant set that we shall denote by X:= X(L). The set X is chain recurrent
and the set X is chain transitive [10,4, Theorem V]. As we mentioned before £ = X. We need to
recall (cf. Section 3, Theorem 3.2) the following important Lipschitz graph property which was
shown in [10,4] and [ 13, Theorem 6.1] that generalizes the celebrated Lipschitz Graph Theorem of
Mather [12]: the set 2 is a Lipschitz graph, that is, if 7: TM — M denotes the canonical projection
then the map n|s : & — n(2) is bl_]eCthe with Lipschitz inverse. Using the graph property we can
define an equivalence relation in 2 by saying that two vectors v and w in X are equivalent iff
d.(n(v), m(w)) = 0. The equivalence relation breaks X into classes that we shall call static classes. Let
A be the set of static classes. Define a reflexive partial order < in A4 by
(a) < 1is reflexive.

(b) < 1is transitive.
(c) If there is ve X with the a-limit set «(v) = A; and w-limit set w(v) = 4;, then A4; < 4;.

Theorem A. Suppose that the number of static classes is finite. Then given A; and A; in A, we have that
A; = 4;.

Theorem A could be restated by saying that if the cardinality of A is finite, then given two static
classes A; and A; there exist classes A; = 44, ..., 4, = A; and semistatic vectors vy,..., 0,1 €2
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Fig. 1. Connecting orbits between static classes. The three closed curves represent the static classes and the other curves
represent semistatic orbits connecting them.

such that for all 1 < k < n — 1 we have that a(v;) = A, and w(vy) S Ai+ . In other words, between
two static classes there exists a chain of static classes connected by heteroclinic semistatic orbits (cf.
Fig. 1).

Let us assume now that X contains only one static class. We shall see in Section 3 (cf. Proposition
3.4) that the static classes are always connected, thus if we assume that there is only one static class,
> must be connected.

Given ¢ > 0, let U, be the e-neighbourhood of n(Z). Since 2 is connected, the open set U, is
connected for ¢ sufficiently small. Let H;(M, U,,R) denote the first relative singular homology
group of the pair (M, U,) with real coefficients.

We shall say that an orbit of L is homoclinic to a closed invariant set K < TM if its « and w-limit
sets are contained in K.

Observe that to each homoclinic orbit x: R — M to the set of static orbits £ we can associate
a homology class in H,(M, U,,R). Indeed, since there exists ¢, > 0 such that for all t with |t| = t,,
x(t)e U,, the class of x|;_,, ,,; defines an element in H,(M, U,,R). Let us denote by # the subset of
H{(M,U,,R) given by all the classes corresponding to homoclinic orbits to Z.

In Section 4, we shall show the following result.

Theorem B. Suppose that X contains only one static class. Then for any ¢ sufficiently small the set
A generates over R the relative homology H{(M,U,R). In particular, there exist at least

PN

dim H{(M, U,,R) homoclinic orbits to the set of static orbits .

In [11], Maii¢ introduced the concept of generic property of a Lagrangian. A property P is said to
be generic for the Lagrangian L if there exists a generic set ¢ (in the Baire sense) of the set C*(M,R)
of all C* functions from M to R such that if » € ¢ the Lagrangian L + y has the property P. One of
Maiié’s objectives in [ 11] was to show that Mather’s theory of minimizing measures becomes much
more accurate and stronger if one searches for generic properties.

Our next result describes a generic property of Lagrangians on closed manifolds. Let .#(L) be
the set of probabilities on the Borel g-algebra of T M that have compact support and are invariant
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under the flow f;. We shall say that a measure ue.#(L) is minimizing if

deuz —c

We shall denote by .#°(L) the set of minimizing measures. We say that a measure u is uniquely
minimizing if the set .#°(L) contains u only. It was shown in [10,4] that a measure p is minimizing if
and only if the support of u is contained in 2. Mather has shown in [13] that if x is a minimizing
measure then its support is contained in the set of Mather’s regular c-minimal curves.

The following important generic property was proved in [5,11]. Given a Lagrangian L there
exists a generic set (¢ = C*(M,R) such that if y € ¢ the Lagrangian L +  has a unique minimizing
measure in .#°(L + ) and this measure is uniquely ergodic. When this measure is supported on
a periodic orbit, this orbit is hyperbolic and if the stable and unstable manifolds intersect, they must
do it transversally. It is conjectured in [10] that the unique minimizing measure in .Z°(L + V) is
always supported on a periodic orbit.

We will prove in Section 5:

Theorem C. Let
Gy 1= (Y e C*(M, R)| 4L + ) = {} and supp(g) = E(L + ) = X(L + ¥)}.

Then,

(a) 9, is generic in C*(M, R).

(b) If Yo €95, then limy, ., du(Z(L + ), 2(L + o)) = 0, where dy is the Hausdorff metric between
compact subsets of TM.

() If yeC*(M, R), pu, € M°(L + ) and o €%, then

lim  dy(supp(uy), supp(iy,)) = 0.
2
Note that since p is also uniquely ergodic, the set supp(u) must be a static class. Therefore,
generically, the set of static orbits contains only one static class and it coincides with the support of
the uniquely minimizing measure.
Let us denote by U, the e-neighborhood of the set supp(u). From Theorems B and C we obtain
right away the following generic property.

Corollary 1. Given a Lagrangian L there exists a generic set O < C*(M, R) such that if y €O the
Lagrangian L + 1 has a unique minimizing measure u in 4 °(L + ) and this measure is uniquely
ergodic. For any ¢ sufficiently small the set # of homoclinic orbits to supp(u) generates over R the
relative homology H{ (M, U,, R). In particular, there exist at least dim H,(M, U, R) homoclinic orbits

to supp(p).

Bolotin has shown in [1, Theorem 3.4] and [2, Theorem 4.3] (cf. also [3]) that if there exists
a C1*UP function f: M — R such that

L+c—df=0,
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then the set # of homoclinic orbits to supp(u) generates over R™ the relative homology
H{(M, U,,R). In particular, he gets at least 2dim H, (M, U,,R) homoclinic orbits to supp(u), twice
as much as we do in Corollary 1. However, we do not know if his condition is generic.

Bolotin uses methods different from ours. To prove Theorem B we consider finite coverings
M, of M whose group of deck transformations is given by the quotient of H{(M, U,,Z)/(torsion) by
a finite index subgroup. Using that the lifted Lagrangian L, has the same critical value as L, we
conclude that the number of static classes of Ly must be finite. Hence we can apply Theorem A to
Ly to deduce that the group generated by the homoclinic orbits to the set of static orbits of
L coincides with H{(M, U,, R).

We note that the homoclinic orbits that we obtain in Theorem B and Corollary 1 have energy
¢ but they are not semistatic orbits of L (cf. Theorem C). However, they are semistatic for lifts of
L to suitable finite covers.

Using Corollary 1, we shall show in Section 6:

Corollary 2. Let M be a closed manifold with first Betti number = 2. Given a Lagrangian L there exists
a generic set O = C*(M, R) such that if \y € O the Lagrangian L + \ has a unique minimizing measure
in M°(L + ) and this measure is uniquely ergodic. When this measure is supported on a periodic orbit,
this orbit is hyperbolic and the stable and unstable manifolds have transverse homoclinic intersections.

We say that a Lagrangian L is symmetric if for all (x,v)e TM, L(x,v) = L(x, — v). Note that if L is
symmetric and y € C*(M, R) then L +  is also symmetric.

Corollary 3. Let M be a closed manifold with first Betti number different from zero. Given a symmetric
Lagrangian L there exists a generic set O < C*(M, R) such that if €O, then L + \ has a unique
minimizing measure in M °(L + ) and this measure is supported on a hyperbolic fixed point whose
stable and unstable manifolds have transverse homoclinic intersections.

In [8] Albert Fathi has obtained independently results which have a considerable overlap with
Theorem B. He defines a set ¢, by

Co = U dp(Zo),

where the union is taken over all finite and abelian Galois covers p: M, — M and X, is the set of
semistatic orbits of the lift of L to M. He shows that the connected invariant set €, is contained in
WS(E)NnW*X) and that for any connected open set V' containing %, one has H;(TM,V, Z) = 0. As
a corollary, he also obtains the existence of at least dim H{(M, U,, R) homoclinic orbits to the set of
static orbits £ and without assuming that £ contains only one static class.

At this point, it seems useful to note that there are various terminologies in the literature for
several of the concepts that we use here. Fathi refers in [6-9] to the closure of the union of the
support of minimizing measures as the Aubry-Mather set. What we call here the static and
semistatic sets, Fathi calls the Peierls set and the Marné set, respectively. As we mentioned before,
semistatic and static curves are closely related to Mather’s notions of c-minimal trajectories and
regular c-minimal trajectories, respectively. The terminology we follow in this paper is that of Mané
in [10].
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2. Critical values, static and semistatic curves

Let M be a closed connected manifold and L: TM — R a convex superlinear Lagrangian.
The action of the Lagrangian L on an absolutely continuous curve y:[a,b] — M is defined by

AL(y) = J L(y(x), (1)) dt.

Given two points, x and y in M and T > 0 denote by %+(x, y) the set of absolutely continuous
curves y:[0, T] -» M, with y(0) = x and y(T) = y. For each ke R we define the action potential
&M xM — R by

Di(x,y) = inf{AL+k(V): VAS U Cr(x, J/)}

T>0

Theorem 2.1 (Basic properties of the critical value; Contreras et al. [4]; Mafi¢ [10]). There exists
c¢(L)e R such that

1. if k < c(L), then @y(x1,Xx,) = — o0, for all x| and x, in M,
2. if 'k = c(L), then @y(x1,x,) > — o0 for all x; and x, in M and ®, is a Lipschitz function;
3. if k = c(L), then

Di(x1,x3) < Pi(x1,x3) + Pi(x2,x3)
for all x{, x, and x3 in M and
Di(x1,x2) + Pi(x2,x1) =0,

for all x| and x, in M;
4. if k > c(L), then for x| # x, we have

Di(x1,x2) + Pi(xz,x1) > 0.

Observe that in general the action potential @, is not symmetric; however, defining
dy:M x M - R by

dk(xv )’) = gzsk(xs y) + @k(y, X),

Theorem 2.1 says that d, is a metric for k > ¢(L) and a pseudometric for k = ¢(L). The number ¢(L)
is called the critical value of L.

Itis important for our purposes to indicate that the theorem above also holds for coverings of M,
i.e. suppose M is a covering of M with covering projection p. Take the lift of the Lagrangian L to
M which is given by

L(x,v) = L(p(x),dp(v)).

Then we define for each k € R the action potential just as above and the results hold for L. Thus, we
have a critical value for L.



652 G. Contreras, G.P. Paternain | Topology 41 (2002) 645-666

Using the theorem it is straightforward to check that if M; and M, are coverings of M such that
M, covers M,, then

c(Ly) < o(Ly), (2

where L, and L, denote the lifts of the Lagrangian L to M| and M ,, respectively. Also we have the
following lemma.

Lemma 2.2. If M, is a finite covering of M, then c¢(Ly) = c(L,).

Proof. We know that ¢(L) < ¢(L,). Suppose that the strict inequality holds and let k be such that
¢(Ly) < k < ¢(L,). Hence, there exists a closed curve y in M, with negative (L, + k)-action. Since
M, is a finite covering of M, some iterate of vy lifts to a closed curve in M; with negative
(L{ + k)-action which contradicts ¢(L;) < k. [

Note that for every absolutely continuous curve y:[a,b] > M and all k > ¢(L) Theorem 2.1
implies that

Ap+i(7) = P((a),y(D) = — Di(y(b), y(@). 3)

Set ¢ = ¢(L). We say that an absolutely continuous curve y:[a,b] — M is semistatic if

AL+l 1,1) = Pe(y(t0), (t1))

for all a <ty <t; < b; and that is static if

AL+c(yl[t0,t1]) = — D.(y(t1), y(to))

forall a <tq <t; <b. Clearly, by (3) a static curve is semistatic. One could also say that y|y s 1s
static if it is semistatic and for all a <ty <t; <b, d.(y(ty), y(t1)) = 0. Semistatic curves are
solutions of the Euler-Lagrange equation because of their minimizing properties. Also it is not
hard to check that semistatic curves have energy precisely ¢ [10,4].

Given a vector ve TM we shall denote by x,:R — M the solution of the Euler-Lagrange
equation with x(0) = v.

The set of vectors v in TM that give rise to static curves x, : R - M is an invariant set that we
shall denote by £ := 5(L). Similarly, the set of vectors v in TM that give rise to semistatic curves
x,:R — M is an invariant set that we shall denote by X := X(L). As we mentioned before > c X.
The continuity properties of A; .. and @, imply that X and  are closed sets.

Lemma 2.3. Letp: M| — M, be a covering such that c(L) = c¢(L,). Then any lift of a semistatic curve
of L, is a semistatic curve of Ly . Also the projection of a static curve of Ly is a static curve of L,. If in
addition, p is a finite covering, then any lift of a static curve of L, is a static curve of L.

Proof. Observe first that for any ke R we have that

Di(x,y) = Bi(px, py),
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for all x and y in M. Hence, if we write ¢ = ¢(L;) = ¢(L,) we have

dl(x,y) = P4px, py), 4

for all x and y in M;.
Suppose now that x, : R — M, is a semistatic curve of L, and let x;:R — M be any lift of x, to
M. Using (4) and the fact that x, is semistatic we have for s <,

D(x1(s), x1 (1) < Ap, +(X1lis.0) = AL, +(X2lis.)
= DZ(x2(5), X2(1) < D¢ (x1(5), X1 (1))

Hence, x; is semistatic for L;.
Suppose now that x; : R —» M is a static curve of L; and let x, :R — M, be pox;. Using (4) and
the fact that x; is static we have for s <t,

- @cl(x1(t)ax1(5)) = @}(xl(s),xl(t)) = Ay, +elxy |[s,t]) = Ap, +c(x2|[s,t])
> D2(x,(5), x2(1)) = — DIX,(1), X2(5)) = — DL(x1(t), X1 (5)).

Hence x, is static for L,.

Suppose now that p is a finite covering and let x,:R — M, be a static curve of L,. Let
x{:R — M, be any lift of x, to M. Since x, is static, given s < t and ¢ > 0, there exists a curve
o:[0, T] > M, with «(0) = x,(t), «(T) = x,(s) such that

ALZ +c(x2|[s,t]) + ALZ +c(a) SEA

Since p is a finite covering, there exists a positive integer n, bounded from above by the number of
sheets of the covering, such that the nth iterate of x, | * o lifts to M, as a closed curve. Hence,
there exists a curve f joining x(¢) to x;(s) such that

ALl +c(x1 |[s,t]) + AL1 +C(ﬁ) < ne,

and thus x; is static for Ly;. [

3. Proof of Theorem A

We shall endow M with a Riemannian metric and we consider in T M the associated Sasaki
metric. Let dy; and dpy be the corresponding distance functions of these Riemannian metrics.
Given ve TM denote by a(v) and w(v) its o and w-limits, respectively. We recall the following:

Lemma 3.1 (Contreras et al. [4]). If ve X is semistatic, then a(v) = £ and w(v) < Z. Moreover, a(v)
and w(v) are each included in a static class.

Set

X*:={weTM|x,: [0,) > M or x,: (—¢&0] - M is semistatic}.
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Theorem 3.2 (Graph Property, see Mafié¢ [10]; Contreras et al. [4]; Mather [1}])' Forall pe (%)
there exists a unique &(p)e T,M such that (p,&(p)) € 2°, in particular (p.é(p) €2 and 2 = graph(¢).
Moreover, there exist positive constants § and K such that if (p,v)e 2, (q, w) € 2% and dy(p, q) < 1 then

dTM ((p: U)s(q: W)) <K dM (p’ CI)

In particular, the map &:1(2) — X is Lipschitz.

Using the Graph Property we can define an equivalence relation on X by
wvel, u=uv<d(n(u),nw)=0.

The equivalence classes are called static classes. Let A be the set of static classes. Define a reflexive
partial order < in 4 by

(a) < 1is reflexive.
(b) < is transitive.
(c) If there is ve 2 with «(v) = A; and w(v) = A4;, then A; < A4;.

Let us begin with the proof of the theorem. We shall prove in Proposition 3.4 below that the
static classes are connected. Hence, if we assume that there are only finitely many of them, the
connected components of £ are finite and must coincide with the static classes. For ¢ > 0, let 2(¢) be
the e-neighborhood of %, i.e.

S(e):= {ve TM |dpy(v, 2) < &}.

Fix ¢ > 0 small enough such that ¢ < 5 where # is the positive constant given by Theorem 3.2 and
such that the connected components of 2(¢) are the e-neighborhoods of the static classes. Thus, for
0<d<e 2(0) = Y Me) A,(9), where A,(0) are disjoint open sets containing exactly one static class
and the number of components N(g) is fixed for all 0 < 0 < e.

Now, suppose that the theorem is false. This means that there exists A € A such that the following
two sets are not empty:

A= U A

{Ajed | A< 4; } {464 | A£ 4;)

i
Given ve X with a(v) € A and 0 < § < ¢, define inductively s;(v), tx(v), Ti(v) as follows. Let
s1(v):= inf{se R|f;(v)¢ A(e)} e RU{ + o0 }.
If s;(v) < + o0, k =1, define
ti(v):= sup{t < si(v) |fi(v) € A(0)},
T (v):= inf{t > 5, (v) | fi(v) € A(0)}.

Observe that s,(v) < + oo implies that T (v) < + oo because by the definition of B and the
transitivity of < we have that w(v) € A. Define

Ay = Ap(0):=sup{| Tx(v) — tx(v)|: ve X, alv) S A, s,(v) < + 0},
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if s;(v) = + oo for all ve X with a(v) < A, write 4,(5) =0 for all / > k. Now set
S+ 1(0) 1= inf{s > Ty (v) | f:(v) & Ae)}.
Observe that s;(v), t(v) and T (v) are invariant under f,.
We split the rest of the proof of Theorem A into the following claims:
Claim 1. 4;,(0) < + oo forallk=1,2,... and all 0 < <e.

Define
M:= {v|veX, ofv) = A}.

Claim 2. (a) MNB # g.
(b) lim sup,, Ax(8) = sup; Ax(6) = + .

Claim 3. There exist sequences v, €2, 0 < s, < t, such that v, —» u; €A, f; (v,) = u, ¢ Ae), f,, (v,) =
uz €A and d.(muy, nuz) = 0.

We now use Claim 3 to complete the proof of Theorem A. If u; e 4; = A, we shall prove that
u € A;\A(e), obtaining a contradiction and thus proving Theorem A. It is enough to show that
d.(muy, mu,) = 0. Indeed

d.(muy, muy) = @ (nuy, nuy) + P.(nuy, muy)
< Oo(muy, muy) + P (nuy, nuz) + Po(mus, mu,)

= hrl;n [@C(TEU", chsn (Un)) + @c(nfsn (Un)s Tl;ft,. (Un))] + ch(ﬂ.'ug,, TEMl)

— lim ®,(nw,, o, (v,) + B.(mus, muy)
=d.(muy, muz) =0,

where the fourth equality holds because v, is a semistatic vector. [J
We need the following

Lemma 3.3 (Contreras et al. [4, Corollary 1.4]). There exists A >0 such that if p,qe M and
xe€r(p,q) satisfy

(a) A1(x) = min{A, ()| ye G 7(p, @)}

(b) AL+c(x) < @(p,q) + du(p,q)s

then |x(t)] < A for all te[0, T].

Proof of Claim 1. Suppose that 4; < + oo fori=1,...,k—1land A4y = + oo.Thecasek =11is

similar. Then there exists v, € 2, with a(v,) = A and Ty(v,) — tx(v,) > + oo. We can assume that
te(v,) = 0 and that v, converges (2 is compact). Let u = lim, v, € JA(5). Then for all n we have

m{t <0|fi(v,) EA()} < 2 A, (5)
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where m is the Lebesgue measure on R. We claim that a(u) = A. To prove the claim it suffices to
show that there is a sequence r,, > — oo such thatf, (u)e m (Recall that o(u) must be contained
in a unique static class by Lemma 3.1.) Suppose that such a sequence does not exist. This means
that there exists R < 0 such that for all t <R, f;(u) ¢ M Since v, — u, there exists n sufficiently
large for which f,(v,) ¢ A(e) for all te[R — YiZ{ A; —2,R — 1]. This contradicts (5).

Since f;(v,) ¢ A(e) for 0 < t < Ty (v,) and T (v,) > + oo, then f;(u) ¢ A(e) for all t > 0 and hence
w(u) < B. But then the orbit of u contradicts the definition of B. [

Proof of Claim 2. (a) Let pe A, genB. For n > 0, let x,, :[a,,b,] = M be a solution of (E-L) such
that x, (a,) = p, x,, (b,) = q and

1
AL+c(xv,,) < ¢c(pa CI) + E
This implies that

1
Ap+ (X, lis.7) < Pelxy, (5), Xy, () + - ©

for all a, <s <t <b,. We can assume that
inf{s > a, | x,,(s) enB©)} =0,

and that the sequence v, converges (cf. Lemma 3.3). Let u = lim, v, et~ *(0nB()). Taking limits in
(6), we obtain that x,|;, 1s semistatic for all liminf, a, <s <t < limsup, b,.

Any limit point w of X, (a,) =f, (v,) satisfies n(w) = penA, and by the Graph Property
(Theorem 3.2), we A\. Similarly, any limit point of f, (v,) is in B. Since AUB is invariant and
u¢ A uB, then lim, a, = — oo, lim, b, = + 0. Hence ueX. Since f;(v,)¢ B (d) foralla, <t <0
and a, > — oo, then f(u)¢B(0) for all t <0. Hence, a(u) = A and thus ueM. Since
uen Y07 B()) there exists ze B such that dy(n(u),n(z)) < 8. Since ze £ and ue X by Theorem 3.2
we have

dTM ((TL’(M), u),(n(z), Z)) < K.

Thus ue M n B(K 9). Letting 6 — 0, we obtain that MAB # g.
(b) By Claim 1 it is enough to show that sup, A,(0) = + oo. If sup,A,(d) < T, then
M = M(o, T), where M(5, T) is the compact set given by

M(S, T) = {ve X |fi-1.n() N A©) # ¢} = fi-1.11(A(d) N 2).
Note that M (6, T) " B = ¢, because B is invariant and BN A(J) = ¢. On the other hand, since
M = M(o, T) we have MnB < M(9, T)nB = ¢. This contradicts item (a). [

Proof of Claim 3. Given 0 < 6 < ¢, by Claim 2(b) there exists k > N(¢) such that A;(5) > 0.
Hence, there is v = vs € 2 with a(v) < A, such that the orbit of v leaves A(¢g) and returns to A(J) at
least k times. Since k > N(e) there is one component A;(6) = A(6) with two of these returns,
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1.e. there exist 7,(0) < s(0) < 12(6) with f; (v) € A4;(9), f,(v)¢ A(e) and f,, (v) e A;(5). We can choose
vs so that 7,(0) =0. Now, there exists a sequence J,|0 such that the repeated component
A; < A;(0,) 1s always the same. Let s, := s(9,), t,, := 72(d,), v, := vs, and choose a subsequence such
that v,, f; (v,) and f, (v,) converge. Let u; = lim,v, €n,4;(0,) = A4;, uy = lim,f, (v,)eA; and
u, = lim, f; (v,) ¢ A(e). Since uy,u3 € A;, then d.(mu,, nu;) =0. O

Proposition 3.4. Every static class is connected.

Proof. Let A be a static class and suppose that it is not connected. Let U, U, be disjoint open sets
such that 4 = U;uU, and ANnU; #¢,i=1.2. Let p;en(U;nA), i =1,2. Since U; and U, are
disjoint sets we can take a solution x,:[a,,b,]—>M,a, <0<b, of (E-L) such that
X, (O)¢TE(U1 UUZ): Xy, (an) = D1, Xy, (bn) =D2 and

1
AL+c(xu,,) < gDc(phpZ) =+ E (7)

Let u be a limit point of v,, then x, : R — M is semistatic (see the proof of Claim 2 item (a)). Then, for
a, <s<t<b,,

dc(plapZ) < gDc(plaxvn (S)) + ¢c(xvn (S)a xvn (t)) + gpc(xv,, (t)z p2) + ¢C(p25p1)7

therefore

dc(pl ’ Pz) < lll’l’ilnf [@c(pl > Xy, (S)) + glsc(xvn (S)a Xy, (t)) + QDC(XUW (t)’ D2 )] + @c(l?z »P1 )

<liminf Ay 4.(x, ) + Pc(p2,p1)

n

< de(p1,p2) =0,
where in the last inequality we used (7). Hence,
P(p1,Xu(8) + Pe(xu(s), Xu(1)) + Pe(xu(1), p2) + Pe(p2,p1) = 0.
Combining the last equation with the triangle inequality we obtain
de(xu(5), Xu(1)) < Pe(xu(8), Xu(t) + [Pe(xu(1), p2) + Pe(p2, p1) + Pe(p1, xu(s))] = 0.
So that ue 2. Moreover, for s = 0,t = 1:
de(xu(0), p1) < Pe(p1,%u(0)) + [Pe(x4(0), x,(1)) + Pe(xu(1), p2) + Pe(p2,p1)] = 0.

Hence x,(0)en(A). On the other hand, x,(0)¢n(U,;uwU,). This contradicts the fact that
A< Ul UU2. Ol
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Projection of the | —
static classes < \

of Lo N '

)4

Projection of the
static class of L _ | M

Fig. 2. Creating homoclinic connections with finite coverings and Theorem A.

4. Proof of Theorem B

Let U = U, denote the e-neighborhood of n(2(L)), where S(L) is the set of static vectors of L.
Since we are assuming that (L) contains only one static class, the set U is also connected for small
& Leti: U — M be the inclusion map. The vector space H, (M, U,R) is isomorphic to the quotient of
H,(M.R) by i, (H,(U,R).

Let G be the quotient of H,(M,U,Z) by its torsion part. Since G is free we can write
G=7z0' @ Z,where k = dim H, (M, U,R). The group G can be seen as a lattice in H, (M, U,R).
Let J be a finite index subgroup of G. There is a surjective homomorphism j: G — G/J given by the
projection.

If we take the Hurewicz map

n(M)—H (M, Z),

and we compose it with the surjective homomorphisms H, (M, Z)—H(M,U, 7)), H;(M,U,Z)— G
and j: G —» G/J, we obtain a surjective homomorphism

n(M)— G/J,

whose kernel will be the fundamental group of a finite Galois covering M, of M with covering
projection map p: M, - M and group of deck transformations given by the finite abelian group
G/J.

Observe that G/J acts transitively and freely on the set of connected components of p~}(U)
which coincides with the set of connected components of p~(n(2(L))). Therefore, we have

Lemma 4.1. There is a one to one correspondence between elements in G/J and connected components

of p~ (L))
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Observe that to each homoclinic orbit x : R — M to 2(L) we can associate a homology class in G.
Indeed, since there exists to > 0 such that for all ¢ with |t| > ¢o, x(t) € U, the class of x|;—,, ,,; defines
an element in H;(M, U, Z) and hence in G. Let us denote by 5 the subset of G given by all the
classes corresponding to homoclinic orbits to Z(L).

Lemma 4.2. For any J as above, the image of {# ) under j is precisely G/J.

Proof. Let L, denote the lift of the Lagrangian L to M,. Observe first that by Lemma 2.2,
¢(L) = ¢(Lgy) and therefore by Lemma 2.3 we have

16(2(Lo)) = p~ ' (m(Z(L))), t)

where ©o: TM, — M, is the canonical projection of the tangent bundle TM, to M,.

Let us prove now that L, satisfies the hypothesis of Theorem A, that is, the number of static
classes of L, is finite. In fact, we shall show that the projection to M, of a static class of
L, coincides with a connected component of p~ '(n(2(L))). Using (8) and Proposition 3.4 we see that
the projection of a static class of L, to M, must be contained in a single connected component of
p~Y(n(Z(L))). Hence, it suffices to show that if x and y belong to a connected component of
p~Y(n(2(L))) then d°(x, y) = 0. Since we are assuming that (L) contains only one static class we
have that d.(px, py) = 0. Since p:M, — M is a finite covering there are lifts x; of px and y; of py
such that d%(x,,y;) = 0. Since static classes are connected x; and y,; must belong to the same
connected component of p~ '(n(2(L))) and thus there is a covering transformation taking x; into
x and y, into y which implies that d2(x, y) = 0 as desired.

Now Theorem A and (8) imply that every covering transformation in G/J can be written as the
composition of covering transformations that arise from elements in J#, that is, j({#)) = G/J. O

We shall need the following algebraic lemma.

k
Lemmad4.3. LetG =7 @ --- ®Z. Given a finite index subgroup J < G let us denote by j: G — G/J the

projection homomorphism.

Let A be a subgroup of G. If A has the property that for all J as above j(A) = G/J, then A = G.

Proof. The hypothesis readily implies that
A/A nJ is isomorphic to G/J. ©)
e If the rank of A is strictly less than the rank of G, one can easily construct a subgroup

J = G with finite index such that 4 =J and G/J # {0}. But this contradicts (9) because
A/AnJ = {0}.
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e If the rank of 4 equals the rank of G, then A has finite index in G and by (9) G/4 = {0} and thus
G=A4. O

Observe now that any set # of a free abelian group G of rank k such that the group generated by
A 1s G must have at least k elements. Therefore, if we combine Lemmas 4.2 and 4.3 with () = A4,
we deduce that the set ## of classes corresponding to homoclinic orbits generates G and must have
at least k elements thus concluding the proof of Theorem B. [

5. Proof of Theorem C

To prove the theorem we shall show first several lemmas. We will use the following notation:

e .//°(L) = minimizing measures of L;
(L) = semistatic vectors of L;

(L) = static vectors of L;

e A(L) = closure of \U e sor)supp().

Recall that we always have A(L) < 5(L) < 2(L).

e
e X

Lemma 5.1. The function C*(M,R)2y+— c(L + V) is continuous.

Proof. Suppose that , - and let ¢, := ¢(L + ) and c:= ¢(L + ). We will prove that ¢, — c.
Fix ¢ > 0. Since ¢ — e < ¢, by the definition of critical value there exists a closed curve
1:[0, T] - M such that

AL+|//+c—s(y) < O,

hence for all n sufficiently large

ALy, +e-:(7) <0,
therefore for all n sufficiently large
c—e¢e<cy,

and thus

c—¢e< limninf Cy.
Since ¢ was arbitrary we have
c < limn inf ¢,.
Let us show now that limsup, ¢, < ¢. Suppose that ¢ < limsup, ¢,. Take ¢ such that

c<c+e<limsup c,. (10)
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Since Y, — Y, there exists ny such that for all n > ng,

—e<Y, — Y <e (11)
By (10), there exists m > ny such that

c<c+e<cy.

By the definition of critical value there exists a closed curve y:[0, T] - M such that

AL+://,,, +e+e(y) <0,

and hence using (11) we have

Apvy+c(0) < Apty, +e+:(9) <0,

which yields a contradiction to the definition of the critical value ¢. [J

This proof also shows that Lr—c¢(L) is continuous if we endow the set of Lagrangians L with the
topology of uniform convergence on compact subsets of T M.

Lemma 5.2. lim, o 2(L + ) < 2(L), where lim, .o X(L + V) is the set of accumulation points of
sequences v, € 2(L + ) = TM with y, — 0.

Proof. Let ¢, -0 and v,€2(L +,) with v, »v. Let T >0 and write x, (t):= n.f7(v,),
xu(t):: chft(v)a Xy = xvn( - T)a Yn = yv,.(T)a X = xv( - T)a y= X,}(T), Cp = C(L + lPn) and ¢ = C(L)r
where f7 and f, are the Euler-Lagrange flows of L + , and L, respectively. Then

D(x,y) < Ap+c(Xpli-7.17) =M Ap iy, 4, (X0, [[-1.71) = M BE (X, Ya), (12)
where @" and ¢ are the action potentials of L+, and of L, respectively. Write
A4:= lim, @} (x,,y,). We shall prove that 4 = ®.(x, y), then (12) becomes an equality and hence
X,|i— 7.7 18 semistatic. Since T > 0 is arbitrary, then ve 2(L).

Suppose that @ (x, y) < 4 — &, then there exists a curve : [0, ST - M with 5(0) = x, (S) = y and
Ar+.(n) <4 — ¢ Then

QD?" (xna yn) < AL+1//,,+c,, (;7) + qj?,,(xa xn) + @Z'n (y» yn) (13)
Fix a Riemannian metric on M. Using a speed 1 geodesic from z; e M to z, € M, we get that
P, (21,22) < < max |L(x,v)] + max [y,(x)| + cn> du(z1,22).
(x,0)eTM: |v|=1 xeM

Hence, there exist K > 0 such that for all n sufficiently large we have @¢ (z1,z,) < K dp(z4, 25).
Lettingn — oo on equation (13), we get that lim, @7 (x,,y,) < 4 — ¢. This contradicts the definition
of 4. O
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Lemma 5.3. If /°(L) = {u} then 3(L) = X(L).

Proof. We show first that supp(u) is inside a static class. Since .#°(L) = {u}, then p is ergodic. In
particular, u-almost every point has a dense orbit on supp(u). Let vesupp(u) be such that it has
a dense orbit on supp(u). Let u,wesupp(u) and let O0<r, <s, <t, be such that
lim,f, (v) = u = lim,f, (v) and lim,f; (v) = w. Then

de(nfy, O07fs, (1)) < Apse(tfs, 5 1(0) + Ap+e(f 1,1(0)
= A+ (7., (0),7f;, (0)
— (s, (0).7f, ()

and

d.(mu, mw) = lim d.(nf, (v), nf, (v))

< lim @.(nf, (v),7f,, (v) = @ (u,nu) = 0,

and hence supp(p) is inside a static class.
Now let ve X(L). For S, T > 0 consider the probabilities vg; defined by

1 T
Jg dvsy = S+ TJ_SQ(](S(U)) ds,

for any g: TM — R continuous. Since the w and a-limits of v are in £(L) and any weak limit of
{vsr}s.r>0 is invariant, then by Theorem IV in [10,4], any weak* limit of vgr is minimizing and
hence it is pu.

Then o-limit(v) < supp() and w-limit(v) < supp(). Let wueo-limit(v), we w-limit(v) and
Sy, T, = + oo such that lim, f_s (v) = u and lim, f, (v) = w. For s,t > 0 define

(s, 1) = AL+ (fy—s.0 (V) + Pe(nfi(v), f-(v)). (14)

Then the triangle inequality for @, implies that ( — s, t) is increasing on s > 0 and ¢ > 0. Also, since
v 1s semistatic, o( — s,t) = d.(7f_s(v), f;(v)) = 0. But then, since supp(y) is inside a static class,

lim 6( — S,, T,) = d.(mu, 7w) = 0.
Hence, 5( — s,t) = 0 for all s,¢t > 0, and thus Eq. (14) implies that ve 3(L). O

Lemma 5.4. Let
G, = e C*(M,R)| ML + ) = {1} and Z(L + ) = supp()}.
Then

(a) ¥, is dense in C*(M,R). R R
(b) If Yo €95, then limy, ., du(2(L + ), 2(L + o)) = 0 where dy is the Hausdorff metric between
compact subsets of TM.
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(c) If y e C*(M,R), py, € #°(L + ) and o €%, then

lim  dy(supp(py ), supp(y,)) = 0.
VAnd V2

Proof. Let us prove (a). By Theorem C in [11], the set
Gy = WeCMR)| #.4°L +y) =1}

is generic in C*(M,R). We shall see that if o €9, #°(L + o) = {u} and ¥, e C*(M,R) is such
that ¢, >0 and  {x:y(x) =0} = n(supp(w)), then (L + W + 1) = supp(u) and
MO(L + o + Y1) = {p}. This implies that 4, is dense in C*(M,R).

Observe that pe.#/°(L + o + ) and hence supp(u) = Z(L + o + ). If voe TM and
(vo) ¢ m(supp(n)), we shall see that vy ¢ 2(L + o + ;). Then the Graph Property (cf. Theorem
3.2) implies that S(L + o + W) = supp(u). Indeed, if v; = f5 ¥ ™1 (v,), then

ALy 4y +e(Tfi6 1 TV (00)) + TV T (mvy,mvg)

1
= f Yi(rfE et (ve)) ds + @ Ve(nvg,muy) + OV (n vy, mg)
0

> d5‘+'/’°(7'51)0,7'c Ul) = 0.

Hence v, is not static.

We now prove (b) and (c). From Lemmas 5.2 and 5.3, if o €%,, then lim,_,, S(L+y)c
S(L+ o) = supp(iy, )- On the other hand the continuity of the critical value ensures that the
weak®* limit of minimizing measures of L 4+ is minimizing for L + 1, and hence
limy, ., S(L 4+ ) 2 Z(L + ¥,) and thus lim,,_,,, Z(L + ) = supp(uy, ).

This implies that for any neighborhood U of supp(y,, ) there is a neighborhood ¥ of ¥, such
that (L + ) < U for all y € ¥". Let d be the distance function of some Riemannian metric on T M.
Using neighborhoods

Us = {Ze ™ | d(27 Supp(:u'//o )) < 8}’
one gets that

lim sup d(z, supp(yy,) < lim  sup d(z, 2(L + o)) = 0. (15)

Y=o zeA(L+y) VYo zeS(L+y)

Given ¢>0, let {z;,...,zy} =supp(y,,) be such that supp(y,,)<= \UNB(ze), where
B(z,e):={weTM|d(z,w) <&} and let g;: TM —[0,1] be a non-constant positive continuous
function with supp(g;) < Bl(z;,¢). Then [g; du,, > 0. The continuity of ¢(L) implies that if y —
and p, € #°(L + ) then u, — w,, weakly*. Hence, there is a neighborhood ¥~ of , such that if
Yyev and p, e 4°(L + ), then [g; du, >0 for all i =1,...,N. Hence,

lim sup d(z AL+ Y) <e.

VY=o zesupp(iyo)
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Since this holds for any ¢ > 0, then
lim  sup d(z S(L +y) < lim sup d(z, AL + ) = 0. (16)
W=y zeS(L+) Y=V zesupp(uy.)
From (15) and (16) we get that
lim dy(S(L + ), (L + o)) = lim dy(A(L + ), supp(uy,) =0. O
[ Znd' 2% V=Y
To complete the proof of Theorem C we now show that %, is generic.
We claim that the set
Ue):= (e C*(M, R)| du(S(L + ¥), AL + ) <&}

contains a neighborhood of 4,.
This follows from parts (b) and (c) in Lemma 5.4 and the triangle inequality for the Hausdorff
distance, i.e. using that X(L + ) = supp(uy, ) for Yo €%,, we have that

du(S(L + ¥), AL + )
< du(E(L + ), S(L + o)) + du(suppliy, ), AL + ).
Since ¥, is dense, the set %(e) contains a open and dense set. Then
1 “
N %(;) ={yeC*M, R)|2(L + ) = AL + ¢)}
n>0

is generic. Since ¥, = 91 n[Nn>0%(1/n)] and ¥, is generic, then ¥, is generic. [

6. Proof of Corollaries 2 and 3
We need the following easy lemma.

Lemma 6.1. Let M be a closed manifold with first Betti number by (M,R) = 2. Then if A = M is
a closed submanifold diffeomorphic to S' and U, denotes the ¢ neighborhood of A, we have that
H (M, U,,R) is non zero for all ¢ sufficiently small.

Proof. Since 4 is diffeomorphic to a circle, the singular homology of the pair (M, U,) coincides with
the singular homology of the pair (M, A) and therefore the vector space H{(M, U,,R) must have
dimension = b; (M, R)—1>1. O

We recall the following generic property proved in [5,11] that we already mentioned in the
introduction.

Theorem 6.2. Given a Lagrangian L there exists a generic set O < C*(M,R) such that if y €O the
Lagrangian L 4+ has a unique minimizing measure in M °(L + ) and this measure is uniquely
ergodic. When this measure is supported on a periodic orbit, this orbit is hyperbolic and if the stable and
unstable manifolds intersect, they must do it transversally.
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It is conjectured in [10] that the unique minimizing measure in .Z°(L + ) is always supported
on a periodic orbit.

Observe now that if we combine Corollary 1, Lemma 6.1 and Theorem 6.2 we obtain
Corollary 2.

To prove Corollary 3 we need the following lemma. A proof can be found in [8, Proposition §].

Lemma 6.3. If L is a symmetric Lagrangian, then

c¢(L) = — inf L(x,0),

xeM

and
A(L) = 2(L) = {(x,0): L(x,0) = — ¢(L)}.

Moreover, the ergodic minimizing measures are the Dirac measures concentrated on the fixed points
(x,0) of the Euler—Lagrange flow with L(x,0) = — c(L).

Finally observe that if we combine Corollary 1, Lemma 6.3 and Theorem 6.2 we obtain
Corollary 3. [
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