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Abstract. We describe a setting for homogenization of convex hamiltonians on abelian

covers of any compact manifold. In this context we also provide a new simple variational

proof of standard homogenization results.

1. Introduction

An homogenization result refers to the convergence of solutions uε of a problem Pε
with an increasingly fast variation,parametrized by ε, to a function u0 solution of an
”averaged” problem P0. In this paper we propose a setting in which homogenization
results for the Hamilton-Jacobi equation which have only been obtained in the torus
Tn = Rn/Zn, or equivalently in Rn with Zn-periodic conditions, can be carried out to
arbitrary compact manifolds in a natural way. Moreover we show a new and very simple
proof of the homogenization result.

We choose to present the simplest model of homogenization introduced in the celebrated
paper by Lions, Papanicolaou and Varadhan [8], leaving more sophisticated versions for
future work. We believe that this setting will allow to translate many classical homoge-
nization results in Tn to more general manifolds.

ATonelli Hamiltonian on the torus Tn = Rn/Zn is a C2 function H : Rn × Rn → R
which is

(a) Zn-periodic, i.e. H(x+ z, p) = H(x, p), for all z ∈ Zn.

(b) Convex: The Hessian
∂2H

∂ p2
(x, p) is positive definite for all (x, p).

(c) Superlinear: lim
p→∞

H(x, p)
|p|

= +∞, uniformly on x.

In the setting of [8] one considers a small parameter ε > 0 and the initial value problem
for the Hamilton-Jacobi equation

∂tu
ε +H(xε , ∂xu

ε) = 0,(1)

uε(x, 0) = fε(x);(2)

If fε is Lipschitz on Rn, from [3], [7], [4] we know that there is a unique viscosity solution
of the problem (1)-(2). Lions, Papanicolaou and Varadhan prove in [8] that if fε → f
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uniformly when ε → 0 and f is Lipschitz, the solutions uε converge uniformly to the
unique viscosity solution of the problem (3)-(4):

∂tu+H(∂xu) = 0,(3)

u(x, 0) = f(x);(4)

where H is a convex hamiltonian which does not depend on x and is called the effective
hamiltonian.

Equation (1) is seen as the Hamilton-Jacobi equation for a modified hamiltonian

(5) Hε(x, p) := H(xε , p).

And it is said that Hε → H in the sense that the solutions of their Hamilton-Jacobi equa-
tions converge as stated by the homogenization result. The homogenization is interpreted
as the convergence of solutions of Hamilton-Jacobi equations and of its action minimiz-
ing characteristics when the space is “seen from far away”. Alternatively, one says that
the limiting problems have a slow variable p and a fast oscillating variable x

ε which is
“averaged” by the homogenization limit.

The effective hamiltonian H is usually highly non-differentiable, but the solutions of
the problem (3)-(4) are easily written because the characteristic curves for the equation
(3) are the straight lines, and p = dxu is constant along them. Thus

(6) u(y, t) = min
x∈Rn

{
f(x) + t L

(y−x
t

)}
,

where

(7) L(v) := max
p∈Rn

[
p(v)−H(p)

]
is the effective lagrangian. The simplicity of this (limit) solution and the possibility of
using coarse grids in numerical analysis are the main advantage of the homogenization in
applications.

It turns out that the effective lagrangian L is Mather’s minimal action functional β and
H is Mather’s α function. Indeed knowing that : 1) The convergence holds. 2) The fact
from Fathi’s weak KAM theory [6], [5], that there is only one constant, α(P ), such that
there are viscosity solutions of the Hamilton Jacobi equation

H(x, P + dxv) = α(P ).

And 3) Using the special case of affine initial conditions, a ∈ Rn, P ∈ (Rn)∗,

(8) f(x) = u(x, 0) = a+ P · x.

It is easy to show that the the effective hamiltonian H is Mather’s alpha function.

From this we obtain several interpretations for the effective hamiltonian, for example
as Mañé’s critical value [9], H(P ) = c(L−P ), L = H∗, when the free time minimal action
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becomes bounded; or the energy of Mather’s minimizing measures for L − P , see [1]; or
the min-max formula

H(P ) = min
u∈C1(Tn,R)

max
x∈Tn

H(x, P + dxu),

with its symplectic interpretation [2].

Let M be a compact riemannian manifold without boundary. A Tonelli hamiltonian
on M is a C2 function H : T ∗M → R on the cotangent bundle T ∗M which is convex
and superlinear as in (b), (c) above. We want to generalize Lions, Papanicolau, Varadhan
Theorem to this setting. The generalization of the previous setting to other compact
manifolds has three problems, namely

(1) It is not clear how to choose the generalization of x
ε .

(2) In the modified hamiltonian Hε in (5) the base point changes to x
ε but the moment

p “remains the same”. It is not clear how to do this in non-parallelizable manifolds.
(3) Mather’s alpha function, the candidate for effective hamiltonian, is defined in the

first cohomology group α : H1(M,R) ≈ Rk → R, which may not be a cover of
the manifold. Thus the (limiting) effective hamiltonian and the Hamilton-Jacobi
equations for Hε would be defined in very different spaces. In particular, these
spaces usually have different dimensions.

To solve the last problem we will use an ad hoc definition of convergence of spaces very
much inspired in the Gromov Hausdorff convergence. For the second problem a change
of variables in the torus allows to change the parameter ε in the space variables x

ε to the
momentum variables. Indeed

Write

(9) uε(x, t) = vε
(
x
ε , t
)
.

Then the problem (1)-(2) for vε(y, t) becomes

∂tv
ε +H(y, 1

ε∂yv
ε) = 0.(10)

vε(y, 0) = fε(εy).(11)

Observe that now equation (10) makes sense in any manifold, but equation (11) does not.
We will take care of that afterwards.

Given a metric space (M,d), a family of metric spaces (Mn, dn) and continuous maps
Fn : (Mn, dn)→ (M,d), we say that limn(Mn, dn, Fn) = (M,d) iff

(1) There are Kn > 0 and An > 0 such that limnAn = 0, Kn,K
−1
n are bounded and

∀x, y ∈Mn,

(12) ∀x, y ∈Mn, K−1
n dn(x, y)−An ≤ d

(
Fn(x), Fn(y)

)
≤ Kn dn(x, y).

(2) For any x ∈M there is a sequence xn ∈Mn such that limn Fn(xn) = x.
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Observe that condition (1) implies that limn diamF−1
n {y} = 0 for all y ∈ M . If

limn(Mn, dn, Fn) = (M,d) and fn : Mn → R, f : M → R, we say that limn fn = f

uniformly iff
lim
n

sup
x∈Mn

|fn(x)− f(Fn(x))| = 0.

We say that limn fn = f uniformly on compact sets if for any compact subset K ⊂M

lim
n

sup
x∈F−1

n (K)

|fn(x)− f(Fn(x))| = 0.

We say that the family fn is equicontinuous if ∀ε > 0 ∃δ > 0 such that

x, y ∈Mn, dn(x, y) < δ =⇒ |fn(x)− fn(y)| < ε.

The initial Hamiltonian will be the lift of H to the maximal free abelian cover of M
defined as follows. Let M̃ be the covering space of M defined by π1(M̃) = ker h, where
h : π1(M)→ H1(M,R) is the Hurewicz homomorphism. Its group of deck tranformations
is G = im[π1(M)→ H1(M,R)], which is a free abelian group, G ≈ Zk ⊂ H1(M,R) ≈ Rk.

Observe that the large-scale structure of the covering space M̃ is given by G = Zk.

Let d̃ be the metric on M̃ induced by the lift of the riemannian metric on M . Let M̃ε

be the metric space (M̃, d̃ε), where d̃ε := εd̃. Then M̃ε converges to H1(M,R) in the same

way as εZk converges to Rk or εG ε−→ H1(M,R).

To be precise, by the universal coefficient theorem H1(M,R) = H1(M,R)∗. Let G :

M̃ → H1(M,R) be given by

(13) G(x) · c =
∮ x

x0

ω̃,

where c ∈ H1(M,R), ω is a 1-form on M with cohomology class c and ω̃ is the lift of ω to

M̃ . In section §2 we prove that limε(M̃, dε, εG) = H1(M,R).

In our homogenization result, the hamiltonian is the lift H̃ of H to the cover M̃ , or
equivalently, we start with a hamiltonian H on the cover M̃ which is G-invariant. The
effective hamiltonian is also Mather’s alpha function H = α : H1(M,R) → R. In the
homogenized problem the position space, or configuration space, is the homology group
x ∈ H1(M,R) ≈ Rk, and the momenta, and the derivatives dxu, are in its dual, the
cohomology group {p, dxu} ⊂ H1(M,R) ≈ Rk.

We finally address the problem of initial conditions. The functions fε will be defined in
the limit space fε : H1(M,R) → R. Equation (10) will be on the manifold (M̃, d̃)1, and
equation (11) will be replaced by

vε(y, 0) = gε(y) := fε(εG(y)), y ∈ M̃,

1Or on the manifold (M̃, d̃ε). Both manifolds (M̃, d̃), (M̃, d̃ε) have the same differential structure.
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which is interpreted as fε “seen” on M̃ε.

Our main theorem is

1.1. Theorem.
Let H : T ∗M → R be a Tonelli hamiltonian on a closed manifold M . Let

fε : H1(M,R)→ R be uniformly continuous and such that fε → f uniformly on H1(M,R),

with f with linear growth. Let H̃ : T ∗M̃ → R be the lift of H to M̃ . Let vε be the varia-
tional solution to the problem

∂tv
ε + H̃(x, 1

ε∂xv
ε) = 0; x ∈ M̃, t > 0.(14)

vε(x, 0) = fε(εG(x)).(15)

Then the family of functions vε : M̃ε × [0,+∞[→ R is equicontinuous and converges
uniformly on compact sets to the solution u : H1(M,R)× [0,+∞[→ R of the problem

∂tu+H(∂xu) = 0,(16)

u(x, 0) = f(x);(17)

where the effective hamiltonian H is Mather’s alpha function H = α : H1(M,R)→ R.

Several comments are still in order:
1) The convergence destroys the differential structure of the spaces. Nevertheless we

obtain convergence of solutions uε to a solution of a partial differential equation on the
limit space because the Hamilton-Jacobi equation is an encoding of a variational principle.
Namely, its solutions are the minimal cost functions under the Lagrangian. This variational
principle is preserved under the limit of spaces.

2) Once all this setting is provided, the usual proof, follows. This is very good news since
we can expect to generalize a lot of homogenization results to other manifolds. However,
using a result of Mather, we will provide another proof, which is essentially a change of
variables in the Lax formula.

3) Motivated by possible applications we extend the result to other Abelian coverings.

1.1. Subcovers.
For general abelian covers, i.e. covering spaces whose group of deck transformations

D is abelian, the torsion part of D is killed under the limit of M̂ε = (M̂, εd̂). Thus the
limit is the same as in a free abelian cover, where D is free abelian. These coverings are
subcovers of the maximal free abelian cover M̃ . In this case we have similar results as in
Theorem 1.1.

Let L : TM → R be the lagrangian of H i.e.

(18) L(x, v) := max
p∈T ∗xM

[
p(v)−H(x, p) ].
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Figure 1. A free abelian cover of the compact orientable surface of genus
3 with group of covering transformationns Z2.

The Euler-Lagrange equation for L is
d
dt∂vL = ∂xL,

it determines a complete flow ϕ on TM by ϕt(x, v) = (γ(t), γ̇(t)) where γ is the solution of
(18) with (γ(0), γ̇(0)) = (x, v). Given an invariant Borel probability µ for ϕt with compact
support define its homology class ρ(µ) ∈ H1(M,R) = H1(M,R)∗ by

ρ(µ) · c =
∫
TM

ω dµ,

where ω is any closed 1-form on M with cohomology class c. Mather’s minimal action
function is β : H1(M,R)→ R,

(19) β(h) := inf
ρ(µ)=h

∫
L dµ,

where the infimum is along all ϕt-invariant probabilities with homology ρ(µ) = h.

Free abelian covers M̂ are obtained from epimorphisms g : π1(M) → Z`, with

π1(M̂) = ker g and group of deck transformations Z` = im g. Since H1(M,Z) is
the abelianization of π1(M) such epimorphisms g factor as g = f ◦ h with

g : π1(M)
h−→ H1(M,Z)

f−→ Z`. The linearization of f gives a linear epimorphism
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f : H1(M,R)→ R`. The minimal action functional for the cover M̂ is β̂ : R` = im f→ R,

β̂(z) = inf{β(h) | f(h) = z }.

This can also be interpreted as the average action of minimizing Euler-Lagrange orbits on

M̂ with asymptotic direction z. The effective hamiltonian for M̂ is H = β̂∗, the convex

dual of β̂:

H(p) = β̂∗(p) = max
z∈R`

p(z)− β̂(z)

= max
h∈H1(M,R)

p(f(h))− β(h)

= α(f∗(p)),(20)

where f∗ is the homomorphism f∗ : (R`)∗ → H1(M,R)∗ = H1(M,R) induced by f.

Let π : M̂ →M be the projection. Define F : M̂ → R` by

〈F (x), y〉 =
∮ x

x0

π∗f∗y,

where f∗y is interpreted as any closed 1-form in M in the cohomology class f∗y.

This integral does no depend on the chosen path in M̂ from x0 to x. Indeed, the
projection π induces an isomorphism π∗ : π1(M̂, x0) → S(x0) ⊂ π1(M, b0), b0 = π(x0),
onto the stabilizer S(x0) of x0 in the fiber over b0 among the Deck transformations of the

covering M̂ :

S(x0) = {T ∈ π1(M, b0) | T (x0) = x0 }.

Therefore ker(f ◦ h) = ker(g) = π∗(π1(M̂, x0)) = S(x0). If γ is a loop in M̂ with endpoint
x0, we have that ∮

γ
π∗f∗y =

∮
π◦γ

f∗y = 〈f([π ◦ γ]), y〉 = 〈0, y〉 = 0,

because

[π ◦ γ] = π∗([γ]) ⊂ π∗(H1(M̂,R)) ⊂ ker f.

1.2. Theorem.

Let M̂ be a free abelian cover of M obtained from the epimorphism f : H1(M,Z) → Z`

with π1(M̂) = ker h ◦ f and group of deck transformations F ≈ Z` = im f.

Let F : M̂ → R` be given by

〈F (x), y〉 =
∮ x

x0

π∗f∗y , ∀y ∈ R`.



8 G. CONTRERAS, R. ITURRIAGA, AND A. SICONOLFI

Let fε : R` → R be uniformly continuous and such that fε → f uniformly on R`, where
f has linear growth. Let H be a Tonelli hamiltonian on M . Let Ĥ : T ∗M̂ → R be the lift
of H to M̂ . Let vε be the variational solution to the problem

∂tv
ε + Ĥ(x, 1

ε∂xv
ε) = 0; x ∈ M̂, t > 0.(21)

vε(x, 0) = fε(ε F (x)).(22)

Writing M̂ε = (M̂, εd̂), where d̂ is the metric on M̂ , we have that

lim
ε

(M̂, εd̂, εF ) = R`.

Then the family of functions vε : M̂ε × [0,+∞[→ R, is equicontinuous and converges
uniformly on compact sets to the solution u : R` × [0,+∞[→ R of the problem

∂tu+H(∂xu) = 0,(23)

u(x, 0) = f(x);(24)

where the effective hamiltonian H : (R`)∗ → R, is H = f∗α given by (20).

2. Convergence of Spaces.

2.1. Proposition. For the maximal free abelian cover we have that

lim
ε

(M̃, dε, Fε) = H1(M,R).

Proof: Observe that for the finite dimensional space H1(M,R) we can use any norm.

If ω is a closed 1-form in M and ‖ω‖ := supx∈M |ω(x)|,∣∣[G(x)−G(y)
]
· ω
∣∣ =

∣∣∣∣∮ y

x
ω̂

∣∣∣∣ ≤ ‖ω‖ d(x, y)

Then there is K0 > 0 such that

(25) |G(x)−G(y)| ≤ K0 d(x, y),

and using that Fε = εG and dε = ε d, we have that

(26) |Fε(x)− Fε(y)| ≤ K0 dε(x, y).

Write G = im[π1(M) → H1(M,R)], the group of covering transformations for M̃ .

Fix x0 ∈ M̃ . Let e1, . . . , ek be a basis for G and let γ̂i be a minimal geodesic from x0 to
ei(x0) =: x0+ei. If π : M̃ →M is the projection, the concatenation (π◦γ̂1)n1∗· · ·∗(π◦γ̂k)nk

lifts to a curve from x0 to x0 + n, where n =
∑
niei. Let `i be the length of γi. Then

d(x0, x0 + n) ≤
∑

i ni `i ≤ (maxi `i) k |n| = K2 |n|.
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For any n,m ∈ G ≈ Zk, we have

d(x0 + n, x0 +m) = d(x0, x0 + (n−m)) ≤ K2 |n−m|.

If x, y ∈ M̃ there are two elements x0 + n, x0 + m of the orbit of x0 such that
d(x, x0 + n) ≤ D and d(y, x0 +m) ≤ D, where D := diamM . We have that

d(x, y) ≤ d(x, x0 + n) + d(x0 + n, x0 +m) + d(x0 +m, y)

≤ K2 |n−m|+ 2D.

Observe that

(27) G(x0 +m)−G(x0 + n) = m− n ∈ H1(M,R).

Using the Lipschitz property (25) for G,

|G(x)−G(y)| ≥ |m− n| − |G(x)−G(x0 + n)| − |G(y)−G(x0 +m)|

≥ |m− n| − 2K0D.

Therefore
d(x, y) ≤ K2 |G(x)−G(y)|+ 2K0K2D + 2D.

For A := 2K0D + 2K−1
2 D,

∀x, y ∈ M̃, K−1
2 d(x, y)−A ≤ |G(x)−G(y)|.

Multiplying the inequality by ε, we get

(28) ∀x, y ∈ M̃, K−1
2 dε(x, y)− εA ≤ |Fε(x)− Fε(y)|.

Inequalities (26) and (28) prove condition (1) of the convergence.

Condition (2) follows from the fact that the image of the G-orbit of x0,

Fε(x0 + G) = εG = εZk ⊂ Rk = H1(M,R),

is ε-dense in H1(M,R).

�

If limn(Mn, dn, Fn) = (M,d), we say that a family of functions fn : (Mn, dn) → R
converges pointwise to f : (M,d) → R if for every x ∈ M there are sequences xn ∈ Mn

with limn Fn(xn) = x and limn f(xn) = f(x).

2.2. Proposition.

If limn(Mn, dn, Fn) = (M,d) and fn : (Mn, dn)→ R is an equicontinuous family which
converges pointwise to f : (M,d) → R, then the convergence is uniform on compact sets
and f is uniformly continuous.

If lim supnKn = 1 in (12), then f has the same modulus of continuity as the fn.
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Proof: We first prove that f is uniformly continuous. Given ε > 0 let δ = δ(ε) > 0 be
such that

∀n, ∀a, b ∈Mn, dn(a, b) < δ =⇒ |fn(a)− fn(b)| < ε.

Let Q := lim supnKn. Let x, y ∈ M with d(x, y) < δ
Q . Let xn, yn ∈ Mn with

limn Fn(xn) = x, limn Fn(yn) = y and limn fn(xn) = f(x), limn fn(yn) = f(y). Then

dn(xn, yn) ≤ Kn d(Fn(xn), Fn(yn)) +AnKn
n−→ (lim sup

n
Kn) d(x, y) < δ.

Thus
|fn(xn)− fn(yn)| < ε.

Taking lim supn on inequality

|f(x)− f(y)| ≤ |f(x)− fn(xn)|+ |fn(xn)− fn(yn)|+ |fn(yn)− f(y)|,

we obtain that
|f(x)− f(y)| < ε.

Thus, f is uniformly continuous. If Q = 1, f has the same modulus of continuity as the
fn.

We now prove that the convergence is uniform on compact sets. Let K ⊂M be compact.
Let Q := supn(1 +Kn) > 1. Given ε > 0 let δ > 0 be such that{

dn(x, y) < δ =⇒ |fn(x)− fn(y)| < δ ,

d(x, y) < δ =⇒ |f(x)− f(y)| < δ.

Let {Uα}mα=1 be a finite open cover of K such that diamUα <
δ

2Q . Let N0 > 0 be such

that n > N0 =⇒ An <
δ
2 . Then

Fn(x), Fn(y) ∈ Uα =⇒ dn(x, y) < Kn d(Fn(x), Fn(y)) +An <
δ

2
+An < δ.

Thus

n > N0 =⇒

{
x, y ∈ Uα =⇒ |f(x)− f(y)| < ε

3 ,

Fn(x), Fn(y) ∈ Uα =⇒ |fn(x)− fn(y)| < ε
3 .

Let N1 > N0 be such that F−1
n (Uα) 6= ∅ for all n > N1. For each n > N1 and 1 ≤ α ≤ m

choose one xn,α ∈Mn with Fn(xn,α) ∈ Uα.

Since fn → f point wise, for each α there is Mα > 0 such that

∀n > Mα : |fn(xn,α)− f(Fn(xn,α))| < ε
3 .
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Let N2 := max{N0, N1,M1, . . . ,Mm }. Then if n > N2, y ∈ F−1
n (K), take α such that

Fn(y) ∈ Ua, then

|fn(y)− f(Fn(y))| ≤ |fn(y)− fn(xn,α)|+ |fn(xn,α)− f(Fn(xn,α))|+ |f(Fn(xn,α))− f(Fn(y))|

≤ ε

3
+

ε

3
+

ε

3
.

�

We now deal with the sub-covering case. Let f : H1(M,Z) → Z` be an epimorphism

and h : π1(M) → H1(M,Z) the Hurewicz map. Let π : M̂ → M be the covering of M

with π1(M̂) = ker(h ◦ f) and group of Deck transformations im f = Z`. Let F : M̂ → R`

be defined by

〈F (x), y〉 =
∮ x

x0

π∗f∗y , ∀y ∈ R`.

2.3. Proposition.

lim
ε

(M, εd, εF ) = R`.

Proof: We first prove that F is Lipschitz. Observe that

〈F (x)− F (y), z〉 =
∮
π∗f∗z,

|〈F (x)− F (y), z〉| ≤ |z| ‖f∗‖ ‖π∗‖ d(x, y).

Applying the inequality to z = F (x)− F (y) we obtain

‖F (x)− F (y)‖ ≤ ‖f∗‖ ‖π∗‖ d(x, y).

Multiplying the inequality by ε, for K = ‖f∗‖ ‖π∗‖, we get

‖Fε(x)− Fε(y)‖ ≤ K dε(x, y).

The proof of the other inequality for F is the same as in proposition 2.1, we only need
to prove the analogous of equation (27). But if n,m ∈ im f = Z` are Deck transformations

of M̂ ,

〈F (x0 +m)− F (x0 + n), y〉 =
∮ x0+m

x0+n
π∗f∗y =

∮
π◦γ

f∗y

= 〈f([π ◦ γ]), y〉 = 〈m− n, y〉.

Thus
F (x0 + n)− F (x0 +m) = m− n.
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With this formula we obtain condition (2) of the convergence because the Z`-orbit of

x0 ∈ M̂ ,

Fε(x0 + Z`) = εZ` ⊂ R`

which is ε-dense in R`.
�

3. Homogenization in the maximal free abelian cover.

Proof of theorem 1.1:
Write

Hε(x, p) : = H̃
(
x, 1

εp
)
.

Lε(x, v) : = max
p∈T ∗xM

{ p · v −Hε(x, p) }

= max
p∈T ∗xM

{p
ε
· (vε)−H

(
x, pε

)}
= L(x, εv).

The solution to the problem (14)–(15) is given by the Lax-Oleinik formula

vε(x, T ) = inf
γ(T )=x

{
vε(γ(0), 0) +

∫ T

0
Lε(γ, γ̇) dt

∣∣∣ γ ∈ C1([0, T ], M̃), γ(T ) = x

}
,

= inf
γ(T )=x

{
vε(γ(0), 0) +

∫ T

0
L(γ, ε γ̇)

}
.

Write η : [0, Tε ]→ M̃ , η(s) := γ(εs), then

∫ T

0
L(γ, εγ̇) dt =

∫ T
ε

0
L(η(s), η̇(s)) · ε ds.

(29)

vε(x, T ) = inf
η(
T
ε )=x

{
vε(η(0), 0) + ε

∫ T
ε

0
L(η, η̇) ds

∣∣∣ η ∈ C1([0, Tε ], M̃), η
(
T
ε

)
= x

}
.

= inf
y∈M̃

{
vε(y, 0) + ε φ̃

(
y, x, Tε

)}
,(30)

where

φ̃(y, x, S) : = inf
{∫ S

0
L(η, η̇) ds

∣∣∣ η ∈ C1
(
[0, S], M̃

)
, η(0) = y, η(S) = x

}
.

The solution to the limit problem (16) - (17) is

(31) u(y, T ) = inf
z∈H1(M,R)

{
f(z) + T β

(y−z
T

)}
,
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where β is Mather’s minimal action functional (19).

The proof is just to show that formula (30) converges to formula (31), using Mather’s
proposition 3.4 below on the uniform convergence of mean minimal actions to the beta
function. It is done at the end of the section. But the statement of theorem 1.1 requires
to prove that the family vε is equicontinuous and that the limit is uniform. For this we
shall need some slightly more technical work.

We say that a curve γ : [0, T ]→ M̃ is a Tonelli minimizer iff∫ T

0
L(γ, γ̇) dt = φ̃(γ(0), γ(T ), T ).

3.1. Lemma. The map (x, y) 7→ φ̃(x, y, T ) is Lipschitz on T > d(x, y).

Proof: There is A > 1 such that if γ : [0, T ] → M̃ is a Tonelli minimizer and
d(γ(0), γ(T )) > T then |γ̇(t)| < A for all t ∈ [0, T ]. Let

Q1 := sup
|v|≤2A

|L(x, v)|, Q2 := sup
|v|≤2A

|∂vL(x, v) · v|.

If a ∈ [12 , 2] and |v| ≤ A, we have that∣∣L(x, av) · 1
a − L(x, v)

∣∣ ≤ 1
a |L(x, av)− L(x, v)|+

∣∣a−1
a

∣∣ |L(x, v)|

≤ 1
a

(∫ a

1
∂vL(x, sv) · v ds

)
+
∣∣∣∣a− 1

a

∣∣∣∣ |L(x, v)|

≤
∣∣a−1
a

∣∣ Q2 +
∣∣a−1
a

∣∣ Q1.

Let z ∈ M̃ , d := d(y, z)� T . Let γ ∈ C1([0, T ], M̃), γ(0) = x, γ(T ) = z be such that

φ̃(x, z, T ) =
∫ T

0
L(γ, γ̇) dt.

Define η : [0, T − d]→ M̃ by η(s) = γ
(
s T
T−d

)
, we have that

φ̃(x, z, T − d) ≤
∫ T−d

0
L(η, η̇) ds =

∫ T

0
L(γ, T

T−d γ̇)
(
T−d
T

)
dt

≤
∫ T

0
L(γ, γ̇) dt+

∣∣∣ d
T−d

∣∣∣ (Q1 +Q2)

≤ φ̃(x, z, T ) + d(y, z) 2
T (Q1 +Q2).

φ̃(z, y, d) ≤ Q1 d(y, z).
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By the triangle inequality,

φ̃(x, y, T ) ≤ φ̃(x, z, T − d) + φ̃(z, y, d).

≤ φ̃(x, z, T ) +
(
Q1 + 2

T (Q1 +Q2)
)
d(y, z).

Similarly
φ̃(x, z, T ) ≤ φ̃(x, y, T ) +K1 d(y, z),

with K1 := Q1 + 2
T (Q1 +Q2). �

3.2. Lemma. There is K1 > 0 such that if Tε > 2 then vε(x, T ) is εK1-Lipschitz on x ∈ M̃ .

Proof: Let x, z ∈ M̃ with d(x, z) < 2 < T
ε . Let K1 be the Lipschitz constant from

lemma 3.1 Let yn ∈ M̃ be such that

vε(x, T ) = lim
n

{
vε(yn, 0) + ε φ̃

(
yn, x,

T
ε

)}
≥ lim

n

{
vε(yn, 0) + ε φ̃

(
yn, z,

T
ε

)
− εK1 d(x, z)

}
≥ vε(z, T )− εK1 d(x, z).

The other inequality is similar.
�

3.3. Corollary. If T
ε > 2 the function vε( · , T ) : M̃ε → R is K1-Lipschitz.

In particular the family vε( · , T ) is equicontinuous on M̃ε.

The solution to the limit problem (16)–(17) is given by (6) where the effective lagrangian
(7) is Mather’s beta function (19), thus

(32) u(y, T ) = inf
x∈H1(M,R)

{
f(x) + T β

(y−x
T

)}
Following Mather [10, page 180], given x, y ∈ M̃ define the difference vector

y − x ∈ H1(M,R) by

(33) 〈[ω], y − x〉 =
∮ y

x
ω̃,

where ω is a closed 1-form on M and ω̃ = π∗ω is its lift to M̃ .
We shall need the following result by Mather [10, Corollary on page 181]:

3.4. Proposition.

For every A > 0, δ > 0 there is T0 > 0 such that
if x, y ∈ M̃ , T ≥ T0,

∥∥y−x
T

∥∥ ≤ A, then∣∣∣ 1
T φ̃(x, y, T )− β

(y−x
T

)∣∣∣ < δ.
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From (33) we obtain
y − x = G(y)−G(x).

Applying proposition 3.4 with time T
ε , and recalling that Fε = εG, we have that

(34)∥∥∥Fε(y)−Fε(x)
T

∥∥∥ < A & T
ε > T0(A, δ) =⇒

∣∣∣ε φ̃ (x, y, Tε )− T β (Fε(y)−Fε(x)
T

)∣∣∣ < δ T.

By hypothesis f has linear growth. Since β is superlinear, given y ∈ H1(M,R) there is
z0 = z0(y) ∈ H1(M,R) such that

u(y, T ) = inf
z∈H1(M,R)

{
f(z) + T β

(y−z
T

)}
= f(z0) + T β

(y−z0
T

)
.

Let zε, yε ∈ M̃ be such that Fε(zε) → z0 and Fε(yε) → y. Then using (34) and
δ := 2 max{d(z0, Fε(zε)), d(y, Fε(yε))},

u(y, T ) ≥ fε(Fε(zε))− ‖f − fε‖0 − osc
(
f |z0+[−δ,δ]k

)
+ ε φ̃

(
zε, yε,

T
ε

)
− δ T −

∣∣∣β (Fε(yε)−Fε(zε)
T

)
− β

(y−z0
T

)∣∣∣
≥ vε(yε, T ) −

[
‖fε − f‖+ osc(fε, z0, δ) + δT + osc

(
β, y−z0T , δT

) ]
.(35)

Similarly, fε has linear growth and L is superlinear, there is x ∈ M̃ such that

vε(yε, T ) = fε(Fε(x)) + ε φ̃
(
x, yε,

T
ε

)
≥ f(Fε(x))− ‖fε − f‖0 + T β

(
Fε(yε)−Fε(x)

T

)
− δ T

≥ u(Fε(yε), T )−
[
‖fε − f‖0 + δ T

]
.

≥ u(y, T )−
[
‖fε − f‖0 + δ T + osc

(
u( · , T ), y, δ

)]
.(36)

Since β and u are uniformly continuous on compact subsets, from (35), (36) we obtain
that limn v

ε = u uniformly on compact subsets.
�
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4. subcovers

The convergence of the spaces is proven in Proposition 2.3.

Proof of Theorem 1.2:

Write the projections of the coverings as M̃
p−→ M̂

π−→ M . Consider the lifts to M̃ of
the solutions vε and the lift to H1(M,R) of the initial conditions fε:

ṽε(x, t) := vε(p(x), t), f̃ε(x) = fε(f(x)), f̃(x) = f(f(x)).

By Theorem 1.1 we have that the family ṽε is equicontinuous and converges uniformly on
compact subsets to the solution ũ of the problem (16)–(17). Since the solutions vε are
invariant under the deck transformations for the cover p so is ũ, and induces a function on
M̂ × [0,+∞[. The equicontinuity and the uniform convergence on compacts also descend

to the cover M̂ .
Now we check the form of the effective lagrangian and here of the effective hamiltonian.

We have that

u(y, T ) = inf
x∈R`

{
f̃(x) + Tβ

(y−x
T

)}
,

= inf
x∈R`

{
f̃(x+ z) + Tβ

(y−x−z
T

)}
, ∀z ∈ ker f,

= inf
x∈R`

{
f̃(x) + Tβ

(y−x
T −

z
T

)}
, ∀z ∈ ker f,

= inf
x∈R`

{
f̃(x) + T inf

w∈ker f
β
(y−x
T + w

)}
,

= inf
x∈R`

{
f̃(x) + T β̂

(
p(y)−x
T

)}
,

= û(p(y), T ),

where û is the solution to the limit problem (23)–(24) in Theorem 1.2.
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