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Abstract. We describe a setting for homogenization of convex hamiltonians on abelian

covers of any compact manifold. In this context we also provide a simple variational

proof of standard homogenization results.

1. Introduction

In this paper we propose a setting in which homogenization results for the Hamilton-

Jacobi equation which have only been obtained on the torus Tn = Rn/Zn, or equivalently

in Rn with Zn-periodic conditions, can be carried out on arbitrary compact manifolds in

a natural way. Moreover we show a simple proof of the homogenization result.

A homogenization result refers to the convergence of solutions uε of a problem Pε with an

increasingly fast variation, parametrized by ε, to a function u0, solution of an “averaged”

problem P0.

We choose to present the simplest model of homogenization introduced in the celebrated

paper by Lions, Papanicolaou and Varadhan [8], leaving more sophisticated versions for

future work. We believe that this setting will allow to translate many classical homoge-

nization results in Tn to more general manifolds.

ATonelli Hamiltonian on the torus Tn = Rn/Zn is a C2 function H : Rn × Rn → R
which is

(a) Zn-periodic, i.e. H(x+ z, p) = H(x, p), for all z ∈ Zn.

(b) Convex: The Hessian
∂2H

∂ p2
(x, p) is positive definite for all (x, p).

(c) Superlinear: lim
p→∞

H(x, p)

|p|
= +∞, uniformly on x.

In the setting of [8] one considers a small parameter ε > 0 and the initial value problem

for the Hamilton-Jacobi equation

∂tu
ε +H(xε , ∂xu

ε) = 0,(1)

uε(x, 0) = fε(x).(2)
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If fε is continuous on Rn with linear growth, from [3], [4], [7] we know that there is a

unique viscosity solution of the problem (1)-(2). Lions, Papanicolaou and Varadhan prove

in [8] that if fε → f uniformly when ε → 0 and f is continuous with linear growth, the

solutions uε converge locally uniformly to the unique viscosity solution of the problem

(3)-(4):

∂tu+H(∂xu) = 0,(3)

u(x, 0) = f(x);(4)

where H is a convex hamiltonian which does not depend on x and is called the effective

Hamiltonian. We shall see below several characterizations of the effective Hamiltonian H.

Equation (1) is seen as the Hamilton-Jacobi equation for a modified hamiltonian

(5) Hε(x, p) := H(xε , p).

And it is said that Hε → H in the sense that the solutions of their Hamilton-Jacobi
equations converge as stated by the homogenization result. The homogenization is in-

terpreted as the convergence of solutions of Hamilton-Jacobi equations and of its action

minimizing characteristics when the space is “seen from far away”. Alternatively, one says

that the limiting problems have a fast oscillating variable x
ε which is “averaged” by the

homogenization limit.

The effective Hamiltonian H is usually highly non-differentiable, but the solutions of

the problem (3)-(4) are easily written because the characteristic curves for the equation

(3) are the straight lines, and p = dxu is constant along them. Thus

(6) u(y, t) = min
x∈Rn

{
f(x) + t L

(y−x
t

)}
,

where

(7) L(v) := max
p∈Rn

[
p(v)−H(p)

]
is the effective Lagrangian. The simplicity of this limit solution and in general the pos-

sibility of using coarse grids in numerical analysis for the averaged problem are the main

advantages of the homogenization in applications.

It turns out that the effective Lagrangian L is Mather’s minimal action functional β and

the effective Hamiltonian H is Mather’s alpha function, the convex dual of β. We recall

the construction of the beta function below in (23). By now it is interesting to observe

that β = L is defined in the homology group H1(Tn,R), but in (6) it is applied on velocity

vectors. Similarly α = H is defined in the cohomology group H1(Tn,R) and in equation

(3) it is applied on gradients ∂xu. This can be done because in the case of the torus Tn

the groups H1(Tn,R) ≈ Rn ≈ H1(Tn,R) can be identified with the second factor in the

trivial bundle TTn = Tn × Rn.
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Mather’s alpha function α = H is related with Mañé’s critical value [9] by1

α(P ) = c(L − P ). As such, the effective Hamiltonian H = α has several interpretations,

see [1], we name some of them:

(i) α is the convex dual of β.

(ii) α(P ) = inf{ k ∈ R |
∮
γ(L− P + k) ≥ 0 ∀ closed curve γ in Tn }.

(iii) α(P ) = inf{ k ∈ R | Φk > −∞}, where Φk : M ×M → R is

Φk(x, y) = inf
{ ∮

γ(L− P + k)
∣∣ γ curve in Tn from x to y

}
.

(iv) α(P ) = − inf
{ ∫

(L− P ) dµ
∣∣ µ is an invariant measure for L }.

(v) α(P ) is the energy of the invariant measures µ which minimize
∫

(L− P ) dµ.

(vi) From Fathi [6], [5], weak KAM theory, α(P ) is the unique constant for which there

are global viscosity solutions of the Hamilton-Jacobi equation

H(x, P + dxv) = α(P ), x ∈ Tn.

(vii) From [2], α(P ) = min
u∈C1(Tn,R)

max
x∈Tn

H(x, P + dxu).

(viii) From [2], α(P ) is the minimum of energy levels which contain a lagrangian graph

in T ∗Tn with cohomology class P .

Following [8], knowing that the homogenization theorem holds, it is easy to prove that

H = α. Indeed, consider the special case of affine initial conditions, a ∈ Rn, P ∈ (Rn)∗,

(8) f(x) = u(x, 0) = a+ P · x.

The solution of

(9) ut + α(dxu) = 0

with initial condition (8) is

(10) u(x, t) = a+ P · x− α(P ) t.

Using (vi), fix a Zn-periodic viscosity solution of the Hamilton-Jacobi equation

(11) H(x, P + dxv) = α(P ).

given by the weak KAM theorem in [6]. Let

uε(x, t) = u(x, t) + ε v
(
x
ε

)
.(12)

Define fε by uε(x, 0) = fε(x). Then uε solves the problem (1)–(2). Since fε → f and

uε → u uniformly, equation (9) must be the Hamilton-Jacobi equation for the effective

Hamiltonian and hence H(P ) = α(P ).

1Here (L− P )(x, v) := L(x, v) − P · v
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Let M be a compact path–connected riemannian manifold without boundary. A Tonelli

hamiltonian on M is a C2 function H : T ∗M → R on the cotangent bundle T ∗M which is

convex and superlinear as in (b), (c) above. We want to generalize the Lions-Papanicolaou-

Varadhan Theorem to this setting. The generalization of their theorem to other compact

manifolds has three problems, namely

(1) It is not clear how to choose the generalization of x
ε .

(2) In the modified hamiltonian Hε in (5) the base point changes to x
ε but the moment

p “remains the same”. It is not clear how to do this in non-parallelizable manifolds.

Similarly, the effective Hamiltonian H(P ) “does not depend on x”. Again, this is

not natural if the manifold is not parallelizable.

(3) Mather’s alpha function, the candidate for the effective Hamiltonian, is defined on

the first cohomology group α : H1(M,R) ≈ Rk → R, which may not be a cover of

the manifold. Thus the (limiting) effective Hamiltonian and the Hamilton-Jacobi

equations for Hε would be defined on very different spaces. In particular, these

spaces usually have different dimensions.

To solve the last problem we will use an ad hoc definition of convergence of spaces very

much inspired by the Gromov Hausdorff convergence. For the second problem, a change

of variables in the torus allows to change the parameter ε in the space variables x
ε to the

momentum variables. Indeed, write

(13) uε(x, t) = vε
(
x
ε , t
)
.

Then the problem (1)-(2) for vε(y, t) becomes

∂tv
ε +H(y, 1

ε∂yv
ε) = 0;(14)

vε(y, 0) = fε(εy).(15)

Observe that now equation (14) makes sense in any manifold, but equation (15) does not.

We will take care of this later.

Given a metric space (M,d), a family of metric spaces (Mn,dn) and continuous maps

Fn : (Mn,dn) → (M,d), we give a notion of convergence of Mn to M through Fn, Fn
should be interpreted as a telescope through which we look at the limit spaceM fromMn.

The definition basically requires equivalence of distances dn and the pullbacks of d under

Fn, with adjustments to cope with the case where Fn is not injective neither surjective.

We will say that limn(Mn, dn, Fn) = (M,d) if

(a) There are K > 1 and An > 0 such that limnAn = 0 with

∀x, y ∈Mn, K−1 dn(x, y)−An ≤ d
(
Fn(x), Fn(y)

)
≤ K dn(x, y).

(b) For any y ∈M there is a sequence xn ∈Mn such that limn Fn(xn) = y.
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Observe that condition (b) implies that for any metric ball K of M

(16) K ∩ Fn(Mn) 6= ∅ for n sufficiently large,

a kind of surjectivity statement. Similarly, using the convention diam ∅ = 0, condition (a)

implies that limn diamF−1
n {y} = 0 for all y ∈M .

If limn(Mn, dn, Fn) = (M, d) and fn : Mn → R, f : M → R, we say that fn = f

locally uniformly Fn– converges to f if for every x ∈ M and subsequences ynk
∈ Mnk

with limnk
Fnk

(ynk
) = x, one has limnk

fnk
(ynk

) = f(x).

If limn(Mn, dn, Fn) = (M, d) and fn : Mn → R, f : M → R, we say that fn = f

uniformly Fn–converges to f if it locally uniformly Fn–converges and in addition

lim
n

sup
x∈Mn

|fn(x)− f(Fn(x))| = 0.

The initial Hamiltonian will be the lift of H to the maximal free abelian cover of M

defined as follows. Let M̃ be the covering space of M defined by π1(M̃) = ker h, where

h : π1(M)→ H1(M,Z) is the Hurewicz homomorphism. Its group of deck transformations

is G = im[π1(M)→ H1(M,Z)], which is a free abelian group, G ≈ Zk ⊂ H1(M,R) ≈ Rk.
Observe that the large-scale structure of the covering space M̃ is given by G = Zk. In the

homogenized problem the position space, or configuration space, is the homology group

x ∈ H1(M,R) ≈ Rk, and the momenta, and the derivatives dxu, are in its dual, the

cohomology group {p, dxu} ⊂ H1(M,R) ≈ Rk.

Let d be the metric on M̃ induced by the lift of the riemannian metric on M , set for any

ε > 0, dε := εd. Then (M̃, dε) converges to H1(M,R) in the same way as εZk converges

to Rk or εG ε−→ H1(M,R).

To be precise, fix a basis c1, . . . , ck of H1(M,R) and fix closed 1-forms ω1, . . . , ωk in M

such that ωi has cohomology class ci. By the universal coefficient theorem H1(M,R) =

H1(M,R)∗. Let G : M̃ → H1(M,R) be given by

(17) G(x) ·
(∑

i

ai ci

)
=

∮ x

x0

(∑
i

ai ω̃i

)
,

where x0 is a base point in M̃ and ω̃i is the lift of ωi to M̃ . Since ω̃ is exact, the integral

does not depend on the choice of the path from x0 to x. Notice that the function G

depends on the choice of x0, on the choice of the basis {ci} and of representatives ωi in ci.

However, we shall be interested in the functions εG for ε small, and these dependencies

disappear in the limit ε → 0. On the points in M̃ in the same fiber as x0 the value of

G does not depend on the chosen basis {ωi} because in that case it is an integral on a

closed curve in M . In general, if x, y belong to the same fiber, then G(x) − G(y) is the

transformation in G = im[π1(M)→ H1(M,Z)] carrying y to x, condition which uniquely



6 G. CONTRERAS, R. ITURRIAGA, AND A. SICONOLFI

identifies it, conversely, any deck transformation admits a representation of this type. We
set Fε = εG.

1.1. Proposition. For the maximal free abelian cover we have that

lim
ε

(M̃, dε, Fε) = H1(M,R).

We finally address the problem of initial conditions. If we want to mimic the torus

case where the same initial datum can be taken for approximating as well as for limit

equations, we can think of transferring a continuous datum f defined in H1(M,R) to M̃

by setting fε(y) = f(Fε(y)), which is interpreted as f “seen” on (M̃, dε). We recognize in

the relationship between f and fε a special instance of uniform Fε–convergence, and this

is indeed the way in which the matter will be presented in the forthcoming statement of

the main homogenization result. The proof of this theorem will be given in Section 3.

1.2. Theorem.

Let H : T ∗M → R be a Tonelli hamiltonian on a compact manifold M . Let

fε : M̃ → R, f : H1(M,R) → R be continuous with f of at most linear growth, as-

sume that fε uniformly Fε–converges in to f . Let H̃ : T ∗M̃ → R be the lift of H to M̃ .

Let vε be the viscosity solution to the problem

∂tv
ε + H̃(x, 1

ε∂xv
ε) = 0, x ∈ M̃, t > 0;(18)

vε(x, 0) = fε(x).(19)

Then the family of functions vε : M̃ε × [0,+∞[→ R locally uniformly Fε–converges in

M̃×]0,+∞[ 2 to the viscosity solution u : H1(M,R)× [0,+∞[→ R of the problem

∂tu+H(∂hu) = 0, h ∈ H1(M,R), t > 0;(20)

u(h, 0) = f(h);(21)

where the effective Hamiltonian H is Mather’s alpha function H = α : H1(M,R)→ R.

Several comments are still in order:

1) The convergence destroys the differential structure of the spaces. Nevertheless we

obtain convergence of solutions vε to a solution of a partial differential equation on the

limit space because the Hamilton-Jacobi equation is an encoding of a variational principle.

Namely, its solutions are the minimal cost functions under the Lagrangian. This variational

principle is preserved under the limit of spaces.

2) In this setting it is possible to prove the homogenization theorem using standard

methods. This is very good news since we expect that many homogenization results

generalize from the torus to other manifolds. However, using a result of Mather, we will

provide another proof, which is essentially a change of variables in the Lax formula.

2Our proof of the uniformity does not extend to t = 0.
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3) Motivated by possible applications we extend the result to other Abelian covers.

Figure 1. A free abelian (sub)cover of the compact orientable surface of
genus 3 with group of covering transformations Z2.

1.1. Subcovers.

For general abelian covers, i.e. covering spaces whose group of deck transformations

D is abelian, the torsion part of D is killed under the limit of M̂ε = (M̂, εd̂). Thus the

limit is the same as for a free abelian cover, where D is free abelian. These coverings are

subcovers of the maximal free abelian cover M̃ . In this case we have similar results as in
Theorem 1.2.

Let L : TM → R be the lagrangian of H i.e.

L(x, v) := max
p∈T ∗

xM

[
p(v)−H(x, p) ].

The Euler-Lagrange equation for L is

(22) d
dt∂vL = ∂xL.

It determines a complete flow ϕ on TM by ϕt(x, v) = (γ(t), γ̇(t)) where γ is the solution of

(22) with (γ(0), γ̇(0)) = (x, v). Given an invariant Borel probability µ for ϕt with compact

support define its homology class ρ(µ) ∈ H1(M,R) = H1(M,R)∗ by

ρ(µ) · c =

∫
TM

ω dµ,
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where ω is any closed 1-form on M with cohomology class c. Mather’s minimal action

function is β : H1(M,R)→ R,

(23) β(h) := inf
ρ(µ)=h

∫
L dµ,

where the infimum is over all ϕt-invariant probabilities with homology ρ(µ) = h.

Free abelian covers M̂ are obtained from normal subgroups of the fundamental group

π1(M) containing the commutators. If g is the canonical epimorphism from π1(M) to the

quotient group then π1(M̂) = ker g and the group of deck transformations is im g. It can

be identified to Z`, up to the choice of a basis. Since H1(M,Z) is the abelianization of

π1(M), such epimorphism g factors as g = f ◦ h with g : π1(M)
h−→ H1(M,Z)

f−→ im g.

The linearization of f gives a linear epimorphism f : H1(M,R) → im f ≈ R`. Loosely

speaking, the elements of im f can be interpreted as homology classes adapted to the cover

M̂ . We denote by π the covering projection of M̃ onto M̂ . We record for later use that,

given any norm on H1(M,R), H1(M,Z) ∩ ker f ≈ Zk−` is B–dense in ker f ≈ Rk−` for a

suitable constant B. Further, for any fixed x0 ∈ M̃

(24) H1(M,Z) ∩ ker f = {G(x)−G(x0) | π(x) = π(x0)}.

The metric on M̂ , denoted by d̂, induced by the lift of the riemannian metric on M , is

given by

d̂(x, y) = inf{d(z, w) | z ∈ π−1(x), w ∈ π−1(y)}

The minimal action functional for the cover M̂ is β̂ : R` = im f→ R,

(25) β̂(z) = inf{β(h) | f(h) = z }.

This can also be interpreted as the average action of minimizing Euler-Lagrange orbits on

M̂ with asymptotic direction z. The effective Hamiltonian for M̂ is H = β̂∗, the convex

dual of β̂:

H(p) = β̂∗(p) = max
z∈im f

p(z)− β̂(z)

= max
h∈H1(M,R)

p(f(h))− β(h)

= α(f∗(p)),(26)

where f∗ is the homomorphism f∗ : (im f)∗ → H1(M,R)∗ = H1(M,R) induced by f.

By (24)

(27) f(G(y)) = f(G(x)) whenever π(x) = π(y).
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Then f(G(·)) is the lift to M̃ of a map from M̂ to im f that we denote by Ĝ. We set, for

any ε > 0, F̂ε = ε Ĝ

1.3. Proposition.

lim
ε

(M̂, εd̂, εF̂ε) = im f.

Proof will be given in the next section. We proceed giving the statement of the homog-

enization result for general abelian covers, the proof will be provided in Section 4.

1.4. Theorem.

Let fε : M̂ → R, f : im f → R be continuous with f of linear growth. Assume that fε

uniformly F̂ε–converges to f . Let Ĥ : T ∗M̂ → R be the lift of a Tonelli Hamiltonian H,

defined on M , to M̂ . Let vε be the viscosity solution to the problem

∂tv
ε + Ĥ(x, 1

ε∂xv
ε) = 0, x ∈ M̂, t > 0;(28)

vε(x, 0) = fε(x).(29)

Then the family of functions vε : M̂ε × [0,+∞[→ R locally uniformly F̂ε–converges in

M̂×]0,+∞[ to the solution u : im f× [0,+∞[→ R of the problem

∂tu+H(∂qu) = 0, q ∈ im f, t > 0;(30)

u(q, 0) = f(q);(31)

where the effective Hamiltonian H : (im f)∗ → R, is H = f∗α given by (26).

2. Convergence of Spaces

In this section we provide proofs for Propositions 1.1, 1.3, and show that some basic

properties holding for usual uniform convergences are still true in our setting.

Proof of proposition 1.1:

Observe that for the finite dimensional space H1(M,R) we can use any norm ‖ · ‖.
If ω =

∑
i ai ωi and ‖ω‖ := supx∈M |ω(x)|,∣∣∣[G(x)−G(y)

]
· [ω]

∣∣∣ =

∣∣∣∣∮ y

x
ω̃

∣∣∣∣ ≤ ‖ω‖ d(x, y).

Then there is K0 > 0 such that

(32) |G(x)−G(y)| ≤ K0 d(x, y),

and using that Fε = εG and dε = ε d, we have that

(33) ‖Fε(x)− Fε(y)‖ ≤ K0 dε(x, y).
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Write G = im[π1(M) → H1(M,R)], the group of covering transformations of M̃ . Fix

x0 ∈ M̃ . Let e1, . . . , ek be a basis of G and let γ̂i be a minimal geodesic from x0 to

ei(x0) =: x0+ei. If π : M̃ →M is the projection, the concatenation (π◦γ̂1)n1∗· · ·∗(π◦γ̂k)nk

lifts to a curve from x0 to x0 + n, where n =
∑
niei. Let `i be the length of γi. Then

d(x0, x0 + n) ≤
∑

i ni `i ≤ (maxi `i) k ‖n‖ =: K2 ‖n‖.

For any n,m ∈ G ≈ Zk, we have

d(x0 + n, x0 +m) = d(x0, x0 + (n−m)) ≤ K2 ‖n−m‖.

If x, y ∈ M̃ there are two elements x0 + n, x0 + m of the orbit of x0 such that

d(x, x0 + n) ≤ D and d(y, x0 +m) ≤ D, where D := diamM . We have that

d(x, y) ≤ d(x, x0 + n) + d(x0 + n, x0 +m) + d(x0 +m, y)

≤ K2 ‖n−m‖+ 2D.

Observe that

(34) G(x0 +m)−G(x0 + n) = m− n ∈ H1(M,R).

Using the Lipschitz property (32) for G,

|G(x)−G(y)| ≥ ‖m− n‖ − ‖G(x)−G(x0 + n)‖ − ‖G(y)−G(x0 +m)‖

≥ ‖m− n‖ − 2K0D.

Therefore

d(x, y) ≤ K2 ‖G(x)−G(y)‖+ 2K0K2D + 2D.

For A := 2K0D + 2K−1
2 D,

∀x, y ∈ M̃, K−1
2 d(x, y)−A ≤ ‖G(x)−G(y)‖.

Multiplying the inequality by ε, we get

(35) ∀x, y ∈ M̃, K−1
2 dε(x, y)− εA ≤ ‖Fε(x)− Fε(y)‖.

Inequalities (33) and (35) prove condition (a) of the convergence.

Condition (b) follows from the fact that the image of the G-orbit of x0,

Fε(x0 + G) = εG = εZk ⊂ Rk = H1(M,R),

is ε-dense in H1(M,R). �

Proof of proposition 1.3:

We endow im f of the norm ‖ · ‖f defined as

‖q‖f = min{‖h‖ | h ∈ H1(M,R) with f(h) = q},

where ‖ · ‖ is any norm for H1(M,R).
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Let x, y be in M̂ and z, w any element in π−1(x), π−1(y), respectively. Exploiting the

convergence proved in Proposition 1.1, we have

‖Ĝ(x)− Ĝ(y)‖f = ‖f(G(z)−G(w))‖f ≤ ‖G(z)−G(w)‖ ≤ k d(z, w),

which implies, by arbitrariness of z, w

(36) ‖Ĝ(x)− Ĝ(y)‖f ≤ k d̂(x, y).

By B–density of H1(M,Z)∩ker f in ker f and (24), we find z ∈ π−1(x), w ∈ π−1(y) with

‖Ĝ(x)− Ĝ(y)‖f ≥ ‖G(z)−G(w)‖ −B

from this we derive, again using Proposition 1.1

‖Ĝ(x)− Ĝ(y)‖f ≥ k−1 d(z, w)−A−B ≥ k−1 d̂(y, x)−A−B

The last inequality together with (36) gives, up to multiplying by ε, the first property of

the convergence. Given q = f(h) ∈ im f, we know that there is a sequence xε in M̃ with

εG(xε) converging to h, therefore

q = lim
ε
ε f(G(xε)) = lim

ε
ε Ĝ(π(xε)).

This concludes the proof. �

We go back to the abstract setting considering general metric spaces M, Mn, we will

assume from now on the limit space M to be locally compact, namely we require

All the metric balls of M are relatively compact.

This will fit the frame of homogenization. To avoid pathological cases, we also make

clear that the compact subsets of M we will consider in what follows, usually denoted by

K, are understood, without further mentioning, to be with nonempty interior. This will

guarantee that F−1
n (K) 6= ∅, at least for n large, thanks to (16).

If limn(Mn, dn, Fn) = (M,d) and fn :Mn → R, we say that the family fn is Fn–locally

equicontinuous if for any compact subset K of M, any ε > 0 there exists δ = δ(ε,K) > 0

such that

x, y ∈ F−1
n (K), dn(x, y) < δ =⇒ |fn(x)− fn(y)| < ε.

In accord to what the term uniform suggests, continuity is stable under the locally

uniform Fn–convergence.

2.1. Proposition. Assume limn(Mn, dn, Fn) = (M,d), and take fn :Mn → R, f :M→
R with fn locally uniformly Fn–convergent to f . If all the fn are continuous then f is
continuous.
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Proof: We claim that the fn are Fn–locally equicontinuous. In fact, if this were not true

there should be, taking into account that all the fn are continuous, for a given compact

K in M and δ > 0, (sub)sequences zn ∈ F−1
n (K), yn ∈ F−1

n (K) with

(37) dn(zn, yn)→ 0 and |fn(yn)− fn(zn)| > δ.

By condition (a) in the definition of spaces convergence d(Fn(xn), Fn(zn)) → 0, and so,

owing to compactness of K, Fn(xn) and Fn(zn) converge, up to subsequences, to the same

element, say x, of M. By the very definition of local uniform convergence, we deduce

limn fn(xn) = limn fn(zn) = f(x), which is in contrast with (37).

We proceed proving that f is uniformly continuous in K. Given ε > 0 let δ = δ(ε,K) > 0

be such that

∀n, ∀y, z ∈ F−1
n (K), dn(y, z) < δ =⇒ |fn(y)− fn(z)| < ε.

Let x0, x1 ∈ M with d(x0, x1) < δ
K , where K is the constant appearing in condition

(a) of the definition of spaces convergence. Let zn, yn ∈ Mn with limn Fn(zn) = x0,

limn Fn(yn) = x1, then limn fn(zn) = f(x0), limn fn(yn) = f(x1) and

dn(zn, yn) ≤ K d(Fn(zn), Fn(yn)) +AnK
n−→ K d(x0, x1) < δ.

Thus

|fn(zn)− fn(yn)| < ε.

Taking lim supn on the inequality

|f(x0)− f(x1)| ≤ |f(x0)− fn(zn)|+ |fn(zn)− fn(yn)|+ |fn(yn)− f(x1)|,

we obtain that

|f(x0)− f(x1)| ≤ ε,

as desired. �

If limn(Mn, dn, Fn) = (M, d), we say that a family of functions fn : (Mn, dn) → R
converges pointwise to f : (M, d) → R if for every x ∈ M there are sequences xn ∈ Mn

with limn Fn(xn) = x and limn fn(xn) = f(x).

We proceed deriving an result linking equicontinuity and local uniform convergence.

2.2. Proposition. Assume limn(Mn, dn, Fn) = (M, d), take f : (M, d)→ R and contin-

uous functions fn : (Mn, dn) → R. The family fn locally uniformly Fn–converges to f if

and only if it is pointwise convergent and Fn–locally equicontinuous.

Proof: The implication (local uniform convergence) ⇒ (equicontinuity) has already been

proved in Proposition 2.1, pointwise convergence can also be trivially derived. This shows

one half of the statement. Conversely, assume that a subsequence, still indexed by n,

yn ∈ Mn satisfies Fn(yn) = x0, for some x0 ∈ M, by pointwise convergence there is
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zn ∈ Mn with limn Fn(zn) = x0, limn fn(zn) = f(x0), therefore xn, zn belong to F−1
n (K),

for a suitable compact subset K ⊂M and any n, in addition

dn(yn, zn) ≤ K d(Fn(yn), Fn(zn)) +KAn
n−→ 0

so that, by local equicontinuity

lim
n
|fn(zn)− fn(yn)| = 0,

which in the end implies

lim
n
fn(yn) = f(x0),

as desired.

�

Next proposition put in relation local global and uniform Fn–convergence.

2.3. Proposition. Assume limn(Mn, dn, Fn) = (M, d), let fn : (Mn, dn)→ R be contin-

uous. If fn locally uniformly Fn–converges to some function f : (M, d)→ R then

(38) lim
n

sup
x∈F−1

n (K)

|fn(x)− f(Fn(x))| = 0 for any compact subset K of M.

Conversely, if (38) holds and f is continuous then fn locally uniformly Fn–converges to

f .

Proof: First, assume fn locally uniformly convergent to f . If (38) were not true, there

should be a compact subset of K ⊂M, δ > 0, and a (sub)sequence yn ∈ F−1
n (K) with

(39) |fn(yn)− f(Fn(yn))| > δ

Since Fn(yn)) converges, up to subsequences, to some x ∈ K, we get by local uniform

convergence limn fn(yn) = f(x), being f continuous by Proposition 2.1, we also have

limn f(Fn(yn)) = f(x). These two limit relations are in contrast with (39).

Conversely, if (38) holds and a (sub)sequence Fn(yn) ∈ Mn converges to x ∈ M, then

yn ∈ F−1
n (K), for some compact subset of M and

(40) |fn(yn)− f(Fn(yn))| −→ 0

the fact that f is continuous by assumption implies limn f(Fn(yn)) = f(x), this last

relation, combined with (40), yields

lim
n
fn(yn) = f(x).

�
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3. Homogenization in the maximal free abelian cover

Write

Hε(x, p) : = H̃
(
x, 1

εp
)
.

Lε(x, v) : = max
p∈T ∗

xM
{ p · v −Hε(x, p) }

= max
p∈T ∗

xM

{p
ε
· (vε)− H̃

(
x, pε

)}
= L(x, εv).

The solution to the problem (18)–(19) is given by the Lax-Oleinik formula

vε(x, t) = inf
γ(t)=x

{
fε(γ(0)) +

∫ t

0
Lε(γ, γ̇) dt

∣∣∣ γ ∈ C1([0, t], M̃), γ(t) = x

}
,

= inf
γ(t)=x

{
fε(γ(0)) +

∫ t

0
L(γ, ε γ̇)

}
.

Write η : [0, tε ]→ M̃ , η(s) := γ(εs). Then∫ t

0
L(γ, εγ̇) dt =

∫ t
ε

0
L(η(s), η̇(s)) · ε ds.(41)

vε(x, T ) = inf

{
fε(η(0)) + ε

∫ t
ε

0
L(η, η̇) ds

∣∣∣ η ∈ C1([0, tε ], M̃), η
(
t
ε

)
= x

}
,

= inf
y∈M̃

{
fε(y) + ε φ̃

(
y, x, tε

)}
(42)

where

φ̃(y, x, t) : = inf

{∫ t

0
L(η, η̇) ds

∣∣∣ η ∈ C1
(
[0, S], M̃

)
, η(0) = y, η(t) = x

}
.

The solution to the limit problem (20)–(21) is

(43) u(h, t) = inf
q∈H1(M,R)

{
f(q) + t β

(
h−q
t

)}
,

where β is Mather’s minimal action functional (23). Optimal elements for u(h, t) do exists

because f is continuous by Proposition 2.1 and with linear growth, β superlinear.

The proof is just to show that formula (42) converges to formula (43), using Mather’s

proposition 3.1 below on the uniform convergence of mean minimal actions to the beta

function. See [10, Corollary on page 181], we have just slightly changed notations:
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3.1. Proposition. For every A > 0, δ > 0 there is T0 > 0 such that

if x, y ∈ M̃ , T ≥ T0,
∥∥∥G(y)−G(x)

T

∥∥∥ ≤ A, then∣∣∣ 1
T φ̃(x, y, T )− β

(
G(y)−G(x)

T

)∣∣∣ < δ.

We recall that the element G(y)−G(x) of H1(M,R) is characterized by the relation

(44) 〈ci, G(y)−G(x)〉 =

∮ y

x
ω̃i,

for any i = 1, · · · , k, where c1, · · · , ck is a basis of H1(M,R), ωi are representatives in ci

and ω̃i are the lifts of ωi to M̃ , see (17). We deduce from Proposition 3.1

3.2. Proposition. Let xε, yε be in M̃ , for any ε > 0, and h, q in H1(M,R). Let tε be a

sequence of positive times converging to t0 > 0. If limε Fε(xε) = h, limε Fε(yε) = q then

lim
ε
ε φ̃(yε, xε,

tε
ε ) = t0 β

(
h−q
t0

)
.

Proof: Let a, b be constants estimating from below and above, respectively, tε, at least

for ε suitably small. We take A, δ, T0 as in Proposition 3.1, then∥∥∥ ε (G(xε)−G(yε))
a

∥∥∥ ≤ A for ε small

and a
ε > T0, we derive in force of Proposition 3.1∣∣∣ε φ̃(yε, xε,

tε
ε )− tε β

(
Fε(xε)−Fε(yε)

tε

)∣∣∣ < b δ for ε small.

Therefore

lim
ε

∣∣∣ε φ̃(yε, xε,
tε
ε )− tε β

(
Fε(xε)−Fε(yε)

tε

)∣∣∣ = 0

and the assertion follows being β(·) continuous.

�

3.3. Lemma. Given a compact subset K in H1(M,R), and a compact interval I ⊂]0,+∞[,

there is a positive constant C such that

dε(x, y) ≤ C

for ε > 0 suitably small, any x ∈ F−1
ε (K), t ∈ I and y ∈ M̃ realizing the minimum in the

formula yielding vε(x, t).

Proof: By linear growth assumption on f we find

f(h) ≥ −A ‖h‖ −B
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for any h ∈ H1(M,R) and suitable positive constants A and B, by applying uniform

convergence of fε to f we infer

(45) fε(x) ≥ −Aε ‖G(x)‖ − (B + 1) x ∈ M̃

for ε suitably small and, in addition, we find a constant Q with

(46) fε(x) ≤ Q for ε small, x ∈ F−1
ε (K).

Since by condition (a) in the definition of spaces convergence ‖G(x)‖ and d(x, y) are

infinite of the same order, as d(x, x0) → +∞, for any fixed x0, we deduce from (45), up

to adjusting constants A, B

(47) fε(x) ≥ −Adε(x, x0)− (B + 1) x ∈ M̃.

By superlinearity of L we are able to find, for any M > 0, a positive N such that, taken

a pair x, y of elements of M̃ and any curve γ linking them in [0, t], one has

(48)

∫ t

0
L(γ, ε γ̇) dt ≥M dε(x, y)−N t.

By (46)

vε(x0, t) ≤ Q+ t min
y∈M

L(y, 0) for ε small, x0 ∈ F−1
ε (K).

By combining this last inequality (47), (48), and taking into account the very definition

of vε, we get the assertion. �

Proof of theorem 1.2:

Let (h0, t0) be in H1(M,R)×]0,+∞[. Let (xε, tε) be a (sub)sequence in M̃×]0,+∞[

with limε Fε(xε) = h0, limε tε = t0, our task is to show

(49) lim
ε
vε(xε, tε) = u(h0, t0).

Assume a subsequence vεk(xεk , tεk) to have limit and consider yεk optimal for vεk(xεk , tεk),

then, according to Lemma 3.3, dεk(xεk , yεk) < C for εk small, which implies that ‖Fε(xεk)−
Fε(yεk)‖, and consequently ‖h0−Fε(yεk‖ are bounded. We deduce that Fεk(yεk) converges,

up to subsequences, to some element q0 ∈ H1(M,R). We therefore get in force of Propo-

sition 3.2

lim
εk
εk φ̃(yεk , xεk ,

tεk
εk

) = t0 β(h0−q0t0
).

Exploiting the uniform Fε–convergence of fε to f , we further derive

lim
εk
f(yεk) + εk φ̃(yεk , xεk ,

tεk
εk

) = f(q0) + t0 β(h0−q0t0
) ≥ u(h0, t0)

and consequently

(50) lim inf
ε

vε(xε, tε) ≥ u(h0, t0).
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We denote by q̄ an optimal element for u(h0, t0), there is a sequence yε in M̃ with

limε Fε(yε) = q̄, therefore, again by Proposition 3.2 and convergence of fε to f we get

lim sup vε(xε, tε) ≤ lim
ε
fε(yε) + ε φ̃(yε, xε,

tε
ε ) = f(q̄) + t0 β(h0−q̄t0

) = u(q0, t0),

this limit relation together with (50) gives (49).

�

4. subcovers

Proof of Theorem 1.4:

Consider the lifts to M̃ of the solutions vε and the initial conditions fε, as well as the

the lift to H1(M,R) of f :

ṽε(x, t) := vε(π(x), t), f̃ε(x) = fε(π(x)), f̃(h) = f(f(h)).

Due to the fact that Ĥ is the lift of an Hamiltonian H defined in T ∗M and the differential

structures of M̃ , M̂ are the same, ṽε(x, t) is solution to (18) with initial datum f̃ε(x).

Given ε > 0 and x0 ∈ M̃ , we have

(51) |f̃ε(x0)− f̃(Fε(x0))| = |fε(π(x0))− f(f(Fε(x0))| = |fε(π(x0))− f(F̂ε(π(x0)))|,

in addition if limε Fε(xε) = h0 for some sequence xε in M̃ , h0 ∈ H1(M,R), then

lim
ε
F̂ (π(xε)) = lim

ε
fFε(xε) = f(h0)

then, by the uniform F̂ε–convergence of fε to f as ε→ 0

lim
ε
f̃ε(xε) = lim

ε
fε(π(xε)) = f(f(h0)) = f̃(h0)

this limit relation together (51) shows the uniform Fε–convergence of f̃ε to f̃ . By Theo-

rem 1.2 we therefore get that ṽε(x, t) locally uniformly Fε–converges to

ũ(q, t) := inf
h∈H1(M,R)

{
f̃(h) + tβ

(
q−h
t

)}
(q, t) ∈ H1(M,R)× [0,+∞[.

If z ∈ ker f then

ũ(q + z, t) = inf
h∈H1(M,R)

{
f̃(h) + tβ

(
q+z−h

t

)}
= inf

h∈H1(M,R)

{
f̃(h− z) + tβ

(
q+z−h

t

)}
= ũ(q, t).
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From this we recognize that ũ is the lift to H1(M,R) of a function u defined in im f ×
[0,+∞[, Using (25), we have for any q0 ∈ im f, h0 ∈ H1(M,R) with f(h0) = q0

u(q0, t) = inf
z∈ker f

ũ(h0 + z, t) = inf
h∈H1(M,R)

{
f̃(h) + inf

z∈ker f
tβ
(
h0+z−h

t

)}
= inf

q∈im f

{
f(q) + tβ̂

( q0−q
t

)}
,

so that u is the solution to the limit problem (30)–(31). It is left to investigate the

convergence of vε to u. We consider (q0, t0) ∈ im f×]0,+∞[, a (sub)sequence (yε, tε) ∈
M̂×]0,+∞[ with limε F̂ε(yε) = q0, limε tε = t0; then there is a compact subset K of im f

with

fFε(xε) ∈ K for ε small, xε ∈ π−1(yε).

We can select K0 ⊂ f−1(K), K0 compact in H1(M,R), with f(K0) = K, in addition, taking

into account that H1(M,Z) ∩ ker f is B–dense in ker f and (24), we infer that there is a

compact enlargement K1 of K0 such that

{xε ∈ π−1(yε) | Fε(xε) ∈ K1} 6= ∅ for ε small.

Choosing Fε(xε), for xε in the above set, we build up a sequence converging, up to a sub-

sequence, to some h0 ∈ H1(M,R) with f(h0) = q0, then by local uniform Fε–convergence

of ṽε to ũ we get

lim
ε
vε(yε, tε) = lim

ε
ṽε(xε, tε) = ũ(h0, t0) = u(q0, t0).

This fact shows the sought local uniform F̂ε–convergence of vε to u and concludes the

proof.

�
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