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Abstract. We prove the existence of the average linking number, also called the Hopf
invariant, for any invariant measure under a differentiable flow onS3 without singularities,
which has no periodic orbit of positive measure.

1. Introduction
Let γ1, γ2 be two disjoint oriented knots in the three-dimensional sphereS3. The linking
number̀ (γ1, γ2) is defined as the algebraic intersection number ofγ1 with an orientable
surfaceN transversal toγ1, with oriented boundaryγ2. For a better understanding of our
results we need the two following interpretations of the linking number (see [5]):
(1) for any regular planar projection it is the algebraic crossing number ofγ1 overγ2;
(2) it is also the degree of the map

G : T 2→ S2

(t1, t2) 7→ γ1(t1)− γ2(t2)

|γ1(t1)− γ2(t2)| ,

whereT 2 is the two-dimensional torus andS2 is the two-dimensional sphere.
Hence

`(γ1, γ2) = 1

vol(S2)

∫
S1×S1

det(DG) ds dt

= 1

4π

∫ t1

0

∫ t2

0

(γ ′1× γ ′2)(γ1− γ2)

|γ1− γ2|3 ,

whereγi : [0, ti] → S3 = R3 ∪ {∞} is a parametrization ofγi ; i = 1,2. This formula is
known as the Gauss formula.
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Given a flowϕt on S3 generated by a vector fieldF , and two closed orbitsγ1, γ2, we
define the average linking number ofγ1 andγ2 as(1/T1T2)`(γ1, γ2), whereTi is the period
of γi . In order to define the average linking number for general orbits we need a convenient
set of short curves.

Define a good set of short curves as a system of piecewise differentiable paths joining
pointsx, y ∈ S3, depending in a measurable way onx andy such that the Gauss integrals
of every pair of non-intersecting pairs of the system, and the Gauss integrals of every pair
of non-intersecting{paths of the system, segments of orbitsϕt(p), 0 ≤ t ≤ 1}, are bounded
independently of the paths by a constantk (see [1]). In §3 we will prove the existence of
such a set.

For anyx ∈ S3 andT ∈ R let x̂T denote the knot formed by the orbit fromx to ϕT (x)
and a pathαϕT (x),x, in a chosen system of short curves, joiningϕT (x) to x. For any two
points in different orbitsp, q and timesT1, T2 define, when possible, their average linking
number as

`(x, y) := lim
T1, T2→∞

1

T1T2
`(x̂T , ŷT ).

The main purpose of this paper is to decide when this limit exists and does not depend on
the set of short curves. Our main theorem is as follows.

THEOREM 1.1. Let µ, ν be two invariant measures onS3. Then the functionJ :
S3× S3→ R defined by

J (p, q) = F(p)× F(q) · (p − q)
|p − q|3

is inL1(µ× ν).
From Birkhoff’s ergodic theorem we obtain the following.

THEOREM 1.2.
(a) For (µ× ν)-almost every pair of points the limit

ˆ̀(x, y) = lim
T1,T2→∞

1

T1T2

∫ T1

0

∫ T2

0

(γ ′1× γ ′2, γ1− γ2)

|γ1− γ2|3
exists.

(b) If there is no periodic orbit with positiveµ and ν measures this limit is for
(µ × ν)-almost every pair the same as`(x, y), in particular the asymptotic linking
number does not depend on the choice of the set of short curves. If the measures
µ and ν are ergodic, the asymptotic linking̀(x, y) is given by the integral∫∫
J (p, q) dµ(p) dν(q).

The same assertion of this theorem was proven by Arnold in [1] for smooth measures
and in [2] for Gibbs measures. The proof in [1] relies on the fact that the singularity of the
formula has order two which is less than the codimension of the diagonal, the singular set
of J . The proof in [2] relies on the observation that the singularity of the Gauss formula
has actually order one and that the Hausdorff dimension of a Gibbs measure is greater than
one.
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The idea of our proof is that the singularity of the Gauss formula disappears when we
integrate along the orbits in a small flow box. This is because the integral of the Gauss
formula is the integral of the Jacobian ofG, therefore in small time intervals the area of
the image ofG should be contained in one half of the sphere. However, since we actually
want to bound the integral of the absolute value of the Jacobian ofG, it was easier to carry
on an analytical proof, rather than to worry about of regions of injectivity ofG and the sign
of its Jacobian.

As an application, in [6] Verjovsky and Vila, following the same philosophy, extended
other topological invariants, such as Witten’s invariant for links, to an average value for
an invariant smooth measure of a flow. In their paper, the only obstruction to defining the
average Witten’s invariant for singular invariant measures is the existence of the average
linking number for such a measure, which is proven here in Theorem 1.1. We also quote
the work of Freedman and He [4], where they relate the asymptotic crossing number (the
integral of|J (x, y)|) with the energy of a vector field with a smooth invariant measure.

Finally let us mention that Gambaudo and Ghys [3] have proved that the average linking
number is a topological invariant for suspensions of diffeomorphisms of the two discs.

2. Proof of the theorems
LEMMA 2.1. For any compact subsetK ⊂ R3, there existε > 0 andA > 0, such that if
p ∈ K, |x − p| < ε, |y − p| < ε, then

J (x, y) = HTBH
|H |3 + φ(x, y),

where|φ(x, y)| < A is bounded,H = y − x and B is the matrix defined byB · H =
F(p)× (DF(p) ·H) for all H ∈ R3.

Proof. We have

J (x, y) = −F(x)× F(y)|H | · H|H |2 ,

wherey = x+H . SinceF(y) = F(x)+DF(x) ·H +ψ(x,H), with |ψ(x,H)| ≤ a|H |2
uniformly on allp ∈ K, |x − p| < ε, then

J (x, y)|H |3 = H · [F(x)× (F (x)+DF(x) ·H + ψ(x,H))]
= H · F ×DF(x) ·H +H · F(x)× ψ(x,H).

But if A := a supd(x,K)≤ε |F(x)|, then

H · F(x)× ψ(x,H)
|H |3 ≤ a|F(x)| ≤ A. 2

Givenp ∈ R3 andε > 0, letE(p) andN(p) be defined by

E(p) = E(p, ε) = {q ∈ R3 | (q − p) · F(p) = 0, |q − p| < ε},
N(p) = N(p, ε) =

⋃
t∈[−ε,ε]

ϕt(E(p)).

For s, t ∈ R andq ∈ E(p), write ps = ϕs(p), qt = ϕt(q). Givenq ∈ E(p), let
τ : [−ε, ε] → R be such thatqτ(s) ∈ E(ps,1), i.e.(qτ(s) − ps) · F(ps) = 0.
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LEMMA 2.2. For any compact subsetK ⊂ R3, there existε > 0 andM > 0, such that if
p ∈ K, q ∈ E(p, ε) and|s|, |t| < ε, then

J (ps, qt ) = QsBsQs + (t − τ (s))Qs(Fs × AsFs)
|Hst |3 + ψ(p, q, s, t)

where|ψ(p, q, s, t)| ≤ M, Fs = F(ps), As = DF(ps), Hst = qt − ps ,Qs = qτ(s) − ps
andBs is the matrix defined byBsH = Fs × (AsH ) for all H ∈ R3.

Proof. We haveqτ(s) = ps +Qs , and

F(qτ(s)) = F(ps)+DF(ps)Qs
+G1(p, q, s)|Qs |2, |G1(p, q, s)| < a1 for somea1 > 0,

qt − ps = Qs + (qt − qτ(s))
= Qs + (t − τ (s))F (qτ(s))+G2|t − τ (s)|2, |G2| < a2,

Hst = Qs + (t − τ (s))F (ps)+G3(|t − τ (s)|2+ |t − τ (s)||Qs |), |G3| < a3.

Observe that, sinceQs ⊥ F(ps), writing1t := t − τ (s),
|Hst |2 ≥ |Qst |2+ |1t|2|Fs |2− a2

3(|1t|2+ |1t||Qs |)2
≥ |Qs |2+ 1

2|1t|2|Fs |2.
So

|Hst |2 ≥ 1
2[|Qs |2+ |1t|2|Fs |2], (1)

if ε > 0 is small enough. Therefore|Qs | ≤ |Hst | and |1t| ≤ α|Hst | for some
α = α(K, ε) > 0. Now

HstBsHst = (Qs +1tFs + a3(|1t|2+ |1t||Qs |)) · (Fs × AsHst)

= QsFs × AsHst + a3O(|Hst |2)O(|Hst |)
= QsFs × As (Qs + (1t)Fs +O(|Hst |2))+O(|Hst |3)
= QsBsQs +Qs(Fs × AsFs)1t +O(|Hst |3).

By Lemma 2.1, we have

J (ps, qt ) = HstBsHst
|Hst |3 + φ(ps, qt ),

with |φ(ps, s, t)| < A. This completes the proof of the lemma. 2

LEMMA 2.3. For any compact subsetK ⊂ R3, there existε > 0 anda, b > 0, such that
if q ∈ E(p, ε) and|s|, |t| < ε, then

a|Q0| ≤ |Qs | ≤ b|Q0|
whereQs is defined as in Lemma 2.2.
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Proof. Defineτ : ∪p∈K({p} ×E(p, ε)× [−ε, ε])→ R by τ (p, q, s) such thatqτ(p,q,s) ∈
E(ps,1). We first show thatτ is differentiable onq. By the definition ofτ , we have

G(p, q, τ (p, q, s)) := F(ps) · (ϕ(q, τ (p, q, s))− ps) = 0.

Since
∂G

∂τ
= F(ps) · ∂G

∂τ

∣∣∣∣
(q,τ )

= F(ps) · F(qτ ) > 0,

then by the implicit function theorem we have thatτ is differentiable with respect toq and

∂τ

∂q
=
−F(ps) · ∂ϕ∂q

∣∣∣
(q,τ )

F (ps) · F(qτ ) .

Moreover, there existsC = C(K, ε) > 0 such that|∂τ/∂q| < C. We have

Qs = qτ(s) − ps = (qτ(s) − ps)+ (qs − ps).
Sinceqτ(s) − qs = (τ (s)− s) F (qσ ) for someσ betweens andτ (s), we have

|qτ(s) − qs | ≤ C |q − p|max
q
|F(q)| ≤ B|Q0|,

for B := Cmaxq |F(q)|. By Gronwall’s inequality

|qs − ps | ≤ D|q − p| = D|Q0|,
for some uniformD = D(K, ε). Therefore ifb = C +D, we have

|Qs | ≤ (C +D)|Q0| = b|Q0|.
The other inequality is obtained from this one by changing the roles ofp andps and

reversing the time (observe thatϕ(qs, τ (ps, qs,−s) = q). Therefore

Q0 ≤ bQs.
Now takea = 1/b. 2

LEMMA 2.4. For any compact subsetK ⊂ R3 there existε > 0 andM > 0, such that if
p ∈ K andq ∈ E(p, ε), then∫ ε

−ε

∫ ε

−ε
J (ps, qt ) ds dt < Mε.

Proof. We first prove the case whenp 6= q. By Lemma 2.2, we have

J (ps, qt ) = QsBsQs
|Hst |3 +

1tQs(Fs × AsFs)
|Hst |3 + ψ(p, q, s, t),

with ψ(p, q, s, t) ≤ M1. We bound the integral of each term.
From Lemma 2.3 and equation (1), we have

a|Q0| ≤ |Qs | ≤ b|Q0|,
|Hst |2 ≥ 1

2(|Qs |2+ |1t|2|Fs |2) ≥ 1
2(|Qs |2+ |1t|2D),
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whereD = min|q−p|<ε |F(q)| > 0. Writing α = 1
4a andβ = 1

2

√
D, we have

|Hst |2 ≥ 1
2(a

2|Q0|2+ |1t|2D),
|Hst | ≥ (α2|Q0|2+ β2|1t|2)1/2.

SinceBsH = F(ps)× (DF(ps) ·H), letB = maxps ‖Bs‖, then

|QsBsQs |
|Hst |3 ≤ B|Qs |

2

|Hst |3 ≤
Bb2|Q0|2

(α2|Q0|2+ β2|1t|2)3/2 =
Bb2|Q0|2

β((α2/β2)|Q0|2+ |1t|2)3/2 ·
Observe that, since1t = t − τ (s), then∫ ε

−ε

∫ ε

−ε
|J | dt ds =

∫ ε

−ε

∫ ε−τ (s)

−ε−τ (s)
|J | d(1t) ds.

Since ∫
dx

r3
= 1

a2

x

r
, r =

√
x2+ a2,

we have∫ ε

−ε

∫ ε

−ε
QsBsQs
|Hst |3 dt ds ≤

∫ ε

−ε
2
∫ 2ε

0

Bb2|Q0|2
β
√
(α2/β2)|Q0|2+ |1t|2

d(1t) ds

≤ 2ε2Bb2|Q0|2
(α2/β)|Q0|2

1t√
(α2/β2)|Q0|2+ |1t|2

∣∣∣∣∣
2ε

0

≤ 4εBb2β

α2 (1+ 1) = 8εBb2β

α2 = εM2.

Now we bound the integral of the second term. Let

A := max
ps
|F(ps)× (DF(ps) · F(ps))|.

Since ∫
x

r3
dx = −1

r
, r =

√
x2+ a2,

we have ∫ ε

−ε

∫ ε

−ε
(t − τ (s))Qs(Fs × AsFs)

|Hst |3 dt ds

≤
∫ ε

−ε

∫ ε

−ε
|1t|b|Q0|A

(
√
α2|Q0|2+ β2|1t|2)3 dt ds

≤
∫ ε

−ε
2
∫ 2ε

0

b|Q0|A|1t|
(β
√
(α2/β2)|Q0|2+ |1t|2)3

d(1t) ds

≤ 4εbA

β
|Q0|

∫ 2ε

0

|1t| d(1t)
(
√
(α2/β2)|Q0|2+ |1t|2)3

≤ 4εbA

β3
|Q0| 1√

(α2/β2)|Q0|2+ |1t|2

∣∣∣∣∣
0

2ε

≤ 4εbA

β3

|Q0|
(α/β)|Q0| ≤

4bA

αβ2
ε = εM3.
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From Lemma 2.2,|ψ(p, q, s, t)| ≤ M1, therefore, ifε < 1,∫ ε

−ε

∫ ε

−ε
|J (ps, qt )| ds dt ≤ εM2 + εM3+ 4ε2M1 ≤ εM4,

whereM4 := M1+M2 +M3.
Now suppose thatp = q. We have

F(qs) = F(q)+ sAF(q)+ s2K(q, s)

qs = q + sF (q)+ 1
2s

2AF(q)+ s3G(q, s)

whereA = DF(q),K(q, s), andG(q, s) are bounded. Then

|qs − q|3J (q, qs) = F(q)× (F (q)+ sAF(q)+ s2K) · (sF (q)+ 1
2s

2AF(q)+ s3G)

= (sF × AF + s2F ×K) · (sF + 1
2s

2AF + s3G)

= s4F × AF ·G+ 1
2s

4F ×K · AF + s5F ×K ·G
|qs − q|3|J (q, qs)| ≤ s4D,

for someD = D(K, ε) > 0, for all q ∈ K, |s| < ε. Furthermore,

|qs − q| = |sF (q)+ 1
2s

2AF(q)+ s3G| ≥ as,
for a = 1

2 minq∈K |F(q)| if ε = ε(K) > 0 is small enough. Therefore

|J (q, qs)| ≤ s4D

a3s3
≤ εD

a3
,

and ∫ ε

−ε

∫ ε

−ε
J (ps, pt ) ds dt ≤ ε

3D

a3
≤ εM5 for all p ∈ K,

forM5 := D/a3. 2

COROLLARY 2.5. For any compact subsetK ⊂ R3 there existδ, ε > 0 andM > 0 such
that if p, q are inK, ∫ δ

−δ

∫ δ

−δ
J (ps, qt ) ds dt < Mε.

Proof. Takeε as in Lemma 2.4. Since the vector field never vanishes, thenN(p, δ) is a
neighbourhood ofp. Hence it contains a ball of radiusr. Moreover, thisr may be taken
independent of the pointp. Given any two pointsp andq, if δ is small enough then either
there existss0, t0 with |s0|, |t0| < 2δ such thatqs0 is in E(pt0) and in this case∫ δ

−δ

∫ δ

−δ
J (ps, qt ) ds dt <

∫ ε

−ε

∫ ε

−ε
J (ps, qt ) ds dt < Mε,

or the distance betweenqs andpt with |s0| |t0| < δ is bounded byr and hence the integral
is bounded. 2
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Proof of Theorem 1.1.SinceJ is bounded outside of a neighbourhood of the diagonal
1 := {(p, p) | p ∈ S3}, it is enough to prove thatJ is in L1(µ × ν) on a neighbourhood
of 1. The compact set1may be covered by a finite number of open sets of the form

V(p, δ) := {(q1
s , q

2
t ) | (q1, q2) ∈ E(p, δ)× E(p, δ); |s|, |t| < δ},

with p ∈ S3 andδ > 0 from Corollary 2.5. So, it is enough to prove that the restriction
J |V(p,δ) is in L1(µ × ν). Let µ̂, ν̂ be the transversal measures onE(p, ε) defined by
µ̂(A) := µ(∪|t |<εφt (A)), ν̂(A) := ν(∪|t |<εφt (A)). Then by Lemma 2.4 we have∫

V (q,δ)

|J (x, y)| dµ(x) dν(y)=
∫
E(q,δ)

∫
E(q,δ)

(∫ δ

−δ

∫ δ

−δ
|J (ps, yt )|

)
dµ̂(p) dν̂(y)

≤
∫
E(q,δ)

∫
E(q,δ)

Mδ dµ̂(p) dν̂(y) ≤ Mδ. 2

Proof of Theorem 1.2.Item (a) is a direct consequence of Birkhoff’s theorem and
Theorem 1.1. Item (b) is a consequence of the existence of a good set of short curves
because∣∣∣∣ ∫ T1+1

0

∫ T2+1

0
−
∫ T1

0

∫ T2

0

∣∣∣∣ ≤ ∣∣∣∣ ∫ T1

0

∫ T2+1

T2

∣∣∣∣+ ∣∣∣∣ ∫ T1+1

T1

∫ T2

0

∣∣∣∣+ ∣∣∣∣ ∫ 1

0

∫ 1

0

∣∣∣∣
≤ kT1+ kT2+ k

and hence

lim
T1,T2→∞

1

T1T2

∫ T1+1

0

∫ T2+1

0
= lim
T1,T2→∞

1

T1T2

∫ T1

0

∫ T2

0
. 2

3. Existence of a good set of short curves
The following lemmas prove the existence of a good set of short curves if they are
polygonal curves made of small straight line segments which are always transversal to
the direction of the flow.

LEMMA 3.1. Let L(t) = a + tb be a small line segment inR3 and letγ (s) be a small
differentiable curve such that:

(i) for anys, t ∈ [−ε, ε], the vectorsL′(t) = b, γ ′(s) andγ (s)−L(t) are not coplanar;
(ii) the vectors(γ (s)− L(t))/‖γ (s)− L(t)‖ are always in a hemisphere ofS2.

Then the Gauss (absolute) integral∫ ε

−ε

∫ ε

−ε
|I (s, t)| ds dt < 1

2 vol(S2),

where

I (s, t) := (γ ′(s)× L′(t)) · (γ (s)− L(t))
|γ (s)− L(t)| ·
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Proof. The integralI (s, t) is the Jacobian of the functionT (s, t) = (γ (s)−L(t))/|γ (s)−
L(t)|· The condition (i) implies thatI (s, t) always has the same sign. We will see that
T : [−ε, ε] × [−ε, ε] → S2 is injective and hence∫ ε

−ε

∫ ε

−ε
|I (s, t)| ds dt = area(0([−ε, ε] × [−ε, ε])) < 1

2 vol(S2).

We show thatT is injective. By the transversality condition (i), ifs1 6= s2, then
the planes generated by (γ (s1) andL) and (γ (s2) andL) are different. Therefore if
γ (s1)−L(t1) is parallel toγ (s2)−L(t2) thens1 = s2. If γ (ŝ)−L(t1) = λ(γ (ŝ)−L(t2))
thenL(t1) = λL(t2) andt1 = t2. 2

LEMMA 3.2. LetF be a Lipschitz nonsingular vectorfield onR3 and letA1, A2, A3 > 0
be such that

|F(x)− F(y)| ≤ A1|x − y|, A2 < |F(x)| < A3 for all x, y ∈ R3.

Then there existsε = ε(A1, A2, A3) > 0 such that ifL(t) = a + tb, ‖b‖ = 1, |t| < 1 is a
small line segment andγ (s), |s| < ε is a small orbit segment ofF such that:
(i) the angleŝ (γ ′(s),b) > π/3,^(γ ′(s),−b) > π/3 for all |s| < ε;
(ii) the vectors Ł′(0) = b, γ ′(0) andγ (0)− L(0) are not coplanar.

Then the Gauss (absolute) integral∫ 1

−1

∫ ε

−ε
|I (s, t)| ds dt < 2 vol(S2).

Proof. It is enough to show that
∫ 1
−1

∫ ε
0 |I | < vol(S2). Letg(s) := (γ ′(s)×L′(t)) ·(γ (s)−

L(t)) = (γ ′(s)× b) · (γ (s)− a), and let

s0 := min{s > 0 | g(s) = 0}
t0 := max{s > s0 | g(s) = 0 for all s0 ≤ s ≤ t0}

sn+1 := min{s > tn | g(s) = 0}
tn+1 := max{s > sn+1 | g(s) = 0 for all sn+1 ≤ s ≤ tn+1}.

By Lemma 3.1, ∫ 1

−1

∫ s0

0
|I (s, t)| ds dt < 1

2 vol(S2).

Let N := (b×γ ′(0))/|b×γ ′(0)|, c := N×b and consider the orthonormal basis{b,N, c}
of R3. Givenu1, u2 ∈ T := {w ∈ S3 | ^(w,b) > π/3,^(w,−b) > π/3}, consider their
cylindrical coordinates

ui = λib+ ri cosθic+ ri sinθiN someλi, ri , θi .

LetA4 > 0 be such that ifui ∈ T, |ui | > A2, i = 1,2, then

|u1− u2| > A4|θ1− θ2|. (2)
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Let θn, ϕn be defined by

γ ′(sn) = λnb+ rn cosθnc+ rn sinθnN,

γ ′(tn) = `nb+ kn cosϕnc+ kn sinϕnN.

Observe that sinceγ (sn) − L(t) is coplanar withb andγ ′(sn) thenγ (sn) − L(t) =
µn(t)b+ ρn(t) cosθnc+ ρn(t)µ sinθnN with the sameθn. Similarly γ (tn)− L(t) has the
same angleϕn asγ ′(tn).

For |t| < 1, tn < s < sn+1, the pointG(s, t) := (γ (s) − L(t))/|γ (s) − L(t)| remains
on the sector

Hn := {v ∈ S2 | v = λb+ r cosθc+ r sinθN, r > 0, λ ∈ R, θ ∈ [ϕn, θn+1]}.
Moreover, by the argument of Lemma 3.1, sinceI (s, t) 6= 0, for tn < s < sn+1, the map
G|[tn,sn+1]×[−1,1] is injective. Hence∫ 1

−1

∫ sn+1

tn

|I | < Area of sectorHn = 1

2π
vol(S2)|θn+1− ϕn|.

Also
∫ 1
−1

∫ tn
sn
|I | = 0, becauseI (s, t) = 0 onsn ≤ s ≤ tn. By (2) we have

A4|θn+1− ϕn| < |γ ′(sn+1)− γ ′(tn)| = |F(γ (sn+1))− F(γ (tn))|
< A1|γ (sn+1)− γ (tn)| < A1A3|sn+1 − tn|,

|θn+1− ϕn| < A5|sn+1 − tn|,
whereA5 := A1A3/A4 > 0. Therefore,∫ 1

−1

∫ ε

0
|I (s, t)| ds dt =

∫ 1

−1

∫ s0

0
|I | +

∞∑
n=0

∫ 1

−1

∫ sn+1

tn

|I |

≤ 1

2
vol(S2)+

∞∑
n=0

1

2π
vol(S2)A5|sn+1− tn|

≤ 1

2
vol(S2)+ 1

2π
vol(S2)A5ε

≤ vol(S2),

if we takeε < π/A5. 2
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