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Abstract We prove the existence of the average linking number, also called the Hopf
invariant, for any invariant measure under a differentiable flo§dwithout singularities,
which has no periodic orbit of positive measure.

1. Introduction

Let y1, y2 be two disjoint oriented knots in the three-dimensional spiSéreThe linking
numberf(y1, y2) is defined as the algebraic intersection numbep;ofvith an orientable
surfaceN transversal tg/1, with oriented boundary,. For a better understanding of our
results we need the two following interpretations of the linking number §ge [

(1) forany regular planar projection it is the algebraic crossing numbger ofery»;

(2) itis also the degree of the map
G:T?— S
y1(t1) — y2(12)
(t17 tz) H —’
ly1(t1) — ya(12)]

whereT? is the two-dimensional torus arsd is the two-dimensional sphere.
Hence

L(y1, y2) = det(DG)ds dt

vol($2) Jsi, 5t

_ 1 /’1/’2 (1 X vp)(y1— v2)
4r Jo Jo lyr—y2l®

wherey; : [0, ;] — S3 = R3U {oo} is a parametrization of;; i = 1, 2. This formula is
known as the Gauss formula.
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Given a flowg; on $° generated by a vector fiell, and two closed orbitgy, y», we
define the average linking numbenafandy> as(1/ T172)¢(y1, y2), whereT; is the period
of y;. In order to define the average linking number for general orbits we need a convenient
set of short curves.

Define a good set of short curves as a system of piecewise differentiable paths joining
pointsx, y € 3, depending in a measurable way.oandy such that the Gauss integrals
of every pair of non-intersecting pairs of the system, and the Gauss integrals of every pair
of non-intersectingpaths of the system, segments of orbjts), 0 < r < 1}, are bounded
independently of the paths by a constarfsee [L]). In 83 we will prove the existence of
such a set.

For anyx € $%andT < R let £7 denote the knot formed by the orbit frarto o7 (x)
and a pathy,, (r) x, in @ chosen system of short curves, joining(x) to x. For any two
points in different orbity, ¢ and timesTy, 7> define, when possible, their average linking
number as

1
L(x,y):= lim —2@7,y7).
x, ) Ty, To—oo T1T> (*r. J1)

The main purpose of this paper is to decide when this limit exists and does not depend on
the set of short curves. Our main theorem is as follows.

THEOREM1.1. Let i, v be two invariant measures of®. Then the function/
$3 x $3 — R defined by

F F . —
I(p.q) = (p) le (_613”3(19 q)

isin L(u x v).
From Birkhoff’s ergodic theorem we obtain the following.

THEOREM1.2.
(a) For (u x v)-almost every pair of points the limit

A i 1 i T / x /’ .
Lx,y) = lim — / (Y1 X ¥, 71 _ ¥2)
T1,To—o00 T1 T2 0 0 |V1 - V2|

exists.

(b) If there is no periodic orbit with positivge and v measures this limit is for
(u x v)-almost every pair the same @éx, y), in particular the asymptotic linking
number does not depend on the choice of the set of short curves. If the measures
w and v are ergodic, the asymptotic linking(x, y) is given by the integral
[[ I (p.q)du(p)dv(q).

The same assertion of this theorem was proven by Arnold]ifof smooth measures
and in P] for Gibbs measures. The proof it][relies on the fact that the singularity of the
formula has order two which is less than the codimension of the diagonal, the singular set
of J. The proof in P] relies on the observation that the singularity of the Gauss formula
has actually order one and that the Hausdorff dimension of a Gibbs measure is greater than
one.
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The idea of our proof is that the singularity of the Gauss formula disappears when we
integrate along the orbits in a small flow box. This is because the integral of the Gauss
formula is the integral of the Jacobian G@f therefore in small time intervals the area of
the image ofG should be contained in one half of the sphere. However, since we actually
want to bound the integral of the absolute value of the Jacobiéh ivfivas easier to carry
on an analytical proof, rather than to worry about of regions of injectivity @ind the sign
of its Jacobian.

As an application, in§] Verjovsky and Vila, following the same philosophy, extended
other topological invariants, such as Witten’s invariant for links, to an average value for
an invariant smooth measure of a flow. In their paper, the only obstruction to defining the
average Witten’s invariant for singular invariant measures is the existence of the average
linking number for such a measure, which is proven here in Theorem 1.1. We also quote
the work of Freedman and Hé][ where they relate the asymptotic crossing number (the
integral of|J (x, y)|) with the energy of a vector field with a smooth invariant measure.

Finally let us mention that Gambaudo and Gigjdjave proved that the average linking
number is a topological invariant for suspensions of diffeomorphisms of the two discs.

2. Proof of the theorems
LEMMA 2.1. For any compact subsé&f c R3, there exist > 0 andA > 0, such that if
peK,|x—p|<e |y— p|l <e, then
HTBH
J(x,y) = THE +o(x, y),

where|¢(x, y)| < A is boundedH = y — x andB is the matrix defined b - H =
F(p) x (DF(p) - H) forall H € R3.
Proof. We have

Fx)x F(y) H

|H | |H|?

wherey = x + H. SinceF(y) = F(x)+ DF (x)- H + ¥ (x, H), with |y (x, H)| < a|H|?
uniformlyonallp € K, |x — p| < ¢, then

J(x,y) =

Jx.)IH®=H-[F(x) x (F(x) + DF(x) - H + ¥ (x, H))]
=H-FxDF(x)-H+H-Fx)x y(x, H).
Butif A := asup k)<, |F )| then

H-F(x)x¥((x, H)
|H |3

<al|lF(x)| < A. m]

Givenp € R3 ande > 0, letE(p) andN(p) be defined by
E(p) =E(p.e)={geR®|(g—p) - F(p)=0,lg — pl| <e},
N(p) =Np.e)= | @ (Ep)).

te[—e,e]

Fors,t € R andg € E(p), write p; = ¢s(p), ¢ = ¢:(q). Giveng € E(p), let
7 : [—¢,e] — R be such thag. () € E(ps, 1), 1.€.(gc(s) — ps) - F(ps) =0.
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LEMMA 2.2. For any compact subsé& c RS, there exist > 0 andM > 0, such that if
p e K,qeE(p, ¢e)andls|, |t] < ¢, then

0sBs Qs + (t — 1(5) Qs (Fs x A Fy)
| Hyy |3

J(PSaCIt): ‘f“ﬂ(l”q’svt)

Whel’6|1/f(p, q,s, )| <M, Fy = F(ps), As = DF(ps), Hyy = q; — ps, Qs = qr(s) — DPs
andB, is the matrix defined b, H = F,; x (A;H) forall H € R3.

Proof. We haveg, ) = ps + Q,, and
F(q(s)) = F(ps) + DF(ps) Qs
+G1(p.q.9)|Qs1%. 1G1(p, q.5)| < a1 for someas > 0,
qr — ps = Qs + (gr — Gz (s))
= Qs + (t = T(5))F(gr(s)) + Galt — T()%, |G| < a2,
Hy = Qs+ (t — T()F(py) + Ga(lt — TP + |t —t(D)I1Qs]).  |G3| < as.

Observe that, sinc@; L F(py), writing At :=t — 1(s),
|Hyt|? > |Quil? + |ALP|Fy | — a5 (1A% + | At]| Qs])
> Q5|7 + 31 At Fy 2.
So
|Hye|? = 3110517 + | At Fy 2], 1)

if ¢ > 0 is small enough. Thereforg,| < |Hy| and |Af|] < «|Hy| for some
o =a(K,e) > 0. Now
HyBsHy = (Qg + AtFy + az(|At)? + |At]| Qg ) - (Fs x AgHyy)
= Qs Fs x AgHy + azO(|Hy|*)O(| Hyy )
= Qs Fs x Ag(Qs + (AN Fy + O(|Hy 1)) + O(| Hy:[?)
= QyBs Qs + Q4 (Fy x AgFy)At + O( Hy 3.

By Lemma 2.1, we have

HS[BSHST

o2 + o (ps. 1),
st

J(ps,qr) =

with |¢ (ps, s, 1)| < A. This completes the proof of the lemma. O

LEMMA 2.3. For any compact subs& c R3, there exist > 0anda, b > 0, such that
if g € E(p,€) and|s|, |f]| < ¢, then

a|Qol = |Qs| = b[Qol

whereQ; is defined as in Lemma 2.2.
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Proof. Definet : Upeg ({p} x E(p, €) x [—€,€]) = Rbyt(p, g, s) suchthayy;(, 4.5 €
E(ps, 1). We first show that is differentiable ory. By the definition ofr, we have

G(p.q,t(p,q,5)) := F(ps) - (p(q,t(p,q,5)) — ps) =0.

Since
G 0G
= F(ps) T

e e = F(ps) - F(q:) > 0,

(q.7)
then by the implicit function theorem we have thds differentiable with respect i@ and

_ . de
9t B F(ps) g @

dq  F(py) Flqv)
Moreover, there exist§ = C(K, €) > 0 such thatot/dq| < C. We have

O = dr(s) — Ps = (Qt(s) — ps) + (gs — ps).

Sinceq. sy — qs = (t(s) —s) F(gs) for somes betweery andz (s), we have
Igz(s) —¢qs| < C lg — pl manIF(q)l < B|Qol,
for B := C max, | F(¢g)|. By Gronwall’'s inequality

lgs — ps| < Dlg — p| = D|Qol,

for some uniformD = D(K, ¢). Therefore ifb = C + D, we have

|Qs] = (C + D)|Qol = b[Qol.

The other inequality is obtained from this one by changing the rolgs adfid p, and
reversing the time (observe thaty,, t (ps, g5, —s) = q). Therefore

QO =< st
Now takea = 1/b. ]

LEMMA 2.4. For any compact subsé&f c RS there exist > 0andM > 0, such that if
p € K andqg € E(p, ¢), then

&€ &
/ / J(ps,qr)dsdt < Me.
—& J =€

Proof. We first prove the case when# ¢. By Lemma 2.2, we have

0sBs Qs AtQ(Fy x AgFy)
| Hse |3 | Hse |3
with ¢ (p, q, s, t) < My. We bound the integral of each term.
From Lemma 2.3 and equation (1), we have

alQol < 10s! < bl Qol,
|Hy? > 110512 + |A112F %) > (10412 + |A112D),

J(pqul): +W(p,6],5,1),
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whereD = miny,_p <, |F(g)| > 0. Writing « = 3a andg = 1+/D, we have
|Hy(? = 5(a?|Qol® + |At°D),
|Hy| = (@] Qol® + B2l A113)Y2.
SinceByH = F(ps) x (DF(ps) - H), let B = max,, ||Bs/||, then

05 B: Q5| _ BIQsI? _ Bb?| Qol? _ Bb?| Qol? .
[Hel® 7 [Hal® ™ (@Qol* + B2At2)32 — B((@?/B?)|Qol? + |A1]2)%2
Observe that, sincAr =t — 7(s), then

& pe e pe—1(s)
/ / |J|dtds:/ / |J| d(At) ds.
—&J—¢ —& J—e—1(s)

d 1
/—)362—{, r=vx?+a?
p

a’r

Since

we have
& & & 2¢ 2 2
/ QsBsgs dlde/ 2/ Bb*| Qo d(At)ds
—eJ-e |Hyl — Jo BV(@?/BD)|Qol? + |At]2
- 2¢2Bb?| Qo)? At
T @/B)1Qol* \/(a?/B?)] Q0 + |A12 ],

4¢ Bb? 8¢ Bb?
<P 1y =EP o,
(07 o

2¢

Now we bound the integral of the second term. Let

A= rr;’ax|F(ps) X (DF(ps) - F(ps))I.

Since

we have

dtds

/s ¢ (t —1(5) Qs (Fs x AgFy)
—eJ—¢ |Hst|3

</8 / |A7]b] Qol A i ds
~Jee Joe (Va2 Qol? + B2|AL[2)3

& 2¢
5/ 2/ b|QolA|At] d(ADds
—e Jo  (BV(@?/B?)|Qol? + |A1]2)3
4sbA|Q l/k |Af| d(Af)
0
B 0 (V(@2/BD)|Qol? + |AL[2)3
4eb A 1 0
< —5 100 ———= >
B V(©@2/B2)[ 002 + |AL[],,
< 48bA& < 4b_A8 :8M3.

B2 (@/B)Qol T ap?

=<
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From Lemma 2.2)y(p, g, s, t)| < My, therefore, ife < 1,
& &
/ / | (ps, qo)|ds dt < eMp + Mz + 4e> M1 < £ My,
—& J—=¢

whereMy := My + M> + Ms.
Now suppose thgt = g. We have

F(gs) = F(q) + sAF(q) + s2K(q, 5)
4s = q +sF(q) + 3s°AF(q) +53G(q, 5)

whereA = DF(q), K(q, s), andG(q, s) are bounded. Then

lgs — g7 (q. g5) = F(q) x (F(q) + SAF(q) + s°K) - (sF(q) + 3s?AF(q) + 5°G)
=(F x AF + s°F x K) - (sF + %SZAF—}—ssG)
=s"FxAF -G+ 35'F x K-AF +s°F x K -G
lgs — q1°17(q. q5)| <s*D,
forsomeD = D(K,¢) > 0, forallg € K, |s| < . Furthermore,
lgs — ql = |sF(q) + 35°AF(q) + s°G| > as,

fora = % mingex |F(q)| if & = e(K) > 0is small enough. Therefore

s*D eD
[J(g,q5)| < 233 = 3
and
£ re &3D
/ / J(ps, p)dsdt < — <eMs forall p e K,
—& J—¢ a
for Ms := D/a®. O

COROLLARY 2.5. For any compact subsé& c R there exis#, ¢ > 0andM > 0 such
thatif p, g arein K,
) $
/ / J(ps,qr)dsdt < Me.
—8J-6

Proof. Takee as in Lemma 2.4. Since the vector field never vanishes, ignsé) is a
neighbourhood op. Hence it contains a ball of radius Moreover, this- may be taken
independent of the point. Given any two pointg andg, if § is small enough then either
there existsyg, 1o with |sol, |fo| < 28 such thay,, is in E(p,,) and in this case

§ § e e
/ / J(ps,qr)dsdt < / / J(ps,qr)dsdt < Me,
—§ J—§ —& J—¢

or the distance between andp; with |sg| |f0] < d is bounded by and hence the integral
is bounded. m]
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Proof of Theorem 1.1Since J is bounded outside of a neighbourhood of the diagonal
A :={(p, p) | p € $%}, itis enough to prove thak is in L1( x v) on a neighbourhood
of A. The compact seh may be covered by a finite number of open sets of the form

V(p.8) :=1{(q;-47) | (q*. q°) € E(p.8) x E(p.8): s, |t] < 8},

with p € $% ands > 0 from Corollary 2.5. So, it is enough to prove that the restriction
Jlv(p,s) is in L(u x v). Let i, D be the transversal measures Bp, ¢) defined by
A(A) == u(Uj<s1 (A)), D(A) := v(Ujs|<.¢: (A)). Then by Lemma 2.4 we have

) )
/ IJ(x,y)Idu(X)dv(y)zf / </ / IJ(ps,yz)I)dﬂ(p)dﬁ(y)
V(g.8) E(q,8) JE(@q.8) \J—5J-s

5/ / M8 dji(p) di(y) < M. 0
E@q.8) JE@.®)

Proof of Theorem 1.2ltem (a) is a direct consequence of Birkhoff's theorem and
Theorem 1.1. Item (b) is a consequence of the existence of a good set of short curves

because
T;+1 1+l pT2
el 0

T>+1 1 pT» Ty T>+1
T

Ele—l-sz—i—k

T1+1 To+1 T T2
lim = lim / m]
Ty, Tr— 00 T]_Tz Ty, Tr— 00 T1T2

3. Existence of a good set of short curves

The following lemmas prove the existence of a good set of short curves if they are
polygonal curves made of small straight line segments which are always transversal to
the direction of the flow.

and hence

LEMMA 3.1. Let L(t) = a + tb be a small line segment iR® and lety (s) be a small
differentiable curve such that:
(i) foranys,t € [—e, €], the vectord.'(t) = b, y'(s) andy (s) — L(¢) are not coplanar;
(i) the vectory(s) — L(r))/|ly(s) — L(¢)| are always in a hemisphere §f.

Then the Gauss (absolute) integral

& &
/ / (s, )| ds dt < 3vol($?),
—& —&

(y'(9) x L'(®)) - (y(s) — L(1))
ly(s) = L]

where

I(s,1) :=
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Proof. The integrall (s, ) is the Jacobian of the functidi(s, 1) = (y (s) — L(2))/|y (s) —
L(#)]- The condition (i) implies thaf (s, t) always has the same sign. We will see that
T :[—¢, €] x [—e, €] — S?isinjective and hence

//|I(s,t)|dsdt=area(F([—8,8]x[—8,8]))<%V0|(S2).

We show thatT is injective. By the transversality condition (i), i # s2, then
the planes generated by (1) and L) and ¢/ (s2) and L) are different. Therefore if
y(s1) — L(r1) is parallel toy (s2) — L(z2) thensy = s2. If y(§) — L(t1) = A(y (§) — L(#2))
thenL (1) = AL(2) andfy = 1o. O

LEMMA 3.2. Let F be a Lipschitz nonsingular vectorfield & and letAq, Ap, A3 > 0
be such that

|[F(x) — F(y)| < A1lx —y|, A2 <|F(x)| < A3z forallx,y e RS,

Then there exists = ¢(A1, A2, A3) > OsuchthatifL(r) =a +1tb, b =1,|f| < lisa
small line segment and(s), |s| < ¢ is a small orbit segment df such that:
(i) theanglesa(y’(s),b) > /3, <(y'(s), —b) > w/3for all |s| < &;
(i) the vectors £0) = b, y’'(0) andy (0) — L(0) are not coplanar.
Then the Gauss (absolute) integral

1 &
/ / |1 (s, 1)|ds dt < 2vol(S?).
—-1J—¢

Proof. Itis enough to show thajf_l1 Jo 11 < vol(5?). Letg(s) == (y'(s) x L'(t))- (¥ (s) —
L(1)) = (¥'(s) x b) - (y(s) — @), and let

s :=min{s > 0] g(s) = 0}
to:=maxs > so | g(s) =0forallsg <s < 1o}
Spt1 2= min{s > 1, | g(s) = 0}
a1 :=MaXs > su11 | g(s) = O0foralls,11 <s < t,41}.

By Lemma 3.1,
1 prso
/ / [I(s, )| ds dt < $vol($?).
-1J0

LetN := (b x y’(0))/|b x y’(0)], c := N x b and consider the orthonormal badis N, c}
of R3. Givenuy, us € T := {w € §% | <(w, b) > 7/3, <(w, —b) > 7/3}, consider their
cylindrical coordinates

u; = Aib 4+ r;cosg;c+ r; sind;N somei;, r;, 6;.
Let A4 > O besuchthatifi; € T, |u;| > A2,i =1, 2, then

lu1 — uz| > Asl01 — 62 (2
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Letd,, ¢, be defined by

¥ (sn) = Anb + r, cOSH,C+ r, SING,N,
V/(tn) = Enb + kn CospnC + kn Sin@nN-

Observe that since (s,) — L(¢) is coplanar withb andy’(s,,) theny(s,) — L(t) =
Un ()b + p, (1) cOSH,C+ p, (1) SinG,N with the same,,. Similarly y (¢,) — L(¢) has the
same angle, asy’(,).

For|t| < 1,1, < s < spt1, the pointG (s, t) := (y(s) — L(t))/|y(s) — L(¢t)| remains
on the sector

H,:={ve S| v=xb+rcosdc+rsindN,r > 0,1 € R, 6 € [g, Onsi1l}.
Moreover, by the argument of Lemma 3.1, siee, ) # 0, forz, < s < s,4+1, the map
Glit,.s,11x[-1,1] IS injective. Hence

1 Sn+1 1 5
/ / |I| < Area of sectoH, = — voI(59)|0,+1 — @ul.
—1Jt, 27'[

Also fE1 fs’ |[I| =0, becausé(s,t) =0ons, <s < t,. By (2) we have

AglOni1 — @ul < 1Y (p11) — ¥ ()| = |F(y (5041)) — F(y (1))
< A1y (su+1) — v (tn)| < A1A3|Sp41 — tnl,
10n+1 — @nl < As|spy1 — tal,

whereAs := A1A3/A4 > 0. Therefore,

1 pre 1 pso 0 1 pspp
/ / |I(s,t)|dsdt=// |1|+Z/ / 1]
-1Jo -1Jo —J-1Ju,

5 Vol(s?) + 3 ——vol(5%) Aslsns1 — 1l
n=0

IA

IA

1 2 1 2
= vol(§°) + — vol(§9) Ase
2 2

< vol(s?),
if we takee < 7/As. a
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