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Generic dynamics of geodesic flows
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Abstract. We present some perturbation methods which help to describe the generic
dynamical behaviour of geodesic flows.
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The difficulties in studying generic properties of geodesic flows with respect to
other classes of dynamical systems are twofold. The obvious difficulty of making
perturbations for the geodesic equations and the fact that perturbations of geodesic
flows are never local.

Indeed, let (M, g) be a compact riemannian manifold and write
g =

∑
ij gij(x) dxi ⊗ dxj . The phase space of the geodesic flow is the unit tangent

bundle SM . A perturbation of the coefficients of the riemannian metric gij(x)
with support A ⊂ M changes the geodesic vector field along the whole interior of
the fiber SA = π−1(A), where π : SM → M is the projection. All the known
proofs of the closing lemma (cf. [24]) use local perturbations and hence they can
not be applied to geodesic flows.

Similar difficulties arise when one tries to change the Euler-Lagrange flow of a
lagrangian L : TM → R on a given energy level with perturbations by a potential
i.e. L′(x, v) = L(x, v) + ψ(x), where ψ : M → R is a function on M . For a me-
chanical lagrangian, this corresponds to perturbing the conditions of the problem
without changing Newton’s law.

In [6] we prove Theorem 1 below, here we describe the ingredients its proof.

Theorem 1.
On any closed manifold M with dimM ≥ 2 the set of C∞ riemannian metrics

whose geodesic flow contains a non-trivial hyperbolic basic set is open and dense
in the C2 topology.

That basic set is a horseshoe obtained from a homoclinic point. Using symbolic
dynamics, the existence of a horseshoe implies that such geodesic flows have posi-
tive topological entropy and that the number of closed geodesics grow exponentially
with their length.

∗Partially supported by conacyt Mexico.
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1. Bumpy metrics.

The simplest invariant set in a geodesic flow is a periodic orbit Γ = (γ, γ̇) arising
from a closed geodesic γ on M . Given a small transversal section Σ to Γ at Γ(0)
in SM define the Poincaré map P = P(Σ, γ) : Σ←↩ as the first return map under
the geodesic flow. Its derivative P = dΓ(0)P is called the linearized Poincaré map.
The geodesic γ is said non-degenerate if 1 is not an eigenvalue of P . This is the
necessary condition in the implicit function theorem to obtain a continuation of Γ
under perturbations of the metric. It is also equivalent to Γ being a non-degenerate
critical point of the action functional A =

∫
‖v‖2 with appropriate normalizations1.

A metric is said bumpy if all its periodic orbits are non-degenerate.
Let Rr(M), be the set of Cr riemannian metrics on M endowed with the

Cr topology. The Bumpy Metric Theorem states that the set of bumpy metrics
contains a residual subset in Rr(M), 2 ≤ r ≤ ∞. It was first announced by
Abraham [1] but the first complete proof was given by Anosov [2]. Klingenberg
and Takens [18] made a useful improvement:

Write n+ 1 = dimM . Given an integer k ≥ 1 let Jks (n) be the set of k-jets of
smooth symplectic maps of (R2n, 0) ←↩. A set Q ⊂ Jks (n) is said invariant if for
all σ ∈ Jks (n), σQσ−1 = Q. The theorem in [18] proves that if Q is a residual
and invariant subset of Jk(n) then the set of metrics such that the Poincaré map
of every closed geodesic is in Q contains a residual set in Rr(M). See [29], [28] for
analogous theorems on hypersurfaces of Rn+2.

The proof in [18] is based on a local perturbation theorem which says that if
γ is a closed geodesic for g ∈ Rr(M) there is g′ ∈ Rr(M) arbitrarily close to g
such that γ is a closed geodesic for g′ and its Poincaré map belongs to Q. This
implies the theorem above provided that the set of closed geodesics is countable.
This condition is ensured by the case k = 1 proved by Anosov [2] together with
the Bumpy Metric Theorem.

2. Twist maps.

We say that a closed geodesic is hyperbolic if its linearized Poincaré map has no
eigenvalues of modulus 1 (in a transversal section inside SM). We say that it is
elliptic if it is non-degenerate and non-hyperbolic.

The existence of a generic elliptic periodic orbit gives dynamical information
about the geodesic flow. If it is partially elliptic, i.e. if not all eigenvalues have
modulus 1, using [14] one can obtain an invariant central manifold N where the
Poincaré map P|N is totally elliptic and N is normally hyperbolic.

Imposing generic conditions specifying only the jets of the Poincaré maps at the
periodic points [6, §3] it is possible apply Klingenberg and Takens Theorem [18]
to obtain coordinates in which a restriction of the Poincaré map P|N becomes
a weakly monotonous exact twist map on Tq × Rq which is C1 near a totally

1i.e. on the space of closed curves in M with fixed parametrization interval [0, `] and initial
point in the transversal section Σ.
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integrable twist map. In this conditions we have the Birkhoff-Lewis theorem (see
Moser [17, appendix 3.3]) which says that any punctured neighbourhood of the
elliptic point contains a periodic point.

Indeed, the condition to write the Birkhoff normal form are that the elliptic
points are 4-elementary, this is that the eigenvalues of modulus one ρ1, . . . , ρq;
ρ1, . . . , ρq satisfy ∏q

i=1 ρ
νi
i 6= 1 whenever 1 ≤

∑q
i=1 |νi| ≤ 4. (1)

Then the normal form is P(x, y) = (X,Y ), where

Zk = e2πi φk zk + gk(z),
φk(z) = ak +

∑q
`=1 βk` |z`|2

z = x+ iy, Z = X + iY , ρi = e2π i ak and g(z) = g(x, y) has vanishing derivatives
up to order 3 at the origin. We say that the normal form is weakly monotonous
if the matrix βk` is non-singular. The property detβk` 6= 0 is independent of the
particular choice of normal form. In these coordinates, the matrix βk` can be
detected from the 3-jet of P at θ = (0, 0) and it can be seen that the property
{ (1) and detβk` 6= 0 } is open and dense in the jet space J3

s (q). Changing the
coordinates to (θ, r) ∈ Tq × Rq, where zj = √ε rj e2πiθj on rj > 0, ∀j, the
Poincaré map becomes a weakly monotonous exact twist map of Tq × Rq. We
restrict our discussion to the generic set of riemannian metrics all of whose closed
geodesics are 4-elementary and have weakly monotonous normal forms.

Moreover, using techniques developed by Arnaud [3] we prove in [6] that P|N
has a 1-elliptic periodic point. This is a periodic point whose linearized Poincare
map on a transversal Σ inside SM has exactly two eigenvalues of modulus 1. Such
a periodic point has a normally hyperbolic central manifold where the Poincaré
map is an exact twist map of the 2-dimensional annulus S1 × R.

Such a generic twist map contains periodic points for all rational rotation num-
bers in an interval. In fact for any such rational rotation number there are elliptic
and hyperbolic periodic points which have homoclinic intersections [19].

3. The Kupka-Smale Theorem.

A single homoclinic intersection in a geodesic flow can be made transversal by
a perturbation argument by Donnay [10] in dimension 2 and Petroll [22] in higher
dimensions. But perhaps this is not enough to make transversal two invariant
manifolds.

Another argument that can be used to change invariant manifolds or single
orbits in geodesic flows and also in lagrangian systems with perturbations by a
potential can be made along the following lines. Weak stable and weak unsta-
ble manifolds are lagrangian submanifolds for the canonical symplectic form. A
lagrangian submanifold contained in a level set of an autonomous hamiltonian is
invariant under the hamiltonian flow. Then it is enough to deform the stable
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manifold W s to a lagrangian submanifold Λ which is transversal to Wu and then
perturb the metric so that the geodesic hamiltonian H|Λ is constant. We will have
that W s = Λ for the new geodesic flow. The details appear in [8, Theorem 2.5 and
Appendix A].

This argument together with Anosov-Klingenberg-Takens theorem gives

Theorem 2.
Let Q ⊂ Jk−1

s (n) be residual and invariant. There is a residual subset G ⊂
Rk(M) such that if g ∈ G then

• The (k − 1)-jet of the Poincaré map of every closed geodesic of g is in Q.

• All heteroclinic intersections of hyperbolic orbits of g are transversal.

Choosing Q in the previous theorem as the condition { (1) and detβk` 6= 0 }
as above, we have that for a Kupka-Smale geodesic flow, if it contains an elliptic
closed geodesic then it has a transversal homoclinic orbit and hence a hyperbolic
subset. It remains to study the case in which all closed geodesics are hyperbolic.

4. Many closed geodesics.

Hingston [13] and Rademacher [25], [27] prove that a Ck generic riemannian
metric, 2 ≤ k ≤ ∞, contains infinitely many closed geodesics.

If the geodesic flow contains a generic elliptic closed geodesic, this is im-
plied by the Birkhoff-Lewis theorem (Moser [17, appendix 3.3]). But in this case
Rademacher [27] obtains infinitely many closed geodesics by imposing only condi-
tions on the 1-jet of the Poincaré map, which is easier to perturb as in Anosov [2]. If
there are finitely many closed geodesics Rademacher obtains a resonance condition
on the average indices of the geodesics. If there is one elliptic closed geodesic, its
average index can be perturbed to break the resonance and hence obtain infinitely
many closed geodesics. If all closed geodesics are hyperbolic, then Hingston [13,
§6.1] and Rademacher [25, Theorem 1] prove that there are infinitely many.

It is not known if a simply connected manifold can have all its closed geodesics
hyperbolic. In [26] Rademacher proves that in the examples of ergodic geodesic
flows in S2 of Donnay [9] and Burns-Gerber [5], all the homologically visible closed
geodesics are hyperbolic.

5. Stable hyperbolicity.

In order to prove the generic existence of a homoclinic orbit and hence a hy-
perbolic set when all closed geodesics are hyperbolic, we use the theory of stable
hyperbolicity developed by Mañé [21].
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Recall that a linear map T : R2n → R2n is hyperbolic if it has no eigenvalue of
modulus 1. Equivalently, if there is a splitting R2n = Es ⊕ Eu and M ∈ Z+ such
that T (Es) = Es, T (Eu) = Eu,

∥∥TM |Es∥∥ < 1
2 ,
∥∥T−M |Eu∥∥ < 1

2 .
Let Sp(n) be the group of symplectic linear isomorphisms of R2n. We say that

a sequence ξ : Z → Sp(n) is periodic if there is m ≥ 1 such that ξm+i = ξi for all
i ∈ Z. A periodic sequence is said hyperbolic if the linear map

∏m
i=1 ξi is hyperbolic.

In this case the stable and unstable subspaces of
∏m
i=1 ξj+i are denoted by Esj (ξ)

and Euj (ξ) respectively.
A family ξ = {ξα}α∈A of sequences in Sp(n) is bounded if there exists Q > 0

such that ‖ξαi ‖ < Q for every α ∈ A and i ∈ Z. Given two families of periodic
sequences in Sp(n), ξ = {ξα}α∈A and η = {ηα}α∈A, we say that they are peri-
odically equivalent if they have the same indexing set A and for all α ∈ A the
periods of ξα and ηα coincide. Given two periodically equivalent sequences in
Sp(n), ξ = {ξα}α∈A and η = {ηα}α∈A define

d(ξ, η) = sup{ ‖ξαi − ηαi ‖ : α ∈ A, i ∈ Z }.

We say that a family ξ is hyperbolic if for all α ∈ A the periodic sequence ξα is
hyperbolic. We say that a hyperbolic periodic family ξ is stably hyperbolic if there
is ε > 0 such that any periodically equivalent family η satisfying d(ξ, η) < ε is also
hyperbolic.

Finally, we say that a family of periodic sequences ξ is uniformly hyperbolic if
there exist K > 0, 0 < λ < 1 and subspaces Esi (ξα), Eui (ξα), α ∈ A, i ∈ Z such
that ξj(Eτj (ξα)) = Eτj+1(ξα) for all α ∈ A, j ∈ Z, τ ∈ {s, u} and

∥∥∥ m∏
i=1

ξαj+i

∣∣∣
Esj (ξα)

∥∥∥ < K λm and
∥∥∥( m∏

i=1

ξαj+i

∣∣∣
Euj (ξα)

)−1∥∥∥ < K λm

for all m ∈ Z+, α ∈ A, j ∈ Z.
In [6] we prove

Theorem 3.
If ξα is a bounded stably hyperbolic family of periodic sequences of symplectic

linear maps then it is uniformly hyperbolic.

6. The perturbation lemma.

Let Γ be a set of closed geodesics. Construct a family ξ of periodic sequences
in Sp(n) given by the linearized time 1 maps of the geodesic flow restricted to the
normal bundle N in SM to the geodesic vector field in Γ ⊂ SM .

Suppose that there are infinitely many closed geodesics in Γ and that the family
ξ is uniformly hyperbolic. Then the subspaces Es, Eu are continuous in Γ and
hence they can be extended continuously to the closure Γ. The closure would be
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a uniformly hyperbolic set. By the Spectral Decomposition Theorem it contains a
non-trivial hyperbolic basic set because it is not a union of isolated periodic orbits.

We say that a set Γ of closed geodesics for a metric g0 is stably hyperbolic if there
is a neighbourhood U ⊂ R2(M) of g0 in the C2-topology such that for every g ∈ U ,
the analytic continuation Γ(g) of Γ exists and all the orbits in Γ(g) are hyperbolic.
In [8] we prove a perturbation lemma which implies that if Γ is a stably hyperbolic
set of closed geodesics then the corresponding family ξ of symplectic linear maps
is stably hyperbolic.

Using that result we obtain that a geodesic flow can either be perturbed to
contain a generic elliptic closed geodesic, and hence a twist maps and homoclinics,
or the set of its periodic orbits is stably hyperbolic and then contains a hyperbolic
basic set.

We need a lemma in which one can perturb the linearized Poincaré map of
the time one map in single geodesic in Γ by a fixed amount independently of the
length, position, self-intersection or self-accumulation of the geodesic. Since there
is no “transversal space” to mitigate the perturbation, such a lemma can only hold
in the C2 topology. The lemma is written for a small geodesic segment.

For simplicity we assume that all our riemannian metrics have injectivity radius
larger than 2. Due to an algebraic obstruction in our proof of the lemma we have to
assume that the initial metric g0 is in the set G1 of metrics with the property that
every geodesic segment of length 1

2 has one point where the sectional curvatures
are all different. In [6, §6 and appendix A] we prove that G1 is C2 open and C∞

dense.
For the sequel we need to characterize G1 precisely. The orthogonal group O(n)

acts on the set of symmetric matrices S(n) ⊂ Rn×n by conjugation: K 7→ QKQ∗,
K ∈ S(n), Q ∈ O(n). Given g ∈ R2(M), define the map Kg : SM → S(n)/O(n)
as Kg(θ) := [K], where Kij = 〈Rg(θ, ei) θ, ej〉, Rg is the curvature tensor of g and
{ θ, e1, . . . , en } is a g-orthonormal basis for Tπ(θ)M . Let h : S(n)/O(n) → R be
the function

h([K]) =
∏

1≤i<j≤n

(λi − λj)2,

where λ1, . . . , λn are the eigenvalues of K. Let H : R2(M)→ [0,+∞[ be

H(g) = min
θ∈SM

max
t∈[0, 12 ]

h(Kg(θ)).

Then G1 = { g ∈ R2(M) : H(g) > 0 }.

Fix a C∞ riemannian metric g0 on M . Let γ : [0, 1]→M be a geodesic segment
for g0. Let W be any neighbourhood of γ([0, 1]) in M . Let F = { η1, . . . , ηm } be
any finite set of geodesic segments defined on [0, 1] with the following properties
• The endpoints of ηi are not contained in W .
• The segment γ([0, 1]) intersects each ηi transversally.

Let U be a neighbourhood of ∪F := ∪mi=1ηi([0, 1]). Denote by R∞(g0, γ,F ,W,U)
the set of C∞ riemannian metrics g on M for which γ is a geodesic segment, g = g0

on γ([0, 1]) and g = g0 on U ∪ (M \W ).
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Figure 1. Avoiding self-intersections.

Let Nt = { ζ ∈ Tγ̇(t)SM | 〈dπ(ζ), γ̇(t)〉 = 1 } be the subspace transversal to the
geodesic vector field given by the kernel of the Liouville 1-form λ(x,v)(ζ) = 〈ζ, v〉x.
This subspace is the same for all metrics g with g = g0 on γ([0, 1]). Fix symplectic
orthonormal basis for N0 and N1. Identify these subspaces with R2n and the
symplectic linear maps N0 → N1 with Sp(n). Let φgt be the geodesic flow of
a metric g and S : R∞(g0, γ,F ,W,U) → Sp(n) be the linearized Poincaré map
S(g) := dγ̇(0)φ

g
1|N0 . Write

B(g, γ) := max
{
‖g|γ‖C4 ,

[
max
t∈[ 14 ,

3
4 ]
h(Kg

(
γ̇(t))

)]−1 }
.

Theorem 4. Let g0 ∈ G1 ∩ Rr(M), 4 ≤ r ≤ ∞. Given a neighbourhood U ⊂
R2(M) of g0 there is δ = δ(B(g0, γ),U) > 0 such that given any γ, W and F as
above there is a neighbourhood U = U(B(g0, γ),U , γ,W,F) of ∪F in M such that
the image of G1 ∩ U ∩ R∞(g0, γ,F ,W,U) under the map S contains the ball of
radius δ centered at S(g0).

The actual perturbation is made in a small neighbourhood of one point in
γ([ 1

4 ,
3
4 ]), so that the theorem can be applied independently to adjacent segments.

In order to perturb the linearized Poincaré map on a periodic orbit we use The-
orem 4 sequentially on segments of the orbit, taking care that the support of the
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perturbations are disjoint, as suggested in figure 1. The radius δ can remain con-
stant δ = δ(max{‖g0‖C4 , H(g0)−1},U) in this process. Because despite the C4

norm of the perturbed metric grows and H(g) changes, the estimate of δ only
depends on the bounds along the segment γ and subsequent perturbations have
disjoint supports. Each perturbation is C2 small and all perturbations remain in
U .

The statement of the lemma for a closed orbit is as follows. Given a closed
geodesic γ for g0 and a neighbourhood W of γ let Rr(g0, γ,W ) be the set of Cr

riemannian metrics g for which γ is a geodesic, and such that g = g0 on γ∪(M \W ).
Let T be the minimal period of γ and let m ∈ N and τ ∈ [ 1

2 , 1] be such that
mτ = T . Let γk(t) = γ(t + kτ), t ∈ [0, τ ] and for g ∈ Rr(g0, γ,W ) let Sk(g) =
dγk(0)φ

g
τ ∈ Sp(n), identifying symplectic linear maps N (γ̇k(0)) → N (γ̇k(τ)) with

Sp(n), N (θ) = kerλθ|TθSM .

Corollary.
Let g0 ∈ G1 ∩ Rr(M), 4 ≤ r ≤ ∞. Given a neighbourhood U of g0 in R2(M),

there exists δ = δ(g0,U) > 0 such that if g ∈ U , γ is a cosed geodesic for g0 and
W is a tubular neighbourhood of γ, then the image of U ∩ G1 ∩ Rr(γ, g0,W ) →
Πm−1
k=0 Sp(n), under the map (S0, . . . , Sm−1), contains the product of balls of radius

δ centered at Sk(g0) for 0 ≤ k < m.

The derivative of the geodesic flow is represented by Jacobi fields. To prove
Theorem 4 one has to perturb the solutions of the Jacobi equation. The Jacobi
equation is difficult to solve but the perturbation of the Jacobi equation giving the
derivative dgS can be solved by variation of parameters in terms of the original
solution S(g). This allows to estimate the expansion of dgS and then the radius δ.

7. Elliptic geodesics in the sphere.

Another problem in which these methods have been used [7] is to prove that
there is a C2 open and dense set of riemannian metrics in S2 which contain an
elliptic closed geodesic.

Henri Poincaré [23] claimed that every convex surface in R3 contains an elliptic
closed geodesic. But Grjuntal [12] showed a counterexample. Pinching conditions
to obtain an elliptic closed geodesic on spheres have been given in Grjuntal [11],
Thorbergsson [30] and Ballmann, Thorbergsson, Ziller [4].

If the metric can not be perturbed to a metric with an elliptic closed geodesic,
then its set of closed orbits is stably hyperbolic and then its closure is uniformly
hyperbolic. The geodesic flow of S2 can not be Anosov, because Anosov geodesic
flows do not have conjugate points [16], [20].

The geodesic flow is the Reeb flow of the Liouville contact form on SM . The
unit tangent bundle of S2 is RP3. Its double cover is S3 and the geodesic flow of
S2 lifts to the Reeb flow of a tight contact form on S3. If the metric is bumpy one
can apply the theory of Hofer, Wysocki, Zehnder [15].
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In the dynamically convex case, there is a surface of section which is a disk
transversal to all but one orbit of the Reeb flow which is the boundary of the
disk. The return map to the disk preserves the finite area form which is the
differential of the contact form. This leads to a contradiction because it can be
proved that a homoclinic class of an area preserving map which is not Anosov can
not be uniformly hyperbolic. In the non-dynamically convex case we use geometric
arguments on the finite energy foliation of [15] to get a contradiction.
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