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Abstract. Let N be a 2n-dimensional manifold equipped with a symplectic structure
ω and �(N ) be the Lagrangian Grassmann bundle over N . Consider a flow φt on
N that preserves the symplectic structure and a φt -invariant connected submanifold �.
Given a continuous section � → �(N ), we can associate to any finite φt -invariant
measure with support in �, a quantity, The asymptotic Maslov index, which describes
the way Lagrangian planes are asymptotically wrapped in average around the Lagrangian
Grassmann bundle. We pay particular attention to the case when the flow is derived from an
optical Hamiltonian and when the invariant measure is the Liouville measure on compact
energy levels. The situation when the energy levels are not compact is discussed.

1. Introduction
1.1. The Maslov Cocycle. In his book Théorie des perturbations et méthodes
asymptotiques [15], Maslov introduced an index of curves relevant in quantum mechanics.
Arnold [2], in an appendix to Maslov’s book, set down the main geometric features of this
index introducing a characteristic class. This introductive section is very much guided by
Arnold’s appendix.

Consider the standard 2n-dimensional vector space R
2n and its canonical decomposition

R2n = Rn ⊕ Rn and denote a point in R2n by x = (p, q), where p = (p1, . . . , pn) and
q = (q1, . . . , qn). The space R2n can be endowed with three structures:
• a Euclidean structure, i.e. a positive definite quadratic form on R2n:

〈x, x〉 =
n∑
i=1

(p2
i + q2

i );
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• a complex structure, i.e. an endomorphism J on R2n satisfying J 2 = −Id:

J (p, q) = (−q, p);
• a symplectic structure, i.e. an antisymmetric non-degenerate bilinear form:

ω(x, y) = 〈J (x), y〉 =
n∑
i=1

dpi ∧ dqi.

The group of automorphisms of R2n that preserve these structures† is called the unitary
group and is denoted by U(n). This group is isomorphic to the group of linear isometries
of Cn = Rn ⊕ iRn ≈ (Rn × {0})⊕ J (Rn × {0}) = R2n.

A subspace W in Rn is said to be isotropic if the symplectic form ω vanishes on W .
A Lagrangian plane is an isotropic subspace of maximal dimension n. The subspaces
p = 0, q = 0 and p = q are examples of Lagrangian planes.

The elements of the unitary group map Lagrangian planes onto Lagrangian planes.
Actually, the unitary group acts transitively on the set of Lagrangian planes and its
stationary group is isomorphic to the orthogonal group O(n). This provides the set of
Lagrangian planes �(n) with the structure of a compact manifold, �(n) = U(n)/O(n),
called the Lagrangian Grassmann manifold.

This last identification can be seen as follows. Given an orthonormal basis {e1, . . . , en}
of the Lagrangian plane E0 := {q = 0}, consider another Lagrangian plane λ and
an orthonormal basis {�1, . . . , �n} for λ. The automorphism of R2n that maps, for
i = 1, . . . , n, each vector ei to �i and each vector J ei to J�i is clearly a unitary
automorphism. Any unitary automorphism that leaves the Lagrangian plane λ invariant,
transforms the orthogonal basis {e1, . . . , en} into another orthogonal basis {e′1, . . . , e′n} of
E0 and the corresponding orthogonal basis {J e1, . . . , J en} of JE0 into the orthogonal
basis {J e′1, . . . , J e′n} of JE0. Consequently a unitary isomorphism U that fixes E0 also
fixes JE0. Furthermore, the matrix of U restricted to E0 written in the basis {e1, . . . , en}
coincides with the matrix of U restricted to JE0 written in the basis {J e1, . . . , J en} and
is an element of the orthogonal group O(n). Thus, given two Lagrangian planes E0

and λ, there exists a unitary automorphism u(λ) mapping the plane E0 onto the plane λ.
This automorphism is unique up to orthogonal self transformations of the plane E0, hence
its complex determinant is a complex number with modulus one which is unique up to
multiplication by −1. This defines a map

det2 : �(n) → S
1,

which associates, the square of the determinant of the automorphism u(λ) to each
Lagrangian plane.

The Maslov cocycle M (see [2]) is the element of the first cohomology group
H 1(�(n),Z) which associates to any oriented closed curve γ in �(n) the degree of the
map:

S
1 γ−→ �(n)

det2−→ S
1.

† In fact, an automorphism that preserves two of these structures, necessarily preserves the third one.
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The Maslov cycle of the Lagrangian plane E0 (also called the train of the Lagrangian
plane) is the subset �E0(n) of �(n), which consists of all the Lagrangian planes whose
intersection with E0 is non-trivial. Arnold [2] proved that the Maslov cycle of a
Lagrangian plane defines a codimension 1, co-oriented cycle in the Lagrangian Grassmann
manifold �(n)†. Writing �(n) = U(n)/O(n), the transversal orientation of �E0(n)

coincides with the orientation of θ 	→ eiθE0.
Using the homotopy exact sequence of the fibration

O(n) −→ U(n) −→ �(n),

we get that π1(�(n)) = Z. Moreover, the following commutative diagram of fiber bundles

SO(n)

��

�� O(n) ��det ��

��

S
0

��
SU(n)

��

�� U(n) ��det ��

��

S1

z2

��
S�(n) �� �(n)

det2 ��
S1

where S�(n) = {λ ∈ �(n) | det2λ = 1}, implies that the generator of π1(�(n)) is sent
by det2 to the generator of π1(S

1). This implies that the Maslov cocycle is a generator of
H 1(�(n),Z) (cf. [2]).

The Maslov index M(h) ∈ Z of a homology class h ∈ H1(�(n),Z) is the value that the
cocycle M takes on the cycle h. The Maslov cycle �E0(n) is the Poincaré dual of M, so
that M(h) is also equal to the oriented intersection number of h and �E0(n).

Remark 1.1. The Maslov cocycle M in H 1(�(n),Z) is induced by a 1-form η in
H 1(�(n),R), which is defined for every λ in �(n) by ηλ = dλu, where u : �(n) → R

is locally determined by det2(λ) = exp(2iπu(λ)). Thus, for any piecewise differentiable
oriented closed curve γ : [0, 1] → �(n), which is in the homology class h, we have

M(h) =
∫ 1

0
ηγ (t)(γ̇ (t)) dt.

In the particular case when the dimension n is 1, Lagrangian planes are lines in R
2 and

the Lagrangian Grassmann manifold �(1) is the projective line RP(1) = S
1. The unitary

group U(1) is the group S1 of complex numbers with modulus 1. The orthogonal group
O(1) is the group with two elements ±Id and the identification �(1) = U(1)/O(1)
reflects the fact that each line in R2 is the image of a given line by a multiplication by
a complex number with modulus 1, exp 2iπθ , where θ is defined up to translation by
1
2 in R/Z. The Maslov cocycle is simply the morphism that associates to any curve in
�(1) its degree and the Maslov cycle of a Lagrangian plane (i.e. a line) is reduced to the

† In fact, for k ≥ 1, the set�k(n) = {λ ∈ � | dim λ∩E0 = k} is an open submanifold of�(n) with codimension
1
2 k(k+ 1), (see Arnold [2]). In particular, �E0 (n) = �1(n) = ⋃

k≥1 �
k(n) is a cycle in �(n) of codimension 1

(actually it is an algebraic variety with singular set �2(n) = ⋃
k≥2�

k(n) of codimension greater than or equal
to 3 and thus its boundary chain is null).
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line itself. Thus, it is straightforward to notice that any two lines (i.e. Lagrangian planes)
are joined by an arc in �(1) whose intersection number with (the Maslov cycle of) any
given line is bounded in norm by 1.

When the dimension n is greater than one, even if more complex, the situation keeps
part of this rigidity. More precisely, consider two Lagrangian planes λ0 and λ1 with trivial
intersection, a basis {e1, . . . , en} for λ0 and a basis {e′1, . . . , e′n} for λ1 such that

ω =
n∑
i=1

ei
∗ ∧ e′i∗

where {ei∗, e′i∗} is the dual basis of {ei, e′i}. Any Lagrangian plane λ whose intersection
with λ1 is reduced to zero can be seen as a graph of a map from λ0 to λ1. Actually,
when written in coordinates with the basis {e1, . . . , en} for λ0 and {e′1, . . . , e′n} for λ1, a
straightforward calculation shows that this graph is given by a n× n-symmetric matrix A

y = Ax.

Furthermore, if the intersection of λ with λ0 is reduced to zero, the matrix A is invertible.
The path �λ0,λ1,λ defined for every t ∈ [0, 1] by

�λ0,λ1,λ(t) = {(x, y) ∈ λ0 ⊕ λ1 ≈ R
n × R

n | y = tAx}
is a path from [0, 1] to �(n) joining �λ0,λ1,λ(0) = λ0 to �λ0,λ1,λ(1) = λ.

The following lemma has its roots in the history of symplectic geometry (see [3]).
However, for the sake of completeness, and since it will be useful in the following, we
include a simple proof of it.

LEMMA 1.2. Let λ be a Lagrangian plane whose intersection with λ0 and λ1 is reduced to
zero and E0 be a Lagrangian plane whose intersection with λ1 is reduced to zero, then the
intersection number of the path �λ0,λ1,λ with the Maslov cycle of the Lagrangian plane E0

is bounded in norm by n.

Proof. Written in coordinates in the basis {e1, . . . , en} for λ0 and {e′1, . . . , e′n} for λ1, the
equation of E0 reads

y = Bx,

where B is a n × n-symmetric matrix. Assume that for some t = t1 the two planes E0

and �λ0,λ1,λ(t1) have a non-trivial intersection. This means that the kernel of t1A− B that
we denote by Wt1 , is a subspace of Rn not reduced to zero. Let t1, . . . , tk be a strictly
increasing sequence of values of t such that Wti is not reduced to zero for i = 1, . . . , k.
Since A is invertible, all these subspaces are linearly independent and thus

k∑
i=1

dimWti ≤ n.

It follows that for ε > 0 small, the path �λ0,λ1,λ|t∈[ti−ε,ti+ε] is homotopic, with fixed
endpoints, to a path h which intersects E0 at most dimWti -times and such that, for each
t ∈ [0, 1], dimh(t) ∩ E0 ≤ 1. �
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Remark 1.3. Consider a linear transformation T of R2n that preserves the symplectic
structure. It is clear that the path �T λ0,T λ1,T λ constructed with the bases {T e1, . . . , T en}
for T λ0 and {T e′1, . . . , T e′n} for T λ1 is the image under T of the path �λ0,λ1,λ and is again
given for every t ∈ [0, 1] by the equation

�T λ0,T λ1,T λ(t) = T ◦ �λ0,λ1,λ(t) = {(x, y) ∈ T λ0 ⊕ T λ1 ≈ R
n × R

n | y = tA x}.

1.2. Symplectic manifolds and the Lagrangian Grassmann bundle. Let N be a
2n-dimensional manifold equipped with a symplectic structure, i.e. a non-degenerate
closed 2-form ω.

Given x in N , a subspace W in the tangent space TxN is isotropic if the 2-form ω

vanishes onW . Isotropic subspaces with maximal dimension are called Lagrangian planes
and have dimension n. The Lagrangian Grassmann bundle �(N ) is the bundle over N
whose fibers consist of all the Lagrangian planes. We denote by

 : �(N ) → N ,
the standard projection.

Given x in N , an almost complex structure in the tangent space TxN is an
endomorphism Jx of TxN , such that J 2

x = −Id . We say that an almost complex
structure Jx and a symplectic structure ωx are compatible if u 	→ ωx(Jxu, u) is a positive
quadratic form on TxN . This quadratic form induces an Euclidean structure associated to
the compatible pair of symplectic and almost complex structures.

Let J (N ) be the bundle over N whose fiber over any point x in N consists of
all compatible almost complex structures in TxN . Since the fibers of this bundle are
contractible, there exists a continuous section

J : N → J (N ),
which is unique up to homotopy. The almost complex structure J can be chosen to be
smooth.

Consider a connected submanifold� of N (neither necessarily compact nor with finite
first homology group) and the corresponding bundle�(�) = −1(�). Assume that there
exists a continuous section

E : � → �(�).

This section induces, over each point x in �, a continuous splitting of the tangent space

TxN = E(x)⊕ JxE(x).

Since the unitary group acts transitively on the set of Lagrangian planes of TxN and its
stationary group is isomorphic to the orthogonal groupO(n) (see §1.1), this section yields
a trivialization of the bundle �(�):

IE : �(�) → � ×�(n) = � × U(n)/O(n).

The Maslov cocycle of the section E, ME, is the element in H 1(�(�),Z) which
associates to any oriented closed curve γ in �(�) the degree of the map

S
1 γ−→ �(�) ≈ � ×�(n)

τ−→ �(n)
det2→ S

1,

where τ : � ×�(n) → �(n) stands for the projection onto the second factor.
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The Maslov cycle of the section E is the sub-bundle �E(�) of �(�), whose fiber Fx
over any point x in� consists of all the Lagrangian planes in TxN whose intersection with
E(x) is non-trivial and is given by �Ex = (τ ◦ IE)−1(�{q=0}(n)). This sub-bundle defines
a codimension 1, co-oriented cycle in the bundle �(�), the co-orientation of this cycle
being induced by the co-orientation of �{q=0}(n).

The Maslov index of a homology class h ∈ H1(�(�),Z) is the value that the cocycle
ME takes on the cycle h. The Maslov cycle �E(�) is the Poincaré dual of ME, so that
ME(h) is also equal to the oriented intersection number of h and �E(�).

If E is a C1 section and γ is a piecewise differentiable closed oriented curve in �(�)
with homology class h, Remark 1.1 gives an integral version of the Maslov index of h:

ME(h) =
∫ 1

0
ητ◦IE◦γ (t)

(
d

dt
τ ◦ IEγ (t)

)
dt =

∫ 1

0
ηEγ (t)

(
d

dt
γ (t)

)
dt,

where ηE is the pullback by τ ◦ IE of the form η. When E is only a continuous section, we
can approximate E by a C∞ section Ê such that ME(h) = M

Ê
(h).

From its definition, the Maslov cocycle depends on the choice of the section E; however,
this dependence can be made completely explicit. Consider another section

F : � → �(�)

and the trivialization obtained from this section

IF : �(�) → � ×�(n) = � × U(n)/O(n).

Let us estimate the difference cocycle ME − MF evaluated on a homology class h in
H1(�(�),Z). For this purpose consider a closed curve γ : S1 → �(�) whose homology
class is h. The curve γ induces, through both trivializations, two closed curves γE, γF :
S1 → U(n)/O(n). On the other hand, the curve γ induces a third curve γF,E : S1 →
U(n)/O(n) which is given by the section F above the projected curve  ◦ γ : S1 → �,
seen through the trivialization IE. For each θ ∈ S1, these three curves are related as follows

det2(γE(θ)) = det2(γF(θ)) · det2(γF,E(θ)).

Consequently,
ME(h)− MF(h) = ME(F� ◦�(h)),

where F� and � are, respectively, the maps induced by F and  on the first homology
groups.

In terms of 1-forms we have

ηE − ηF = � ◦ F
�(ηE). (1)

It is worth noting that the difference of the two 1-forms ηE − ηF contains in its kernel the
tangent space to the fibers of �(�).

This work is organized as follows. In §2, we consider a flow φt defined in a
neighborhood of a submanifold � of N , which leaves � invariant and preserves the
symplectic 2-form. When there exists a continuous section � → �(N ), we associate to
any finite φt -invariant measure with support in�, a quantity: the asymptotic Maslov index.
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The dependence of this asymptotic Maslov index on the section and the invariant measure
is discussed. In particular, we prove that there is no dependence on the section if the
Schwartzman asymptotic cycle of the measure vanishes.

In §3 we focus on Hamiltonian flows. We show that the asymptotic cycle of the
Liouville measure for a compact energy level is zero if the form ωn−1 is exact, which
is always true for Hamiltonian flows on the cotangent bundle of a manifold equipped with
its canonical symplectic structure.

In §4 we prove that for Hamiltonians that are optical with respect to a given section
(see the definition below or [5]), the asymptotic Maslov index of the Liouville measure
with respect to this section is always non-negative and it is strictly positive if and only if
there are conjugate points. As an application, we prove that an optical Hamiltonian on a
compact energy level which possesses a φt -invariant Lagrangian section (this is the case, in
particular, when the flow on the energy level is Anosov) does not have conjugate points—
a result already proved by Klingenberg [12] for geodesic flows on compact manifolds,
by Mañé [13] for geodesic flows with dense non-wandering sets and by Paternain and
Paternain [16] for convex Hamiltonians.

The cotangent bundle of a manifold is equipped with a canonical symplectic form and
a canonical section (the vertical section). Convex Hamiltonian flows—which are optical
with respect to the vertical section—are studied in Appendix A.

Finally, in Appendix B, we give an example of a convex Hamiltonian with an invariant
Lagrangian section and conjugate points on a non-compact regular energy level with finite
volume.

2. The asymptotic Maslov index
Consider a flow φt defined on a neighborhood of the submanifold � of N , which leaves
� invariant and preserves the symplectic 2-form:

φt
∗
ω = ω (2)

and denote by X the vector field induced by the flow φt .
We denote by nE(�) the algebraic intersection number† of an oriented curve� in�(�)

with�E(�). To a Lagrangian plane λx in the fiber−1(x) of�(�), we associate the path
�λx,T : [0, T ] → �(�) defined for any t ∈ [0, T ] by

�λx,T (t) = dφt x(λx).

The following lemma (or some very similar version) is, like Lemma 1.2, a well-known fact
in symplectic geometry and again for the sake of completeness we give here a very simple
proof.

LEMMA 2.1. Let x be a point in N and let λx and λ′
x be two Lagrangian planes in the

fiber−1(x) of �(�). Then, for any T ≥ 0,

|nE(�λx,T )− nE(�λ′
x ,T
)| ≤ 8n.

† This intersection number is well defined if its endpoints do not intersect �E(�). If its endpoints intersect
�E(�) there is an ambiguity by adding or subtracting at most n. Since we shall be interested only in the growth
rate of nE, the ambiguity will not matter.
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Proof. Let λ0,x and λ1,x be two Lagrangian planes in −1(x) such that:
• λ0,x ∩ λ1,x = 0;
• λ0,x ∩ λx = λ0,x ∩ λ′

x = 0;
• λ1,x ∩ λx = λ1,x ∩ λ′

x = 0;
• λ1,x ∩ E(x) = 0;
• dφTx (λ1,x) ∩ EφT (x) = 0.
Consider the two paths �λ0,x ,λ1,x ,λx and �λ0,x ,λ1,x ,λ

′
x

: [0, 1] → −1(x) joining λ0,x to λx
and λ0,x to λ′

x , respectively. Let us denote by �x(λx, λ′
x ), the path connecting λx to λ′

x

obtained by concatenating �−1
λ0,x ,λ1,x ,λx

and �λ0,x ,λ1,x ,λ
′
x
.

The path �x(λx, λ′
x) possesses the following two properties.

(i) From Lemma 1.2, its intersection number with the Maslov cycle �E(�) of the
section E is bounded in norm by 2n.

(ii) From Remark 1.3, it is transported by the flow φt . More precisely,

dφtx(�x(λx, λ
′
x)) = �φt (x)(dφ

t
xλx, dφ

t
xλ

′
x)

and, consequently, the intersection number of dφtx(�x(λx, λ
′
x)) with the Maslov

cycle �E(�) is also bounded in norm by 2n.
The 2-chain A : [0, 1] × [0, T ] → �(�) defined by

A(s, t) = dφtx(�x(λx, λ
′
x)(s))

has a boundary

�λx,T + dφTx (�x(λx, λ
′
x))− �λ′

x ,T
− �x(λx, λ

′
x)

which is null homologous. Thus, if λx , λ′
x , dφTx (λx), dφ

T
x (λ

′
x) intersect trivially E(x),

E(φT (x)), respectively, then we have that

|nE(�λx,T )− nE(�λ′
x ,T
)| ≤ |nE(dφTx (�x(λx, λ′

x)))| + |nE(�x(λx, λ′
x ))| ≤ 4n.

If any of λx , λ′
x , dφTx (λx), dφ

T
x (λ

′
x) intersect the Maslov cycle �E, the 2-chain A may

intersect �E non-transversally at one of such points. In that case, the last estimate may be
modified by at most n at each of these four subspaces. �

Note that the bound in Lemma 2.1 can be improved with more sophisticated arguments.
For instance a very elegant formulation is given in [4]; see also [3] and the proof of
Theorem 4.2 below.

The asymptotic Maslov index of point x in � is the following limit when it exists:

ME(x) := lim
T→+∞

1

T
nE(�λx,T ). (3)

It is clear from Lemma 2.1 that this limit is independent of the choice of the Lagrangian
plane λx in the fiber−1(x).

The flow φt induces a flow �t in the Lagrangian Grassmann bundle defined for all x in
� and for all λx in −1(x) by

�t(x, λx) := (φt (x), dφtx(λx)).
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We denote by X the vector field corresponding to the flow �t and we say that the data
(E,X) satisfies the bounding condition if the map

�(�) → R

(x, λx) 	→ ηE(x,λx)(X(x, λx))

is uniformly bounded on �(�).
From the path �λx,T , we construct a piecewise smooth loop �′

λx,T
obtained by

concatenating �0, �1, �2 and �3 in �(�) defined as follows:
• �0 = �λx,T ;
• �1 is a path (as in Lemma 2.1) from �T (x, λx) to (φT (x), JφT (x)EφT (x)) in

−1(φT (x)), whose intersection number with the Maslov cycle �E(�) is bounded
in norm by 4n;

• �2 is the path t 	→ Jφt (x)Eφt (x) for t going from T to zero;
• �3 is a path (as in Lemma 2.1) from (x, JxEx) to (x, λx) in −1(x) whose

intersection number with the Maslov cycle�E(�) is bounded in norm by 4n.
It follows from the construction that if the limit ME(x) exists, then it satisfies

ME(x) = lim
T→+∞

1

T
ME([�′

λx,T
]),

where [�′
λx,T

] stands for the homology class of the path �′
λx,T

.
Using the integral version of the Maslov index, we have that

ME([�′
λx,T

]) =
∫
�0

ηE +
∫
�1

ηE +
∫
�2

ηE +
∫
�3

ηE.

It is clear that
∫
�2
ηE = 0. If (E,X) satisfies the bounding condition, the integrals

∫
�1
ηE

and
∫
�3
ηE are uniformly bounded in T . It follows that the limit ME(x), when it exists, is

also given by the average

ME(x) = lim
T→+∞

1

T

∫ T

0
ηE(X(�

t(x, λx))) dt. (4)

PROPOSITION 2.2. Let ν be an invariant probability measure of the flow φt with support
in � and assume that the data (E,X) satisfies the bounding condition. Then:
(i) for ν-almost every x in �, the limit ME(x) exists;
(ii) the map x → ME(x) is integrable.

We denote by ME(ν) the integral
∫
�

ME(x) dν(x) and call it the asymptotic Maslov
index of the measure ν.

The proof of this proposition clearly relies on an ergodic theorem. The peculiarity here
is that the probability measures we consider are invariant measures for the flow φt on �
and the quantities we average are computed for the flow �t on �(�). There are actually
two ways to prove Proposition 2.2.

One way consists of forgetting a part of the dynamics of the flow �t by showing that
the quantity nE

(
�λx,T

)
up to a bounded error is independent of the Lagrangian plane λx
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and is quasi-additive. This allows us to define a bounded cocycle over �. The proof of
Proposition 2.2 is then a direct application of the sub-additive ergodic theorem and can be
found for instance in the work of Ruelle [17] and Barge and Ghys [4] (in a slightly different
context).

The second way, which we follow in a moment, consists of lifting the invariant measures
for the flow φt to invariant measures for the flow �t and then use the standard Birkhoff
ergodic theorem. The advantage of this second approach is double:
• it gives a simple proof of the continuity of the asymptotic Maslov index with respect

to the invariant measure for the weak∗ topology;
• it gives a better understanding of the dependence of the asymptotic Maslov index

with respect to the section E.
Before proceeding to the proof and in order to better understand the way invariant

measures of the flow φt can be lifted to invariant measures of the flow �t , let us recall
some basic definitions and results in ergodic theory.

Let p : X → Y be a surjective continuous map between compact metric spaces and let
�t be a flow on X and φt a flow on Y such that φt ◦ p = p ◦ �t . Let M� and Mφ be
the invariant Borel probability measures of �t and φt respectively. It is well known that
the induced map p∗ : M� → Mφ is surjective. If X is not compact, a similar result
can be obtained if we assume that p is a proper map. Let X ∪ {∞} and Y ∪ {∞} be the
one point compactification of X and Y , respectively. The map p and the flows �t and φt
extend naturally to the compatifications and we denote these extensions by p̄, �̄t and φ̄t ,
respectively. A measure ν ∈ Mφ induces a measure ν̄ ∈ Mφ̄ by setting ν̄(∞) = 0.
Since p̄∗ is surjective, there exists µ̄ such that p̄∗(µ̄) = ν̄. However, since µ̄(∞) = 0, µ̄ in
fact defines a measure µ that lifts ν.

Proof of Proposition 2.2. The compactness of the fibers of  yields that the projection
map  is proper. Hence, the discussion in the previous paragraph shows that given a
φ-invariant measure ν, there exists a �-invariant measure µ such that ∗µ = ν.

Since the data (E,X) satisfies the bounding condition, we can apply the Birkhoff
ergodic theorem to the dynamical system (�(�),µ,�t ) and the observable (x, λx) 	→
ηEx (X(x, λx)). This yields that for µ-almost every (x, λx) in�(�) (and thus for ν-almost

every x in�) the quantity (1/T )
∫ T

0 ηE(X(�
t(x, λx))) dt converges, when T goes to +∞,

to a limit which does not depend on λx in −1(x) and is a ν-integrable function of x
in �. �

Remark 2.3. The hypothesis that the data (E,X) satisfies the bounding condition is
actually too strong and the proof of Proposition 2.2 works if we require only the map
(x, λx) 	→ ηEx (X(x, λx)) to be µ-integrable where µ is an invariant measure of �t which
is a lift of ν. However, in the following we see that it is convenient to keep a hypothesis
which does not depend on the invariant measure we consider.

COROLLARY 2.4. If (E,X) satisfies the bounding condition and ν is a Borel φt -invariant
probability, then

ME(ν) =
∫
ηE(X) dµ,

for any �t -invariant lift µ of ν to �(�).
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PROPOSITION 2.5. The asymptotic Maslov index of a probability measure depends
continuously on the invariant probability measure for the weak∗-topology.

Proof. Suppose that νN is a sequence of φt -invariant probabilities on � with
limN→∞ νN = ν. We have seen in the proof of Proposition 2.2 that any φt -invariant
probability measure νN on � can be lifted to a �t -invariant probability measure µN on
�(�): ∗µN = νN .

Consider a metric space S, a family M of Borel probability measures on S is tight if
for each ε > 0, there is a compact set Kε ⊂ S for which P(Kε) > 1 − ε for all P ∈ M.
Tight families are characterized by the fact that their closures are compact in the weak*
topology (see, for instance, [7]).

Since the fibers of are compact, the family {µN } is tight. Thus, given any subsequence
〈Nk〉, there exists a subsequence 〈Nk�〉 such that the measures µNk� converge when l goes
to +∞ to a �t -invariant measure µ, which satisfies ∗µ = ν. Since the data (E,X)
satisfies the bounding condition

ME(νNk� ) =
∫
ηE(X) dµNk�

�→
∫
ηE(X) dµ = ME(ν).

The subsequence 〈Nk〉 has been chosen arbitrarily and the limit ME(ν) does not depend
on this subsequence, thus limN→+∞ ME(νN) = ME(ν). �

2.1. Change of reference section. Let us describe now how the asymptotic Maslov
index behaves under a change of the section E. Let F be another section of : �(�) → �

and assume that the data (F,X) also satisfies the bounding condition. From (1), we get that
the map

� → R

x 	→ F
�ηEx(X(x))

is uniformly bounded on � and

ME(ν)− MF(ν) =
∫
(F∗ηE)(X) dν. (5)

Note that (5) can be made more explicit when the Schwartzman asymptotic cycle of a
φt -invariant measure ν [18, 19] can be computed. This is the case when the following two
assertions† are satisfied:
• the first homology groupH1(�,R) has a finite dimension;
• the measure ν is X-tame, i.e. the first de Rham cohomology group H 1(�,R) is

generated by a finite number of 1-forms ωi such that for each i the map

� → R

x 	→ ωix(X(x))

is ν-integrable.

† Note that both assertions are satisfied when � is compact.
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In this context, the asymptotic cycle of the measure ν is the unique element S(ν) in
H1(�,R) = H 1(�,R)∗, which satisfies for any closed 1-form ζ :

〈[ζ ],S(ν)〉 =
∫
ζ(X) dν,

where [ζ ] is the cohomology class of ζ and the brackets 〈 , 〉 denote evaluation.
With these notations, (5) reads†

ME(ν)− MF(ν) = 〈[F∗ηE],S(ν)〉. (6)

Note that the asymptotic Maslov index of a φt -invariant measure ν does not depend on the
section in the following two cases:
• if H1(�,R) = 0;
• or if the Schwartzman asymptotic cycle of the measure ν is zero.

If some �t -invariant measure µ which is a lift of ν is X-tame, the asymptotic cycle
S(µ) in H1(�(�),R) is well defined. The asymptotic cycle S(ν) in H1(�,R) and the
Maslov index MF(ν) are also well defined (see Remark 2.3).

Remark 2.6. In the case of an odd-dimensional manifoldM (that we choose to be compact
to make things simpler) equipped with a contact structure, there exists an analogous
definition of the asymptotic Maslov index. More precisely, a contact structure is the data
of a 1-form η such that the plane field corresponding to the kernels is nowhere integrable,
i.e. for every x in M ,

ηx ∧ (dηx)n �= 0,

where dimM = 2n+ 1. It is clear that the 2-form dη restricted to ker η is symplectic. To a
contact structure η, one can associate a vector field X whose flow φt is called the Reeb
flow and which is defined by:
• iXη = 1;
• iXdη = 0.
This flow preserves the planes ker η, the symplectic form dη on ker η and the volume form
η ∧ (dη)n.

Assume that there exists a continuous section which associates to each point x in M
a Lagrangian plane E(x) in ker ηx . Then it is possible to associate to each φt -invariant
probability measure ν its asymptotic Maslov index in the same way as we did for the even-
dimensional case. In particular, this can be done for the measure induced by the volume
form η ∧ (dη)n.

3. Hamiltonian flows
Let N be a 2n-dimensional complete connected Riemannian manifold. A Hamiltonian on
N is a C∞ function H : N → R. The Hamiltonian vector field X of H is defined by

ω(X, ·) = −dH. (7)

† See [11] for a similar dependence on the trivialization in the case of non singular vector fields in a 3-dimensional
manifold.
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The level sets of the Hamiltonian � = H−1{e} are called the energy levels of H and are
invariant under the flow of X.

In the remainder of this paper we focus our attention on the dynamics of regular energy
levels �, i.e. the energy levels which correspond to a regular value of H . Thus, � is a
codimension 1 submanifold of N and X is a non-singular vector field on �. Furthermore,
we always assume the following hypothesis.

(a) Completeness: the Hamiltonian vector field X gives rise to a complete flow φ :
� × R → � on the energy level �.

If the energy level � is compact, this last hypothesis is clearly satisfied.

3.1. The asymptotic Maslov index for the Liouville measure. The Hamiltonian flow on
the energy level � inherits a canonical smooth invariant measure m̄, called the Liouville
measure which corresponds to the volume form m = i∗σ , where σ is a form such that
ωn = dH ∧ σ and i : � ↪→ T ∗M is the inclusion map [1].

PROPOSITION 3.1. If the energy level� is compact and the form ωn−1 is exact†, then the
asymptotic cycle S(m̄) of the Liouville measure m̄ is zero.

Proof. Let Y be a vector field Y ∈ T�N such that ω(X, Y ) ≡ −1. The sequence of
equalities

dH ∧ iY ωn = −iY (dH ∧ ωn)+ (iY dH) ∧ ωn
= 0 + (iY iX ω) ω

n

= ωn,

yields the explicit formulation

m = i∗(iY ωn).

In order to prove that the asymptotic cycle is zero, it is enough to check that for any
closed 1-form η on �:

〈η,S(m̄)〉 =
∫
η(X) dm̄ = 0. (8)

We have

η(X)m = iX(η ∧m)+ η ∧ (iXm) = η ∧ (iXm).
On the other hand, since dH = −iXω = 0 on �,

iXm = iX(i
∗iY ωn) = i∗(ωn−1).

Since ωn−1 is exact, there exists a (2n− 1)-form, τ such that dτ = i∗(ωn−1).
Consequently,

η(X)m = η ∧ dτ = d(η ∧ τ ).
A direct application of Stokes theorem gives S(m̄) = 0. �

† We later discuss the strength of the hypothesis on the exactness of ωn−1.
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Let � and �′ be two regular energy levels of two Hamiltonian functions H and H ′,
respectively. Let F be a symplectic diffeomorphism from a neighborhood of � to a
neighborhood of �′. We say that F is a symplectic conjugacy if F maps � onto �′ and
conjugates the corresponding Hamiltonian flows on the energy levels.

COROLLARY 3.2. If a regular energy level � is compact and ωn−1 is exact, then:
(i) for any two continuous Lagrangian sections E, F,

ME(m̄) = MF(m̄);
(ii) the asymptotic Maslov index of the Liouville measure is invariant under symplectic

conjugacies of the Hamiltonian flow.

Proof. (i) is a direct consequence of (6).
In order to prove (ii), suppose that F is a symplectic conjugacy and let E be a continuous

Lagrangian section of �. A direct computation yields F�m̄ = m̄′, where m̄ and m̄′ stand,
respectively, for the Liouville measures on � and �′. The asymptotic Maslov index of
the Liouville measure m̄ on the energy level � can be computed (thanks to (i)) using any
Lagrangian section, E for instance.

It follows that ME(m̄) = MF�E(F�m̄) = MF�E(m̄
′), which is the asymptotic Maslov

index of the Liouville measure m̄′ on the energy level �′ computed using the Lagrangian
section F�E. �

4. Optical Hamiltonians
Now we restrict our attention to Hamiltonian flows whose lift to �(�) cuts the Maslov
cycle transversely with positive orientation. In the next two subsections, we relate the
work of Duistermaat [10] and Bialy and Polterovich [5] with the asymptotic Maslov index.

4.1. Positive tangent vectors. Consider again the Lagrangian manifold�(n) introduced
in §1; let us make the transverse orientation of the train of a given Lagrangian plane more
explicit here.

For t in [−1, 1], let t 	→ λ(t) ∈ �(n) be a curve in�(n) passing through the Lagrangian
plane λ(0) = λ. There exists a curve of symplectic automorphisms of R2n, t 	→ Sp(t) such
that λ(t) = Sp(t)λ, Sp(0) = I.

To the pair (λ, λ′(0)) (where λ′(0) stands for the tangent vector

λ′(0) = dλ

dt

∣∣∣∣
t=0

∈ Tλ�(n)),

we can associate the bilinear form βλ,λ′(0) on λ:

(ξ, η) 	−→ ω(ξ, Sp′(0)η) for ξ, η ∈ λ. (9)

Note the following:
• This form is well defined: another choice of curve of symplectic transformations

t 	→ S̃p(t) such that λ(t) = S̃p(t)λ satisfies S̃p(t) = Sp(t)Q(t), where Q(t)
preserves λ and Q(0) = I, hence (d/dt)ω(ξ,Q(t)η) = ω(ξ,Q′(0)η), a quantity
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that vanishes since λ is Lagrangian, it also depends only on (λ, λ′(0)) and not on the
specific curve λ(t)†.

• This form is symmetric since Sp(t) preserves the symplectic form ω.
• The map λ′(0) 	→ βλ,λ′(0) is linear since it is a quotient of the derivative of the map

that takes a symplectic automorphism S into the bilinear form ω(ξ, Sη).
Recall that the train �E0(n) of a given Lagrangian plane E0 is the union for k ≥ 1 of

the collection of open submanifolds �k = { λ ∈ �(n) | dim(λ ∩ E0) = k }. There exists
a morphism from the normal bundle to �k , Tλ�(n)/Tλ�k , to the space S2(λ ∩ E0) of
symmetric bilinear forms on λ∩E0, which is defined as follows. To each vector u+Tλ�k ,
we associate the restriction of the bilinear form βλ,u to the subspace λ ∩ E0. In order to
check that this map is well defined, it is enough to show that βλ,u|λ∩E0 = 0 for u ∈ Tλ�k
(recall that the map u 	→ βλ,u is linear), which can be proved using an arc of symplectic
linear maps t 	→ Sp(t) such that Sp(0)λ = λ, Sp′(0)λ = u and Sp(t)(λ∩E0) = λ(t)∩E0

for all t in [−1, 1]. Actually, this morphism is an isomorphism: it is injective since
βλ,u|λ∩E0 �= 0 when u is not in the symplectic orthogonal of λ ∩ E0 which contains λ
and E0 and has dimension 2n − k, it is onto because the source and the target have the
same dimension.

We say that a vector u ∈ Tλ� is positive if βλ,u|λ∩E0 is positive definite whenever
λ ∩ E0 �= {0}. A curve λ(t) ∈ �(n) is positive if its tangent vectors are positive. For a
positive curve λ(t), the set of t ′ for which λ(t) belongs to the train of E0 is discrete. Indeed,
if λ ∈ �k , the fact that βλ,u|λ∩E0 is positive definite implies that λ′(t) is not in the tangent
space over λ of the closure of �p for all 1 ≤ p ≤ k.

In particular, if λ ∈ �1, i.e. dim(λ ∩ E0) = 1, S2(λ ∩ E0) ≈ Tλ�/Tλ�
1 ≈ R.

A vector u in Tλ�(n) is transversal to �1 if and only if βλ,u|λ∩E0 �= 0. This gives a
transversal orientation on the cycle �E0 . Note that for λ ∈ �1, the curves t 	→ eitIλ are
positive. Thus, this orientation agrees with that given in §1.

It is clear how to extend the above definitions to the case of a manifold N equipped
with a symplectic structure, a connected submanifold � of N and a section E from � to
the Grassmann Lagrangian bundle.

4.2. Optical Hamiltonians. A Hamiltonian H : N → R is optical or positively twisted
with respect to a differentiable Lagrangian section E on a regular energy level � if the
flow lines of the lifted Hamiltonian flow �t on �(�) are positive curves; that is, for any
λ ∈ �E(�), the form

(ξ, η)
β	−→ ω

(
ξ,
d

dt

∣∣∣∣
t=0
(�tη)

)
ξ, η ∈ λ ∩ E,

restricted to λ ∩ E, is positive definite.

Examples.
(1) A convex Hamiltonian in the cotangent bundle of a manifold equipped with

its canonical symplectic structures is optical with respect to the vertical section
(see Appendix A).

† This can be shown using a local parametrization of the Lagrangian Grassmann bundle near λ.
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(2) A Riemannian metric with a twisted symplectic structure is optical with respect to
the vertical section (see Remark B.2).

(3) A Riemannian metric with positive curvature is optical with respect to the section
given by the kernel of the Riemannian connection, i.e. the horizontal bundle.

(4) C2-perturbations of the above examples remain optical with respect to the perturbed
sections.

From now on, we consider a regular energy level� of an optical Hamiltonian systemH ,
on which the flow φt induced by the Hamiltonian is complete and such that the data
(E,X) satisfies the bounding condition. The Maslov cocycle ME measures the oriented
intersection with the Maslov cycle �E. Recall from Corollary 2.4 that if (E,X) satisfies
the bounding condition (which occurs if the second derivatives of the Hamiltonian are
uniformly bounded on �), we have that

ME(ν) :=
∫
ηE(X) dµ, (10)

for any invariant probability ν on � and any invariant lift µ of ν to �(�).
To a Lagrangian plane λx in the fiber −1(x) of �(�), we associate the path �λx,T :

[0, T ] → �(�), defined for any t ∈ [0, T ] by

�λx,T (t) = dφt x(λx).

Since H is optical, the set of intersection points of �λx,T with the Maslov cycle �E is
discrete and the curve �λx,T crosses the Maslov cycle always in the positive direction.
As explained in [3, 5, 10], each time t for which �λx,T (t) intersects the Maslov cycle, adds
precisely dim(�λx,T (t) ∩ E) to the intersection number nE(�λx,T ). It follows that

nE(�λx,T ) =
∑

�λx ,T (t)∩E�={0}
dim(�λx,T (t) ∩ E). (11)

From (3) and (11), we get the following.

LEMMA 4.1. Assume that H is E-optical and satisfies the bounding condition for (E,X).
If the invariant measure ν is ergodic, then for ν-almost every point x in � and for every
λx in −1(x), we have that

lim
T→+∞

1

T

∑
�λx,T (t)∩E�={0}

dim(�λx,T (t) ∩ E) = ME(ν).

We now recall the ergodic decomposition theorem (see for instance [14]). Let us
consider for every point x in the ambient space, the probability measure µ(x, T ) which
is equidistributed along the arc of orbit joining x to φT (x). It turns out that for µ-almost
every x, the probabilities µ(x, T ) converge in the weak� topology, to an ergodic invariant
probability measure µx . Furthermore, we get a decomposition of the measure µ in the
measures µx in the following sense: for any measurable function f bounded on the
ambient space, ∫

f dµ =
∫ (∫

f dµx

)
dµ. (12)
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Let us come back now to our particular situation and consider a�t -invariant probability
measure µ on �(�) which is a lift of a φt -invariant probability measure ν on �. It is
clear that the pushforward by the projection of any ergodic component measure µ(x,λx)
of µ, associated to a point (x, λx) is the ergodic component measure of ν associated to
the point x. Applying (12) to the map: (x, λx) 	→ (ηE)x(X(x, λx)) we get that for every
invariant Borel probability measure ν on �

ME(ν) :=
∫

ME(x) dν =
∫

ME(νx) dν. (13)

4.3. Conjugate points. A point x2 ∈ N is said to be E-conjugate to x1 ∈ N if
x2 = φτ (x1) and �τ (E(x1)) ∩ E(x2) �= {0} for some τ > 0. Theorem 4.4 below provides
a simple criterion for the existence of conjugate points.

We will need the following symplectic analogue of Sturm’s theorem on the number of
zeros of solutions of second-order differential equations. This result was proved by Arnold
in [3] for the case of the linear symplectic space and a Hamiltonian given by kinetic energy
plus a potential. However, Arnold’s proof holds in our setting without any significant
changes. Set dim N = 2n.

THEOREM 4.2. Let � be a regular energy level of an optical Hamiltonian and let λx and
λ′
x be two Lagrangian planes in the fiber −1(x) of �(�). If t 	→ dφtx(λx) has n + 1

points of intersection with the Maslov cycle �E (counted with multiplicity) in an interval
[t1, t2], then t 	→ dφtx(λ

′
x) has at least one point of intersection with �E in the same

interval [t1, t2].
Proof. We will essentially reproduce Arnold’s proof of the theorem on zeros in [3].

We begin with a useful definition. The Maslov index of the path � in �(n) starting at a
point λ0, which does not belong to �λ1 and ending at λ1 is, by definition, the intersection
number nλ1(�

′), where �′ is a path close to � starting at λ0 and ending at a point λ′
1 close

to λ1 which lies on the positive domain of the Maslov cycle �λ1 . The positive domain is
defined as the set of all Lagrangian planes λ in a neighborhood of λ1 for which there is a
positive curve which begins at λ1 and ends at λ, intersecting the Maslov cycle �λ1 only
at λ1.

Let �̃(n) be the universal covering of �(n). The homotopy class of a path connecting
λ0 to λ1 in �(n) can be represented by a pair of points (̃λ0, λ̃1) in �̃(n). Suppose that
λ0 �∈ �λ1 and letm(̃λ0, λ̃1) be the Maslov index of such a path. Arnold showed [3, p. 253]
that the Maslov index m(u, v) of pair of points in �̃(n) has the following property:

m(u, v)+m(v,w)−m(u,w) = I (π(u), π(v), π(w)), (14)

where π : �̃(n) → �(n) is the covering projection and the index I (λ0, λ1, λ2) of a triplet
of pairwise transverse Lagrangian planes is defined as the index of the following quadratic
form. Write ζ = ξ + η where ξ ∈ λ0 and η ∈ λ1. Set

qλ0,λ1(ζ ) = ω(ξ, η).

Then I (λ0, λ1, λ2) is the index of qλ0,λ1 restricted to λ2.
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Using the trivialization IE : �(�) → � × �(n), the section E corresponds to the
Lagrangian plane q = 0, which we call α (following Arnold’s notation). As before, let
τ : � ×�(n) → �(n) be the projection onto the second factor.

Set γ (t) = τ ◦ IE ◦ dφtx(λx) and γ ′(t) = τ ◦ IE ◦ dφtx(λ′
x). Consider now a family

depending continuously on t of paths δ(t) from γ (t) to α. We first assume that γ (t1) and
γ (t2) are transverse to α. Let

ν := nE(dφ
t
x(λx)|[t1,t2]).

By (11) we have
ν =

∑
γ (t)∩α �={0}

dim(γ (t) ∩ α). (15)

Consider also a family of paths δ′ connecting γ ′ with α. In the covering space we pick
a point α̃ over α and we cover the paths δ(t) and δ′(t) by paths δ̃ and δ̃′ which end at α̃;
their origins are denoted by γ̃ and γ̃ ′, respectively. Then we have

ν = m(̃α, γ̃ (t2))−m(̃α, γ̃ (t1)). (16)

By (14),

m(̃α, γ̃ (t))+m(γ̃ (t), γ̃ ′(t))−m(̃α, γ̃ ′(t)) = I (α, γ (t), γ ′(t)).

The middle term does not depend on t , since the index is symplectically invariant.
The right-hand side is always between zero and n for all t . Hence, the increment of the
left-hand side between t1 and t2 is bounded in absolute value by n; that is

|(m(̃α, γ̃ (t1))−m(̃α, γ̃ ′(t1)))− (m(̃α, γ̃ (t2))−m(̃α, γ̃ ′(t2)))| ≤ n.

Using (16), we get |ν − ν′| ≤ n and the theorem follows from this and (15).
Now suppose that γ (t1) or γ (t2) are not transverse to α. For ε > 0, define

νε = nE(dφ
t
x(λx)|[t1−ε,t2+ε]).

Since the Hamiltonian is optical, for ε > 0 small enough, γ (t1) and γ (t2) are transverse
to α and νε = ν0 = ν, counting multiplicities. Similarly, ν′

e = ν′
0 = ν. We have proved

above that |νε − ν′
ε| ≤ n. Hence |ν − ν′| ≤ n. �

COROLLARY 4.3. If x0 ∈ � and x1 = φτ (x0) is conjugate to x0, then for any Lagrangian
plane λx0 ∈ −1(x0) there exists 0 ≤ t ≤ τ such that

dφτx0
(λx0) ∩ E(φτ (x0)) �= {0}.

Proof. Consider the path η(t) := dφtx0
(E(x0)) for t ∈ [0, τ ]. Then η has n points of

intersection with �E at t = 0 and at least one point of intersection with �E at t = τ .
Then the curve t 	→ dφtx0

(λx0) has at least one intersection with the Maslov cycle �E on
[0, τ ]. �

THEOREM 4.4. Let ν be an invariant probability measure on a regular energy level of
an optical Hamiltonian (H,�,E) which satisfies the completeness hypothesis and the
bounding condition. Then ME(ν) > 0 if and only if there are E-conjugate points in
the support of ν.
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Proof. If the orbit of any point x in � has no conjugate points then for all T > 0,
nE(�Ex ,T ) = n and consequently, using Lemma 2.1, 0 ≤ nE(�λx,T ) ≤ 9n for any
Lagrangian plane λx in −1(x). Hence ME(x) = 0, for all x ∈ � and thus M(ν) = 0.

Conversely, suppose that there exists x1 in the support of ν such that x2 = φτ (x1) is
conjugate to x1. SinceH is optical, for any small enough flow boxU1 containing x1 and for
every y1 in U1, there exists a conjugate point to y1 on the arc of orbit starting at y1 before
the next return to U1. Choose now an ergodic component measure νx of ν. Using the
Birkhoff ergodic theorem, we know that for νx-almost every y in �,

lim
T→+∞

1

T
θ(y, T ,U1) = νx(U1),

where θ(y, T ,U1) is the time spent in U1 by the arc of orbit with length T starting at y.
Call α the maximal time length of a connected component of an arc of orbit crossing U1,
then

lim inf
T→+∞

1

T
n(y, T ,U1) ≥ νx(U1)

α
,

where n(y, T ,U1) is the number of times the arc of orbit starting at y of length T visitsU1.
Corollary 4.3 implies that in between two conjugate points there must be a time t for which
�λy,T (t) ∩ E is non-trivial. Hence, the last inequality implies that for νx-almost every y in
� and for every λy in −1(y) we have

lim inf
T→+∞

1

T

∑
�λy ,T (t)∩E�={0}

dim(�λy,T (t) ∩ E) ≥ νx(U1)

α
.

Hence, using Lemma 4.1,

ME(νx) ≥ νx(U1)

α
.

Integrating against ν, (13) yields

ME(ν) ≥ ν(U1)

α
> 0. �

COROLLARY 4.5. Let (H,�,E) be an optical Hamiltonian with complete Hamiltonian
flow and satisfying the bounding condition for (E,X). If the Liouville measure of � is
finite, then the asymptotic Maslov index of the Liouville measure is non-zero (M(m̄) > 0)
if and only if � has conjugate points with respect to E.

In fact, the same result holds for any invariant probability ν with supp(ν) = �.
We now give the first application of the asymptotic Maslov index.
Observe that when the energy level is compact and ωn−1 is exact, by Corollary 3.2(i),

the Maslov index of the Liouville measure does not depend on the choice of Lagrangian
section.

PROPOSITION 4.6. Let (M, g) and (N, h) be two closed Riemannian manifolds. Suppose
that there exists a contactomorphism between the unit sphere bundle of M and the unit
sphere bundle of N which conjugates the geodesic flows of M and N . Then MM(m̄) =
MN(m̄).
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Proof. It is well known that the geodesic flow of a Riemannian manifold is optical with
respect to the vertical section which is given by the kernel of the differential of the
projection map from the tangent bundle to the manifold (see §5). By Corollary 3.2
and Remark 2.6, if there exists a contactomorphism between the unit sphere bundle
of M and the unit sphere bundle of N which conjugates the geodesic flows, we have
MM(m̄) = MN(m̄). �

Remark 4.7. In particular, M has conjugate points if and only if N does. This was
proved by Croke and Kleiner [9] under the much weaker assumption of the existence of a
C0-conjugacy between the geodesic flows. This naturally raises the question: is it true that
the asymptotic Maslov index is an invariant of C0-time preserving conjugacy?

We now give our main application of the asymptotic Maslov index.

THEOREM 4.8. Let (H,�,E) be an optical Hamiltonian with� compact andωn−1 exact.
Assume that e : � → �(�) is a continuous semi-conjugacy between the Hamiltonian flow
φt on � and its lift �t to �(�). Then:
(a) (e(�)) has no conjugate points;
(b) e(z) ∩ E(e(z)) = {0} for all z ∈ �.

When e is a section (i.e.  ◦ e = id�), Mañé [13] gave a proof of this theorem in
the case of recurrent geodesic flows and Paternain and Paternain [16] proved it for convex
Hamiltonians.

Remark 4.9. Bialy and Polterovich proved in [6] that if H : N → R is proper†, bounded
from below and optical then H 2n−2(N ,R) = 0 for n ≥ 3 and therefore any closed 2n− 2
form is exact. This implies, in particular, the exactness of the form ωn−1.

Proof of Theorem 4.8. (a) Write f =  ◦ e. Since e is a semi-conjugacy, the measure e∗m̄
is a �t -invariant lift of the pushforward f∗m̄ of the Liouville measure m̄. Using (10), we
have that

ME(f∗m̄) =
∫
ηE(X) d(e∗m̄) =

∫
ηE(X ◦ e) dm̄ = 〈e∗ME,S(m̄)〉 = 0,

where e∗ME is the cohomology class obtained from the map induced by �
e→ �(�) and

the last equality follows from Proposition 3.1. (To see why the third equality holds when
e is only continuous, just view e∗ME as the class of a function � → S1 differentiable
along the flow and given by ϕ ◦ e, where ϕ : �(�) → S1 represents the Maslov class.)
Since supp(f∗m̄) = (e(�)), Theorem 4.4 completes the proof of (a).

(b) Write f =  ◦ e. Suppose that e(z) ∩ E(f (z)) �= {0} for some z ∈ �.
Since H is optical, there exists a small flow box U for φt containing z such that for every
w ∈ U , the path t 	→ �t(e(w)) = e(φt(w)) crosses the Maslov cycle at least once.
Since almost every point for the Liouville measure is recurrent we can choose a point
w ∈ U such that its orbit under φt returns infinitely many times to U . Therefore, for T
large enough, the path [0, T ] � t 	→ �t(e(w)) intersects the Maslov cycle at least n + 1
times. It follows from Theorem 4.2 that there must be conjugate points along the orbit

† In particular with compact energy levels.
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of f (w). This contradicts (a). (Alternatively, instead of Theorem 4.2, we could have used
Lemma 2.1 by taking T large enough so that the path [0, T ] � t 	→ �t(e(w)) intersects
the Maslov cycle at least 8n+ 1 times.) �

When the energy level is non-compact, the conclusion of Theorem 4.8 does not hold.
An example is given by the geodesic flow of the paraboloid of revolution (cf. Paternain
and Paternain [16]). In this case, e = 〈X〉 ⊕ 〈Y 〉 is an invariant Lagrangian section, where
X = (∂/∂t)ψt is the vector field of the geodesic flow and Y = (∂/∂t) dRt , where Rt
is the flow on the paraboloid given by rotation isometries. However, this example has
infinite Liouville measure. In Appendix B, we give a more elaborate example that shows
that the compactness hypothesis in Theorem 4.8 cannot be replaced just by finite Liouville
measure.

4.4. Anosov flows. A complete flow φt on a manifold V is Anosov if there exists a
continuous splitting of the tangent space over each point x in V :

T Vx = Esx ⊕ Eux ⊕ Yx,

(where Y stands for the direction of the vector field induced by φt ) such that, for
some Riemannian metric on V , dφt |Es (respectively dφt |Eu ) is uniformly exponentially
contracting as t goes to +∞ (respectively −∞).

Anosov flows possess a very rich and well-understood dynamics and, consequently, it
is important to know whether the flow of a Hamiltonian which is complete on a regular
energy level can be Anosov.

LEMMA 4.10. Let � be a regular energy level with complete Hamiltonian flow φt and
finite Liouville measure such that the flow (�, φt ) is Anosov. Then, for all x in �, the
spaces Ecsx := Esx ⊕ Yx and Ecu := Eux ⊕ Yx are Lagrangian planes.

The proof is already standard in slightly different contexts. We give it here for the sake of
completeness and to make it fit with our hypotheses.

Proof. Since the sum of the dimensions of Ecs and Ecu is 2n, it is enough to prove that
both spaces are isotropic. Actually, from the definition of the Hamiltonian vector field (7),
ω(Yx, ·) ≡ 0 on � = H−1{e}, so we only have to prove that Esx and Eux are isotropic.

Choose a neighborhood U of the point x in � whose closure Ū is compact.
Recall that since the Liouville measure is finite, then m̄-almost every point is recurrent.
Thus, it is possible to find a recurrent point z in U . We consider a sequence of times (tn)
such that tn goes to +∞ with n and φtn(z) is in U . Now choose two vectors v1 and v2

in Esz . The quantity ωφtn (z)(dφtnz(v1), dφ
tn
z(v2)) decreases in norm at least exponentially

at n goes to +∞ (since ω is bounded on Ū ). On the other hand, the same quantity is
independent of n since φt preserves ω. Thus ωz(v1, v2) = 0. A similar argument works
for Euz . Since recurrent points are dense, we get that Esx and Eux are isotropic for all x
in �. �

Lemma 4.10 shows that a prerequisite to find a flow φt of a Hamiltonian, complete
and Anosov on a regular energy level �, is to find a continuous dφt -invariant Lagrangian



1436 G. Contreras et al

section e. Theorem 4.8 shows some clear obstructions to the existence of such sections
when H is optical.

COROLLARY 4.11. Let (�,H,E) be an optical Hamiltonian with � compact and ωn−1

exact and such that (�, φt ) is Anosov. Then Es and Eu are transversal to E and � has no
conjugate points.

Corollary 4.11 was proved by Klingenberg [12] for geodesic flows on compact
manifolds, by Mañé [13] for geodesic flows whose non-wandering set is the whole unit
sphere bundle and by Paternain and Paternain [16] for convex Hamiltonians.

Acknowledgements. G. Contreras was partially supported by CNPq-Brazil. G. Contreras
and R. Iturriaga were partially supported by Conacyt-México, grant 28489-E. G. P.
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A. Appendix. Convex Hamiltonians
An important special class of optical Hamiltonians is given by convex Hamiltonians on the
cotangent bundle T ∗M .

Let M be a n-dimensional, connected manifold without boundary, N = T �M its
cotangent bundle and π : N → M the standard projection. The cotangent bundle is
equipped with a canonical 1-form, called the Liouville 1-form, defined by:

�p(ζ ) := p(dπ(ζ )),

for all p ∈ T ∗M and ζ ∈ TpT
∗M . The 2-form ω = d� is a symplectic form† on N .

The Lagrangian Grassmann bundle�(N ) is also equipped with a canonical smooth section
V = ker dπ , called the vertical section.

A Hamiltonian H : T ∗M → R is convex if for all q ∈ M , p ∈ T ∗
q M , the Hessian

matrix (∂2H/∂pi∂pj )(q, p) (calculated with respect to linear coordinates on T ∗
q M) is

positive definite. Convex Hamiltonian systems play a central role in physics and have
been extensively studied.

LEMMA A.1. [5]. A convex Hamiltonian is optical with respect to the vertical section V.

Proof. Locally, (T ∗M,ω,V) can be identified with (R2n, dp ∧ dq, q = 0). We consider
a Lagrangian plane in the train of the plane q = 0 and in order to fix the notation,
we assume that dim(λ ∩ V) = k (note that it is not restrictive to also assume that
λ ∩ [p = 0] = {0}). As we have already seen in §1, λ written in coordinates is a
graph: λ = { q = Ap |p ∈ R

n }, where A is a (symmetric) linear map, A : R
n → R

n.
Then λ ∩ V = { (q, p) | q = 0, p ∈ kerA }. Consider now a curve t 	→ λ(t) passing
through λ at t = 0 and write λ(t) = S(t)λ with

S(t) =
[
a(t) b(t)

c(t) d(t)

]
.

† In this situation, ωn−1 is exact.
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The symmetric 2-form βλ,λ′(0)|λ∩V reads

βλ,λ′(0)|λ∩V(ξ, ξ) = pᵀḃ(0)p,

where p ∈ kerA is the unique vector in Rn such that ξ = (0, p).
The Hamiltonian vector field (7) is given by X = (Hp,−Hq) = (q̇, ṗ). From the

equation (d/dt) dψt = DX dψt , we get that the orbit of the Lagrangian plane λ under the
lifted Hamiltonian flow is a curve t 	→ S(t)λ passing through λ at t = 0 such that

S′(t) = DX =
[
Hpq Hpp

−Hqq −Hqp
]
.

In particular, ḃ(0) = Hpp is positive definite. �

Remark A.2. Note that our definition of V-conjugate points coincides with the usual
definition of conjugate points for convex Hamiltonians and also with the more standard
definition that uses Jacobi fields.

In the case of convex Hamiltonians, Theorem 4.8 can be improved as follows.

COROLLARY A.3. Assume that φt is a convex Hamiltonian flow on a regular energy level
� ⊂ T ∗M with � compact. If there is a continuous �t -invariant Lagrangian section
e : � → �(�), then:
(a) � has no conjugate points;
(b) e(z) ∩ V(z) = {0} for all z ∈ �;
(c) π(�) = M .

The fact that (c) is a necessary condition for the existence of an Anosov flow on energy
levels was first observed in [16].

Proof. We only have to prove (c). We have to show that the map π : � → M is a
submersion since, in such a case, π(�) is open and closed on M (which is connected) and
then equal toM . Note that the existence of a continuous dφt -invariant Lagrangian section e
implies the existence of a continuous dφt -invariant Lagrangian section F such that for all
x in �, Fx ⊂ T�x . Indeed, this section F is defined by Fx = e(x) ∩ T�x ⊕ Y (x) where
Y (x) is the direction in T�x tangent to the flow φt . Let x be a point in � where π is not a
submersion. Then Vx0 ⊂ T�x0 and, consequently,

dim Vx0 ∩ Fx0 ≥ 1,

a contradiction to (b). �

In the previous corollary, the proof of (a) is even simpler than that in Theorem 4.8:
observe that e∗m̄ is an invariant lift of m̄ whose support is disjoint from the
section J e. By the invariance of the asymptotic Maslov index with respect to the section
(cf. Corollary 3.2.(ii) ), MV(m̄) = MJ e(m̄) = 0. Now use Theorem 4.4.

B. Appendix
The aim of this appendix is to prove the following result.
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THEOREM B.1. There exists a convex Hamiltonian on a surface with a regular energy
level that satisfies the following properties:
(a) the flow is complete on this energy level;
(b) the Liouville measure of the energy level is finite;
(c) there exists a smooth invariant Lagrangian section;
(d) every orbit in the energy level has conjugate points.

We know from Theorem 4.8 that if a compact energy level of a convex Hamiltonian
admits a continuous invariant Lagrangian section, then there are no conjugate points in the
level. On the other hand, it is also known (see [16]) that this result extends to a special
class of Hamiltonians (namely the symmetric Hamiltonians) when the energy level is not
compact but has a finite Liouville measure. Theorem B.1 shows that the symmetry in the
Hamiltonian cannot be removed.

B.1. Magnetic flows in general. Let Mn be a closed n-dimensional manifold endowed
with a C∞ Riemannian metric g, and let π : TM → M be the canonical projection.
The symplectic form on TM obtained by pulling back the canonical symplectic form of
T ∗M via the Riemannian metric is denoted by ω0. Consider a closed 2-form � of M and
the new symplectic form ω1 defined by

ω1
def= ω0 + π∗�.

The 2-form ω1 is a symplectic form. We say that it defines a twisted symplectic structure.
Let E : TM → R be given by

E(x, v) = 1
2gx(v, v).

The Hamiltonian flow of E with respect to ω1 models the motion of a particle of unit mass
and charge under the effect of a magnetic field, whose Lorentz force Y : TM → TM is
the bundle map determined by

�x(u, v) = gx(Yx(u), v),

for all x ∈ M and all u and v in TxM . In other words, the curve

t 	→ (γ (t), γ̇ (t)) ∈ TM
is an orbit of the Hamiltonian flow iff

Dγ̇

dt
= Yγ (γ̇ ), (17)

where D stands for the covariant derivative of g. The Hamiltonian flow of E with respect
to ω1 leaves the unit sphere bundle SM = E−1( 1

2 ) invariant and, therefore, it defines a
flow

φt : SM → SM,

that we call the magnetic flow of the pair (g,�). The magnetic flow of the pair (g, 0) is
the geodesic flow of the Riemannian metric g. A curve γ that satisfies (17) will be called
a magnetic geodesic.
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Remark B.2. The magnetic flow is locally conjugate to the Lagrangian flow of the
Lagrangian L(x, v) = 1

2 〈v, v〉x + ηx(v), where ηx(v) is a local 1-form such that dη = �.
The conjugacy preserves the vertical section. This Lagrangian flow, in turn, is conjugate
to the Hamiltonian flow of the convex HamiltonianH(x, p) = 1

2‖p − ηx‖2
x , in T ∗M with

the canonical symplectic structure. In particular, the twisted geodesic flow is optical with
respect to the vertical section. A computation also shows that the Liouville measure on a
regular energy level of the twisted geodesic flow coincides with the Liouville measure on
a regular energy level of the geodesic flow itself.

B.2. Magnetic flows for constant fields on rotationally symmetric surfaces. Let M be
an oriented surface. Given (x, v) ∈ SM , let iv be the unique vector in TxM such that
{v, iv} is a positively oriented orthonormal basis of TxM . The area form � is given by

�x(u, v) = gx(iu, v),

hence the Lorentz force Y is given by

Yx(v) = iv.

Define the λ-magnetic flow as the magnetic flow of (g, λ�). It follows from (17) that
t 	→ γ (t) is a λ-magnetic geodesic iff

Dγ̇

dt
= λ iγ̇ .

In other words, γ is a λ-magnetic geodesic iff γ has constant geodesic curvature λ.
Suppose now that M = R × S1 is a rotationally symmetric surface, i.e. if (s, ϕ) are the

obvious coordinates in M , then the Riemannian metric of M in these coordinates has the
expression

g = ds2 + r(s)2 dϕ2,

where r : R → (0,∞) is a smooth function.
We orient S1 counterclockwise and we giveM the product orientation. This means that{

∂

∂s
,
∂

∂ϕ

}
is a positively oriented basis of M and, hence, the area form� is given by

� = r ds ∧ dϕ.

Define

R(s) :=
∫ s

0
r(u) du.

LEMMA B.3. A curve t 	→ (s(t), ϕ(t)) is a λ-magnetic geodesic iff

s̈ = rϕ̇(r ′ϕ̇ − λ)

d

dt
(r2ϕ̇ − λR) = 0,

where a dot indicates a derivative with respect to t and a prime indicates a derivative with
respect to the s-parameter. In particular the quantity r(s)2ϕ̇ − λR(s) is a first integral of
the flow called the Clairaut integral.
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Proof. Let us consider the Lagrangian

L(s, ϕ, ṡ, ϕ̇) = 1
2 (ṡ

2 + r(s)2ϕ̇2)− λR(s)ϕ̇.

Note that
d(R dϕ) = r ds ∧ dϕ = �.

Hence, the extremals of L are the λ-magnetic geodesics. The lemma follows from a simple
computation derived from the Euler–Lagrange equations:

d

dt

(
∂L

∂ṡ

)
− ∂L

∂s
= 0

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
= 0. �

LEMMA B.4. The parallel t 	→ (s0, at) (a �= 0) is a unit speed λ-magnetic geodesic iff

|a−1| = r(s0)

r ′(s0)
r(s0)

= ±λ,

where the positive sign holds if a > 0 and the negative signs holds if a < 0.

Proof. The parallel has unit speed iff r2(s0) a
2 = 1. Using Lemma B.3 we see that the

parallel is a λ-magnetic geodesic iff r ′(s0)a = λ. �

Let θ ∈ [0, π] be the angle that a unit speed λ-magnetic geodesic makes with the
parallel t 	→ (s, t/r(s)) at the point (s, ϕ). We have

r cos θ = r2ϕ̇,

and, therefore, the Clairaut integral from Lemma B.3 reads

r cos θ − λR = c, (18)

where c is a constant that depends only on the λ-magnetic geodesic.
Define

f+,λ(s) := r(s)− λR(s),

f−,λ(s) := −r(s)− λR(s).

LEMMA B.5. Suppose that there exists a λ-magnetic geodesic for which θ = 0 at the
values r(s1) and r(s2) with s1 < s2. Then there exists s0 ∈ (s1, s2) on which f+,λ has a
local maximum and such that the parallel t 	→ (s0, t/r(s0)) is a λ-magnetic geodesic.

Similarly, suppose that there exists a λ-magnetic geodesic for which θ = π at the values
r(s1) and r(s2) with s1 < s2. Then there exists s0 ∈ (s1, s2) on which f−,λ has a local
minimum and such that the parallel t 	→ (s0,−t/r(s0)) is a λ-magnetic geodesic.

Proof. We only give a proof of the first statement here (the proof of the second one is
completely analogous).

If, for all s ∈ (s1, s2), the λ-magnetic geodesic is always tangent to the parallel at s, the
parallel is an integral curve and the lemma is proved. If not, there exists s3 ∈ (s1, s2) such
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that the angle θ3 at which the λ-magnetic geodesic crosses the parallel at s3 is not zero and
then cos θ3 < 1.

Since r(s3) > 0, using the Clairaut integral (Lemma B.3), we get

f+,λ(s3) > f+,λ(s1) = f+,λ(s2).

Consequently, there exists s0 ∈ (s1, s2) such that f+,λ presents a local maximum at s0.
However,

f ′+,λ(s) = r ′(s)− λ r(s) = r(s)

(
r ′(s)
r(s)

− λ

)
.

Hence f ′+,λ(s0) = 0 iff r ′(s0)/r(s0) = λ. By Lemma B.4 this implies that the parallel
t 	→ (s0, t/r(s0)) is a λ-magnetic geodesic. �

Proof of Theorem B.1. The example that achieves the properties described in Theorem B.1
is chosen among λ-magnetic flows associated to rotationally symmetric surfaces.

Let us first construct the rotationally symmetric surface. Consider a smooth function
u : R → R with the following properties:
(1) u is odd, i.e. u(s) = −u(−s) for all s ∈ R;
(2) for all s ∈ R, −1 < u(s) < 1;
(3) for all s > 3, u(s) = −2/s.

Now let r(s) : R → (0,∞) be defined by

r ′(s)
r(s)

= u(s),

r(0) = r0 > 0.

In other words,

r(s) = r0 exp

( ∫ s

0
u(t) dt

)
.

Observe that r(s) is an even function of s and that for s > 3, we have

r(s) = r(3)9/s2. (19)

Let M = R × S1 be the rotationally symmetric surface determined by such a function
s 	→ r(s). The estimate (19) implies that the area of M is finite:∫

M

� = 2π
∫ +∞

−∞
r(s) ds = 4π R(+∞).

Consequently (using Remark B.2), the Liouville measure of the λ-magnetic flow on the
unit tangent bundle SM is also finite. This ensures Theorem B.1(b).

We now consider the λ-magnetic flow on SM which corresponds to λ = 1 and prove
(a), (c) and (d) for this particular flow.

Since the vector field generated by the circle action is tangent to the energy levels, above
each point in SM the vector space generated by the magnetic vector field and the vector
field generated by the circle action is isotropic. Since u(s) ∈ (−1, 1), Lemma B.4 ensures
that no parallel is a magnetic geodesic. In other words, no magnetic geodesic is an orbit of
the circle action and, consequently, we have constructed an invariant Lagrangian section E



1442 G. Contreras et al

FIGURE B.1. The figure on the left-hand side shows a typical geodesic while the figure on the right-hand side
shows a typical magnetic geodesic that ‘curls’.

spanned by the magnetic vector field and the lift of the circle action that generates the
symmetry. This ensures item (c) of Theorem B.1(c).

Observe that the Clairaut integral C : SM → R and the Lagrangian section E satisfy

E(x, v) = ker d(x,v)C

for all points (x, v) in SM . In particular, C does not have critical points†.
Note that

f−,1(s) ≤ C(s, ϕ, ṡ, ϕ̇) ≤ f+,1(s),
for all s ∈ R and that f−,1 and f+,1 are strictly decreasing functions which have the same
finite limit when s → +∞ (respectively when s → −∞). Hence the projection to M of
any level set of C has to be contained in a compact set. Therefore, this level set is compact
and, hence, its connected components are finitely many tori. In conclusion, the energy level
SM is foliated by tori on which the Clairaut integral is constant. This implies in particular
that the magnetic vector field is complete: Theorem B.1(a).

Actually, it is possible to give a better visualization of the dynamical behavior of the
magnetic flow. The connected components of the level sets of the Clairaut integral C are
2-tori that project on M onto strips bounded by two parallels. The magnetic geodesics on
these tori oscillate between these two parallels. The difference with the case of the geodesic
flow of a surface of revolution comes from the fact that in our example a parallel cannot
be a magnetic geodesic. It follows from Lemma B.5 that a magnetic geodesic makes an
angle θ = 0 with the bottom parallel and an angle θ = π with the top one. In other words
it ‘curls’ as in Figure B.1.

Let us now prove Theorem B.1(d). More precisely let us show that every magnetic
geodesic has conjugate points.

Consider a magnetic geodesic. The invariant section E (spanned by the magnetic
vector field and the vector field induced by the circle action) intersects non-trivially the

† The image by the derivative dC of a tangent vector to a meridian is non-zero.
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vertical fibers above the points of the magnetic geodesic at which the latter is tangent to
the parallels. Consequently, by Lemma 2.1 the magnetic geodesic has conjugate points. �
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