
A GENERIC PROPERTY OF FAMILIES OF LAGRANGIAN SYSTEMS

PATRICK BERNARD AND GONZALO CONTRERAS

Abstract. We prove that a generic lagrangian has finitely many minimizing measures

for every cohomology class.

1. Introduction

Let M be a compact boundaryless smooth manifold.

Let T be either the group (R/Z,+) or the trivial group ({0},+).

A Tonelli Lagrangian is a C2 function L : T × TM → R such that

• The restriction to each fiber of T × TM → T × M is a convex function.
• It is fiberwise superlinear:

lim
|θ|→+∞

L(t, θ)/|θ| = +∞, (t, θ) ∈ T × TM.

• The Euler-Lagrange equation

d
dt

Lv = Lx

defines a complete flow ϕ : R × (T × TM) −→ T × TM .

We say that a Tonelli Lagrangian L is strong Tonelli if L + u is a Tonelli Lagrangian for

each u ∈ C∞(T × M, R). When T = {0} we say that the lagrangian is autonomous.

Let P(L) be the set of Borel probability measures on T × TM which are invariant under

the Euler-Lagrange flow ϕ. The action functional AL : P(L) → R ∪ {+∞} is defined as

AL(µ) := 〈L, µ〉 :=

∫

T×TM

L dµ.

The functional AL is lower semi-continuous and the minimizers of AL on P(L) are called

minimizing measures. The ergodic components of a minimizing measure are also minimizing,

and they are mutually singular, so that the set M(L) of minimizing measures is a simplex

whose extremal points are the ergodic minimizing measures.

In general, the simplex M(L) may be of infinite dimension. The goal of the present paper

is to prove that this is a very exceptional phenomenon. The first results in that direction

were obtained by Mañé in [4]. His paper has been very influential to our work.

We say that a property is generic in the sense of Mañé if, for each strong Tonelli La-

grangian L, there exists a residual subset O ⊂ C∞(T × M, R) such that the property holds
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for all the Lagrangians L−u, u ∈ O. A set is called residual if it is a countable intersection

of open and dense sets. We recall which topology is used on C∞(T × M, R). Denoting by

‖u‖k the Ck-norm of a function u : T × M −→ R, define

‖u‖∞ :=
∑

k∈N

arctan(‖u‖k)

2k
.

Note that ‖.‖∞ is not a norm. Endow the space C∞(T × M, R) with the translation-

invariant metric ‖u − v‖∞. This metric is complete, hence the Baire property holds: any

residual subset of C∞(T × M, R) is dense.

Theorem 1. Let A be a finite dimensional convex family of strong Tonelli Lagrangians.

Then there exists a residual subset O of C∞(T × M, R) such that,

u ∈ O, L ∈ A =⇒ dim M(L − u) 6 dim A.

In other words, there exist at most 1 + dim A ergodic minimizing measures of L − u.

The main result of Mañé in [4] is that having a unique minimizing measure is a generic

property. This corresponds to the case where A is a point in our statement. Our general-

ization of Mañé’s result is motivated by the following construction due to John Mather:

We can view a 1-form on M as a function on TM which is linear on the fibers. If
λ is closed, the Euler-Lagrange equation of the Lagrangian L − λ is the same as that

of L. However, the minimizing measures of L − λ, are not the same as the minimizing

measures of L. Mather proves in [5] that the set M(L − λ) of minimizing measures of the

lagrangian L − λ depends only on the cohomology class c of λ. If c ∈ H 1(M, R) we write

M(L − c) := M(L − λ), where λ is a closed form of cohomology c.

It turns out that important applications of Mather theory, such as the existence of orbits

wandering in phase space, require understanding not only of the set M(L) of minimizing

measures for a fixed or generic cohomology classes but of the set of all Mather minimizing

measures for every c ∈ H1(M,L). The following corollaries are crucial for these applications.

Corollary 2. The following property is generic in the sense of Mañé:

For all c ∈ H1(M, R), there are at most 1 + dim H1(M, R) ergodic minimizing measures

of L − c.

We say that a property is of infinite codimension if, for each finite dimensional convex

family A of strong Tonelli Lagrangians, there exists a residual subset O in C∞(T × M, R)

such that none of the Lagrangians L − u, L ∈ A, u ∈ O satisfy the property.
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Corollary 3. The following property is of infinite codimension:

There exists c ∈ H1(M, R), such that L − c has infinitely many ergodic minimizing

measures.

Another important issue concerning variational methods for Arnold diffusion questions is

the total disconnectedness of the quotient Aubry set. John Mather proves in [7, § 3] that the

quotient Aubry set A of any Tonelli lagrangian on T × TM with T = R/Z and dimM 6 2

(or with T = {0} and dimM 6 3) is totally disconnected. See [7] for its definition.

The elements of the quotient Aubry set are called static classes. They are disjoint subsets

of T × TM and each static class supports at least one ergodic minimizing measure. We then
get

Corollary 4. The following property is generic in the sense of Mañé:

For all c ∈ H1(M, R) the quotient Aubry set Ac of L − c has at most 1 + dim H1(M, R)

elements.

2. Abstract Results

Assume that we are given

• Three topological vector spaces E, F , G.

• A continuous linear map π : F → G.

• A bilinear pairing 〈u, ν〉 : E × G → R.

• Two metrizable convex compact subsets H ⊂ F and K ⊂ G such that π(H) ⊂ K.

Suppose that

(i) The map

E × K 3 (u, ν) 7−→ 〈u, ν〉

is continuous.

We will also denote 〈u, π(µ)〉 by 〈u, µ〉 when µ ∈ H. Observe that each element

u ∈ E gives rise to a linear functional on F

F 3 µ 7−→ 〈u, µ〉

which is continuous on H. We shall denote by H∗ the set of affine and continuous

functions on H and use the same symbol u for an element of E and for the element

u 7−→ 〈u, µ〉 of H∗ which is associated to it.

(ii) The compact K is separated by E. This means that, if η and ν are two different

points of K, then there exists a point u in E such that 〈u, η − ν〉 6= 0.

Note that the topology on K is then the weak topology associated to E. A

sequence ηn of elements of K converges to η if and only if we have 〈u, ηn〉 −→ 〈u, η〉

for each u ∈ E. We shall, for notational conveniences, fix once and for all a metric

d on K.
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(iii) E is a Frechet space. It means that E is a topological vector space whose topology

is defined by a translation-invariant metric, and that E is complete for this metric.

Note then that E has the Baire property. We say that a subset is residual if it is

a countable intersection of open and dense sets. The Baire property says that any

residual subset of E is dense.

Given L ∈ H∗ denote by

MH(L) := arg min
H

L

the set of points µ ∈ H which minimize L|H , and by MK(L) the image π(MH(L)). These

are compact convex subsets of H and K.

Our main abstract result is:

Theorem 5. For every finite dimensional affine subspace A of H ∗, there exists a residual

subset O(A) ⊂ E such that, for all u ∈ O(A) and all L ∈ A, we have

(1) dimMK(L − u) ≤ dim A.

Proof: We define the ε-neighborhood Vε of a subset V of K as the union of all the open

balls in K which have radius ε and are centered in V . Given a subset D ⊂ A, a positive

number ε, and a positive integer k, denote by O(D, ε, k) ⊂ E the set of points u ∈ E such

that, for each L ∈ D, the convex set MK(L−u) is contained in the ε-neighborhood of some

k-dimensional convex subset of K.

We shall prove that the theorem holds with

O(A) =
⋂

ε>0

O(A, ε,dim A).

If u belongs to O(A), then (1) holds for every L ∈ A. Otherwise, for some L ∈ A, the convex

set MK(L− u) would contain a ball of dimension dimA + 1, and, if ε is small enough, such

a ball is not contained in the ε-neighborhood of any convex set of dimension dimA.

So we have to prove that O(A) is residual. In view of the Baire property, it is enough

to check that, for any compact subset D ⊂ A and any positive ε, the set O(D, ε,dim A) is

open and dense. We shall prove in 2.1 that it is open, and in 2.2 that it is dense.

�

2.1. Open.

We prove that, for any k ∈ Z
+, ε > 0 and any compact D ⊂ A, the set O(D, ε, k) ⊂ E

is open. We need a Lemma.

Lemma 6. The set-valued map (L, u) 7−→ MH(L− u) is upper semi-continuous on A×E.

This means that for any open subset U of H, the set

{(L, u) ∈ A × E : MH(L − u) ⊂ U} ⊂ A × E

is open in A × E. Consequently, the set-valued map (L, u) 7−→ MK(L − u) is also upper

semi-continuous.
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Proof: This is a standard consequence of the continuity of the map

A × E × H 3 (L, u, µ) 7−→ (L − u)(µ) = L(µ) − 〈u, µ〉.

�

Now let u0 be a point of O(D, ε, k). For each L ∈ D, there exists a k-dimensional convex

set V ⊂ K such that MK(L − u0) ⊂ Vε. In other words, the open sets of the form

{(L, u) ∈ D × E : MH(L − u) ⊂ Vε} ⊂ D × E,

where V is some k-dimensional convex subset of K, cover the compact set D × {u0}. So

there exists a finite subcovering of D × {u0} by open sets of the form Ωi × Ui, where Ωi is

an open set in A and Ui ⊂ O(Ωi, ε, k) is an open set in E containing u0. We conclude that

the open set ∩Ui is contained in O(D, ε, k), and contains u0. This ends the proof.

�

2.2. Dense.

We prove the density of O(A, ε,dim A) in E for ε > 0. Let w be a point in E. We want

to prove that w is in the closure of O(A, ε,dim A).

Lemma 7. There exists an integer m and a continuous map

Tm = (w1, . . . , wm) : K −→ R
m,

with wi ∈ E such that

(2) ∀ x ∈ R
m diamT−1

m (x) < ε,

where the diameter is taken for the distance d on K.

Proof: In K × K, to each element w ∈ E we associate the open set

Uw = { (η, µ) ∈ K × K : 〈w, η − µ〉 6= 0 }.

Since E separates K, the open sets Uw, w ∈ E cover the complement of the diagonal in

K×K. Since this complement is open in the separable metrizable set K×K, we can extract

a countable subcovering from this covering. So we have a sequence Uwk
, with wk ∈ E, which

covers the complement of the diagonal in K × K. This amounts to say that the sequence

wk separates K. Defining Tm = (w1, . . . , wm), we have to prove that (2) holds for m large

enough. Otherwise, we would have two sequences ηm and µm in K such that

Tm(µm) = Tm(ηm) and d(µm, ηm) > ε.

By extracting a subsequence, we can assume that the sequences µm and ηm have different

limits µ and η, which satisfy d(η, µ) > ε. Take m large enough, so that Tm(η) 6= Tm(µ).

Such a value of m exists because the linear forms wk separate K. We have that

Tm(µk) = Tm(ηk) for k ≥ m.

Hence at the limit Tm(η) = Tm(µ). This is a contradiction.

�
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Define the function Fm : A × R
m → R ∪ {+∞} as

Fm(L, x) := min
µ∈H

Tm◦π(µ)=x

(L − w)(µ),

when x ∈ Tm(π(H)) and Fm(L, x) = +∞ if x ∈ R
m\Tm(π(H)). For y = (y1, . . . , ym) ∈ R

m,

let

Mm(L, y) := arg min
x∈Rm

[

Fm(L, x) − y · x
]

⊂ R
m

be the set of points which minimize the function x 7−→ Fm(L, x) − y · x. We have that

MK

(

L − w − y1w1 − · · · − ymwm

)

⊂ T−1
m (Mm(L, y)).

Let
Om(A,dimA) := { y ∈ R

m | ∀ L ∈ A : dimMm(L, y) 6 dimA }.

From Lemma 7 it follows that

y ∈ Om(A,dim A) =⇒ w + y1w1 + · · · + ymwm ∈ O(A, ε,dim A).

Therefore, in order to prove that w is in the closure of O(A, ε,dim A), it is enough to prove

that 0 is in the closure of Om(A,dim A), which follows from the next proposition.

Proposition 8. The set Om(A, dim A) is dense in R
m.

Proof: Consider the Legendre transform of Fm with respect to the second variable,

Gm(L, y) = max
x∈Rm

y · x − Fm(L, x)

= max
µ∈H

〈w + y1w1 + · · · + ymwm, µ〉 − L(µ).

It follows from this second expression that the function Gm is convex and finite-valued,

hence continuous on A × R
m.

Consider the set Σ̃ ⊂ A × R
m of points (L, y) such that dim∂Gm(L, y) ≥ dimA + 1,

where ∂Gm is the subdifferential of Gm. It is known, see the appendix, that this set has

Hausdorff dimension at most

(m + dimA) − (dimA + 1) = m − 1.

Consequently, the projection Σ of the set Σ̃ on the second factor R
m also has Hausdorff

dimension at most m − 1. Therefore, the complement of Σ is dense in R
m. So it is enough

to prove that

y /∈ Σ =⇒ ∀ L ∈ A : dimMm(L, y) ≤ dimA.

Since we know by definition of Σ that dim ∂Gm(L, y) ≤ dimA, it is enough to observe that

dimMm(L, y) ≤ dim∂Gm(L, y).

The last inequality follows from the fact that the set Mm(L, y) is the subdifferential of the

convex function
R

m 3 z 7−→ Gm(L, z)

at the point y.



7

�

3. Application to Lagrangian dynamics

Let C be the set of continuous functions f : T × TM → R with linear growth, i.e.

‖f‖` := sup
(t,θ)∈T×TM

|f(t, θ)|

1 + |θ|
< +∞,

endowed with the norm ‖·‖`.

We apply Theorem 5 to the following setting:

• F = C∗ is the vector space of continuous linear functionals µ : C → R provided

with the weak-? topology. Recall that

lim
n

µn = µ ⇐⇒ lim
n

µn(f) = µ(f), ∀ f ∈ C.

• E = C∞(T × M, R) provided with the C∞ topology.

• G is the vector space of finite Borel signed measures on TM , or equivalently the set

of continuous linear forms on C0(T × M, R), provided with the weak-? topology.

• The pairing E × G → R is given by integration:

〈u, ν〉 =

∫

T×M

u dν.

• The continuous linear map π : F −→ G is induced by the projection T × TM −→

T × M .
• The compact K ⊂ G is the set of Borel probability measures on T × M , provided

with the weak-? topology. Observe that K is separated by E.

• The compact Hn ⊂ F is the set of holonomic probability measures which are sup-

ported on

Bn := {(t, θ) ∈ T × TM | |θ| 6 n }.

Holonomic probabilities are defined as follows: Given a C 1 curve γ : R → M of period

T ∈ N define the element µγ of F by

〈f, µγ〉 =
1

T

∫ T

0
f(s, γ(s), γ̇(s)) ds

for each f ∈ C. Let

Γ := { µγ | γ ∈ C1(R,M) is periodic of integral period } ⊂ F.

The set H of holonomic probabilities is the closure of Γ in F . One can see that H is convex

(cf. Mañé [4, prop. 1.1(a)]). The elements µ of H satisfy 〈1, µ〉 = 1 therefore we have

π(H) ⊂ K.

Note that each Tonelli Lagrangian L gives rise to an element of H ∗
n.

Let M(L) be the set of minimizing measures for L and let suppM(L) be the union of

their supports. Recalling that we have defined MHn
(L) as the set of measures µ ∈ Hn which

minimize the action
∫

Ldµ on Hn, we have:
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Lemma 9. If L is a Tonelli lagrangian then there exists n ∈ N such that

dim π(MHn
(L)) = dim M(L).

Proof:

Birkhoff theorem implies that M(L) ⊂ H (cf. Mañé [4, prop. 1.1.(b)]). In [5, Prop. 4,

p. 185] Mather proves that suppM(L) is compact, therefore M(L) ⊂ Hn for some n ∈ N.

In [4, §1] Mañé proves that minimizing measures are also all the minimizers of the action

functional AL(µ) =
∫

L dµ on the set of holonomic measures, therefore M(L) = MHn
(L)

for some n ∈ N.

In [5, Th. 2, p. 186] Mather proves that the restriction suppM(L) → M of the projection

TM → M is injective. Therefore the linear map π : M(L) → G is injective, so that

dimπ(MHn
(L)) = dimπ(M(L)) = dimM(L). �

Proof of Theorem 1.

Given n ∈ N apply Theorem 5 and obtain a residual subset On(A) ⊂ E such that

L ∈ A, u ∈ On(A) =⇒ dimπ(MHn
(L − u)) 6 dimA.

Let O(A) = ∩nOn(A). By the Baire property O(A) is residual. We have that

L ∈ A, u ∈ O(A), n ∈ N =⇒ dimπ(MHn
(L − u)) 6 dimA.

Then by Lemma 9, dimM(L − u) 6 dimA for all L ∈ A and all u ∈ O(A). �

Appendix A. Convex Functions

Given a convex function f : R
n → R and x ∈ R

n, define its subdifferential as

∂f(x) := { ` : R
n → R linear | f(y) > f(x) + `(y − x) , ∀y ∈ R

n }.

Then the sets ∂f(x) ⊂ R
n are convex. If k ∈ N, let

Σk(f) := {x ∈ R
n | dim∂f(x) > k }.

The following result is standard.

Proposition 10. If f : R
n → R is a convex function then for all 0 6 k 6 n the Hausdorff

dimension HD(Σk(f)) 6 n − k.

We recall here an elegant proof due to Ambrosio and Alberti, see [1]. Note that much

more can be said on the structure of Σk, see [2, 9] for example.

By adding |x|2 if necessary (which does not change Σk) we can assume that f is superlinear

and that

(3) f(y) > f(x) + `(y − x) + 1
2 |y − x|2 ∀x, y ∈ R

n, ∀` ∈ ∂f(x).

Lemma 11. ` ∈ ∂f(x), `′ ∈ ∂f(x′) =⇒ |x − x′| 6 ‖` − `′‖.
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Proof: From inequality (3) we have that

f(x′) > f(x) + `(x′ − x) + 1
2

∣

∣x′ − x
∣

∣

2
,

f(x) > f(x′) + `′(x − x′) + 1
2

∣

∣x − x′
∣

∣

2
.

Then

0 > (`′ − `)(x − x′) +
∣

∣x − x′
∣

∣

2
(4)

∥

∥` − `′
∥

∥

∣

∣x − x′
∣

∣ > (` − `′)(x − x′) >
∣

∣x − x′
∣

∣

2
.(5)

Therefore ‖` − `′‖ > |x − x′|. �

Since f is superlinear, the subdifferential ∂f is surjective and we have:

Corollary 12. There exists a Lipschitz function F : R
n → R

n such that

` ∈ ∂f(x) =⇒ x = F (`).

Proof of Proposition 10:

Let Ak be a set with HD(Ak) = n − k such that Ak intersects any convex subset of

dimension k. For example

Ak = {x ∈ R
n |x has at least k rational coordinates }.

Observe that

x ∈ Σk =⇒ ∂f(x) intersects Ak =⇒ x ∈ F (Ak).

Therefore Σk ⊂ F (Ak). Since F is Lipschitz, we have that HD(Σk) 6 HD(Ak) = n−k. �
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9. Luděk Zajček, On the points of multiplicity of monotone operators. Comment. Math. Univ. Carolinae

19 (1978), no. 1, 179–189.



10 PATRICK BERNARD AND GONZALO CONTRERAS
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