MAXIMIZING MEASURES FOR EXPANDING TRANSFORMATIONS.
GONZALO CONTRERAS, ARTUR LOPES, AND PHILLIPE THIEULLEN

ABSTRACT. Let ¢ : ¥ <> be a one-sided subshift of finite type. We show that for a

generic a-Holder continuous function A : ¥ — R, the supremum
m(A) = sup{ [ Adv |v is a o-invariant Borel probability }

is achieved by a unique invariant probability. In the set UgsoC? (2T, R), with the C*-
topology, generically the maximizing measure is supported on a periodic orbit. This
proves a version of a conjecture of R. Mané. We also show that these maximizing
measures can be obtained as weak limits of equilibrium states.

We apply these theorems to the class Fy(a) of C'™ endomorphisms of the circle
f: 8" — S* which are coverings of degree 2, expanding f'(z) > A > 1, Vo € S* and
orientation preserving. We prove that generically on f € Fy(«), the invariant probability
which maximizes the Lyapunov exponent [ log f’ dv is unique, and that on UgsaFa(3)

(with the C*T*-topology) this (unique) maximizing measure is suported on a periodic
orbit.

Introduction.

Let o : ¥ « be a one-sided topologically mixing subshift of finite type and A : ¥ — R
a Holder continuous function. In this paper we are interested on o-invariant probability

measures p which maximize the integral [ Adv among all Borel o-invariant probability
measures.
Fix 0 < A < 1 and endow X7 with the metric d(x,y) = )\in, where x, y € XT,

x = (xg,21,...) € X7,y = (yo,%1,---), and n = min{k > 0|z # yr}. Let 0 < a < 1,
given an a-Hoélder function A : ¥7 — R, write

Alx) — A
Holda(4) = sup 2@ AWy gup @)
0<d(z,y)<1 d(xv y) zeXt
and define the a-Holder norm of A by
[ All, = Holda(A) + [IA][, -

Denote by C%(Xt,R) the set of a-Hélder continuous functions A : ¥* — R endowed
with the a-Holder norm || ||,. In view of applications, we shall restrict ourselves to
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2 G. CONTRERAS, A. LOPES, AND P. THIEULLEN

Hoélder functions with zero topological pressure. The results below hold also without this
restriction. Denote by C§'(X1,R) the subset of functions A € C*(X*,R) which have zero
topological pressure. We shall prove

Theorem A.
There is a generic set G C C§(XT,R) such that if A € Gy then A has a unique
mazrimizing measure whose support is uniquely ergodic.

The problem we consider here is in some sense analogous to the problems considered
in the Aubry-Mather theory (see [7], [12]) for Lagrangian flows. In particular our result
is analogous to a recent result of Mané [11] on Lagrangian flows, where he shows that
generically (on the Lagrangian and on the homological position) there is a unique action
minimizing measure. The main difference among these theories is that in the lagrangian
setting the dynamics is defined by variational properties and hence minimizing properties
imply invariance under the Euler-Lagrange flow. In our setting we have to impose somehow
the invariance under the shift. The analogous to fix the homology in the Aubry-Mather
theory in our setting is to consider side conditions, like [; dv = ¢;, i =1,2,... , k, where
Y € C*(XT,R) and ¢; € R are constants, in the maximization problem for A. We obtain
the same results in this case because by means of the Legendre transform this problem is
equivalent to maximizing A + Zle x; ¢ for certain fixed values of x; € R (which depend
on the ¢;’s).

In [12] and [13], R. Mafné conjectured that generically the unique minimizing measure
is supported on a periodic orbit. In our case we can prove this conjecture in a subset of
C& (ST, R) of functions which have slightly more regularity. Let C5" (3T, R) be the closure
in the a-Holder topology of Uy~ Cy (2T, R). Given a periodic point p € Fixo™ C £T, let
vp be the o-invariant probability supported on the positive orbit of p.

Theorem B.
Let Go C C§T(EH,R) be the set of A € C§T (ST, R) such that there is a unique mini-

mizing measure which is supported on a periodic orbit and it is locally constant. Then Go
is open and dense in C§T (ST, R).

Here locally constant means that there is a periodic point p € ¥ and a neighbourhood
U > A such that for all B € U, the unique maximizing measure for B is v,, where v, is
the o-invariant probability supported on the positive orbit of p.

The techniques used to prove this theorem involve the analogous to the action potential
defined by Mané for Lagrangians in [13]. Here we define this potential by

S(z,y) :=lim._o sup { i [A(c%2) — mg] ‘ n>0,o0"z=y, dzuz)<e},
k=0
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for z, y € ©F, where mg = inf{ [ Adv|v a o-invariant Borel probability }. In general,
the function S(z,y) is highly discontinuous (cf. proposition 3.5), but if e.g. x is in the
support of a maximizing measure, then the function y — S(z,y) is a-Ho6lder continuous.
Writing V(y) = S(z,y) in this case, it is staright forward from the definition of S that

Viey) > V(y) + Aly) —mo (1)

for all y € X", In the Lagrangian case this V corresponds to the existence of a subsolution
of the Hamilton-Jacobi equation (cf. Fathi [5], [6], also [4]). Writing B(y) = A(y) +
V(y) —V(oy), then B(y) is a-Holder and [ Bdv = [ Adv for any o-invariant probability.
Hence we can replace A by B in the maximization problem, with the advantage that
B < 'mg = max, [ Bdv. This implies that the inequality (1) in in fact an equality on the
support of any minimizing measure. This, in turn, implies the

Coboundary Property.

The function A is cohomologous to a constant on the support of any maximizing measure
by (the same) a Hélder continuous coboundary function, i.e. A =V —Voo+mgy on supp(u)
for any maximizing measure p. In particular any any measure supported on a support of
a MATIMIZING Measure 15 marimizing.

In fact, the coboundary property can be extended to the set
S = {x € X7 |W(z,z) = 0}, which contains the support of all maximizing measures
(cf. proposition 3.1 item [4]).

It is possible to construct examples in which there is a unique maximizing measure with
positive entropy. In particular not supported on a periodic orbit.

There is an example in [8] of an invariant measure u on the full 2-shift 3 = {0, 1}
whose support is uniquely ergodic. If A : Z; — R is an a-Ho6lder function which attains
its maximum exactly at supp(u), then p is the unique maximizing measure for A. By
adding a constant we can make P(A) = 0.

Another important ingredient in the proof of theorem B is the continuously varying
support property, that we state now. Let A € C§(XT,R) and p a maximizing measure for
A. We say that a sequence of probability measures v, strongly converges to a probability
w if v, — p weakly* and supp(vy,) — supp(u) in the Hausdorff metric. We say that the
pair (A, ) has the continuously varying support property if given a sequence A, — A in
C§ (X", R), an maximizing measures p,, for A,, then u, strongly converges to p.

Theorem C.
There is a dense subset D C C’g+(2+, R) such that any A € D has a unique maximizing

measure (1 and the pair (A, p) has the continuously varying support property.
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Finally, we relate our maximization problem with the thermodynamic formalism. Let
A € C*(XT,R) and for each t € R let fi; be the equilibrium state for ¢t A. The following
proposition appeared in a slightly different form in [10]:

Proposition D.
Suppose that the mazimizing measure pa for A € C*(XT,R) is unique and A > 0.
Then pug = . liin [y in the weak* topology.
—-+00

Recall the variational principle for the topological pressure P(tA) = max, h(v) +
t [ Adv, where the maximum is along the o-invariant probabilities, P(tA) is the topo-
logical pressure and h(v) is the metric entropy of v. The result above shows that when
t — 400 in the variantional principle, one is putting less strength in the entropy of the
measure and more stress in the integral of the measure. However, the integral-maximizing
measures do not seem to inherit properties from the approximating equilibrium states.

Expanding maps of the circle.

We can apply the results above to concrete situations using symbolic dinamics. An
example that motivated us is the case of invariant probabilities maximizing the Lyapunov
exponent on a degree 2 expanding maps of the circle.

Consider the class F = Fy(a) of C1*® endomorphisms of the circle f : S' — S which
are coverings of degree 2, expanding f’(z) > A > 1, Vo € S! and orientation preserving.
For a C'T® endomorphism f € F, denote its C'*® norm by

£l 40 = [Ifllcr + Holda (f).

We say that an f-invariant Borel probability is a Lyapunov mazimizing measure or
simply a mazximizing measure if it maximizes the integral

/ log f dv (2)

among all f-invariant probabilities. The Lyapunov exponent of an invarinat measure v is
given by the integral (2). It expresses the mean value of the rate of expansiveness of points
in the support of v. We are looking for measure with maximal sensitivity dependence on
initial conditions.

Theorem Al
Generically on the CYt-topology for maps f € F, there exists a unique f-invariant
Lyapunov maximizing measure puy. Moreover, the support of py is uniquely ergodic.

Let F(a+) be the closure of UgsFa(8) in F (with the C1**-topology).

Theorem B1
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There is a generic set Go C F(a+) such that for f € Gy there is a unique f-invariant
Lyapunov mazximizing measure and it is supported on a periodic orbit.

In section § 1 we prove theorem A. On section § 2 we show some preliminary shadowing
lemmas. On section § 3 we define and prove the properties of the action potential and state
the coboundary property. On section §4 we prove theorem C. On section §5 we prove
theorem A. On section §6 we prove theorem D. On section 7 we prove theorems A1l and

B1 and give an equivalence between C''+® expanding dynamics on the circle and a-Hélder
maps on the shift.

1. Generic uniqueness of the maximizing measure.

In this section we prove theorem A. We start with nome notation. Denote by K (o)
the set of o-invariant Borel probabilities on ¥, endowed with the weak* topology. Given
A e Cg(ET,R), set

m(A) =max{ [Adv|v € K(0)}
M(A) = {,uE K(A)‘ fAdu:m(A)}

A measure p in M(A) is called a maximizing measure.
The arguments in this section rely on Banach space techniques. Since C§(XH,R) is a
Banach manifold, we need to do some conversions:

Proof of theorem A:
The topological pressure P : C*(XT R) — R is real analytic (cf. [14]). It is also a

submersion because P(A+7) = P(A)+r for any r € R. Hence the set C§'(XF,R) = P~1{0}
is a Banach manifold.

Given Ay € C§(XT,R), the derivative of the pressure at A is given by DP(Ag) - B =
J Bdp, where [i is the equilibrium state for Ay and B € C*(X",R) (see [11, corollary 1.4
and 1.7] or [14] ). Hence the tangent space at Ap to C§'(X1,R) is the set of functions
Ao + B where B € C*(X",R) and [ Bdp = 0. This space does not intersect 0 because
| Ap dpi = —entropy of f.

Locally, near Ay, there is a homeomorphism ) associating A € C§(XT,R) to Ag + B
B € Ty,C§(X1,R). This homeomorphism is of the form Y(A) = cq4 A = Ao+ B, where ¢4
is a positive constant. Therefore the maximizing measures for A or Ag+ B = c4 A are the
same. Thus to show the generic properties of maximizing measures for A or Ag+B =c4 A
is the same problem.

So, we have to show that generically on functions B close to zero and such that
J Bdu = 0, the function Ay + B has a unique maximizing measure. This is proven
on theorem 1.1 below.
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Fix a Borel probability measure i on ©* and Ay € C§(XT, R). Define
H={Ay+B| [Bdp=0}

1.1. Theorem. There exists a residual set G C H such that for all A € Gy, the set
M(A) = {u} has a unique element. Moreover the support of p is uniquely ergodic.

Proof:
The proof will require two lemmas. The idea is to show that for any £ > 0, the open
set

O.={AecH|dlamM(A) <e}
is dense. Considering ¢ of the form ¢ = %, n € N, we obtain from Baire’s Theorem that
there is a residual set whith a unique maximizing measure. Item [4] of proposition 3.1
implies that any invariant measure on the support of a maximizing measure is maximizing.
Hence if there is a unique maximizing measure, its support must be uniquely ergodic.
Consider K a subset of K (o) (the set of invariant measures for o) and define

mo(A) :=sup{ [Adv|v € Ky },
Mo(A) :={peKo| [Adp=mo(A)}.

We say that u is an extremal point of the convex set C, if u is not a mid point of a
segment where the endpoints are in C'. A point p in the convex set C' is said a strictly
extremal point for C, if there exists a linear map h on the set ' such that the supremum
of h restricted to C is attained at p and only at p.

A classical result in convex analysis (see Strazewicz’s Theorem in [16]) states that any
extremal u can be approximated by a strictly extremal p.

1.2. Lemma.
If po is an extremal point of a compact set Ky, the for all € > 0, there exists w € 'H
such that diamMop(w) < 2¢ and d(po, Mo(w)) < €.

Proof:
Consider a sequence wy,, n € N, of functions in H that define a metric d on Ky by

~ © 1
d(v, p) = sz’/wjdu—/wjdu),
7j=1

compatible with the weak convergence on the compact space of probabilities on 7. For
each n € N, define P, : Ko — R" by

P(p) = ([widp,..., [w,duy).
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From the definition of d and the compactness of Ky, it is easy to see that for all € > 0,
there exist > 0 and n > 0 such that, if S C R™ and diam S < 4, then

diam(P,;1)(S) < e. (3)
Note that u = P, (1) is an extremal point of P,(Ky) = C. From Strazewicz’s Theorem

applied to C, let p be a strictly extremal point such that d(p, P,(uo)) < 6. Then by (3),
we have that

diam(P~1(p), o) < e. (4)

Consider w = Y 1 ; A\jw;, where the \; are such that h(xi,x2,...,2n) = Diq Ni 2.

It is easy to see that Mg(w) = P~(p). Therefore, by (4), d(uo, Mo(w)) < e and
diam(Moy(w)) < 2. This shows the lemma.
U

1.3. Lemma.
Suppose that A € H and consider and extremal point po of M(A). Then for any neigh-

bourhood U of pg in K (o), and every e > 0, there exists A1 € U such that d(u, M(A7)) <
e and diamM(A4;) < 2e.

Proof:
Applying lemma 1.2 to Ky = M(A), for any € > 0 there exists w such that diamMg(w) <

e and d(po, Mo(w) < e. Let
m = mo(w) = sup{ [wdp|p e M(A)},
mo = m(A) =sup{ [Adu|p € K(o) }.

Denote by fy and f; the functions defined on p € K (o) by

folu) = /Adu o,

Then
, for all p € Mo(u), (5)

L forall pe Mo(p), (6)

(because Mo(w) C Ko = M(A)).
Reciprocally, observe that if p € M(A) = Ky and if f1(u) = 0, then
€ Mo(w). (7)

For p € K(o), if fo(p) = 0, then
1€ Ko = M(A). (8)
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Observe that by the definition of m and my,
filp) <0 forallpe Ky and fo(p) <0 forall pe K(o). 9)

Now definefy = fo + A f1 for all A > 0. Let

m(\) = Jmax (),

My ={peK(o)|fa(p) =m(A)}.
Observe that
m(\) > 0, (10)

because by (5) and (6), if p € Mo(p), then fi(p) =0.

Claim: lim)_,o diam(ug, M(N)) < e.

If this claim is true, taking Ay = f) for A small the lemma is proved.
Suppose that the claim is false. The there exist a sequence \,, — 0 and p, € M(\,)
such that

inf d(jin, o) > €. 11
inf d(4n, o) = € (11)

Consider a limit 7 of a subsequence of p,. Then by (11)

d(f, po) > . (12)
If we prove that @ € Mo(w), then from (12), we obtain a contradiction. Note that
fl(,un) >0, (13)

because from (10) and (9)
0 <m(An) = folkn) + A f1(sn) < An fir(pin)-
Note also that

lim m(\,) = lim max f\, (¢) = max = 0.
Jm m(n) = im max £ (0 = max fols)

Since fx, = fo(tin) + An f1(sn) = m(An), by continuity,
fO(ﬁ) = fo (nh_{go Mn) = nh_)r{.lo(m()‘n) —An fl(:un)) =0.

Therefore by (8), & € M(A). Now, by (13), fi(n) > 0 and then f;() = lim, . > 0.
Since @ € Ko = M(A), then by (9), fi(z) < 0. Therefore fi() = 0. Finally, from (7)

I € Mo(A). This contradicts d(f, o) < e.
U

2. Shadowing Lemmas.
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Let o : ¥ « be a positive subshift of finite type. Forx,y € X1, x = (zg,21,...) € BT,
y = (y1,92,...), write d(x,y) = )%n, where n = min{k > 0|z # yr}. Let g9 = % > 0, so
that
1] If y = (yo,y1,...) € T and (x0,v0,y1,...) € LT then the local inverse 1), (z) =
(20,20, 21, - - . ) is defined on all { z|d(z,y) < ¢ }.
2] If z, y € T and d(z,y) < ¢, then d(oz,0y) = Ad(z,y).

For x € ¥ and r > 0 write B(z,r) = {y € X7 | d(z,y) < r}.

We say that a sequence {xy, ... ,x,} is a §-pseudo-orbit with M jumps, if d(ox;,cx11) <
dforall 0 <i< N-—-1land #{0<i < N —1|zy1 # o(z;) } = M. We say that a ¢-
pseudo-orbit { zg, ...,y } is e-shadowed by p € T, if d(o¥p,x;) < e for all 0 < k < N.

2.1. Lemma. Letey := (1-A"Y)ep. Forall A: X" — R a-Hélder continuous, there exists
Ky = K(A,\) > 0 such that if 0 < § < &1 and {xo,... ,xN } is a d-pseudo orbit with M

Jumps, then there exists p € ¥ that (%ﬂ)—shadows {xz}f\il and for all0 <i<j < N

J J
Z A(O’kp) - Z A(.Z‘k) S MKl 504.
k=1 k=1
Moreover,

[1] The point p can be taken such that o™ (p) = zy.
[2] If the pseudo-orbit is periodic (i.e. Ty = xg), then the point p can be taken N-

periodic: o™ (p) = p.

Proof:
For 1 <mn < N let ¢, : B(zn,50) — X7 be the branch of the inverse of o such that

on(0xpn—1) = Tp—1. Then PN := Y1op20 ... 0N is a contraction with Lipschitz constant
AN < 1. Moreover, ¢, (B(zn,7)) C pn(Blozn_1,7 +9)) C B(zy_1,7) for r = %,
r+6 < gg. [This gives § < (1 — A1) gp =: €1.] In particular ¢ (B(zy,7)) C B(xo, 7).

[1] Let p = ¢n(zN) € B(xo, 7).

[2] Let p € B(xo,7) = B(xy,r) be the fixed point of 9.
Then d(c*p,x;) <r = %.

Let 0 < a1 < ag < az < --- < ay < N be the indices such that o(x,,) # Tq;+1. Let
ap =0, apr41 = N and b; = a;41 — a4, 0 < ¢ < M. Then, for 0 < j < b;, we have that
d(gai+jp7mai+j) S )‘j_bi d(o-ai-Hpa O-bil‘ai)

< N b [d(aaiﬂpa x(li+1) + d(a($ai+l—1)’ xai'*'l)]

S P ==
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J J N-1
S Ale*p) = 30 Aler)| < X JA(0"p) — Afa)|
k=t k=i k=0
M bp—1 .
< Y 3 Holda(A) A7 by 6
k=0 j=0
< (M +1) Holda(4) 15 game 8

3. The Action Potential.

Given z,y € X% and § > 0, define

n—1
Ss(x,y) := sup { kZ::O [A(ak(z) —mg| |0z =y, d(z,x) <§ },

where mg = m(A). Since 7 is topologically transitive, the backward orbit of any point
y € U7 is dense in 0. Hence the set in the definition above is non-empty and thus
Ss(x,y) > —oo for any 6 > 0. We will show below that sup, e+ 550 Ss5(7,y) < +oo.

Since the function § — Ss(x,y) is increasing, we can define
S(z,y) = lim Ss(x,y).
(z,9) = lim_Ss(z,y)

We get that —oco < S(z,y) < Q. In fact the value S(z,y) = —oo is possible and in general
the function S(x,y) is highly discontinuous. We quote the properties of S(z,y) in the
following proposition:

3.1. Proposition.

[1] There is Q > 0 such that Ss(z,y) < Q for allz y € ¥ and all 6 > 0.

[2] For allx € X1, S(z,z) <0.

[3] For allx, y, z € X%, S(z,y) + S(y, 2) < S(z, 2).

[4] Let

GS:={zext|S(z,x)=0}.

Then & is closed and foward invariant. A measure p is maximizing if and only if
supp(u) € &. In particular & # o.

[5] If x € & then the function W : X7 — R, W(y) = S(z,y) is finite and a-Hélder
continuous with Hold, (W) < C(X) Holdn(A). Moreover, W(y) — W(x) > S(z,y)
for all xz, y € ©T.
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3.2. Corollary.
[1] The a-Hélder continuous function B(z) := A(x) — mo + W(x) — W(ox) satisfies
B >0, [Bdv = [Adv for any invariant measure and [ Bdu = 0 for any
MaTIMIZINGg MEeasure.
[2] If p is a mazimizing measure, then any invariant measure v with supp(rv) C
supp(p) (C &) is mazimizing. In particular if A has a unique maximizing measure,
then the set & (and hence also supp(p)) is uniquely ergodic.

Proof: Item [1] follows from 3.1 [5] because
W(ozx) —W(zx) > S(oz,x) > A(z).
|

A subset K C X7 is said e-separated if d(z,y) > ¢ for all z, y € K with z # y. Given
a periodic point p € Fix(c™), let v, be the probability measure defined by

1 n—1
/ vy =S flota),

n —
for any continuous function f: ¥t — R,

Proof of proposition 3.1:
[1] Let € = ey from lemma 2.1. Let

M(e) := max{ B C X" | B is e-separated }.
Let N > M(e) and z € . Let
ko =max{0 < k < N |{z,0z,... 0"z} is e-separated },
ki =max{0 < k < N |[{o*z,oc" 1z, ... 0Nz} is e-separated }.

Then kg < M(g) and N — k1 < M(g). The set {072 |0 < j < ko, k1 < j < N} is not
e-separated. Hence there are 0 < i < ko, k1 < j < N such that d(c'z,077) < . By
lemma 2.1,

J
Z [A(ka) —mp| < sup n/ [A—mo] dvp + Ke* < Ke®
ki peFixo™

and
N—-1
> [A(a’%) - mo] <Ke*+2M(e) [|[A—mglly,
k=1

for all x € 1 and all N > 0. Thus
Ss(z,y) < Ke® +2M(e) [[A—mol,
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for all § > 0, z, y € ¥*. This implies item][1].

2] Tf0<d<eg, dz,y) <0 and o™y = x, then by lemma 2.1,

S [Alc*y) —ma] = 5 [Alo*p) —mo] | < K (26)°
k=0 k=0

for some periodic point p € Fix o™. Since [[A — my] dvp < 0, then

|
—

n

]

[A(Uky) —my] < n/ [A—my] dvy + K (26) < K (26)".

Hence S (z,y) < K (20)* = K (2(1 — X)e)® for e = %. Letting ¢ — 0, we obtain that

S(z,z) <0.

IN

[3] Given § > 0 let a, b € X1 be such that d(z,a) < 6, 0"a = y; d(y,b) <, c™b =z
for some n, m > 0 and

|
—

n

[A(c%a) —mg] > Ss(z,y) — & (14)
k=0
7:2_01 [A(c*b) —mo] > Ss(y,2) — 6 (15)

Then {a,c(a),... , 0" ta,b,... 0™b= z} is a 2d-pseudo-orbit with 1 jump. By lemma 2.1,

there is p € ¥ which [I?A]—Shadows the pseudo-orbit, c"™p = 0™b = z and
n+m—1 n—1 m—1
> [Alekp) —mo] — | 3 [A(c%a) —mo] + X [A(c*b) —me]| > —K (26)“.
k=0 k=0 k=0

Since d(z,p) < d(z,a) + d(a,p) < 6§ [{Z + 1] =: £(0), and ¢""™p = z, then, using (14)
and (15), we have that
Se() (@, 2) > [Ss(x,y) — 6] + [S5(y, z) — 0] — 2% K 6°.
Letting § — 0, then ¢(d) — 0 and
S(x,z) > S(z,y) + Sy, 2).

In order to prove item [5] we need the following

3.3. Lemma. If S(z,z) = 0, then for alle > 0 and M > 0 there exists w € X and
n > M such that d(w,z) < e, c"w =1y and

:i; [A(o*w) —mo] > S(z,y) — . (16)
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Proof:
Let 6 > 0 be such that

Mé+6+ MK <e,

0
m+(5<€.

Let a € ¥% and n > 0 be such that d(a,z) < §, "a = y and
n—1
Z [A(Uka) - mO] > 55(x?y) -0 > S(x7y) — 0.
k=1
Since S(z,z) = 0 then there is b € ¥ and n > 0 such that d(b,z) < §, 0™b = x and

mz_l [A(c*b) — mg] > Ss(x,2) — 6 > S(z,2) — 6 > —0.
k=1

with M jumps. By lemma 2.1 there is w € X such that d(b, w) < %, omMAny = o"a =

y and
mM-+n—1
’ [A(akw) — mg]
k=0
m—1 n—1
- {M > [A(c*b) —mo] + 3 [A(c%a) — my] H < M K §*.
k=0 k=0
Then
mM—+n—1

[A(s*w) —mo] > —M 6+ S(z,y) — 6 — M K 6
> S(‘Tay) —¢&.

Moreover d(w,z) < d(w,b) + d(b,z) < % + 0 <e, smMAny =y and mM +n > M.
g

[5] Now we prove item [5]. Let 2z, y € " and d(y,2z) = d small. Given € > 0
let M = M(g) > 0 be such that AM(e +d) < e. Let w € 27 and n > M(e) be
as in lemma 3.3. Since d(c"w,z) < d(c™w,y) + d(y,z) < € + d, then the ordered set
{w,ow, ..., 0" 1w, z} is an (¢ + d)-pseudo-orbit with 1 jump. By lemma 2.1 there exists
p € 71 such that s"p = z, d(w,p) < \"*(d +¢) and

n—1 n—1

> [A(Jkp) — mo] - > [A(akw) — mo] < K (d+e)™. (17)
k=0 k=0
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Since n > M (e) we have that d(p,x) < d(p,w) + d(w,z) < e+ N"(d+¢) < 2¢. Then,
using (17) and (16), we have that

Sae2) 2 5 [Alhp) — ] 2 Slap) — e~ K (d+2)%
where K = C'(\) Hold,(A). Letting ¢ — 0 we get that
S(z,z) > S(x,y) — K d*.
Interchanging the roles of y and z we obtain that
(W(y) —W(z)| = [S(z,y) — S, 2)| < Kd
Now, by the triangle inequality, we have that
W(z) = W(y) = S(z,y) — S(x,y) 2 S(y, 2).

[4]  We now prove item [4]. We first prove that if p is an invariant measure with
supp(p) € & then it is maximizing. Fix x € & and define W(y) = S(z,y) and B(y) =
A(y) —mo+ W(y) — W(oy). By item [4] we have that W (oy) — W (y) > S(y,oy) > A(y).
Hence B(y) <0 for all y € % and [ Bdu = [(A — mg) dp.

To see that p is maximizing, it is enough to show that B =0 on &. Let y € G. Then
S(y,y) = 0 and for any § > 0 there exists z = z(J) € & and n > 0 such that d(z,y) < 9,
0"z =y and

> [A(o*2) —mo] > S5(y,y) — 6.
Then
Suo1.9) 2 T [Al0h2) = mo] > Ss(y1) ~ 64(:) + o
Letting § — 0, we get that

S(y,y) < S(oy,y) + A(y) —mo < S(oy,y) + S(y, 0y) < S(y, ).
Thus S(oy,y) = —A(y) + mo and S(y, oy) = A(y) — mo. Now
S(z,y) = S(z,0y) + S(oy,y) = S(z,0y) — A(y) + mo
> S(z,y) + S(y,0y) — Aly) — mo = S(,y).
Hence S(z,y)—S(z, 0y) = —A(y)+mo, and then B(y) = A(y)—mo+S(x,y)—S(x,0y) = 0.

Now we prove that if p is a maximizing measure then supp(u) € &. A proof of the
following lemma is supplied below:
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3.4. Lemma. (Mané [12])
Let (X, B, u, f) be an ergodic measure preserving dynamical system and F: X — R an

integrable function. Given A € B with u(A) > 0, denote by A the set of points x € A such
that for all € > 0 there exists an integer N > 0 such that fN(z) € A and

N-1
S F(f5(a) — N/qu‘ <e.
k=0

Then u(A) = ,u(ﬁ)

Let u be a maximizing measure and y € supp(u). Let § > 0, 2 € ¥1 and n > 0 such
that d(y,z) <6, d(o"z,y) < ¢ and

> [A(oF2) — mg] > —46.
k=0
The set {y,0z,0%z,... ,0" 12, y} is a 6-pseudo-orbit with 2 jumps. By lemma 2.1, there

isw e YT with d(w,y) < &, o"w =y and

nil [A(c*w) —mg] — nil [A(c%z) — M) ‘ < 2K 6%
k=0 k=0

Hence
S ak(y,y) > —0—2K“.
1—

Letting 6 — 0 we get that S(y,y) = 0.

Proof of Lemma 3.4:
We may assume that [ F'duy = 0. For € > 0 let

Ale):={pe A|IN >0, fNp) € A, |00 F(fFp)| <e}.

Let © € A be a point such that Birkhoff’s Theorem holds for F' and the characteristic func-
tions 14 and 14(. It is enough to prove that u(A(e)) = u(A) because A= Mn>0A(1/n).

Let N; < Ny < --- be the integers for which FVi(z) € A. Define 6(k) > 0 by
Ni-6(k) = | S N6t F(fix)|. Then limy,_. o 6(k) = 0.

Let ¢ := Zf-vzj(;l F(fiz) and

Sk):={1<j<k—1| Al>jwith [cp —¢j| <e}.

Then ¢ #S(k) < 2§(k) Ny.
If j ¢ S(k) then |¢p —¢;| = \Z%ﬁfl F(fiz)| < e for some £ > j, hence fVi(x) € A(e).
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We have that

]\Z#{ogﬂm\ﬂ(as) €A\ A(e) } S;,k#S(’f)

(26(8) . 26(8) &

1
< —
- N € €

The choice of  implies that p(A\ A(g)) = 0.

To give an idea of how discontinuous the functions S(z,y) and y — S(z,y) (z ¢ &)
may be, we show the following proposition:

3.5. Proposition.
Given x € ¥ and 0 < N < min{k > 0| o"(z) = 2} < +o0, then

N-1
S(z,oNz) =Y [A(c*z) — my]
k=0
and S(z,x) = S(x,0Nz) + S(cVz, ).

Proof:
Fix z € ¥7 and N > 0 as in the statement of proposition 3.5. Let € > 0 be small and

0 < 6 < € such that if d(z,z) < § then

d(o*z,0%z) <e forall0 <k < N. (18)

Let w € ¥* and M > 0 be such that d(w,z) < 4, oMw =z and

M—-1
> [A(akw) —mg| > Ss(z,z) — 6.
k=0

If 0 < 2¢ < min{ d(o'z,072) |0 <i < j< N} =:D, then M > N because for 0 < k < N
we have that

d(c*w, z) > d(o*z, ) — d(c"z,cfw) > D — e > 4.

From (18), we have that
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where K is an a-Holder constant for A. Then
N-1

S(z,oNz) + S.(oNx, z) > kgo [A(c*z) — mg] + Se(oNz, 2)
N-1 M-1
> Y [A(c*w) —mg] = NKe*+ Y [A(o*w) — mo]
k=0 k=N

> Ss(x,x) — 9 — N Ke“.
Letting ¢ — 0, we have that
S(x,z) > S(x,0™z) + S(cNa, z)
N

> il [A(O'kl‘) —mo| + S(cVNz, x)

4. The continuously varying support property.

Definition: We say that a pair (A4, u) € C§ (X1, R) x M(o) has the semi-continuously
varying support property if for any neighbourhood U C 7T of supp(u) there exists a
neighbourhood V 5 A of A in the C°-topology, such that if ¢ € V, and v is a maximizing
measure for A + ¢, then supp(v) C U.

4.1. Lemma.
If a function A € C§(XT,R) has a unique minimizing measure p and the semi-continuously

varying support property, then supp(u) is uniquely ergodic and p has the continuously
varying support property.

Proof:
The unique ergodicity follows from item [4] of proposition 3.1. To obtain the continu-

ously varying support property we have to show that the map C¢(XT,R) 3 A — M(XZT)
is continuous in the strong topology. By the hypothesis of semi-continuity, it is enough
to prove that if ¢, € C*(XT,R) and ||¢|, — 0, then v,, — p weakly*, where v, is a
maximizing measure for A + 1.
Choose a limit 7 of a subsequence of v,. Then [(L+y)du < [(L+y,) dv, and hence
J Ldp < [ Ldp. Thus ¥ is maximizing for A and hence 7 = p.
Il

Theorem A combined with the following proposition give a proof of theorem C.
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4.2. Proposition.

Let A* € C§(XT,R) admiting a unique mazimizing measure p*. Let ¥ : X7 — R be a
continuous function such that ¥(x) =0 for x € supp(p*) and ¥(z) < 0 for x ¢ supp(u*).
Then (A* + W, u*) has the semi-continuously varying support property.

Proof:

Write A := A* + V. By lemma 4.1, it is enoungh to prove the semi-continuosly varying
support property. Suppose that it does not hold. Then there is a neighbourhood U of
supp(u*) and a sequence (A,)n>0 C C§(XT,R) of Holder functions converging to A and
maximizing measures p, for A, such that K, = supp(u,) € U. We may assume that p,
converges weakly to oo and (K,)n>0 converges in the Hausdorff metric to a compact set
Keo.

Step one: Let A\, = [ A, du, and \* = [ A du*. We prove that A\, — A\* and that
(fn)n>0 converges weakly™® to p*.
We have that A™ > [ A, dp*, hence

liminf \,, > /A dp* = \*.

)\*—/Ad,u*z/Ad,un

> [ A i = 1A= Al = D= 14 = Al

Moreover,

Letting n — oo, we get that lim, sup A, < A\*.
Step two: We how that we can extend the coboundary equation for A to K.

Fix T € . Let V,, € C*(XT,R) be a function given by proposition 3.1[5] for A,. By
adding a constant we may assume that V,,(Z) = 0. By proposition 3.1[5], Hold,(V},) is
uniformly bounded on n. By Arzela-Ascoli theorem, there is a convergent subsequence
Vo M W to an a-Holder function W. Since

A=+ V,—Vyo00 on K,
then
A=XN+W -Woo on K. (19)

Similarly,
A<N+W -Woo on all ©F. (20)
Since [Adp* = [ A*dp* = \*, then
A=XN"+W -Woo on supp(p®). (21)
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Step three:

Since K, = suppp, then for all z € K, there is a complete foward orbit in K, containing
x, i.e. there is (zp)rez such that o = x and o(xg) = xp4q for all & € Z. Then Ko has
also this property.

Let y € Koo \ U and (yx)kez C Koo such that yo = y and o(yx) = yx+1, Yk € Z. By the
cohomology property (19), any invariant measure supported on K, is maximizing and
thus it is u*. Hence there are sequences M, N — +oo such that

%NEI 6yk w—*) /’L* and ﬁ i 5% w—*> /,L*,
k=0 k=—M

where §, is the Dirac probability supported on {y} and the convergences are in the weak™
topology. In particular, we may assume that d(yy,supp p*) — 0 and d(y— s, supp pu*) — 0.
Since p* is uniquely minimizng, then in is ergodic. By the ergodicity of u*, there is z =
z(N, M) € supp(p*) and K = K(N, M) > 0such that d(z,yy) — 0and d(6%z,y_ps) — 0.
The sequence Y_ir, ... , Yo, --- ,YN—1, 2 ... o 1z is a closed e-pseudo orbit with 2 jumps
and with e = en p — 0.

Let B=A—-X+W —-Woo <0. By (19) and (21), B = 0 on K Usupp(u*). By
lemma 2.1[2], there is a periodic point p € 1 such that d(p,yo) < T and

MAN+K-1 & N—-1 K—-1 K MA+N+K-1 k
- >, Bl"p)= > By)+ > Ble"2)— >  B(o"p)
k=0 k=—M k=0 k=0
< 2K &%
Now,
MA+N+K-—1 i M+N+K—-1 i M+N+K-—1 X
[A*(c*p) =X = >  Bl'p)— ¥ ¥(o*p)
#=0 =0

k=0
> —U(p) + 2 K;e”.

Since p — yo and ¥(yo) < 0 then, for £ > 0 small, we have that
M+N+K-1
[A*(a%p) — X*] > 0. (22)
k=0
If v, is the invariant measure supported on the positive orbit of p, then (22) implies that
| A* dv, > X*. This contradicts the choice of p*.
d

4.3. Remark. If in proposition 4.2 we need B and B + ¥ to have pressure zero, we can
replace B + ¥ by t (B + ¥) such that P(t(B + ¥)) = 0. Since the function f(¢,¥) =
P(t(B+V)) is analytic on R x C*(X*,R), then ¥ can be chosen C®-arbitrarily close to 0

and t arbitrarily close to 1. In particular, ¢t (B + ¥) can be made C® arbitrarily close to
B for any 0 < a < 1.
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5. Maximizing measures for generic potentials.

Let C§(XT,R) be the set of a-Holder continuous functions A : ¥ — R which have
topological entropy P(A) = 0, endowed with the a-Holder norm ||A||, = [|A[, + |A]l,-
Let C§T (X7, R) be the closure in the a-Hélder topology of U,~oCq (ST, R).

If p € Fixo!, let v, be the probabiliy measure defined by

1 N1
[ran=5 T ).

For convenience of the reader we rephrase theorem B.

Theorem B.
Let Gy C C§H(EH,R) be the set of A € C§T (ST, R) such that there is a neighbourhood

U > A such that for all B € U, the unique maximizing measure for B is v,. Then Go is
open and dense in C§+ (ST, R).

Proof:
Let H C C§1 (ST, R) be the set of A € C§1 (ST, R) such that there is a unique maxi-

mizing measure for A which is supported on a periodic orbit. By proposition 5.1, the set
H is dense on CJ1 (ST, R). By proposition 4.2 and remark 4.3 there is a dense subset
A C H such that any A € A has the semi-continuously varying support property. Then
A is dense in Cg‘+(2+, R). We show now that A = Gy and, in particular, that it is open
on C§H(ST,R). Let A € Aand let p € T be a periodic point such that the maximizing
measure for A is v,. There exists a neighbourhood U of O(p) such that the unique invari-
ant measure supported on U is v,. Since A has the continuously varying support property,
then there is a neighbourhood U(A) C C§*(XT,R) such that the (unique) maximizing

measure for any B € U(A) is vp.
O

5.1. Proposition.
The set H of functions A € C§1 (ST, R) such that A has a unique minimizing measure

and this measure is supported on a periodic orbit is dense on C§+ (ST, R).

Proof:
Let F € C§T(ZT,R), then for any p > 0 there is a <y < 1 and 4 € CJ (X, R) such

that |[A—F|, < p. Let @« < f < v, we will find G = A+ V¥ € Cg(E*,R) such that
W[5 < p. Then G € CyT(XF,R) and || ¥, < %] < p.
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Let p be a maximizing measure for A. Suppose that there are no periodic points on
supp(p). Then for all n > 0, min,cgupp(u) d(2,0"2) > 0. Because otherwise Fixo™ N

supp(u) # 0. We will first find a periodic point sufficiently close to supp(u).
Let n := £(1 — A) and let K > 0 be such that

1 3
1_)\K<§’ (23)
A+ AE

and let D > 0 be such that
min{ d(z,072) |z € supp(p), 0 < j < K} > 3D.
Since Up<g Fix o™ is finite, there is 0 < €1 < D such that
inf{d(z,072)|d(z,supp(u)) < 2e1, 0 < j < K} > 2D. (25)
Given 0 < € < €1, let z € supp(p) and n > 0 be such that
d:=d(z,0"z) =min{d(c'z,072)|0<i<j<n}<e.
By (25), we have that n > K. Using lemma 2.1, we get that there exists p € Fix o™ such

that d(p,o"z) < ﬁ and for 0 < j < mn,

n—j

d(c?p,07z) < T

<3d<3e<2e. (26)
Given 0 <i < j <n—1by (26) and (25), we have that

d(o'p,aip) > 2D >nd if j <i+ K, (27)
and using (26) and (24),

d(o’ip, U]p) > d(O'iZ7 sz) - d(UiZ, O-Zp) - d(O‘jZ7 U]p)

>d_>\n—id_ )\n—j
1—A» 1-—-)\7
A+ 2K
>[1—1t/\n]d>nd iti+ K <j. (28)

Fix ¢ € supp(u) € & and W : ¥t — R, W(y) = S(¢,y). Then W is y-Holder
continuous and

W(ox) — W(z) > S(x,02) > A—mqy forallz € ST,

Hence

Woo—-W=A-my on supp(p).
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Let B(x) := A(z) —mo+ W(x) — W(ox) <0. Let K7 > 0 be an ~-Hélder constant for B.
Let

(5:%77d and Q= K; [%F>K1.

If d(z,y) < ¢ and 0 < B < a, then
|B(x) - B(y)| < Kyd(z,y)" < K167 d(z,y)".

For z € X%, define |z| := min{d(z,c"p) |k = 1,... ,n} and p, = o¥p such that d(z,p;) =
|x|. Let

(@) =max {0, [3Q87 - BLL] (57 — o) }. (29)
We show that max, B(z) + ®(z) = Q6" = B(c*z) + ®(c*x) for all k = 1,... ,n. Indeed,
for |z| <6
|B(z) = B(p.)| < K1 |a]” < Q [« < (Q67F) |af”.
If p, = o'p, then
|B(p:)| < |B(0'2)| + K1 d(o'z,p.)"

<0+ K [ ] @ <K< Qo

Hence

B(x) + ®(x) < B(p.) + Q57" 2" +3Q57 — B(p,)
_ Qo
=3Q8" 7 |l + =5 |af
<3Q8 —Q& P |z’ <3Q0d.

Also B(pg) + ®(pz) =3Q 0% and B(z) + ®(x) = B(zx) <0< 3Q 6 for |z| > 4.
If v # v} is a o-invariant probability, we have that

/Aduz/[A—l—W—Woa} dV</B(£L’)dI/p—|-m0</BdI/p—|—m0.

We now prove that the $-Holder norm of ® can be made arbitrarily small. We have
that

@], == sup |®(z)] <3QJI + max ‘B(aipﬂ <4Q07.
zen+ 0<i<n—1

Observe that if d(z,y) < 6 and |y| < § then by (27) and (28) we have that p, = p,. If
ly| <|z| <26 and 0 < 8 < 1, then

2?19 < (j2] = [y])” < d(z,)”.
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And if |y| < |z| < 8, then

[®(z) — @(y)| < (B3QE P + Q677 (|27 — |y|”)

<4Q 8 Pd(x,y)P.
If |y| <6 < |z| and d(z,y) < 8, then
|B(z) — ®(y)| <4Q 67 (6” - |y|”) <4Q 7 (j«|” — yI?)
<4Qd0" P d(x,y)P.

If d(z,y) > 6 then

() — D(y)| < |B(2)| <4Q6 <4Q 8P d(z,y)°.
Hence

Hold,(®) :=  sup [@(z) = 2(y)| <4Qo P,

o<dzyy<t  d(z,y)’
If we let € — 0 then 6 — 0, ||®||, — 0 and Holdg(®) — 0 for any 0 < # < min{1,~}.

In the case when there is a periodic point p € Fix o™ Nsupp(p) # @, choose D > 0 such
that d(o'p,o/p) > 2D for 0 < i < j <n — 1 and define ®(x) by the same formula as (29).
In this case B(py) = 0. The rest of the proof is the same.

Finally, we need to pertub A among the -Holder functions with pressure zero. Let
t = t(®) € R be such that P(A+ ® + t(®)) = 0. Since |P(A+ ®) — P(A)| < [P,
PA+®+1t)=PA+ )+t and P(A) =0, then |t| < ||®|,. The perturbing function
U =& +¢(®) has ||V, <2 ||®]|, < 4Q & and Holdg(¥) = Holds(®) < 4Q 77,

U

6. Relations with the Thermodynamic Formalism.

Proof of Proposition D.
Let fi; be the equilibrium state for tA. Suppose that fi; does not converges weakly™ to
1A, then for € > 0 small and a subsequence t,,

0</Adﬁtn </Ad[,LA—E.
Take t,, large enough such that t,,¢ — hypp(o) > 0. Then

hwm+%/A¢m2MM%%%/A@%+4
> h(it,) = hiop(0) +tne + tn/Adﬁtn

>h@J+m/A@m
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7. Expanding maps of the circle.

In this section we prove theorems Al and B1l. The idea is to show in proposition 7.1
below, a homeomorphism among the C'*® expanding dynamics on S! and C® functions
on the correspondig shift X7, and then to apply theroems A and B.

Consider a point 39 € S'. In order to prove theorems Al and B1, it is enough to prove
their claims for the class of maps f € F(«) (resp. F(a+)) that fix the point yo. We will
also denote by F(«a) (resp. F(a+)) this new class of maps.

We need to consider an abstract model that will be played by the transformation 7' :
St — St given by T(x) = 2z (mod 1). This map is equivalent to the full one-sided shift
in two symbols with identifications. We will use the diadic notation for points in the circle
without stressing the equivalence of both systems.

We call zg the fixed point of T'. Given f, we will define a bi-Hélder map 6y which

conjugates f and T, that is, f o6y =60 oT. In particular 87 (yo) = 0.

Construction of 0;:

Given a map f, let z be the unique pre-image of yq different from yo. Each point ¢t € ST,

t # yo, has two different preimages in S* \ {yo}. These preimages to and ¢; aqre ordered
by the order of the interval S\ {yo}, that is, ¢y < t1.

We will order and code all pre-images 24, ... ., (f) (Where o;; € {0,1} and n € N) of z
in the following way: if 24, as,.. . (f) is defined, then 24, as,... a,,0(f) and 2a; ao,... .an,1(f)
are ordered by the previous procedure.

We do the same for T" (substituting yo by x¢) and obtain a set of coded points 2o, as,... ,an ()

where a; € {0,1} and n € N. Denote by Z(f) and Z(T) the set of preimages defined above
respectively for f and T.

Define first 0 in these points, by associating the corresponding points Z(f) and Z(T')
with the same code. Then 6 extends continuously to S 1'in a unique way, because both
sets of preimages are dense on S'. The map 6 ¢ is a homeomorphism. By usual bounded
distortion arguments, we obtain that 0y is bi-Hélder.

Consider the set Hy(a) of a-Hélder continuous functions A : S — R wich are smaller
than —log A. Observe that the topological pressure of —log f’ o 6 is zero (see [14] for
a definition of topological pressure). Denote by HY(a) the set of functions in Hy(a)
with topological pressure zero and let ‘H{(a+) be the clousure in the C®-topology of
Uﬁ>aHg ().

Define the transformation G : F(a) — HS(a) by G(f) = —log f' o 0, where f € F).
Similarly define G : F(a+) — H}(a+). Observe that 6 depends on f in the definition of
g.

Theorems A1l and B1 follow from theorems A, B and the next proposition:
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7.1. Proposition. The transformations G are homeomorphisms from F(«) [resp. F(a+)]/
(with the C'T* distance) to HY [resp. HY(a+)] (with the C* distance).

Proof:

We shall prove that G : F(a) — HS () is a homeomorphism for any 0 < o < 1. This
implies that G : F(a+) — H}(a+) is a homeoporhism for any 0 < o < 1.

We show first that G is surjective. We have to find f and 6; as above for each given
AeHS.

Denote by K (T') the set of invariant measures for T'. For a given Holder potential A with
pressure zero, denote by ji4 the eigenmeasure of the dual of the Ruelle-Perron-Frobenius
operator of the potential A, that is £%ia = 114 (see [14] for references on Thermodinamic
Formalism). Note that the maximal eigenvalue of £ is 1, because the pressure of A is
zero and that fig is not necessarily an invariant measure in K (7).

Now we define a Holder homeomorphism 64 : S' — S'. By definition §(zg) := yo. For
x # xy define O4(x) = y in such way that length(yo,y) = fia(zo, ). The map 04 is well
defined because ji14 is a probability with no atoms which is positive on open sets and the
circle is oriented and has lenght one.

Let f =6040T 064 L. Since A4 preserves orientation, then the two sets of preimages
Z(f) and Z(T') are ordered in the same way. This proves that 04 = 0.

The Jacobian of T' with respect to the measure fig is e=“4. By definition, the pushed
measure of fig by 04 is the Lebesgue measure. Since f was defines by the change of
coordinates 64, then f’, the Jacobian of f satisfies f' =e™4 921. Therefore f’ exists and
it is Holder. This shows that G is surjective.

Now we show that G is injective. Suppose that two maps f and g satisfy G = Ay =
Ay = G(g). Consider the respective changes of coordinates ; and 0,,.

Note that h = 6}71 o 6y conjugates f and g, because 0 conjugates f and T' and 0,

conjugates g and T'. Since y = 6 , because Ay = A,, then g is the identity and hence
f = g. This implies that G is injective.

From the definition of G and the reasoning above, it is easy to see that the map G is an
homeomorphism.

g
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