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Abstract. For convex superlinear lagrangians on a compact manifold M we characterize
the Peierlsbarrier and the weak KAM solutions of the Hamilton-Jacobi equation, as defined
by A. Fathi [9], in terms of their values at each static class and the action potential defined
by R. Mafié[14]. When the manifold M isnon-compact, we construct weak KAM solutions
similarly to Busemann functions in riemannian geometry. We construct a compactification
of M/, by extending the Aubry set using these Busemann weak KAM solutions and char-
acterize the set of weak KAM solutions using this extended Aubry set.

Introduction

In this paper we intend to relate the weak KAM solutions of the Hamilton-Jacobi
equation of a convex superlinear lagrangian as introduced by A. Fathi in [9] and
the action potential as defined by R. Mafiéin [14].

Let M be a boundaryless n-dimensional complete riemannian manifold. An
(autonomous) Lagrangianon M isasmooth function L : TM — R satisfying the
following conditions:

(a) Convexity: The Hessian afzaLU - (z,v), calculated in linear coordinates on the
fiber T, M, is uniformly positive definite for al (z,v) € TM, i.e. thereis

A > 0 such that

W+ Lyy(z,0) -w > A |w|*> foral (z,v) € TM andw € T, M.
(b) Superlinearity:

L(x .
| ‘lim M = 400, uniformlyonz € M,
v|——+o00 v

equivalently, for all A € R thereis B € R such that

L(z,v) > Alv| — B fordl (z,v) € TM.
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(c) Boundedness: For al » > 0,

(1) Lry= sup L(z,v) < +oo.
(e,v)ETM,
|lvj<r
2 glr)= sup w- Ly(z,v) w < +oo.
Jw|=1
[(z,v)|<r

Using standard properties of convex functions one can see that condition (c) is
equivalent to say that the hamiltonian associated to L is convex and superlinear.

The Euler-Lagrange equation associated to alagrangian L is(in local coordi-
nates)

d OL OL
E%(%x) = 8_1(x’x)
The condition (c) implies that the Euler-Lagrange equation (E-L) defines a com-
pleteflow ¢; onT'M (Proposition 1.2), called the Euler-Lagrange flow, by setting
@i(wo,v0) = (20(t), 40 (t)), Wherez, : R — M isthe solution of (E-L) with
Ty (0) = xg and T, (0) = .

Theaction Ay () of an absolutely continuouscurve-y : [0,7] — M isdefined

(E-L)

as

T

A) = [ L6300 at.
0

Givenz,y € M andT > 0,let Cr(x,y) bethe set of absolutely continuouscurves

~v:[0,T] — M with~(0) = z and v(T') = y. Given k € R, the action potential

Dy : M x M — RU{—occ} isdefined as

Pi(2,y) = inf{ Apx(7) |7 € UrsoCr(z,y) }.
R. Mafé definesin [14] the critical value ¢(L) of thelagrangian L as
(L) =sup{k € R| Ap4x(y) < 0forsome~y € Ugenr Urso Cr(z, ) }.

Thecritical value ¢(L) can also be characterized in terms of minimizing measures,
Tonelli’stheorem on fixed energy levels [2], weak KAM solutions[9], lagrangian
graphsand Finsler metrics[4] and the Palais-Smale condition for Morsetheory [5].

It turnsout [2], that §, = —oco for k < ¢(L) and §5, > —oo for k > ¢(L).
Moreover,

isametricon M for k > ¢(L) and a pseudo-metric for k = ¢(L) (i.e. perhaps
dery(z,y) = 0 for some z # y). The action potential always satisfies a triangle
inequality @y (z, 2) < @k (x,y) + Pi(y, 2), andfor k > ¢(L), Py, isLipschitzand
& (z,z) =0foral z € M.

J. Mather definesin [16] the Peierls barrier as

h(z,y) := lim inf &c(z, 4, T),
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wherez,y € M and &.(z, y; T) isthefinite action potential

Pp(z,y; T):=  inf  Apii(y)
vECT(2,y)

for k = ¢(L). Some properties of the Peierls barrier are given in Proposition 2.1.
The Aubry set is defined as

A={zeM|h(z,x)=0}.
We begin by characterizing the Peierls barrier h when M is compact.

h x =i @C .1, + @ B .
( 7y) I}H A [ ( p) C(p y)]

This resembl es the characterization of h given by Fathi [10] in terms of weak
KAM solutions and suggest a characterization of weak KAM solutionsin terms of
the action potential.

A functionu : B C M — Rissaidtobedominatedby L + &k (u < L + k) if

u(y) —u(z) < Pp(z,y) fordlz,ye€ B.

Dominated functions are Lipschitz with the same Lipschitz constant as &
(Lemma3.1).

Following Fathi [9], a forward weak KAM solutionisafunctionu : M — R
such that

@ u<L+cc=c(L).
(b) Foral x € M there exists an absolutely continuous curve v : [0, +oo[— M
such that v(0) = = and

u(y(t)) —u(z) = Arte(v]jo.g)
foral ¢ > 0.

The set of such functions  is denoted G *. A backwards weak KAM solutionisa
functionw : M — R which satisfies (a) and

(c) Foral xz € M there exists an absolutely continuous curve~ :| — oo, 0[— M
such that (0) = = and

u(z) —u(y(t) = Art+c(vlt01)
foral ¢ < 0.

We denoteby &~ the set of backwards weak KAM solutions. The curves y apear-
ingin(b) and (c) aresaid to realize w.

These functions are called solutions because at any differentiability point x
they satisfy the Hamilton-Jacobi equation

H(z,d,u) =c(L),
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where H : T*M — R isthe hamiltonian associated to L,
H(x,p) :=sup{p-v— L(z,v)|veT,M}.

Since they are Lipschitz, by Rademacher’s Theorem [8], they are differentiable
almost everywhere.
The pseudo-metric d.. defines an equivalencerelation on M by

2y e de(z,y) =0.

Thisrelation is non-trivial, d.(z,y) = 0 witha # y, only if 2,y € A. The Aubry
set A is then partitioned into the equivalence classes of d. which we call static
classes. Let I := A/d. bethe set of static classes. For each static class I € T
choosepr € I',andlet A := {pr|I" € I" }. When M is compact, we prove the
following characterization of weak KAM solutions

Theorem 0.2 If M is compact, the maps
{f:A=-R|f<L+c}— 67,
[ uy(z) == inf u(p) + Pc(p, );
peA

{9:A—=R|g<L+c}— 6T,
g — ug(z) := inf u(p) — Pc(z,p).
pEA

are bijections.

So that aweak KAM solution is determined by its values at one point of each
static class. In particular, we get in Corollary 4.7 that if thereis only one static class
then there is a unique weak KAM solutionin &~ (resp. &) modulo an additive
constant. Thisis the case for generic lagrangians on a compact manifold [6].

Next we comment some methodsto construct weak KAM solutionsin the non-
compact case. We observe in Lemma 4.1, that S ~ is closed under minima. The
basic examplegiven by Theorem0.2isu _(z) = &.(p,x) € &~ withp € A. This
isalso true in the non-compact case but it may happenthat A = &. Replacing p €
Aby z e M,wehavethat u_(z) = h(z,z) € &, where h isthe Peierls barrier.
Thisismoregeneral, in fact it isused in Proposition 4.2 to prove Theorem 0.2, but
there are lagrangians for which the Peierls barrier isinfinite.

Another method, originally presented in [4], resembles the construction of
Busemann functions in riemannian geometry. An absolutely continuous curve
v : [a,b] — M issaid semistatic if

AL+C(’Y|[S,t]) = ¢c<7<s)a7<t)) for a <s<t<b.

Equivalently, by thetriangleinequality for @, if it holdsonly for s = a and t = b.
Examples of semistatic curves are given in conditions (b) and (c) for « above.
Semistatic curves are solutions of the Euler-Lagrange eguation. The curve ~ is
said staticif it is semistatic and d..(y(a),v(b)) = 0. Thisis equivalent to

Apselisg) = P10 2(s)  for a<s<t<b.
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Moreover [3], this implies that the whole orbit ¢t — 7(v:(§(a))) is static. For
v e TM,writex,(t) := m(p(v)). Set

YHL):={veTM|z,:[0,+oc[— M issemistatic },

Y7 (L):={veTM|z,:] —00,0] —» M issemistatic },

S(L):={veTM|z,:R— Misstatic}.

These are closed invariant subsets included in the energy level E = ¢(L), [14,2].
The Aubry set can be characterized as A = w(X(L)). It is easy to see[14,2] that
the a-limits (resp. w-limits) of vectorsin X~ (resp. X' +) arecontainedin X. In[4]
we proved that always Y+ #£ @and X~ #0.When M is 5 compact, thisimplies
that & # @. When M is non-compact, it may happen that Y=o

The following proposition constructs a kind of weak KAM solutions that we
shall call Busemann weak KAM solutions.

Proposition 0.3 [4]
1 fwe XY~ (L)and~(t) = x,(t), then

uw (@) = inf [Dc(y(2), 2) — Lc(v(2),7(0))]
lim [@c(y(t), ) — Pe(y(t),7(0))]

t——o0

isinG~.
2. Ifwe XT(L)andy(t) = z,(t), then

Uy () = sup [Dc(7(0), ¥(t)) — Pe(w,v(t))]

t>0

lim [@.(7(0),(t)) — Pc(x,(t))]

t——+o0

isinGt,

Then the existence of weak KAM solutions implies, from properties (b) and
(c) above, that 7(XF) = M = n(X7).

A. Fathi suggested that using weak KAM solutions a similar construction to
the sphere at infinity for manifolds of non-positive curvature could be made. This
isin fact possible and gives more examples of weak KAM solutions than Propo-
sition 0.3. It is done as follows, let F := C°(M,R)/ ~, where f ~ g iff f — g
is constant. The functions M > z +— &.(z,z) and M > = — P.(z, z) for fixed
x € M, are dominated by L + ¢, hence they form an equicontinuous family. De-
fine M+ (resp. 91~) as the closure, under the uniform convergence topology on
compact subsets, of the set of equivalence classes of —&.(z, z) (resp. P.(z, x))
for al z € M. Then the sets 9" and 9~ are compact and there are embed-
dings M/d, — 9M~, M/d. — 9", givenby M > z — [P.(z,x)] € F and
M > z — [=P.(z,z)]. The limits in Proposition 0.3 show that the classes of
Busemann weak KAM solutions are subsets 3~ C M, BT C 9+ of 9. When
M is compact, M~ ~ M/d., M = M/d. and the classes that contain weak
KAM solutions are represented by the static classes .A/d.., which also correspond
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to Busemann functions. In the non-compact case we define the extended static set
as
AT =MF\ (M - A) = A/d. U (MT — M/d.).

We provein Proposition 5.6that @~ ¢ &~ and@" ¢ &*. Observe that Proposi-
tion 0.3 implies that the a-limits (resp. w-limits) of vectorsin X~ (resp. X' 1) are
inB~ (resp. B™). In Example 5.4 we show alagrangian where @ contains some
non-Busemann weak KAM solutions. In particular, the extended static classesin
@™\ BT arenot a-limits (resp. w-limits) of semistatic orbits.

Using Lemma4.1, other weak KAM solutionsin G ~ can be obtained by taking
minimaof functionsin @~ . In fact we characterize all weak KAM solutionsin &+
as minimaof Busemann functionsin 37 in the following theorem.

For each extended static class « € B~ choose apoint ¢, € M such that the
map B~ > a — q, isinjective and there exists exactly one semistatic vector
v € X~ withw(v) = ¢, and a-limit 7(a-1lim(v)) = a. This can be done because
the static classesin B~ are projections of a-limits of semistatic vectorsin X'~ and
by the graph property 3.6.4. Let

(3) A:={gs|laeB }.
Define by q, € B~ by

ba,go (@) = lm Po(xy(t), ) — Pe(2v(t), ga),

t——o0

where v is the unique vector in X'~ N T, M with 7(a-lim(v)) = a. We say that
afunction f : A — R isstrictly dominated if

f(aa) < f(g) +bp,qs(qa) foral go # g5 € A.
Then we have
Theorem 0.4 The map
{f:A—R|fisstrictly dominated} — {u € &~ | u| isstrictly dominated },
givenby f — uy, where

up(r) = nf  f(ga) + ba,g. (),

ac
isbijective. Infact u¢(ga) = f(ga) for al a € A.
For v € &~ defineits backwards basin by
I (u) s ={ve X [u(@y(0)) — u(zy(t)) = Pe(xy(t),25(0)) VE <0},
Iy (u) s = U oI (u);

t<0

and define the endpoints of « by

B (u):={aec® |Fvel (u), alimrv)=a}.
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Theset m(I'~(u) \ Iy (u)) iscalled (backward) cut locus of w.

By the graph property in Theorem 4.9, 7' AN ¥~ = ¥. So that A/d. C
B (u). In particular, when M is compact, A/d, = 3~ = A~ = B (u) for
al v € 6. When M is not compact, it may happen that 3~ (u) # B~ . This
usually holds for Busemann functions because they are “directed towards a single
static class”. In Sect. §6 we show that the horocycle flow is an example in which
A=@,8 ~ S!andthere are differentiable Busemann functions b, € &~ with
57(1)&) = {a} - 3.

For o € 37, define the immediate basin of the extended static class « by

A () :={ve X |alim) =a},
={weX |byEaecB };

where b, isthe Busemann function defined in Proposition 0.3.1.

By analogy to Theorem 0.2, the values ¢, in Theorem 0.4 are used to “fix the
value of uy at the infinite point o.”, which could be infinite. We prove in Theo-
rem 0.4 that for al ¢, € A, I'"(uy) N T, M = {vs}, Where v, is the unique
semistatic vector v, € X~ with a-lim(ve) = o = A~ (a) N T, M. Thisimplies
that the set A in (3) and not only the values f(q.) or the classes « has a strong
association to the weak KAM solution v ¢ in Theorem 0.4.

Nevertheless, varying the set A, we can characterize al the weak KAM solu-
tionsin &~ . Observethat in the following theorem the set A () contains one point
for each extended static classin 83~ (u) C B™.

Theorem 0.5 Givenu € &, forall & € B~ (u) chooseq, € 7[Ay ()N I (u)],
andlet A(u) := {¢o | € B (u) }. Then

u(z) = inf u(ga)+bag,(z) foralze M.
q(,(GA(u)

1 Preliminary results
1.1 Lagrangians on non-compact manifolds

The energy function of thelagrangian L is ' : T M — R, defined by

4 E(xz,v) = g—i(x,v) -v — L(z,v).

Observethat if 2(¢) isasolution of the Euler-Lagrange equation (E-L), then
4L Bz, i) = (

L Ly—Ly)-&=0.

Hence £ : TM — R isan integral for the lagrangian flow ¢, and its level sets,
called energy levels are invariant under ;. Moreover, the convexity implies that
((Tis E(z,s0)]s=1 = v+ Lyy(x,v) - v > 0.

Thus

i E(z,v) = E(x,0) = —L(z,0).
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Write

= E = —min L —
(5 €g = max (x,0) min (x,0) > —o0,

by the superlinearity, then
eo=min{k € R|7: E~*{k} — M issurjective }.

By the uniform convexity, and the boundedness condition,

A= inf w-Ly(xz,v) - w>0,
(z,0)ETM
lw|=1
and then using (1) and (2),

vl
E(z,v) = E(z,0) +/0 £ E(:L‘,s‘vil) ds

(6) > —0(0) + A |v|.

Similarly,

(7) E(z,v) < eq +g(|v]) |v].
Hence

Remark 1.1 If k € Rand K C M iscompact, then E~*{k} N Tk M is compact.
Proposition 1.2 The Euler-Lagrange flow is complete.

Proof. Supposethat |a, 8] isthe maximal interval of definition of ¢ — ¢ (v), and
—0o < aorff < +oo.Letk = E(v). Since E(¢+(v)) = k, by (6), thereisa > 0
suchthat 0 < |¢:(v)] < afora <t < 5. Since . (v) isof theform (y(t),4(¢)),
then ¢, (v) remainsin the interior of the compact set

Q:={(yw) e TM |d(y,z) <a[|f—al+1], [v| <a+1},

where z = m(v). The Euler-Lagrange vector field is uniformly Lipschitz on Q.
Then by the theory of ordinary differential equations, we can extend the interval
of definition |, 5[ of t — ¢+(v). O

Givenx, y € MandT > 0, let
Cr(z,y) = {v €C*([0,T],M) | 4(0) =z, ¥(T) =y }.
We say that v € Cr(x,y) isaTondli minimizer if

Ap(v)= min Ap(n).
neCr(z,y)

Tonelli's Theorem 1.3 [15]
For all z, y € M and T > 0 there exists a Tonelli minimizer on Cr(z, y).

The only differencein the proof of thistheorem when M is non-compact isthe
following proposition. For a proof in the compact case see[15], [13], [12] or [3].
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Proposition 1.4 For all c € RandT" > 0 thereis R > 0 such that for all x € M,
if v:[0,T7] — M is absolutely continuous with v(0) = x and A () < ¢, then
d(~(t),z) < Rforalt e [0,T].

Proof. Adding a constant we may assume that L > 0. Thereis B > 0 such that
L(z,v) > |v| — Bfordl (z,v) € TM.Thenfor0 < s <t < T, we havethat

¢ ¢
d(xs,x) < / || < BT+/ L(z,2) < BT +c.
O

The following lemma, due to Mather [15] for Tonelli minimizers in the non-
autonomous case, will be very useful. In the autonomous case its proof is very
simple.

Lemma 1.5 For C' > 0 thereexists A = A(C) > 0 such that if z, y € M and
v € Cr(x,y) is a solution of the Euler-Lagrange equation with A (v) < CT,
then |§(¢)| < Aforall t € [0, T].

Proof. By the superlinearity thereis D > 0 such that L(x,v) > |v| — D for dl
(x,v) € TM.Since AL () < CT, the mean value theorem implies that there is
to €]0, T such that

1Y(to)] < D+ C.
The conservation of the energy and the uniform bounds (7) and (6) imply that there
isA = A(C) > 0suchthat |4| < A. O

Lemma 1.6 There exists A > 0 suchthat if z, y € M and~y € Cp(z,y) isa
solution of the Euler-Lagrange equation with

Arpye(y) < Pc(z,y) + du (2, y),

then
@ T > % du(z,y).
(b) |¥(t)| < Aforallte[0,T).

Proof. Let# : [0,d(z,y)] — M beaminimal geodesic with || = 1. Let £(r) be
from (1) and D = ¢(1) + ¢ + 2. From the superlinearity condition thereis B > 0
such that

L(z,v)+c¢> D|v| - B, V(z,v) € TM.

Then
) [(1) + ] d(z,y) > Apte(n) > Pe(z,y)
(9) > AL-&-C(’Y) - d(l‘, y)

T
zA (D |~ B) dt — d(z.y)

> Dd(z,y) — BT — d(z,y).



436 G. Contreras

Hence
T > L=l d(a,y) > £ d(,y).

From (8) and (9), we get that
Ap(v) < [€QQ) +c+1] d(z,y) — T,
<{Bl(1)+c+1]—c} T

Then Lemma 1.5 compl etes the proof. O

2 The Peierls barrier
ForT > 0andx, y € M define

hr(z,y) = Pe(z,y; T) == inf  Apic(7).
v€CTr(z,y)
So that the curveswhich realize hr(z, y) arethe Tonelli minimizerson Cr(x, ).
Definethe Pelerls barrier as

h(z,y) == ITHEJIFI;E hr(z,y).

Fathi [11] proves that when M is compact the functions h 1 converge uniformly
to h. The difference between the action potential and the Pelerls barrier is that
in the Peierls barrier the curves must be defined on large time intervals. Clearly

h(z,y) = e(x,y).
Proposition 2.1 If h : M x M — R isfinite, then

h is Lipschitz

Va,ye M,h(z,y) > P.(z,y), inparticular h(z,z) >0,V € M.
h(z,z) < h(z,y) + h(y, 2), Va,y, z € M.

h(z,y) < De(x,p) + h(p,q) + Pe(q,y),  Va,y,p, g€ M.

hiz,z) =0z en(X) = A

Ifpe A thend.(p,z) = h(p,z) and &.(z,p) = h(z,p) for al x € M.
If X 4 o, h(x,y) < infpeﬂ(f) D.(z,p) + Pe(p,y).

Proof. Item 2istrivial. Observethat foral S, T > 0 andy € M,

NogrwbdE

hT-‘rS(xa Z) S hT(‘ra y) + hS(y? Z)
Taking lim inf7_, 4 o, We get that
h(z,z) < h(z,y) + hs(y, 2), foral S > 0.

Taking lim infg_, ; o, We oObtainitem 3.
1. Taking the infimumon S > 0, we get that

h(z,z) < hz,y) +Pc(y,2) Va,y, z€ M.
< h(z,y) + Adu(y, 2),



Action potential and weak KAM solutions 437

where A is a Lipschitz constant for .. Changing the roles of z, y, z, we obtain
that h is Lipschitz.
4. Observe that

Sir>1fT hs(z,y) < Pc(z,p) + hr(p,q) + Pc(q, x).

Taking lim inf7_, ; o, We get item 4.

5. We first prove that if p € A = 7(X), then h(p,p) = 0. Takev € X such
that 7(v) = pand y € m(w-limit(v)). Let y(t) := 7 ¢;(v) and choose t,, T +oo
such that v(¢,,) — y. Then

0 < h(p,p) < h(p,y) + Pe(y,p)
<lmApie(v]o,e,) + ey, p)

< hrILn _¢c<'7<t'n,)ap) + ¢c(yap) =0.
Conversely, if h(x, x) = 0, then there exists a sequence of Tonelli minimizers

Y € C(z,2;Ty,) with T, — +oo and Az, .(v,) — 0. By Lemma 1.6, || is
uniformly bounded. Let v be an accumulation point of 4 ,,(0) and n(t) := 7 ¢ (v).

Thenif 4, (0) £ v, for any s > 0 we have that
0 < Pe(z,ms0) + Pe(m s v, x)
< Apie(nljo,s)) + Pe(m s v, 2)
< lim Arte(Ynilio,s1) + ALte(Ynlis,11)
=0.

Thusv € X
6. By items 2, 4 and 5, we have that

Pc(p,z) < hip,z) < h(p,p) + Pe(p,z) = Pe(p, ).
The equdlity @.(z, p) = h(p,x) issimilar.
7. Using items 4 and 5, we get that

h(z,y) < inf [Dc(z,p)+ 0+ Pe(p,y) ] =
pem(X)

Proposition 0.11f M is compact, then

h(z,y) = inf_ [®.(z,p)+ De(p,y)].
pem(X)

We shall use the following characterization of minimizing measures. A min-
imizing measure is an invariant measure under the Euler-Lagrange flow p, such
that its action satisfies

)= [ Ddu= ().

Itis provenin[14,2] that an invariant measure p is minimizing if and only if it is
supported on .
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Proof.
Using items 4 and 5 of Proposition 2.1, we get that

h(z,y) < inf_[@c(z,p) + 0+ Pe(p,y)].
pem(X)

In particular h(z,y) < +oo foral z,y € M. Now let v, € Cr,(z,y) with
T, — +ooand Aric(vn) — h(z,y) < +00. Then %ALH(fyn) — 0.Letubea
week limit of a subsequence of the measures 1., :

1 Ty
/ fa, =7 [ 10 400) ar

Then p is minimizing. Let ¢ € 7 (supp(u)) and g, € v,([0,7,]) be such that
lim, ¢, = q. Then,

Do(x,q) + Pe(q,y) < Pel@, qn) + Pe(qn,y) + 24 d(gn, q)
< Apie(ym) +24d(gn, q)-

Letting n — oo, we get that

De(r,q) + Pe(q,y) < h(z,y).

3 The Hamilton-Jacobi equation
For an autonomous hamiltonian H : T*M — R, the Hamilton-Jacobi equationis
(H-J) H(z,dyu) =k,

wherew : U C M — R. Here we are interested on global solutions of (H-J), i.e.
u: M — R satisfying (H-J).

It may not be possible to obtain a smooth global solution of (H-J). Instead, for
certain values of &, we shall find weak solutions of (H-J), which are Lipschitz. By
Rademacher's Theorem [8], a Lipschitz function is Lebesgue almost everywhere
differentiable, so that (H-J) makes sense at a.e. point.

The results of this section are due to A. Fathi [9] and are restated here for
completeness in the non-compact case. We say that a function « is dominated by
L+ k,andwriteu < L + k. if

u(y) —u(z) < Pp(z,y) fordlz,ye M.

Lemma 3.1

1. Ifu < L + k, then u is Lipschitz with the same Lipschitz constant as @.. In
particular, a family of dominated functionsis equicontinuous.
2. Ifu < L+ kthen H(xz,d,u) <k at any differentiability point = of .
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Proof.

1. Wehavethat u(y) —u(z) < @.(x,y) < Adp(z,y), where AisaLipschitz
constant for @.. Changing the roles of = and y, we get that « is Lipschitz.

2. We have that

u(y) — u(x) < / L(v.4) + k

Yy
for all curvesy € C(x,y). Thisimpliesthat

dyu-v < L(z,v)+k
foral v € T, M whenu isdifferentiableat x € M. Since
H(z,dyu) =sup{dsu-v— L(z,v)|veT,M},
then H (z, d,u) < k. O

The following proposition shows that we actually get a solution of H-Jif there
are (semistatic) curveswhich realize a dominated function w.

Proposition 3.2 If u < L + k, x € M and thereexistsy :] — ¢, ¢[— R such that
~(0) = z, and

(10)  u(y(®) —u(v(s)) = A4r(Vis,y)  for  —e<s<t<e,
then  is differentiable at =, dyu = L, (x,%(0)) and H (z, dyu) = k.

Remarks 3.3

1. Equation dyu = L, (z,4(0)) means that the tangent vector (z,+(0)) of any
a.c. curve~y realizing u is sent by the Legendretransformto d , .

2. In particular, since the functions u(x) = @ (p, z) (resp. v(z) = —P.(z,p))
are dominated, then they are differentiable at any point which is not at the
(backward) (resp. forward) (L + k)-cut locus of p.

3. Observe that the energy E(x,+(0)) = H(x,dgu). In Proposition 0.3, if
w € YF, thenw € I'F(uy). Thus we obtain that > ¢ E~!{c}, i.e. that
the semistatic orbits have energy c(L).

Proof. Letw € T, M andletn(s,t) beavariationof v fixing the endpointsy(—¢),
~(e) such that (0, t) = v(t) and Z7(0,0) = w. Define

0
A(s) ::/ L(2n(s.t) + & dt.

Then, integrating by parts and using the Euler-L agrange equation (E-L),

0
WO = Lot [ [ EL) €= L A0) w.

—€
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where &(t) := £n(0,t). Also

s [u(n(s,0)) —u(@) | =

<

[u(n(s,0)) — u(y(=¢)) + u(v(=e)) — u(+(0))]
[A(s) —A0)],

|—= o |

@

wherewe used that u < L + k and (10). Hence
(11) lim sup ¢ [u(n(s,0)) — u(z) | < A'(0).
similarly, if B(s) := Ap+x(n(s,)]0.c)), then
u(y(e)) —u(n(s,0)) —u(y(e)) + u(z) < B(s) — B(0),
limsup ¢ [u(@) —u(n(s,0)) | < B'(0) = —Lu(z,7(0)) - w.

s—0

Hence
(12) liminf $ [u(n(s,0)) = u(z) | = Ly(2,9(0)) - w.

From (11) and (12) we get that « is differentiableat = and d ,u = L, (z,¥(0)).
Finaly,sinceu < L+ k, by Lemma3.1, H(z,d,u) < k. Sincefor0 < ¢t < ¢,

u(y(t)) — u(v(0)) = Ar+x(vljo,) = /0 [L(v(s),3(s)) + k] ds,
then
dyu - ¥(0) = L(7(0),%(0)) + k.
Hence

H(z,dyu) = sup {dyu-v— L(z,v)} > k.
vET, M

a

Definition 3.4 A function u_ : M — R is a backward weak KAM solution
of (H-J) if

1 u_-<L+ec
2. Fordly € M thereisy € C*“(] — o0,0], M) such that 4(0) = y and

u_(y(=t)) = u_(y) + Arrc(¥l=t,0) foral ¢>0.
A functionu, : M — R isaforward weak KAM solution of (H-J) if

1. Ug < L+e.
2. Fordly € M thereisy € C*°([0, 4+o0[, M) such that v(0) = y and

ur(Y(8) = ut(y) + Arte(ylppg)  foral >0

We say that the curves v aboverealize w.
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Remark 3.5 From the domination condition it follows that « is Lipschitz and that
the curve v is semistatic. From Proposition 3.2, at an interior point = of such a
curves -, u is differentiable and H(x, d,u) = c. Moreover, the last argument in
Proposition 3.2 shows that if « is differentiable at an endpoint of a curve -y, then
H(z,d,u) = c. By Rademacher’s Theorem [8], u is differentiable at (Lebesgue)
almost every point in M. So that « is indeed a weak solution of the Hamilton-
Jacobi eguationfor k = ¢(L).

Given adominated function v < L + ¢ define the sets

I (u) :=={v e X7 |u(xy(t)) — u(z,(0)) = Pe(2,(0), 7, (2)), Vt >0},

Iy (w) = {v e X7 Ju(y(0)) = u(zy(t) = Pe(2y (1), 2,(0)), VE <0},

' (u) = tL>JO¢>t (I (@) ,  I'(u):= tL<J0¢>t (I (w),
where z,(t) = m¢i(v). We cal I'"(u) (resp. I'"(u)) the basin of v and
(L (w) \ 't (w)) (resp. m(Iy (u) \ I'~ (u))) the cut locus of w.

Theorem 3.6 (Fathi [9]) If u € & (resp. u € &™) isaweak KAM solution, then

1. w is Lipschitz and hence differentiable (Lebesgue)-almost everywhere. Also
H(x,d;u) = ¢(L) at any differentiability point x.

2. u<L+ec

3. Covering Property: 7(I';f (u)) = M.

4. Graph Property: = : ' (u) — M isinjective and its inverse is Lipschitz,
with Lipschitz constant depending only on L.

5. Smoothness Propertyu is differentiable on 1"+ (u) and its derivative d v is
the image of (7| r+(,)) ' (z) under the Legendre transform £ of L. In partic-

ular, the energy of I'y" (u) isc(L).

Proof. Items 2 and 3 are the definition of u € &+. Item 1 follows from Proposi-
tion 3.1.1 and Remark 3.5. Item 5 follows from Remarks 3.3.1 and 3.3.3.
A proof of the following lemma can be found in [15] or [13].

Mather’s Crossing Lemma 3.7 [15]

Given A > O thereexist K > 0,e; > 0 and§ > 0 with the follow-
ing property: if |v;| < A, (pi,v;) € TM,i = 1,2 satisfy d(p1,p2) < ¢
and d((p1,v1), (p2,v2)) > K~ 'd(pi,p2) then,ifa € Randz; : R — M,
1 = 1,2, arethe solutions of L with z;(a) = p;, @;(a) = v;, there exist solutions
vi:la—e,a+e] - Mof Lwith0 < e < g4, satisfying

nla—e)=ai1(a—¢) , mlate)=a(ate),
Y2(a—¢) =a2(a—¢) , nlate)=zi(ate),
SL(xl‘[afe,aJre]) + SL<$2|[a75,a+a}) > SL(’Yl) + SL<'72)
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We prove item 4. Let (z1,v1), (22,v2) € I'*(u) and suppose that
dprp(vr,v2) > Kda (21, 22), where K isfrom Lemma 3.7 and the A that wein-
put on Lemma3.7 isfromLemmal.6.Let0 < € < €4, (Withe; from Lemma3.7)
besuchthat p_c(z;,v;) € I't(u). Let m; = x4, (—€), y;s = Ty, (€),1 = 1,2, then
w(y;) = u(x;) + Pe(x4,9:), 4 = 1,2. Then Lemma 3.7 implies that

Do (r1,Y2) + Pe(x2,y1) < Pe(w1,Y1) + Pe(22,Y2).
Adding u(y1) + u(y2) and using that u < L + ¢, we get that

u(zr) + u(ze) < Pe(z1,y2) + u(y2) + Pe(2, y1) + u(yr)
< De(1,91) + u(yr) + Pe(2,y2) + u(y2)
= u(z1) + u(xe),

which isacontradiction. This provesitem 4.

Y(t)

Fig. 1. Graph property

4 Construction of weak KAM solutions

In this section we present three ways to construct weak KAM solutions; when the
Aubry set is non-empty (in Remark 4.3.4), when the Peierls barrier is finite (in
Proposition 4.2), and the general case (in Proposition 0.3).

We begin by observing that

Lemma 4.1

1L IfU C & issuchthat v(z) := inf,ey u(x) > —oo, for al z € M; then
veEGT.

2. IfU C &t issuchthat v(z) := sup, ¢y u(z) < +oo, for all z € M; then
veEGT.

Proof. We only proveitem 1. Sinceu < L + c for dl u € U, then

(13 oly) = inf u(y) < inf ul@) + Pel(e,y) = v(z) + el ).
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Thusv < L+ c.

Let x € M and choose u,, € U such that u,(z) — v(z). Choose w, €
I'(un) NT,M.Sinceby Lemmal.6|w,| < A, we can assume that w,, — w €
T.M.By Lemma3.1.1, dl the functions u € U have the same Lipschitz constant
K as®,.. Fort < 0, we havethat

v(@w (1)) < liminf up (2w, (1) + K dyr (20 (t), 2w, (1)

= lim inf Un () — Pe(w(t), ) + K dyg (24 (t), T, (2))

=v(x) — ez (1), ) < v(xy(t)), becausev < L + c.
Hencew € I'~ (v). O

Proposition 4.2 If h, < +o00 and f : M — R isa continuous function. Suppose
that

v_(x) := Zlél]& f(2) + he(z,2) > —o00,

v4 () := sup f(z) — he(z, 2) > —00.
zeM

Thenv_ € 6~ andv, € &7 .

Proof. Weonly provethat v_ € G~. By Lemma4.1it is enough to prove that the
functionsu(x) — h.(z,z) aein &~ foral z € M.

By Proposition 2.1.4, u < L + c¢. Now fix € M. Choose Tonelli minimizers
Yo i [Tn, 0] — M suchthat v, € C(z,2), T, < —n and

ALJrc("Yn‘[Tn,O]) < hC(Z,.T) + 71_1

By Lemmal.6, |5, (0)] < A for al n. We can assume that 5,,(0) = w € T, M. If
—n <s<0,thens > T, and

AL+c('7n‘[Tn,s]) + ¢c< n(S),LL’) <
< ALJrc ("Yn|[Tn,s]) + AL+c ("Yn

(5,0])

< he(2,7m(8)) + Pe(ya(s),x) + L, for —n < s<0.
Taking lim inf,,_, o, Wwe get that
he(z, T (8)) + AL+C($w|[S,0]) = he(z, ).
Hencew € I' (u). O

Remarks 4.3
1. Observethat, since @ .(z, x) =0,

u<L+c << ulx)= in{/lu(z) + Pz, x).
zeE
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2. Item 4.3.1 implies that the function % . in Proposition 4.2 can not be replaced
by @.. In fact, the function u,(z) = ®.(z,x) satisfiesu, < L + ¢, butin
general u ¢ &, if z isnot properly chosen.

3. For any z € M the function u,(z) = he(z,2) € & and v,(z) =
—he(x,z) € GT.

4. 1f p e Athenuy(z) := @.(p,x) € &, because

D.(p,x) < he(p,x) < he(p,p) + Pe(p, ) < Pe(p, x).
Similarly, v,(z) = —P.(z,p) € &*.

Corollary 4.4 If M iscompact and » : M — R is continuous, then

1 u€ BT = uz)= néiﬁu(p) + P.(p, x).
P

2. u€ &t <= u(z) = minu(p) — P.(z,p).
pEA

Proof. We only proveitem 1. Observethat if u < L + ¢, then
v(x): = ?enjvl} w(z) + he(z,x)
= minmin u(z) + (2, p) + Pe(p, 7)
= min u(p) + Pe(p, z) =: w(2).
If u=w,thenu < L + ¢, because
u(y) = min u(p) +Pe(p,y) < minu(p)+Pe(p, 2) +Pe(w,y) = u(z) + (2, y).
Thenu = v € &~ by Proposition 4.2.

Now suppose that w € 6. Sinceu < L + cthenu < w. Letz € M and
choosev € X~ such that

(14) u(@) —u(y(t) = Arse(y

Choose p € wa-lim(v)] C A, andt, — —oo suchthat y(t,) = p. Usingt = t,,
on equation (14), we have that

o) = Pc(y(t), ) fort <O0.

u(z) = u(p) + Pc(p, ) > w(z).
Thusu = w. =

Remarks 4.5

1. If M iscompact,u, v € &~ andu|4 = v|4, thenu = v.
2. Observethat if u < L + cand d.(p,q) = 0 then u(q) = u(p) + D.(¢,p),
because

u(q) < u(p) + Pe(p, @) < u(q) + Pe(q,p) + Pe(p, @) = u(g)-

3. By item 2, if M is compact, the values of © € &~ on only one point of each
static class determine u.
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Let I' = A/d. be the set of static classes of L. For each v € I' choose
pr € T'andlet A = {Pp|I" € I'}. We say that afunction f : A — R is
dominated (f < L +c¢)if  f(p) < f(q) + Pc(q,p), foralp, g€ A.

Corollary 4.6 If M iscompact,themap{f: A —-R|f<L+c} -6,
f = uyp(x) == inf f(p) + Pc(p, z),
pEA
isabijection.
Proof. By Remark 4.5.3, the map is surjective. The injectivity followsfrom
up(p) =min f(q) +Pelq.p) = fp) VP EA,

because f is dominated. O

Corollary 4.7 If M is compact and there is only one static class, then G — (resp.
&™) isunitary modulo an additive constant.

This characterization of weak KAM solutions allows us to recover the follow-
ing theorem: We say that two weak KAM solutionsu - € &~ andu, € &T are
conjugateif u_ = u4 on A and denoteit by u_ ~ u.

Corollary 4.8 (Fathi [10]) If M is compact, then

hey) = sup {u_(y) - us(o) ).

u;66¢
U_—~UL

Proof. If uy ~ u_ andp € A, from the domination we get that

u+(p) < u+(CL’) + @c(CL’,p),
u_(y) < u_(p) + Pe(p, y).

Adding these equations and using that «  (p) = u_(p), we get that
u—<y) - U+(CL’) < ¢c(xap) + ¢c<pa y)

Taking inf,c 4 and thensup,, ., Weobtain

sup {u—(y) —us(z) } < h(z,y).

On the other hand, let u (z) := —h(z,y) and
(15) u-(2) = min {us (0) + Pela.2))

= min{ —h(q,y) + Pc(,2) }
(16) = mip { —Peq,y) +Pe(q,2) }

From Remark 4.3.3 and Corollary 4.6, u+ € &*. Since u, is dominated,
from (15) we get that u ~ u_. From (16), u_(y) = 0 and hence u_(y) —
O

ui(2) = hz,y).
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When h. = +o00, we use another method to obtain weak KAM solutions, re-
sembling the constructions of Busemann functionsin riemannian geometry. In [4]
we provedthat ¥+ # @ and ¥~ # @ even when M is non-compact. We call the
functions of Proposition 0.3 weak KAM Busemann functions.

Proposition 0.3

1 Ifwe X (L) andv(t) = z,(t), then
uw (@) = 1nf [P (7(2), 2) — Pe((£),7(0))]
= lim [¢c(’7(t)?x) - ¢c(’7(t)?'7<0))}

t——o0
isinG&~.
2. Ifwe XT(L)andy(t) = z(t), then
= lim_[B.(5(0), (1)) = Pe(, 7(1))
isin&™.
Item 2 of Proposition 0.3 was proved in [4]. For completeness, we show here

the proof of item 1. To prove Proposition 0.3, we shall need the following graph
property. For v € T M, write z,(t) = m ¢t(v). Givene > 0, let

Y ={weTM|zy,:[0,e) = Morz,: (-0 — M issemistatic }.

Theorem 4.9 (Mafié) [14] For all p € «(X) there exists a unique £(p) € T,M
suchthat (p,£(p)) € X¢, inparticular (p,€(p)) € X and X' = graph(¢).
Moreover, themap ¢ : m(X) — X isLipschitz

Proof of Proposition 0.3. We only prove item 1. We start by showing that the
function§(t) = @.(y(t), z) — .(y(t),0) isincreasing. If s < t, then
8(t) = 8(s) = De(v(t), 2) — Pe(v(s), ) + [Pe(7(5),7(0)) = Pe(v(1),7(0)) ]

= Pe(v(1), ) = Pe(v(5), ) + Pe(7(5),7(1))
O»

v

where the last inequality follows from the triangle inequality applied to the
triple (v(s),v(t),z). By the triangle inequality, §(t) < @.(v(0),z), hence
limy| o 6(¢) = inf,« 6(¢) and thislimit isfinite.

Since

u(y) = inf @(v(t),y) — Lc(7(t),7(0))
< }25 @C(’y(t),l’) + g{)c(:c,y) - QSC(’Y(t)v'Y(O))
= u(x) + Pc(,y),



Action potential and weak KAM solutions 447

thenu < L + c. R
Supposethat x € A # @. Let (z,v) € Y andt < 0. Letp = =,(¢) and
y € M.Sinced.(x,p) = 0, then

Pe(y,z) = D(y, ) + Pe(,p) + Pe(p, 2)
> (Pc(y,P) + @C(p,l’) > @C(y,x).

Hence @.(y,z) = Pc(y,p) + Pc(p, ). Fory = ~(s) (and p = (1)), we have
that

u(z) —u(zy(t)) = lim [De(v(s),z) = Pe(v(s), 2o (1))] = Pe(wv(t), 7)

s§—+00
= Artc (o) -

Now let x € M \ A and choose y,, : [T7,,0] — M aTonelli minimizer such
that Yn (Tn) = ’Y('n), Yn (O) =z and

m0) < De(y(-n),z) + L.

AL+c(y7L
Thisimplies that
(17) ALJrC(yn‘[s,t]) < @C(yn(s)vyn( )) + Za for T, <s<t<0.
By Lemmal.6, |y,| < A. We can assumethat y,,(0) — v € T, M. Then

(18) Apte(wolf,0) = Pe(y(t),x)  for liminf 7, <t < 0.

We prove below that lim,, 7,, = —oo. Thenv € X~ (L). Observe that for 7,, <
s < 0 we havethat

Pe(y(-n),z) < Pe(v(-n), Yn(5)) + Pe(yYn(s), ¥) < ALte(yn
< De(y(-n),2) + 5
Sincey — &.(z,y) is uniformly Lipschitz, we obtain that
u(x) = lim Pe(y(- ) z) = Pc(v(-n),~(0))
= lim @, (y(-n), 2y (s)) + Pe(@o(5), 2) = Pe(7(-n),7(0))

= ( »(8) ( o(8), ) forall s < 0.
= ( () +ALJrc(va|50]) becausev € X .

Now we prove that lim,, T,, = —oo. Suppose, for simplicity, that lim,, 7, =

(T,0])

)+
)

Ty > —o0. Since ,(0) — v, then y,[(7, g <, Ty|[1y,0) @A hence y(-n) =
yn(Tn) — x4,(Tp) =: p. Since by Lemma 1.6 || is bounded, we can assume
that lim,, 5/(-n) = (p,w1). Thenw; € a-lim(4) C . From (18), i, (Ty) € X*.
Since m(w1) = x(Tp) = p, then Lemma 4.9 implies that i:,,(Tp) € Y.Since &
isinvariant, then v € ¥ and hence z = n(v) € =(X) = A. This contradicts the
hypothesisz € M \ A.

O
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5 The extended static classes

The method in Proposition 0.3 resembles the construction of Busemann functions
in complete manifolds of non-positive curvature. In that case, Ballmann, Gro-
mov and Schroeder [1] proved that the manifold can be compactified adjoining
the sphere at infinity that can be defined in terms of Busemann functions.

Here we emulate that construction to obtain a compactification of the mani-
fold M/ 4, that identifies the points in the Aubry set which are in the same static
class and adjoins what we call the extended Aubry set @ . By definition of Buse-
mann function, the extended static classesin 37 correspond to the a-limits (resp.
w-limits) of semistatic orbits in the compactification. But as we shall see in Ex-
ample 5.4 the classes in @ \ BT do not correspond to a or w limits of orbitsin
TM.

On C°(M,R) we use the topology of uniform convergence on compact sub-
sets. Consider the equivalencerelation on C°(M, R) defined by f ~ g if f — gis
constant. Let F := C°(M, R) /.. with the quotient topology.

Let 9~ betheclosurein F of { f(z) = ®.(2,z)| 2 € M}/ and M™T the
closurein F of { g(x) = @.(x,2) |z € M }. Fixapoint 0 € M. We can identify

Fr{feC'MR)[f(0)=0}.
Lemma 5.1 9~ and 9" are compact.

Proof. Observethat thefunctionsin 91~ and 9t are dominated. By Lemma3.1.1
the families 91~ and M are equicontinuous. Since M is separable by Arzel&
Ascoli theorem 91~ and 9" are compact in the topology of uniform convergence
on compact subsets. 0

Then 931~ is the closure of the classes of the functions
fa(x) := Doz, x) — Pe(2,0), VeeM
and M isthe closure of the classes of
9:(x) = Dc(z,2) — Dc(0, 2), Vaxe M.
Lemma5.2

L If fu(z) = f.(z) foral x € M, thend.(w, z) = 0.
2. If g(z) = g.(x) for all x € M, thend.(w,z) = 0.

Proof. We only proveitem 1. Supposethat f, = f,,. From f.(z) = f.(z) we get
that
b.(w,z) = P.(w,0) — D.(2,0),

and from f,(w) = f,(w) weget
Dc(z,w) = —Pe(w,0) + Pc(z,0).

Adding these equations we get that d.(z, w) = 0.
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Conversely, if d.(z,w) = 0and z € M, then
Po(w,x) <de(w,2) + Pe(2,2) = Pe(2, 1) — Pe(2,w) < Pe(w), z).

Thus &, (w,z) = P.(w, z) + D.(z,z) foral z € M. Thisimpliesthat [, = f.,.
O

Then we have embeddings M /4, — M~ ,by z — [f,] € Fand M/4, —
IM* by 2 — [g.] € F, where M/, isthequotient space under the equivalencere-
lationz = y if d.(x,y) = 0. Let B~ bethe functions defined in Proposition 0.3.1
and B thoseof 0.3.2. Let BT =B/ andB =B /..

Remark 5.3 By Proposition 0.3,if p € A # @ thenu_(x) := $.(p,z) € ¥~ and
uy (z) = —®.(x,p) € BT (modulo an additive constant).

Observethat d.(z,w) = 0if andonly if z = w or z,w € A andthey areinthe
same static class. Under the identifications M/ — 9 we havethat 37 U (M \
A) C MTF respectively. But thisinclusion may be strict as the following example
shows:

Example 543~ U (M \ A) #M".

Let M = R and L(z,v) := 3v® — cos(2mz), corresponding to the univer-
sal cover of the simple pendulum lagrangian. Then ¢(L) = 1, and the static
orbits are the fixed points (2k + 1,0) € TR, k € Z. Moreover, H(z,p) =

1p? + cos(27z) and the Hamilton-Jacobi equation H(z,d,u) = c(L) gives

dgu = £2 /1 — cos(2mz). Thefunction
u(z) = / 24/1 — cos(27s) ds,

0
with dyu = +2 /1 — cos(2mz), isin &, isthelimit of u,(z) := &c(—n,z) —
&.(—n,0) but it is not a Busemann function associated to a semistatic orbit -y

becauseif y(—o0) = 2k + 1 € Z isthe a-limit of +, then the Busemann function
b, associated to v satisfies

(19) dob, {+2\/1c052:c if ©>~(—00),

2/1—cos(2mz) if x < ~(—00).

Similarly afunctionv : R — R withd,v = —24/1 — cos(2nz) isin & butitis
not a Busemann function.

Observethat in the Busemann functionin (19), at thepointy = v(—o0) +3 the
semistatic orbit n(¢) with 7(0) = I'~ (u) N T, M has a-limit n(—oco) = vy(—oc0) +
2 # ~(—o0). Moreover, the Busemann function b,, associated to 7 satisfies

— >
db{+2\/1 cos(2mzx) if x > y(—00) +2,

2/1—cos(2rz) if z <7y(—o00)+2;



450 G. Contreras

so that b,, # b,. Infact, there is no semistatic orbit passing through y with a-limit
~v(—00). Thisimplies that the Busemann functions can not be parametrized just by
a (semistatic) vector based on a unique point 0 € M asin the riemannian case. In
particular, it may not be possible to chooseasinglepoint g, =0 € M, Va € B~
in the construction for Theorem 0.4. O

The functions in B~ and B are special among the weak KAM solutions,
They are “directed” towards a single static class and they are the most regular in
the following sense:

Lemma 5.5
1 Ifwe XY~ andu, € B~ isasin Proposition 0.3.1, then

Uy () = max{u(z)|u € &7, u(r(w)) =0, we ' (u)}.
2. Ifwe Xt andu,, € BT isasinProposition 0.3.2, then

wy(y) = minf u(y) |u € &7, ulm(w)) =0, we I'(u)}.

By the Remark 5.3, this also holds for the functions v _ (z) = &.(p,«) and
uy(x) = —P.(x, p) (Modulo an additive constant), for any p € A.

Proof. We proveitem 1. Let z := n(w) andv € &~ withv(z) = u,(x) = 0 and
w € I'"(v). Let z,,(t) = 7(P:(w)). Sincev < L+ candw € '~ (v), then for
t < 0, we have that

v(y) < v(zw () + Pelzw(t),y)
= 0(x) — De(wu(t),2) + Pe(z0(t), ).

Since v(z) = uw(z) = 0, letting ¢ | —oo, we get that v(y) < u,(y) for al

y € M. On the other hand, u,, isin the set of such u’s, so that the maximum is
realized by wu,,. a

Define
A =M\ [(M—-A)/a] . @ ="\ [(M—A)/a]
Proposition 5.6 Thefunctionsin@~ and @™ are weak KAM solutions.

Proof. Letu € MM~ \ (M \ A)/4,. Since v is dominated, we only have to prove
the condition 3.4.2. Adding a constant, we can assume that «(0) = 0. Then there
isasequence z, € M suchthat u(z) = lim,, ®c(z,, ) — Pc(2,,0). L&tz € M
and let v, € Cr, (zn,2) beaTondli minimizer such that T, < 0, v,(0) = =,
Y (Tn) = 2n ad Ap4c(yn) < Pel2n, ) + L. In particular

QC(ZnaVn(t)) JrAlnLC(”Vnht,O]) < AL+C(7n) < @6(2717-%) =+ %7 vV T,<t<O0.

Sincew € 4™, then we can assume that either djs(z,,2) — o0 Or 2, — p € A.
Sinceby Lemma 1.6 |§,| < A and h.(p,p) = 0 for p € A, in either case we can
assume that 7,, — —oo.
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We can assumethat <, (0) — v € T, M. Thenfor ¢ <0,
u(24(0)) — u(zy(t)) = Im Pe(2n, ) — Pe(2n, To(t))
=1lm P, (2n, ) — Pe(2n, Yn(t)) + K de(yn(t), z,(t))

> lim ALJrc (7n

[t,o]) - %
> Arnse ($v|[t70])’

where K isaLipschitz constant for @ ..
(]

Forpe ¥andz € M let z — b, .(z) bethefunctionintheclassp € 3 such
that b, .(2) =0, i.e.

bp,z(x) = ?}IH}) @C(y, .TC) - @c(ya Z)
We now give a characterization of weak KAM solutions similar to that of Corol-
lary 4.6. For each o € B~ choose ¢, € M such that there is a unique semistatic
vector v € X'~ suchthat 7(v) = ¢ and the o-limit of v isin the static class «. This
can be done by the graph property 3.6.4. Moreover, choose them such that the map
B 3ar—q, € Misinjective Let A := { g, | @ € B~ }. We say that afunction
f: A — M isdtrictly dominated if

f(ga) < f(g8) + bg,q5(qa)

foral o # inB~. Andwesay that f isdominatedif f(ga) < f(gs)+bg.qs(¢a)
fordl o #5inB.

0.4. Theorem.The map {f : A — R|f strictlydominated} — {u €
S~ | u|a strictly dominated}, f — wy, given by

up(x) = aielg’ f(ga) + bag. (),

isahbijection.

Proof. Wefirst provethat v ; is bounded below. The domination conditionimplies
that u¢(¢a) = f(ga) foral o € B, Then the same argument as in formula (13),
showsthat uy < L + c. Fixa € 37, thenforal x € M,

(20) uf(x) > uf(ga) = Pe(qar ©) = f(ga) = Pe(qa, ) > —o0.

Since uy > —oo and it is an infimum of weak KAM solutions, from
Lemma4.lwegetthat uy € 6. Sinceuyr(¢a) = f(ga) foral a € B, the
map f — uy isinjective.

We now prove the surjectivity. Supposethat « € &~ and u|, is strictly domi-
nated. L et

v(z) == inf u(qa)+ ba,q, ()
acB” !
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Observe that the domination condition implies that
(22) v(qa) = u(ge) foralae B .
Givenz € M,letd € I' (u) N T, M andlet « € B~ bethe a-limit of 6. Then,
u(z) = u(zg(s)) + Pe(zo(s), x) foral s < 0.
Since u isdominated, u(q,) < u(zg(s)) + Pc(zo(s), ¢n). Hence
w(x) > u(ga) — Pe(x0(8), ga) + Pe(wo(s), ) foral s < 0.
Taking the limit when s — —oo, we get that
(22 u(z) > v(x) foral z € M.

Now we provethat v = v on the projection of the backward orbits of vectorsin
I'(u) ending at the points g, « € B~ . LetE e I' (u) NT,, M andlet § € B~
bethe a-limit of £. From the definition of v(z) forall e > 0 and s < 0 thereexists
v =7(s,e) € B~ suchthat

v(we(s)) = v(gy) + by, (we(s)) — &
Since¢ € I'(u) N T,, M, thenfor s < 0,

(23)
u(qa) = u(ze(s)) + Pe(ze(s), 4a)
(24 = v(we(s)) + Pe(e(5), 4a) by (22)
> 0(qy) + by,q, (2e(8)) — € + Pe(2e(5), ¢a)
13

= dim v(gy) + Pe(e(t), w(s)) + Pe(26(5), da) = Pe(we(t), 47) —
(

o+

> 0(gy) + , lim_Pe(we(t), ga) — Pe(we(t) qy) — €
> v(gy) + bv 4,(qa) —€

(25) > v(ga) —
= u(qa) — by (21).

Letting e | 0, from the equality between (24) and (25) we get that
(26) v(ga) = v(ze(t)) + Pe(ze(t), ga) foralt < 0.
But then
v(gp) < v(ae(t)) + Pe(ze(t), 48) = v(da) — Pe(w(t), da) + Pe(we (1), 45)-
Equivaently

0(ga) > v(gp) + Pe(we(t), ga) — Pelwe(t), gp)-
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Taking thelimit whent — —oo, we get that v(q.) > v(gs) +bg,q,(qa). Thiscon-
tradicts the strict domination, hence 5 = «. Then, from the equality between (23)
and (24), we have that

(27) u(ze(t)) = v(ze(t)) foralt <0, andé e X~ NT,, M, a-lim(§) =

Nowletz € Manda € B~ .Letg € ¥~ NT,, M with a-lim(§) = «. Then
fort <0,
u(z) < ufwe(t)) + Pe(ze(t), @)
= v(wg(t)) + Pe(e (1), @) by (27)
(ga) = Pe(e(t): ga) + Pe(we(t), 7)), by (26).

Letting t — —oo, we have that

u(z) < v(ga) + ba,q. (¥) = u(ga) + ba,g. (2).
Sincea € B~ isarbitrary, from the definition of v we get that u < v. O

Theorem 5.7 Givenu € &, for all & € B~ (u) chooseq, € 7[Ay ()N Iy (u)],
andlet A(u) := {qo | € B (u) }. Then

u(z) = inf u(qa)+bag. (¥r)  foralze M.
o €A(w)

Proof. Letuw € &~. Foral a € 3™ (u), choose ¢, € m(A, () NI, (u)). Let
A(u) == { qa | € B (u) }. We show that u|,(,,) isdominated. Let o, 3 € B (u)
andletd € T,,M N A~ (B3) NI~ (u). Thenfort <0,

zo(t)) + Pe(zo(t), o)
Qﬁ) - ¢C( 9( ),QB) + ¢c(x9<t)’qa)'

Letting t — —oo, we get that u(ga) < u(gs) + bs,q5(qa), fordl a, 3 € B3~ (u).
Let

u(ga) <

(28) v(z) = inf wu(ga)+ ba,q, (7).
anA(u)

The same arguments as in equation (20) show that v > —oo and by Lemma (4.1)
veGT.

Givenz € M,let@ e I' (u) N T, M andlet & € B~ (u) be the a-limit of 6.
Then,

(zo(s)) + Pe(wo(s), 2) foral s < 0,
(qa) — Pe(9(5), qa) + Pe(z0(s),z)  becauseu is dominated.

Sincea € B (u), taking the limit when s — —oo, we get that

(29) u(z) > v(x) foral z € M.
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Now let z € M and ¢, € A(u). Let § € A(a) NI~ (u) N Ty, M. Then for
5 <0,

u(z) < u(ze(s)) + Pe(xe(s), z)
= u(qa) — Pc(xe(8), ¢a) + Pe(ze(s),x), becauseé € I' (u) N Ty, M.
Since¢ € A~ (a), letting s — —oo, we have that

u(z) < u(ga) + ba,g, ().

Since g, € A(u) isarbitrary, we get that u < v. O

6 Examples
Example 6.1 A Lagrangian with h = +oo0.

Let L : TR? — R be L(z,v) = 1 |v|> + ¢(z), where | - | is the euclidean
metric on R? and v(x) is a smooth function with 1 (z) = ﬁ for|z| > 2,9 >0
and¢(z) =2for0 < |z| < 1.

Then

¢(L)=—inf¢) =0,
because if ~,, is a smooth closed curve with length ¢(v,,) = 1, |y.(¢)] > n and
energy () = 442 — 1h() = 0, then

Tn
(D>fmh%hw:f/ L42 4 ()

n>0 0

|’Yn| 2
= — [ Pl = el < -2 —0.
0

On the other hand,
¢(L) = —inf {Ap(y)]~ closed } <0,

because L > 0.
Observethat since L > 0 and on compact subsets of R2, L > a > 0, then we
have that
de(z,y) = ®c(2,y) > 0foral z,y € R%

Hence X(L) = @.

Supposethat (0,0) < +oo. Thenu(x) := h(x,0)isin&*.Leté € I' (u)N
ToR? and write z¢ (t) = (r(t),0(¢)) in polar coordinates about the origin 0 € R2.
Then limsup,_, , ,, 7(t) = +oo because otherwise the orbit of £ would lie on a
compact subset of £ = 0 and then @ # w-lim(¢) C X(L) = @. Moreover,

g = /2
L((ptf |$£ =/ 7(t |$£

and
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Let T,, — +oo besuchthat r(T,,) — +o0.Since L + ¢ = L > 0, then

+0oo 400
h(0,0) > A L(pi(§ / Ve Ll +716]]
Zlimsup/ \/gf" dt:limsup/ \/?d?“:—i—oo.
Tn 0 n 0

Fig. 2. Example 6.2

Example 6.20 < h < 400, £ = @ and differentiable Busemann functions u
with B~ (u) = B+ (u) = {a}.

Let H := Rx]0, +oo with the Poincaré mefric ds® = i (dz” + dy?). Let
L : TH — R bealagrangian of the form
L(z,v) = 5 [olZ +ns(v),
where 1), isa1-form on H such that dn(v) isthe areaforman |-| , isthe Poincaré
metric. The Euler-Lagrange equationis

30 Di—v, (3)=3",
dt

whereY, : TH — TH is abundle map such that
dng (u,v) = (Y (u),v).

The energy function is E(z,v) = 1 ||v||%. On the energy levels E < 3 the solu-
tions of (30) are closed curves, and on £ = 1 the solutions are the horospheres
parametrized by arc length.

Choosethe formn(x, y) = dy—””, where (z,y) € H = Rx]0, 4+-o0[. Then

L((z,y), (&,9)) = # (5 + %) + g
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Observe that the form 7 is bounded in the Poincaré metric, so that the Lagrangian
is superlinear and satisfies the boundedness condition.

It can be seen directly from the Euler-Lagrange equation that the curves & =
—y,y = 0 are solutionswith

(31) Lz=-y,y=0)+3=0.

The images of these curves are the stable horospheres associated to the geodesic
x =0, y = y, parametrized by arc length.

We show that ¢(L) = 1 and h. < +oc. Observe that if v = (&,9), & < 0,
then

(32) L=3 [lol® = (&0 = 5 lol* — lloll = -

1
2 2"

Hence L+ 1 > 0andthenc(L) < 1.
Now fix z € H. For r > 0 let D, be ageodesic disc of radius r such that « €
0D,.. Let v, be the curve whose image is the boundary of D, oriented clockwise

and with hyperbolic speed [|4|| = a. Since E(v) = 3 a2, then

[rrse=[ori= [ 1o+ [ da=a-tengtis,) - aea(D,),
Tr Tr Tr

T

(33) = a- 27 sinh(r) — 27 cosh(r) = 27 (3 (a — 1)e" — "] + 2.

If a < 1, for r > 0 large, formula (33) is negative. Hence ¢(L) > 1 and
c(L) = 1. Moreover,

h(z,xz) <liminf Ap 1 (yr) = 27 < 4o00.

r—-+4o00
We prove that Y=o Thisimpliesthat A > 0. First observethat if 7" is an
isometry of H, then d(T.n) isaso theareaform, so that T'.n is cohomologousto 7.

Thisimpliesthat givenany two pointsz, y € D, thereisaconstantb = b(x,y) € R
suchthat for al v € C(x, ),

AL(v) = AL(T ovy) + b(z,y).

In particular, the map dT leaves o(L) and X(L) invariant. Since a horocycle iy
can be sent by an isometry to another horocycle ko with hy N he # @, then the
horocycles can not be static because it would contradict the graph property.

The constant function v : H — {0} satisfiesu < L + 1 because L + 1 > 0
and by (31) thevectorsv = (—y,0) € I't(u) = ' (u) € ¥~ are semistatic.
Its derivative du = 0 is sent by the inverse of the Legendre transformv — L, =
<'Uv >m + d?J to

y% (v, )eucl = *%,

thatisv = (—y,0). Also

) = = % = 1% =
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Let T : H « be an isometry of the hyperbolic metric. Write n = df. Then
dn = A isthe hyperbolic area 2-form. Since T" is an isometry, then

d(T*n) =T*(dn) = dn.

Hencethe form T*n — n is exact on H and there is a smooth functionv : HH — R
such that

T n—n = —dv.
We show that v isaweak KAM solution. Observe that

LodT(z,v) =% |[v|2 + T*n(z,v)
H’UHf +n(z,v) — dv(z,v)

(z,v) — dv(z,v).

(34) =

N = e

Sinceby (32) Lo dT + & > 0, then
(35) dv< L+ 3.

Hencewv < L+%. Moreover, the equality in (35) holdsexactly when LodT (x, v)+
1 =0,i.e whendT'(v) = (—y,0) € Ty, H.

Since the isometries send horospheres to horospheres, they are self-
conjugacies of the hamiltonian flow and hence the curvesy(t) = T~ (x — ty,y)
redizev, i.e.

o) = o) = f do=§ L,

Here v is the Busemann weak KAM sol ution associated to the class T'(o0) € 0H,
on the sphere at infinity of H.

We now show a picture of a non-Busemann weak KAM solution. We use the
isometry 7' : H <=, T'(z) = —1, 2 = 2 + iy € C. Theisometry T = T~! sends
thelinet — —ty + iy to a horosphere with endpoint 0 € C, oriented clockwise.
Choosewv : H — R suchthat dv = n — T*n and v(0 + ¢) = 0. Since T' leaves the
line Rez = 0 invariant and n = 0 on vertical vectors, hence v is constant (equal to
0) onRez = 0.

Now we describe the weak KAM solution

w(z) := min{ u(z),v(z) } € 6.

Letv(¢t) = —ty + iy. Then, using (34),

oI (0) = o O) + fde

T 1oy
t t
:0+/ [LodT_lof'qu%]f/ [Lo/er%]
0 0

t
:0+/ [LodT 'oy+1]-0.
0
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Sinceby (35) L(z,v) + 3 > 0 whenv # —y +10, thenv(z) > 0 onRez > 0 and
v(z) < 0onRez < 0. Thus

_ JO0=u(z) ifRez>0.
(36) w(z) = {v(z) if Rez < 0.

The cut locus of w isRez = 0 and thebasin of wisI'~ (w) = AU dT'(A) where
Aisthe set of vectors (y, 0) € T4, H.
O
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