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Abstract. For convex superlinear lagrangians on a compact manifold M we characterize
the Peierls barrier and the weak KAM solutions of the Hamilton-Jacobi equation, as defined
by A. Fathi [9], in terms of their values at each static class and the action potential defined
by R. Mañé [14]. When the manifold M is non-compact, we construct weak KAM solutions
similarly to Busemann functions in riemannian geometry. We construct a compactification
of M/dc by extending the Aubry set using these Busemann weak KAM solutions and char-
acterize the set of weak KAM solutions using this extended Aubry set.

Introduction

Calculus of Variations

In this paper we intend to relate the weak KAM solutions of the Hamilton-Jacobi
equation of a convex superlinear lagrangian as introduced by A. Fathi in [9] and
the action potential as defined by R. Mañé in [14].

Let M be a boundaryless n-dimensional complete riemannian manifold. An
(autonomous) Lagrangian on M is a smooth function L : TM → R satisfying the
following conditions:

(a) Convexity: The Hessian ∂2L
∂vi∂vj

(x, v), calculated in linear coordinates on the

fiber TxM , is uniformly positive definite for all (x, v) ∈ TM , i.e. there is
A > 0 such that

w · Lvv(x, v) · w ≥ A |w|2 for all (x, v) ∈ TM and w ∈ TxM .

(b) Superlinearity:

lim
|v|→+∞

L(x, v)
|v| = +∞, uniformly on x ∈M,

equivalently, for all A ∈ R there is B ∈ R such that

L(x, v) ≥ A |v| −B for all (x, v) ∈ TM.
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(c) Boundedness: For all r > 0,

�(r) = sup
(x,v)∈T M,

|v|<r

L(x, v) < +∞.(1)

g(r) = sup
|w|=1

|(x,v)|≤r

w · Lvv(x, v) · w < +∞.(2)

Using standard properties of convex functions one can see that condition (c) is
equivalent to say that the hamiltonian associated to L is convex and superlinear.

The Euler-Lagrange equation associated to a lagrangian L is (in local coordi-
nates)

(E-L)
d

dt

∂L

∂v

(
x, ẋ) =

∂L

∂x
(x, ẋ).

The condition (c) implies that the Euler-Lagrange equation (E-L) defines a com-
plete flow ϕt on TM (Proposition 1.2), called the Euler-Lagrange flow, by setting
ϕt(x0, v0) =

(
xv(t), ẋv(t)

)
, where xv : R → M is the solution of (E-L) with

xv(0) = x0 and ẋv(0) = v0.
The actionAL(γ) of an absolutely continuous curve γ : [0, T ] →M is defined

as

AL(γ) =
∫ T

0

L(γ(t), γ̇(t)) dt.

Given x, y ∈M and T > 0, let CT (x, y) be the set of absolutely continuous curves
γ : [0, T ] → M with γ(0) = x and γ(T ) = y. Given k ∈ R, the action potential
Φk : M ×M → R ∪ {−∞} is defined as

Φk(x, y) = inf{AL+k(γ) | γ ∈ ∪T>0CT (x, y) }.

R. Mañé defines in [14] the critical value c(L) of the lagrangian L as

c(L) = sup{ k ∈ R |AL+k(γ) < 0 for some γ ∈ ∪x∈M ∪T>0 CT (x, x) }.

The critical value c(L) can also be characterized in terms of minimizing measures,
Tonelli’s theorem on fixed energy levels [2], weak KAM solutions [9], lagrangian
graphs and Finsler metrics [4] and the Palais-Smale condition for Morse theory [5].

It turns out [2], that Φk ≡ −∞ for k < c(L) and Φk > −∞ for k ≥ c(L).
Moreover,

dk(x, y) := Φk(x, y) + Φk(y, x)

is a metric on M for k > c(L) and a pseudo-metric for k = c(L) (i.e. perhaps
dc(L)(x, y) = 0 for some x �= y). The action potential always satisfies a triangle
inequality Φk(x, z) ≤ Φk(x, y) +Φk(y, z), and for k ≥ c(L), Φk is Lipschitz and
Φk(x, x) = 0 for all x ∈M .

J. Mather defines in [16] the Peierls barrier as

h(x, y) := lim inf
T→+∞

Φc(x, y;T ),
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where x, y ∈M and Φc(x, y;T ) is the finite action potential

Φk(x, y;T ) := inf
γ∈CT (x,y)

AL+k(γ)

for k = c(L). Some properties of the Peierls barrier are given in Proposition 2.1.
The Aubry set is defined as

A := { x ∈M |h(x, x) = 0 }.
We begin by characterizing the Peierls barrier h when M is compact.

Proposition 0.1 If M is compact, then

h(x, y) = inf
p∈A

[
Φc(x, p) + Φc(p, y)

]
.

This resembles the characterization of h given by Fathi [10] in terms of weak
KAM solutions and suggest a characterization of weak KAM solutions in terms of
the action potential.

A function u : B ⊆M → R is said to be dominated by L+ k (u ≺ L+ k) if

u(y)− u(x) ≤ Φk(x, y) for all x, y ∈ B.

Dominated functions are Lipschitz with the same Lipschitz constant as Φk

(Lemma 3.1).
Following Fathi [9], a forward weak KAM solution is a function u : M → R

such that

(a) u ≺ L+ c, c = c(L).
(b) For all x ∈ M there exists an absolutely continuous curve γ : [0,+∞[→ M

such that γ(0) = x and

u(γ(t))− u(x) = AL+c(γ|[0,t])
for all t > 0.

The set of such functions u is denoted S+. A backwards weak KAM solution is a
function u : M → R which satisfies (a) and

(c) For all x ∈ M there exists an absolutely continuous curve γ :] −∞, 0[→ M
such that γ(0) = x and

u(x)− u(γ(t)) = AL+c(γ|[t,0])
for all t < 0.

We denote by S− the set of backwards weak KAM solutions. The curves γ apear-
ing in (b) and (c) are said to realize u.

These functions are called solutions because at any differentiability point x
they satisfy the Hamilton-Jacobi equation

H(x, dxu) = c(L),
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where H : T ∗M → R is the hamiltonian associated to L,

H(x, p) := sup{ p · v − L(x, v) | v ∈ TxM }.
Since they are Lipschitz, by Rademacher’s Theorem [8], they are differentiable
almost everywhere.

The pseudo-metric dc defines an equivalence relation on M by

x
dc∼ y ⇐⇒ dc(x, y) = 0.

This relation is non-trivial, dc(x, y) = 0 with x �= y, only if x, y ∈ A. The Aubry
set A is then partitioned into the equivalence classes of dc which we call static
classes. Let Γ := A/dc be the set of static classes. For each static class Γ ∈ Γ
choose pΓ ∈ Γ , and let A := { pΓ |Γ ∈ Γ }. When M is compact, we prove the
following characterization of weak KAM solutions

Theorem 0.2 If M is compact, the maps

{ f : A → R | f ≺ L+ c } → S−,
f �−→ uf(x) := inf

p∈A
u(p) + Φc(p, x);

{ g : A → R | g ≺ L+ c } → S+,

g �−→ ug(x) := inf
p∈A

u(p)− Φc(x, p).

are bijections.

So that a weak KAM solution is determined by its values at one point of each
static class. In particular, we get in Corollary 4.7 that if there is only one static class
then there is a unique weak KAM solution in S− (resp. S+) modulo an additive
constant. This is the case for generic lagrangians on a compact manifold [6].

Next we comment some methods to construct weak KAM solutions in the non-
compact case. We observe in Lemma 4.1, that S− is closed under minima. The
basic example given by Theorem 0.2 is u−(x) = Φc(p, x) ∈ S− with p ∈ A. This
is also true in the non-compact case but it may happen thatA = ∅. Replacing p ∈
A by z ∈M , we have that u−(x) = h(z, x) ∈ S−, where h is the Peierls barrier.
This is more general, in fact it is used in Proposition 4.2 to prove Theorem 0.2, but
there are lagrangians for which the Peierls barrier is infinite.

Another method, originally presented in [4], resembles the construction of
Busemann functions in riemannian geometry. An absolutely continuous curve
γ : [a, b] →M is said semistatic if

AL+c(γ|[s,t]) = Φc(γ(s), γ(t)) for a ≤ s < t ≤ b.

Equivalently, by the triangle inequality for Φc, if it holds only for s = a and t = b.
Examples of semistatic curves are given in conditions (b) and (c) for u above.
Semistatic curves are solutions of the Euler-Lagrange equation. The curve γ is
said static if it is semistatic and dc(γ(a), γ(b)) = 0. This is equivalent to

AL+c(γ|[s,t]) = −Φc(γ(t), γ(s)) for a ≤ s < t ≤ b.
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Moreover [3], this implies that the whole orbit t �→ π(ϕ t(γ̇(a))) is static. For
v ∈ TM , write xv(t) := π(ϕt(v)). Set

Σ+(L) : = { v ∈ TM |xv : [0,+∞[→M is semistatic },
Σ−(L) : = { v ∈ TM |xv :]−∞, 0] →M is semistatic },
Σ̂(L) : = { v ∈ TM |xv : R →M is static }.

These are closed invariant subsets included in the energy level E = c(L), [14,2].
The Aubry set can be characterized as A = π(Σ̂(L)). It is easy to see [14,2] that
the α-limits (resp. ω-limits) of vectors in Σ− (resp.Σ+) are contained in Σ̂. In [4]
we proved that always Σ+ �= ∅ and Σ− �= 0. When M is compact, this implies
that Σ̂ �= ∅. When M is non-compact, it may happen that Σ̂ = ∅.

The following proposition constructs a kind of weak KAM solutions that we
shall call Busemann weak KAM solutions.

Proposition 0.3 [4]

1. If w ∈ Σ−(L) and γ(t) = xw(t), then

uw(x) = inf
t<0

[Φc(γ(t), x) − Φc(γ(t), γ(0))]

= lim
t→−∞ [Φc(γ(t), x) − Φc(γ(t), γ(0))]

is in S−.
2. If w ∈ Σ+(L) and γ(t) = xw(t), then

uw(x) = sup
t>0

[Φc(γ(0), γ(t))− Φc(x, γ(t))]

= lim
t→+∞ [Φc(γ(0), γ(t))− Φc(x, γ(t))]

is in S+.

Then the existence of weak KAM solutions implies, from properties (b) and
(c) above, that π(Σ+) = M = π(Σ−).

A. Fathi suggested that using weak KAM solutions a similar construction to
the sphere at infinity for manifolds of non-positive curvature could be made. This
is in fact possible and gives more examples of weak KAM solutions than Propo-
sition 0.3. It is done as follows, let F := C 0(M,R)/ ∼, where f ∼ g iff f − g
is constant. The functions M � x �→ Φc(z, x) and M � x �→ Φc(x, z) for fixed
x ∈ M , are dominated by L + c, hence they form an equicontinuous family. De-
fine M+ (resp. M−) as the closure, under the uniform convergence topology on
compact subsets, of the set of equivalence classes of −Φc(x, z) (resp. Φc(z, x))
for all z ∈ M . Then the sets M+ and M− are compact and there are embed-
dings M/dc ↪→ M−, M/dc ↪→ M+, given by M � z �→ [Φc(z, x)] ∈ F and
M � z �→ [−Φc(x, z)]. The limits in Proposition 0.3 show that the classes of
Busemann weak KAM solutions are subsets B− ⊆ M−, B+ ⊆ M+ of M. When
M is compact, M− ≈ M/dc, M+ = M/dc and the classes that contain weak
KAM solutions are represented by the static classes A/dc, which also correspond
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to Busemann functions. In the non-compact case we define the extended static set
as

A
∓ := M∓ \ (M −A) = A/dc ∪ (M∓ −M/dc).

We prove in Proposition 5.6 that A− ⊂ S− and A+ ⊂ S+. Observe that Proposi-
tion 0.3 implies that the α-limits (resp. ω-limits) of vectors in Σ− (resp. Σ+) are
in B− (resp.B+). In Example 5.4 we show a lagrangian where A∓ contains some
non-Busemann weak KAM solutions. In particular, the extended static classes in
A
∓ \B∓ are not α-limits (resp. ω-limits) of semistatic orbits.

Using Lemma 4.1, other weak KAM solutions in S− can be obtained by taking
minima of functions in A−. In fact we characterize all weak KAM solutions in S∓

as minima of Busemann functions in B∓ in the following theorem.
For each extended static class α ∈ B− choose a point qα ∈ M such that the

map B− � α �→ qα is injective and there exists exactly one semistatic vector
v ∈ Σ− with π(v) = qα and α-limit π(α- lim(v)) = α. This can be done because
the static classes inB− are projections of α-limits of semistatic vectors in Σ− and
by the graph property 3.6.4. Let

(3) A := { qα |α ∈ B− }.
Define bα,qα ∈ B− by

bα,qα(x) = lim
t→−∞Φc(xv(t), x) − Φc(xv(t), qα),

where v is the unique vector in Σ− ∩ TqαM with π(α- lim(v)) = α. We say that
a function f : A → R is strictly dominated if

f(qα) < f(qβ) + bβ,qβ
(qα) for all qα �= qβ ∈ A.

Then we have

Theorem 0.4 The map

{ f : A → R | f is strictly dominated} → { u ∈ S− |u|A is strictly dominated},
given by f �→ uf , where

uf (x) = inf
α∈B−

f(qα) + bα,qα(x),

is bijective. In fact uf(qα) = f(qα) for all α ∈ A.

For u ∈ S− define its backwards basin by

Γ−(u) : = { v ∈ Σ− |u(xv(0))− u(xv(t)) = Φc(xv(t), xv(0)) ∀t < 0 },
Γ−

0 (u) : = ∪
t<0

ϕt(Γ−(u));

and define the endpoints of u by

B
−(u) := {α ∈ B− | ∃v ∈ Γ−(u), α-lim(v) = α }.
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The set π
(
Γ−(u) \ Γ−

0 (u)
)

is called (backward) cut locus of u.

By the graph property in Theorem 4.9, π−1A ∩ Σ− = Σ̂. So that A/dc ⊆
B

−(u). In particular, when M is compact, A/dc = B
− = A

− = B
−(u) for

all u ∈ S−. When M is not compact, it may happen that B−(u) �= B
−. This

usually holds for Busemann functions because they are “directed towards a single
static class”. In Sect. §6 we show that the horocycle flow is an example in which
A = ∅,B− ≈ S1 and there are differentiable Busemann functions bα ∈ S− with
B

−(bα) = {α} � B−.
For α ∈ B−, define the immediate basin of the extended static class α by

Λ−(α) : = { v ∈ Σ− |α-lim(v) = α },
= {w ∈ Σ− | bw ∈ α ∈ B− };

where bw is the Busemann function defined in Proposition 0.3.1.
By analogy to Theorem 0.2, the values qα in Theorem 0.4 are used to “fix the

value of uf at the infinite point α”, which could be infinite. We prove in Theo-
rem 0.4 that for all qα ∈ A, Γ−(uf ) ∩ TqαM = {vα}, where vα is the unique
semistatic vector vα ∈ Σ− with α-lim(vα) = α = Λ−(α) ∩ TqαM . This implies
that the set A in (3) and not only the values f(qα) or the classes α has a strong
association to the weak KAM solution uf in Theorem 0.4.

Nevertheless, varying the set A, we can characterize all the weak KAM solu-
tions in S−. Observe that in the following theorem the set A(u) contains one point
for each extended static class in B−(u) ⊂ B−.

Theorem 0.5 Given u ∈ S−, for all α ∈ B−(u) choose qα ∈ π[Λ−
0 (α)∩Γ−

0 (u)],
and let A(u) := {qα |α ∈ B−(u) }. Then

u(x) = inf
qα∈A(u)

u(qα) + bα,qα(x) for all x ∈M.

1 Preliminary results

1.1 Lagrangians on non-compact manifolds

The energy function of the lagrangian L is E : TM → R, defined by

(4) E(x, v) =
∂L

∂v
(x, v) · v − L(x, v).

Observe that if x(t) is a solution of the Euler-Lagrange equation (E-L), then

d
dt E(x, ẋ) =

(
d
dtLv − Lx

) · ẋ = 0.

Hence E : TM → R is an integral for the lagrangian flow ϕt and its level sets,
called energy levels are invariant under ϕt. Moreover, the convexity implies that

d
ds E(x, sv)|s=1 = v · Lvv(x, v) · v > 0.

Thus
min

v∈TxM
E(x, v) = E(x, 0) = −L(x, 0).



434 G. Contreras

Write

(5) e0 := max
x∈M

E(x, 0) = −min
x∈M

L(x, 0) > −∞,

by the superlinearity, then

e0 = min { k ∈ R | π : E−1{k} →M is surjective }.
By the uniform convexity, and the boundedness condition,

A := inf
(x,v)∈T M

|w|=1

w · Lvv(x, v) · w > 0,

and then using (1) and (2),

E(x, v) = E(x, 0) +
∫ |v|

0

d
ds E

(
x, s v

|v|
)
ds

≥ −�(0) +A |v|.(6)

Similarly,
E(x, v) ≤ e0 + g(|v|) |v|.(7)

Hence

Remark 1.1 If k ∈ R and K ⊆M is compact, then E−1{k} ∩ TKM is compact.

Proposition 1.2 The Euler-Lagrange flow is complete.

Proof. Suppose that ]α, β[ is the maximal interval of definition of t �→ ϕ t(v), and
−∞ < α or β < +∞. Let k = E(v). Since E(ϕt(v)) ≡ k, by (6), there is a > 0
such that 0 ≤ |ϕt(v)| ≤ a for α ≤ t ≤ β. Since ϕt(v) is of the form (γ(t), γ̇(t)),
then ϕt(v) remains in the interior of the compact set

Q :=
{

(y, w) ∈ TM
∣∣ d(y, x) ≤ a

[|β − α|+ 1
]
, |v| ≤ a+ 1

}
,

where x = π(v). The Euler-Lagrange vector field is uniformly Lipschitz on Q.
Then by the theory of ordinary differential equations, we can extend the interval
of definition ]α, β[ of t �→ ϕt(v).  !

Given x, y ∈M and T > 0, let

CT (x, y) :=
{
γ ∈ Cac([0, T ],M) | γ(0) = x, γ(T ) = y

}
.

We say that γ ∈ CT (x, y) is a Tonelli minimizer if

AL(γ) = min
η∈CT (x,y)

AL(η) .

Tonelli’s Theorem 1.3 [15]
For all x, y ∈M and T > 0 there exists a Tonelli minimizer on CT (x, y).

The only difference in the proof of this theorem whenM is non-compact is the
following proposition. For a proof in the compact case see [15], [13], [12] or [3].
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Proposition 1.4 For all c ∈ R and T > 0 there is R > 0 such that for all x ∈M ,
if γ : [0, T ] → M is absolutely continuous with γ(0) = x and AL(γ) ≤ c, then
d(γ(t), x) ≤ R for all t ∈ [0, T ].

Proof. Adding a constant we may assume that L ≥ 0. There is B > 0 such that
L(x, v) ≥ |v| −B for all (x, v) ∈ TM . Then for 0 ≤ s ≤ t ≤ T , we have that

d(xs, xt) ≤
∫ t

s

|ẋ| ≤ BT +
∫ t

s

L(x, ẋ) ≤ BT + c.

 !
The following lemma, due to Mather [15] for Tonelli minimizers in the non-

autonomous case, will be very useful. In the autonomous case its proof is very
simple.

Lemma 1.5 For C > 0 there exists A = A(C) > 0 such that if x, y ∈ M and
γ ∈ CT (x, y) is a solution of the Euler-Lagrange equation with AL(γ) ≤ C T ,
then |γ̇(t)| < A for all t ∈ [0, T ].

Proof. By the superlinearity there is D > 0 such that L(x, v) ≥ |v| − D for all
(x, v) ∈ TM . Since AL(γ) ≤ C T , the mean value theorem implies that there is
t0 ∈]0, T [ such that

|γ̇(t0)| ≤ D + C.

The conservation of the energy and the uniform bounds (7) and (6) imply that there
is A = A(C) > 0 such that |γ̇| ≤ A.  !
Lemma 1.6 There exists A > 0 such that if x, y ∈ M and γ ∈ CT (x, y) is a
solution of the Euler-Lagrange equation with

AL+c(γ) ≤ Φc(x, y) + dM (x, y),

then
(a) T > 1

A dM (x, y).
(b) |γ̇(t)| < A for all t ∈ [0, T ].

Proof. Let η : [0, d(x, y)] → M be a minimal geodesic with |η̇| ≡ 1. Let �(r) be
from (1) and D = �(1) + c+ 2. From the superlinearity condition there is B > 0
such that

L(x, v) + c > D |v| −B, ∀(x, v) ∈ TM.

Then

[�(1) + c] d(x, y) ≥ AL+c(η) ≥ Φc(x, y)(8)

≥ AL+c(γ)− d(x, y)(9)

≥
∫ T

0

(
D |γ̇| −B

)
dt− d(x, y)

≥ D d(x, y) −B T − d(x, y).
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Hence
T ≥ D− −c−1

B d(x, y) ≥ 1
B d(x, y).

From (8) and (9), we get that

AL(γ) ≤ [
�(1) + c+ 1

]
d(x, y)− c T,

≤ {
B [ �(1) + c+ 1 ]− c

}
T.

Then Lemma 1.5 completes the proof.  !

2 The Peierls barrier

For T > 0 and x, y ∈M define

hT (x, y) = Φc(x, y;T ) := inf
γ∈CT (x,y)

AL+c(γ).

So that the curves which realize hT (x, y) are the Tonelli minimizers on CT (x, y).
Define the Peierls barrier as

h(x, y) := lim inf
T→+∞

hT (x, y).

Fathi [11] proves that when M is compact the functions hT converge uniformly
to h. The difference between the action potential and the Peierls barrier is that
in the Peierls barrier the curves must be defined on large time intervals. Clearly

h(x, y) ≥ Φc(x, y).

Proposition 2.1 If h : M ×M → R is finite, then

1. h is Lipschitz.
2. ∀ x, y ∈M , h(x, y) ≥ Φc(x, y), in particular h(x, x) ≥ 0, ∀ x ∈M .
3. h(x, z) ≤ h(x, y) + h(y, z), ∀x, y, z ∈M .
4. h(x, y) ≤ Φc(x, p) + h(p, q) + Φc(q, y), ∀ x, y, p, q ∈M .
5. h(x, x) = 0 ⇐⇒ x ∈ π(Σ̂) = A.
6. If p ∈ A, then Φc(p, x) = h(p, x) and Φc(x, p) = h(x, p) for all x ∈M .
7. If Σ̂ �= ∅, h(x, y) ≤ infp∈π( bΣ) Φc(x, p) + Φc(p, y).

Proof. Item 2 is trivial. Observe that for all S, T > 0 and y ∈M ,

hT+S(x, z) ≤ hT (x, y) + hS(y, z).

Taking lim infT→+∞ we get that

h(x, z) ≤ h(x, y) + hS(y, z), for all S > 0.

Taking lim infS→+∞, we obtain item 3.
1. Taking the infimum on S > 0, we get that

h(x, z) ≤ h(x, y) + Φc(y, z) ∀x, y, z ∈M.

≤ h(x, y) +A dM (y, z),
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where A is a Lipschitz constant for Φc. Changing the roles of x, y, z, we obtain
that h is Lipschitz.

4. Observe that

inf
S>T

hS(x, y) ≤ Φc(x, p) + hT (p, q) + Φc(q, x).

Taking lim infT→+∞ we get item 4.
5. We first prove that if p ∈ A = π(Σ̂), then h(p, p) = 0. Take v ∈ Σ̂ such

that π(v) = p and y ∈ π(ω-limit(v)). Let γ(t) := π ϕt(v) and choose tn ↑ +∞
such that γ(tn) → y. Then

0 ≤ h(p, p) ≤ h(p, y) + Φc(y, p)
≤ lim

n
AL+c(γ|[0,tn]) + Φc(y, p)

≤ lim
n
−Φc(γ(tn), p) + Φc(y, p) = 0.

Conversely, if h(x, x) = 0, then there exists a sequence of Tonelli minimizers
γn ∈ C(x, x;Tn) with Tn → +∞ and AL+c(γn) n→ 0. By Lemma 1.6, |γ̇| is
uniformly bounded. Let v be an accumulation point of γ̇ n(0) and η(t) := π ϕt(v).
Then if γ̇nk

(0) k→ v, for any s > 0 we have that

0 ≤ Φc(x, π ϕs v) + Φc(π ϕs v, x)

≤ AL+c

(
η|[0,s]

)
+ Φc(π ϕs v, x)

≤ lim
k
AL+c

(
γnk

|[0,s]
)

+AL+c

(
γnk

|[s,Tn]

)
= 0.

Thus v ∈ Σ̂.
6. By items 2, 4 and 5, we have that

Φc(p, x) ≤ h(p, x) ≤ h(p, p) + Φc(p, x) = Φc(p, x).

The equality Φc(x, p) = h(p, x) is similar.
7. Using items 4 and 5, we get that

h(x, y) ≤ inf
p∈π( bΣ)

[
Φc(x, p) + 0 + Φc(p, y)

]
.  !

Proposition 0.1If M is compact, then

h(x, y) = inf
p∈π( bΣ)

[
Φc(x, p) + Φc(p, y)

]
.

We shall use the following characterization of minimizing measures. A min-
imizing measure is an invariant measure under the Euler-Lagrange flow µ, such
that its action satisfies

AL(µ) :=
∫
TM

L dµ = −c(L).

It is proven in [14,2] that an invariant measure µ is minimizing if and only if it is
supported on Σ̂.
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Proof.
Using items 4 and 5 of Proposition 2.1, we get that

h(x, y) ≤ inf
p∈π( bΣ)

[
Φc(x, p) + 0 + Φc(p, y)

]
.

In particular h(x, y) < +∞ for all x, y ∈ M . Now let γn ∈ CTn(x, y) with
Tn → +∞ and AL+c(γn) → h(x, y) < +∞. Then 1

T AL+c(γn) → 0. Let µ be a
weak limit of a subsequence of the measures µγn :∫

f dµγn :=
1
Tn

∫ Tn

0

f(γn(t), γ̇n(t)) dt.

Then µ is minimizing. Let q ∈ π
(
supp(µ)

)
and qn ∈ γn([0, Tn]) be such that

limn qn = q. Then,

Φc(x, q) + Φc(q, y) ≤ Φc(x, qn) + Φc(qn, y) + 2Ad(qn, q)
≤ AL+c(γn) + 2Ad(qn, q).

Letting n→∞, we get that

Φc(x, q) + Φc(q, y) ≤ h(x, y).  !

3 The Hamilton-Jacobi equation

For an autonomous hamiltonian H : T ∗M → R, the Hamilton-Jacobi equation is

(H-J) H(x, dxu) = k,

where u : U ⊆ M → R. Here we are interested on global solutions of (H-J), i.e.
u : M → R satisfying (H-J).

It may not be possible to obtain a smooth global solution of (H-J). Instead, for
certain values of k, we shall find weak solutions of (H-J), which are Lipschitz. By
Rademacher’s Theorem [8], a Lipschitz function is Lebesgue almost everywhere
differentiable, so that (H-J) makes sense at a.e. point.

The results of this section are due to A. Fathi [9] and are restated here for
completeness in the non-compact case. We say that a function u is dominated by
L+ k, and write u ≺ L+ k. if

u(y)− u(x) ≤ Φk(x, y) for all x, y ∈M.

Lemma 3.1

1. If u ≺ L + k, then u is Lipschitz with the same Lipschitz constant as Φc. In
particular, a family of dominated functions is equicontinuous.

2. If u ≺ L+ k then H(x, dxu) ≤ k at any differentiability point x of u.
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Proof.
1. We have that u(y)−u(x) ≤ Φc(x, y) ≤ A dM (x, y), whereA is a Lipschitz

constant for Φc. Changing the roles of x and y, we get that u is Lipschitz.
2. We have that

u(y)− u(x) ≤
∫
γ

L(γ, γ̇) + k

for all curves γ ∈ C(x, y). This implies that

dxu · v ≤ L(x, v) + k

for all v ∈ TxM when u is differentiable at x ∈M . Since

H(x, dxu) = sup{ dxu · v − L(x, v) | v ∈ TxM },

then H(x, dxu) ≤ k.  !
The following proposition shows that we actually get a solution of H-J if there

are (semistatic) curves which realize a dominated function u.

Proposition 3.2 If u ≺ L + k, x ∈ M and there exists γ :] − ε, ε[→ R such that
γ(0) = x, and

(10) u(γ(t))− u(γ(s)) = AL+k(γ|[s,t]) for − ε < s ≤ t < ε,

then u is differentiable at x, dxu = Lv(x, γ̇(0)) and H(x, dxu) = k.

Remarks 3.3

1. Equation dxu = Lv(x, γ̇(0)) means that the tangent vector (x, γ̇(0)) of any
a.c. curve γ realizing u is sent by the Legendre transform to dxu.

2. In particular, since the functions u(x) = Φk(p, x) (resp. v(x) = −Φc(x, p))
are dominated, then they are differentiable at any point which is not at the
(backward) (resp. forward) (L+ k)-cut locus of p.

3. Observe that the energy E(x, γ̇(0)) = H(x, dxu). In Proposition 0.3, if
w ∈ Σ∓, then w ∈ Γ∓(uw). Thus we obtain that Σ ⊂ E−1{c}, i.e. that
the semistatic orbits have energy c(L).

Proof. Letw ∈ TxM and let η(s, t) be a variation of γ fixing the endpoints γ(−ε),
γ(ε) such that η(0, t) = γ(t) and ∂

∂sη(0, 0) = w. Define

A(s) :=
∫ 0

−ε

L( ∂
∂tη(s, t)) + k dt.

Then, integrating by parts and using the Euler-Lagrange equation (E-L),

A′(0) = Lv ξ|0−ε +
∫ 0

−ε

[
Lx − d

dtLv

]
ξ dt = Lv(x, γ̇(0)) · w ,
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where ξ(t) := ∂
∂sη(0, t). Also

1
s

[
u(η(s, 0))− u(x)

]
= 1

s

[
u(η(s, 0))− u(γ(−ε)) + u(γ(−ε))− u(γ(0))

]
≤ 1

s [ A(s)− A(0) ] ,

where we used that u ≺ L+ k and (10). Hence

(11) lim
s→0

sup 1
s

[
u(η(s, 0))− u(x)

] ≤ A′(0).

Similarly, if B(s) := AL+k

(
η(s, ·)|[0,ε]

)
, then

u(γ(ε))− u(η(s, 0))− u(γ(ε)) + u(x) ≤ B(s)− B(0),

lim sup
s→0

1
s

[
u(x)− u(η(s, 0))

] ≤ B′(0) = −Lv(x, γ̇(0)) · w.

Hence

(12) lim inf
s→0

1
s

[
u(η(s, 0))− u(x)

] ≥ Lv(x, γ̇(0)) · w.

From (11) and (12) we get that u is differentiable at x and dxu = Lv(x, γ̇(0)).
Finally, since u ≺ L+k, by Lemma 3.1, H(x, dxu) ≤ k. Since for 0 < t < ε,

u(γ(t))− u(γ(0)) = AL+k(γ|[0,t]) =
∫ t

0

[
L(γ(s), γ̇(s)) + k

]
ds,

then
dxu · γ̇(0) = L(γ(0), γ̇(0)) + k.

Hence
H(x, dxu) = sup

v∈TxM
{ dxu · v − L(x, v) } ≥ k.

 !
Definition 3.4 A function u− : M → R is a backward weak KAM solution
of (H-J) if

1. u− ≺ L+ c.
2. For all y ∈M there is γ ∈ Cac(]−∞, 0],M) such that γ(0) = y and

u−(γ(−t)) = u−(y) +AL+c(γ|[−t,0]) for all t ≥ 0.

A function u+ : M → R is a forward weak KAM solution of (H-J) if

1. u+ ≺ L+ c.
2. For all y ∈M there is γ ∈ Cac([0,+∞[,M) such that γ(0) = y and

u+(γ(t)) = u+(y) +AL+c(γ|[0,t]) for all t ≥ 0.

We say that the curves γ above realize u.
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Remark 3.5 From the domination condition it follows that u is Lipschitz and that
the curve γ is semistatic. From Proposition 3.2, at an interior point x of such a
curves γ, u is differentiable and H(x, dxu) = c. Moreover, the last argument in
Proposition 3.2 shows that if u is differentiable at an endpoint of a curve γ, then
H(x, dxu) = c. By Rademacher’s Theorem [8], u is differentiable at (Lebesgue)
almost every point in M . So that u is indeed a weak solution of the Hamilton-
Jacobi equation for k = c(L).

Given a dominated function u ≺ L+ c define the sets

Γ+
0 (u) := { v ∈ Σ+ |u(xv(t)) − u(xv(0)) = Φc(xv(0), xv(t)), ∀t > 0 },

Γ−
0 (u) := { v ∈ Σ− |u(xv(0))− u(xv(t)) = Φc(xv(t), xv(0)), ∀t < 0 },

Γ+(u) :=
⋃
t>0

φt

(
Γ+

0 (u)
)

, Γ−(u) :=
⋃
t<0

φt

(
Γ−

0 (u)
)
,

where xv(t) = π φt(v). We call Γ+(u) (resp. Γ−(u)) the basin of u and
π
(
Γ+

0 (u) \ Γ+(u)
)

(resp. π
(
Γ−

0 (u) \ Γ−(u)
)
) the cut locus of u.

Theorem 3.6 (Fathi [9]) If u ∈ S+ (resp. u ∈ S−) is a weak KAM solution, then

1. u is Lipschitz and hence differentiable (Lebesgue)-almost everywhere. Also
H(x, dxu) = c(L) at any differentiability point x.

2. u ≺ L+ c.
3. Covering Property: π(Γ +

0 (u)) = M .
4. Graph Property: π : Γ +(u) → M is injective and its inverse is Lipschitz,

with Lipschitz constant depending only on L.
5. Smoothness Property:u is differentiable on Γ +(u) and its derivative dxu is

the image of (π|Γ+(u))−1(x) under the Legendre transform L of L. In partic-
ular, the energy of Γ+

0 (u) is c(L).

Proof. Items 2 and 3 are the definition of u ∈ S+. Item 1 follows from Proposi-
tion 3.1.1 and Remark 3.5. Item 5 follows from Remarks 3.3.1 and 3.3.3.

A proof of the following lemma can be found in [15] or [13].

Mather’s Crossing Lemma 3.7 [15]
Given A > 0 there exist K > 0, ε1 > 0 and δ > 0 with the follow-

ing property: if |vi| < A, (pi, vi) ∈ TM , i = 1, 2 satisfy d(p1, p2) < δ
and d((p1, v1), (p2, v2)) ≥ K−1d(p1, p2) then, if a ∈ R and xi : R → M ,
i = 1, 2, are the solutions of L with xi(a) = pi, ẋi(a) = vi, there exist solutions
γi : [a− ε, a+ ε] →M of L with 0 < ε < ε1, satisfying

γ1(a− ε) =x1(a− ε) , γ1(a+ ε) = x2(a+ ε) ,
γ2(a− ε) =x2(a− ε) , γ2(a+ ε) = x1(a+ ε) ,

SL(x1|[a−ε,a+ε]) + SL(x2|[a−ε,a+ε]) > SL(γ1) + SL(γ2)
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We prove item 4. Let (z1, v1), (z2, v2) ∈ Γ+(u) and suppose that
dTM (v1, v2) > K dM (z1, z2), where K is from Lemma 3.7 and the A that we in-
put on Lemma 3.7 is from Lemma 1.6. Let 0 < ε < ε1, (with ε1 from Lemma 3.7)
be such that ϕ−ε(zi, vi) ∈ Γ+(u). Let xi = xvi(−ε), yi = xvi (ε), i = 1, 2, then
u(yi) = u(xi) + Φc(xi, yi), i = 1, 2. Then Lemma 3.7 implies that

Φc(x1, y2) + Φc(x2, y1) < Φc(x1, y1) + Φc(x2, y2).

Adding u(y1) + u(y2) and using that u ≺ L+ c, we get that

u(x1) + u(x2) ≤ Φc(x1, y2) + u(y2) + Φc(x2, y1) + u(y1)
< Φc(x1, y1) + u(y1) + Φc(x2, y2) + u(y2)
= u(x1) + u(x2),

which is a contradiction. This proves item 4.

(t)

2

2

1

1

γ

x

y

x

y

Fig. 1. Graph property

 !

4 Construction of weak KAM solutions

In this section we present three ways to construct weak KAM solutions: when the
Aubry set is non-empty (in Remark 4.3.4), when the Peierls barrier is finite (in
Proposition 4.2), and the general case (in Proposition 0.3).

We begin by observing that

Lemma 4.1

1. If U ⊆ S− is such that v(x) := infu∈U u(x) > −∞, for all x ∈ M ; then
v ∈ S−.

2. If U ⊆ S+ is such that v(x) := supu∈U u(x) < +∞, for all x ∈ M ; then
v ∈ S+.

Proof. We only prove item 1. Since u ≺ L+ c for all u ∈ U , then

(13) v(y) = inf
u∈U

u(y) ≤ inf
u∈U

u(x) + Φc(x, y) = v(x) + Φc(x, y).
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Thus v ≺ L+ c.
Let x ∈ M and choose un ∈ U such that un(x) → v(x). Choose wn ∈

Γ−(un) ∩ TxM . Since by Lemma 1.6 |wn| < A, we can assume that wn → w ∈
TxM . By Lemma 3.1.1, all the functions u ∈ U have the same Lipschitz constant
K as Φc. For t < 0, we have that

v(xw(t)) ≤ lim inf
n

un(xwn(t)) +K dM (xw(t), xwn(t))

= lim inf
n

un(x) − Φc(xw(t), x) +K dM (xw(t), xwn(t))

= v(x) − Φc(xw(t), x) ≤ v(xw(t)), because v ≺ L+ c.

Hence w ∈ Γ−(v).  !
Proposition 4.2 If hc < +∞ and f : M → R is a continuous function. Suppose
that

v−(x) := inf
z∈M

f(z) + hc(z, x) > −∞,

v+(x) := sup
z∈M

f(z)− hc(x, z) > −∞.

Then v− ∈ S− and v+ ∈ S+.

Proof. We only prove that v− ∈ S−. By Lemma 4.1 it is enough to prove that the
functions u(x) �→ hc(z, x) are in S− for all z ∈M .

By Proposition 2.1.4, u ≺ L+ c. Now fix x ∈M . Choose Tonelli minimizers
γn : [Tn, 0] →M such that γn ∈ C(z, x), Tn < −n and

AL+c

(
γn|[Tn,0]

) ≤ hc(z, x) + 1
n .

By Lemma 1.6, |γ̇n(0)| < A for all n. We can assume that γ̇n(0) n→ w ∈ TxM . If
−n ≤ s ≤ 0, then s > Tn and

AL+c

(
γn|[Tn,s]

)
+ Φc(γn(s), x) ≤

≤ AL+c

(
γn|[Tn,s]

)
+AL+c

(
γn|[s,0]

)
≤ hc(z, x) + 1

n

≤ hc(z, γn(s)) + Φc(γn(s), x) + 1
n , for − n ≤ s < 0.

Taking lim infn→∞, we get that

hc(z, xw(s)) +AL+c

(
xw|[s,0]

)
= hc(z, x).

Hence w ∈ Γ−(u).  !
Remarks 4.3

1. Observe that, since Φc(x, x) = 0,

u ≺ L+ c ⇐⇒ u(x) = inf
z∈M

u(z) + Φc(z, x).
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2. Item 4.3.1 implies that the function hc in Proposition 4.2 can not be replaced
by Φc. In fact, the function uz(x) = Φc(z, x) satisfies uz ≺ L + c, but in
general u /∈ S−, if z is not properly chosen.

3. For any z ∈ M the function uz(x) = hc(z, x) ∈ S− and vz(x) :=
−hc(x, z) ∈ S+.

4. If p ∈ A then up(x) := Φc(p, x) ∈ S−, because

Φc(p, x) ≤ hc(p, x) ≤ hc(p, p) + Φc(p, x) ≤ Φc(p, x).

Similarly, vp(x) := −Φc(x, p) ∈ S+.

Corollary 4.4 If M is compact and u : M → R is continuous, then

1. u ∈ S− ⇐⇒ u(x) = min
p∈A

u(p) + Φc(p, x).

2. u ∈ S+ ⇐⇒ u(x) = min
p∈A

u(p)− Φc(x, p).

Proof. We only prove item 1. Observe that if u ≺ L+ c, then

v(x) : = min
z∈M

u(z) + hc(z, x)

= min
z∈M

min
p∈A

u(z) + Φc(z, p) + Φc(p, x)

= min
p∈A

u(p) + Φc(p, x) =: w(x).

If u = w, then u ≺ L+ c, because

u(y) = min
p∈A

u(p)+Φc(p, y) ≤ min
p∈A

u(p)+Φc(p, x)+Φc(x, y) = u(x)+Φc(x, y).

Then u = v ∈ S− by Proposition 4.2.
Now suppose that u ∈ S−. Since u ≺ L + c then u ≤ w. Let x ∈ M and

choose v ∈ Σ− such that

(14) u(x)− u(γ(t)) = AL+c(γ|[t,0]) = Φc(γ(t), x) for t < 0.

Choose p ∈ π[α-lim(v)] ⊂ A, and tn → −∞ such that γ(tn) n→ p. Using t = tn
on equation (14), we have that

u(x) = u(p) + Φc(p, x) ≥ w(x).

Thus u = w.  !
Remarks 4.5

1. If M is compact, u, v ∈ S− and u|A = v|A, then u = v.
2. Observe that if u ≺ L + c and dc(p, q) = 0 then u(q) = u(p) + Φc(q, p),

because

u(q) ≤ u(p) + Φc(p, q) ≤ u(q) + Φc(q, p) + Φc(p, q) = u(q).

3. By item 2, if M is compact, the values of u ∈ S− on only one point of each
static class determine u.
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Let Γ = A/dc be the set of static classes of L. For each γ ∈ Γ choose
pΓ ∈ Γ and let A = {PΓ |Γ ∈ Γ }. We say that a function f : A → R is
dominated (f ≺ L+ c) if f(p) ≤ f(q) + Φc(q, p), for all p, q ∈ A.

Corollary 4.6 If M is compact, the map { f : A → R | f ≺ L+ c } → S−,

f �−→ uf(x) := inf
p∈A

f(p) + Φc(p, x),

is a bijection.

Proof. By Remark 4.5.3, the map is surjective. The injectivity follows from

uf(p) = min
q∈A

f(q) + Φc(q, p) = f(p) ∀p ∈ A,

because f is dominated.  !
Corollary 4.7 If M is compact and there is only one static class, then S− (resp.
S+) is unitary modulo an additive constant.

This characterization of weak KAM solutions allows us to recover the follow-
ing theorem: We say that two weak KAM solutions u− ∈ S− and u+ ∈ S+ are
conjugate if u− = u+ on A and denote it by u− ∼ u+.

Corollary 4.8 (Fathi [10]) If M is compact, then

h(x, y) = sup
u∓∈S∓
u−∼u+

{ u−(y)− u+(x) }.

Proof. If u+ ∼ u− and p ∈ A, from the domination we get that

u+(p) ≤ u+(x) + Φc(x, p),
u−(y) ≤ u−(p) + Φc(p, y).

Adding these equations and using that u+(p) = u−(p), we get that

u−(y)− u+(x) ≤ Φc(x, p) + Φc(p, y).

Taking infp∈A and then supu+∼u− we obtain

sup
u+∼u−

{
u−(y)− u+(x)

} ≤ h(x, y).

On the other hand, let u+(z) := −h(z, y) and

u−(z) : = min
q∈A

{
u+(q) + Φc(q, z) }(15)

= min
q∈A

{ − h(q, y) + Φc(q, z)
}

= min
q∈A

{ − Φc(q, y) + Φc(q, z) }(16)

From Remark 4.3.3 and Corollary 4.6, u± ∈ S±. Since u+ is dominated,
from (15) we get that u+ ∼ u−. From (16), u−(y) = 0 and hence u−(y) −
u+(x) = h(x, y).  !
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When hc = +∞, we use another method to obtain weak KAM solutions, re-
sembling the constructions of Busemann functions in riemannian geometry. In [4]
we proved that Σ+ �= ∅ and Σ− �= ∅ even when M is non-compact. We call the
functions of Proposition 0.3 weak KAM Busemann functions.

Proposition 0.3

1. If w ∈ Σ−(L) and γ(t) = xw(t), then

uw(x) = inf
t<0

[Φc(γ(t), x) − Φc(γ(t), γ(0))]

= lim
t→−∞ [Φc(γ(t), x) − Φc(γ(t), γ(0))]

is in S−.
2. If w ∈ Σ+(L) and γ(t) = xw(t), then

uw(x) = sup
t>0

[Φc(γ(0), γ(t))− Φc(x, γ(t))]

= lim
t→+∞ [Φc(γ(0), γ(t))− Φc(x, γ(t))]

is in S+.

Item 2 of Proposition 0.3 was proved in [4]. For completeness, we show here
the proof of item 1. To prove Proposition 0.3, we shall need the following graph
property. For v ∈ TM , write xv(t) = π ϕt(v). Given ε > 0, let

Σε := {w ∈ TM |xw : [0, ε) →M or xw : (−ε, 0] →M is semistatic }.

Theorem 4.9 (Mañé) [14] For all p ∈ π(Σ̂) there exists a unique ξ(p) ∈ TpM

such that (p, ξ(p)) ∈ Σε, in particular (p, ξ(p)) ∈ Σ̂ and Σ̂ = graph(ξ).
Moreover, the map ξ : π(Σ̂) → Σ is Lipschitz.

Proof of Proposition 0.3. We only prove item 1. We start by showing that the
function δ(t) = Φc(γ(t), x)− Φc(γ(t), 0) is increasing. If s < t, then

δ(t)− δ(s) = Φc(γ(t), x) − Φc(γ(s), x) +
[
Φc(γ(s), γ(0))− Φc(γ(t), γ(0))

]
= Φc(γ(t), x) − Φc(γ(s), x) + Φc(γ(s), γ(t))
≥ 0,

where the last inequality follows from the triangle inequality applied to the
triple (γ(s), γ(t), x). By the triangle inequality, δ(t) ≤ Φc(γ(0), x), hence
limt↓−∞ δ(t) = inft<0 δ(t) and this limit is finite.
Since

u(y) = inf
t<0

Φc(γ(t), y)− Φc(γ(t), γ(0))

≤ inf
t<0

Φc(γ(t), x) + Φc(x, y)− Φc(γ(t), γ(0))

= u(x) + Φc(x, y),
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then u ≺ L+ c.
Suppose that x ∈ A �= ∅. Let (x, v) ∈ Σ̂ and t < 0. Let p = xv(t) and

y ∈M . Since dc(x, p) = 0, then

Φc(y, x) = Φ(y, x) + Φc(x, p) + Φc(p, x)
≥ Φc(y, p) + Φc(p, x) ≥ Φc(y, x).

Hence Φc(y, x) = Φc(y, p) + Φc(p, x). For y = γ(s) (and p = xv(t)), we have
that

u(x)− u(xv(t)) = lim
s→+∞ [Φc(γ(s), x) − Φc(γ(s), xv(t))] = Φc(xv(t), x)

= AL+c

(
xv|[t,0]

)
.

Now let x ∈ M \ A and choose yn : [Tn, 0] → M a Tonelli minimizer such
that yn(Tn) = γ(-n), yn(0) = x and

AL+c(yn|[Tn,0]) ≤ Φc(γ(-n), x) + 1
n .

This implies that

(17) AL+c(yn|[s,t]) ≤ Φc(yn(s), yn(t)) + 1
n , for Tn ≤ s < t ≤ 0.

By Lemma 1.6, |ẏn| < A. We can assume that ẏn(0) → v ∈ TxM . Then

(18) AL+c(xv|[t,0]) = Φc(γ(t), x) for lim inf
n

Tn ≤ t ≤ 0.

We prove below that limn Tn = −∞. Then v ∈ Σ−(L). Observe that for Tn ≤
s ≤ 0 we have that

Φc(γ(-n), x) ≤ Φc(γ(-n), yn(s)) + Φc(yn(s), x) ≤ AL+c(yn|[Tn,0])

≤ Φc(γ(-n), x) + 1
n .

Since y �→ Φc(z, y) is uniformly Lipschitz, we obtain that

u(x) = lim
n
Φc(γ(-n), x)− Φc(γ(-n), γ(0))

= lim
n
Φc(γ(-n), xv(s)) + Φc(xv(s), x)− Φc(γ(-n), γ(0))

= u(xv(s)) + Φc(xv(s), x) for all s < 0.

= u(xv(s)) +AL+c(xv |[s,0]) because v ∈ Σ−.

Now we prove that limn Tn = −∞. Suppose, for simplicity, that limn Tn =

T0 > −∞. Since ẏn(0) → v, then yn|[Tn,0]
C1

−→ xv|[T0,0] and hence γ(-n) =
yn(Tn) → xv(T0) =: p. Since by Lemma 1.6 |γ̇| is bounded, we can assume
that limn γ̇(-n) = (p, w1). Then w1 ∈ α-lim(γ̇) ⊆ Σ̂. From (18), ẋv(T0) ∈ Σε.
Since π(w1) = xv(T0) = p, then Lemma 4.9 implies that ẋv(T0) ∈ Σ̂. Since Σ̂
is invariant, then v ∈ Σ̂ and hence x = π(v) ∈ π(Σ̂) = A. This contradicts the
hypothesis x ∈M \ A.

 !
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5 The extended static classes

The method in Proposition 0.3 resembles the construction of Busemann functions
in complete manifolds of non-positive curvature. In that case, Ballmann, Gro-
mov and Schroeder [1] proved that the manifold can be compactified adjoining
the sphere at infinity that can be defined in terms of Busemann functions.

Here we emulate that construction to obtain a compactification of the mani-
fold M/dc that identifies the points in the Aubry set which are in the same static
class and adjoins what we call the extended Aubry set A∓. By definition of Buse-
mann function, the extended static classes in B∓ correspond to the α-limits (resp.
ω-limits) of semistatic orbits in the compactification. But as we shall see in Ex-
ample 5.4 the classes in A∓ \ B∓ do not correspond to α or ω limits of orbits in
TM .

On C0(M,R) we use the topology of uniform convergence on compact sub-
sets. Consider the equivalence relation on C 0(M,R) defined by f ∼ g if f − g is
constant. Let F := C0(M,R)/∼ with the quotient topology.

Let M− be the closure in F of { f(x) = Φc(z, x) | z ∈ M }/∼ and M+ the
closure in F of { g(x) = Φc(x, z) | z ∈M }. Fix a point 0 ∈M . We can identify

F ≈ { f ∈ C0(M,R) | f(0) = 0 }.
Lemma 5.1 M− and M+ are compact.

Proof. Observe that the functions in M− and M+ are dominated. By Lemma 3.1.1
the families M− and M+ are equicontinuous. Since M is separable by Arzelá-
Ascoli theorem M− and M+ are compact in the topology of uniform convergence
on compact subsets.  !

Then M− is the closure of the classes of the functions

fz(x) := Φc(z, x)− Φc(z, 0), ∀ x ∈M

and M+ is the closure of the classes of

gz(x) := Φc(x, z)− Φc(0, z), ∀ x ∈M.

Lemma 5.2

1. If fw(x) = fz(x) for all x ∈M , then dc(w, z) = 0.
2. If gw(x) = gz(x) for all x ∈M , then dc(w, z) = 0.

Proof. We only prove item 1. Suppose that fz = fw. From fz(z) = fw(z) we get
that

Φc(w, z) = Φc(w, 0)− Φc(z, 0),

and from fz(w) = fz(w) we get

Φc(z, w) = −Φc(w, 0) + Φc(z, 0).

Adding these equations we get that dc(z, w) = 0.
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Conversely, if dc(z, w) = 0 and x ∈M , then

Φc(w, x) ≤ dc(w, z) + Φc(z, x) = Φc(z, x)− Φc(z, w) ≤ Φc(w, x).

Thus Φc(w, x) = Φc(w, z) + Φc(z, x) for all x ∈ M . This implies that fz = fw.
 !

Then we have embeddings M/dc ↪→ M−, by z �→ [fz] ∈ F and M/dc ↪→
M+ by z �→ [gz] ∈ F , whereM/dc is the quotient space under the equivalence re-
lation x ≡ y if dc(x, y) = 0. Let B− be the functions defined in Proposition 0.3.1
and B+ those of 0.3.2. Let B+ = B+/∼ and B− = B−/∼.

Remark 5.3 By Proposition 0.3, if p ∈ A �= ∅ then u−(x) := Φc(p, x) ∈ B− and
u+(x) := −Φc(x, p) ∈ B+ (modulo an additive constant).

Observe that dc(z, w) = 0 if and only if z = w or z, w ∈ A and they are in the
same static class. Under the identifications M ↪→ M∓ we have that B∓ ∪ (M \
A) ⊆ M∓ respectively. But this inclusion may be strict as the following example
shows:

Example 5.4 B− ∪ (M \ A) �= M−.

Let M = R and L(x, v) := 1
2v

2 − cos(2πx), corresponding to the univer-
sal cover of the simple pendulum lagrangian. Then c(L) = 1, and the static
orbits are the fixed points (2k + 1, 0) ∈ TR, k ∈ Z. Moreover, H(x, p) =
1
2p

2 + cos(2πx) and the Hamilton-Jacobi equation H(x, dxu) = c(L) gives
dxu = ±2

√
1− cos(2πx). The function

u(x) =
∫ x

0

2
√

1− cos(2πs) ds,

with dxu ≡ +2
√

1− cos(2πx), is in S−, is the limit of un(x) := Φc(−n, x) −
Φc(−n, 0) but it is not a Busemann function associated to a semistatic orbit γ
because if γ(−∞) = 2k + 1 ∈ Z is the α-limit of γ, then the Busemann function
bγ associated to γ satisfies

(19) dxbγ =

{
+2

√
1− cos(2πx) if x ≥ γ(−∞),

−2
√

1− cos(2πx) if x ≤ γ(−∞).

Similarly a function v : R → R with dxv ≡ −2
√

1− cos(2πx) is in S+ but it is
not a Busemann function.

Observe that in the Busemann function in (19), at the point y = γ(−∞)+3 the
semistatic orbit η(t) with η̇(0) = Γ−(u)∩TyM has α-limit η(−∞) = γ(−∞)+
2 �= γ(−∞). Moreover, the Busemann function bη associated to η satisfies

dxbη =

{
+2

√
1− cos(2πx) if x ≥ γ(−∞) + 2,

−2
√

1− cos(2πx) if x ≤ γ(−∞) + 2;
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so that bη �= bγ . In fact, there is no semistatic orbit passing through y with α-limit
γ(−∞). This implies that the Busemann functions can not be parametrized just by
a (semistatic) vector based on a unique point 0 ∈M as in the riemannian case. In
particular, it may not be possible to choose a single point qα ≡ 0 ∈M, ∀α ∈ B−

in the construction for Theorem 0.4.  !
The functions in B− and B+ are special among the weak KAM solutions.

They are “directed” towards a single static class and they are the most regular in
the following sense:

Lemma 5.5

1. If w ∈ Σ− and uw ∈ B− is as in Proposition 0.3.1, then

uw(x) = max{ u(x) |u ∈ S−, u(π(w)) = 0, w ∈ Γ−(u) }.
2. If w ∈ Σ+ and uw ∈ B+ is as in Proposition 0.3.2, then

uw(y) = min{ u(y) |u ∈ S+, u(π(w)) = 0, w ∈ Γ+(u) }.
By the Remark 5.3, this also holds for the functions u−(x) = Φc(p, x) and

u+(x) = −Φc(x, p) (modulo an additive constant), for any p ∈ A.

Proof. We prove item 1. Let x := π(w) and v ∈ S− with v(x) = uw(x) = 0 and
w ∈ Γ−(v). Let xw(t) = π(Φt(w)). Since v ≺ L + c and w ∈ Γ−(v), then for
t < 0, we have that

v(y) ≤ v(xw(t)) + Φc(xw(t), y)
= v(x) − Φc(xw(t), x) + Φc(xw(t), y).

Since v(x) = uw(x) = 0, letting t ↓ −∞, we get that v(y) ≤ uw(y) for all
y ∈ M . On the other hand, uw is in the set of such u’s, so that the maximum is
realized by uw.  !

Define

A
− := M− \ [

(M −A)/dc

]
, A

+ := M+ \ [
(M −A)/dc

]
.

Proposition 5.6 The functions in A− and A+ are weak KAM solutions.

Proof. Let u ∈ M− \ (M \ A)/dc . Since u is dominated, we only have to prove
the condition 3.4.2. Adding a constant, we can assume that u(0) = 0. Then there
is a sequence zn ∈ M such that u(x) = limn Φc(zn, x) − Φc(zn, 0). Let x ∈ M
and let γn ∈ CTn(zn, x) be a Tonelli minimizer such that Tn < 0, γn(0) = x,
γn(Tn) = zn and AL+c(γn) ≤ Φc(zn, x) + 1

n . In particular

Φc(zn, γn(t)) +AL+c

(
γn|[t,0]) ≤ AL+c(γn) ≤ Φc(zn, x) + 1

n , ∀ Tn ≤ t ≤ 0.

Since u ∈ A
−, then we can assume that either dM (zn, x) → ∞ or zn → p ∈ A.

Since by Lemma 1.6 |γ̇n| < A and hc(p, p) = 0 for p ∈ A, in either case we can
assume that Tn → −∞.
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We can assume that γ̇n(0) → v ∈ TxM . Then for t ≤ 0,

u(xv(0))− u(xv(t)) = lim
n
Φc(zn, x)− Φc(zn, xv(t))

= lim
n
Φc(zn, x)− Φc(zn, γn(t)) +K dc(γn(t), xv(t))

≥ lim
n
AL+c

(
γn|[t,0]

)− 1
n

≥ AL+c

(
xv|[t,0]

)
,

where K is a Lipschitz constant for Φc.
 !

For p ∈ B and z ∈M let x �→ bp,z(x) be the function in the class p ∈ B such
that bp,z(z) = 0, i.e.

bp,z(x) = lim
y→p

Φc(y, x)− Φc(y, z).

We now give a characterization of weak KAM solutions similar to that of Corol-
lary 4.6. For each α ∈ B− choose qα ∈ M such that there is a unique semistatic
vector v ∈ Σ− such that π(v) = q and the α-limit of v is in the static class α. This
can be done by the graph property 3.6.4. Moreover, choose them such that the map
B

− � α �→ qα ∈M is injective. Let A := { qα |α ∈ B− }. We say that a function
f : A →M is strictly dominated if

f(qα) < f(qβ) + bβ,qβ
(qα)

for all α �= β inB−. And we say that f is dominated if f(qα) ≤ f(qβ)+bβ,qβ
(qα)

for all α �= β in B−.

0.4. Theorem. The map { f : A → R | f strictly dominated} → {u ∈
S− |u|A strictly dominated}, f �→ uf , given by

uf(x) := inf
α∈B−

f(qα) + bα,qα(x),

is a bijection.

Proof. We first prove that uf is bounded below. The domination condition implies
that uf(qα) = f(qα) for all α ∈ B−. Then the same argument as in formula (13),
shows that uf ≺ L+ c. Fix α ∈ B−, then for all x ∈M ,

(20) uf(x) ≥ uf (qα)− Φc(qα, x) = f(qα)− Φc(qα, x) > −∞.

Since uf > −∞ and it is an infimum of weak KAM solutions, from
Lemma 4.1 we get that uf ∈ S−. Since uf (qα) = f(qα) for all α ∈ B−, the
map f �→ uf is injective.

We now prove the surjectivity. Suppose that u ∈ S− and u|A is strictly domi-
nated. Let

v(x) := inf
α∈B−

u(qα) + bα,qα(x).



452 G. Contreras

Observe that the domination condition implies that

(21) v(qα) = u(qα) for all α ∈ B−.

Given x ∈M , let θ ∈ Γ−(u) ∩ TxM and let α ∈ B− be the α-limit of θ. Then,

u(x) = u(xθ(s)) + Φc(xθ(s), x) for all s < 0.

Since u is dominated, u(qα) ≤ u(xθ(s)) + Φc(xθ(s), qα). Hence

u(x) ≥ u(qα)− Φc(xθ(s), qα) + Φc(xθ(s), x) for all s < 0.

Taking the limit when s→ −∞, we get that

(22) u(x) ≥ v(x) for all x ∈M.

Now we prove that u = v on the projection of the backward orbits of vectors in
Γ−(u) ending at the points qα, α ∈ B−. Let ξ ∈ Γ−(u) ∩ TqαM and let β ∈ B−

be the α-limit of ξ. From the definition of v(x) for all ε > 0 and s < 0 there exists
γ = γ(s, ε) ∈ B− such that

v(xξ(s)) ≥ v(qγ) + bγ,qγ (xξ(s)) − ε.

Since ξ ∈ Γ−(u) ∩ TqαM , then for s < 0,

u(qα) = u(xξ(s)) + Φc(xξ(s), qα)
(23)

≥ v(xξ(s)) + Φc(xξ(s), qα) by (22)(24)

≥ v(qγ) + bγ,qγ (xξ(s))− ε+ Φc(xξ(s), qα)
= lim

t→−∞ v(qγ) + Φc(xξ(t), xξ(s)) + Φc(xξ(s), qα)− Φc(xξ(t), qγ)− ε

≥ v(qγ) + lim
t→−∞Φc(xξ(t), qα)− Φc(xξ(t), qγ)− ε

≥ v(qγ) + bγ,qγ (qα)− ε

≥ v(qα)− ε(25)

= u(qα)− ε. by (21).

Letting ε ↓ 0, from the equality between (24) and (25) we get that

(26) v(qα) = v(xξ(t)) + Φc(xξ(t), qα) for all t < 0.

But then

v(qβ) ≤ v(xξ(t)) + Φc(xξ(t), qβ) = v(qα)− Φc(xξ(t), qα) + Φc(xξ(t), qβ).

Equivalently

v(qα) ≥ v(qβ) + Φc(xξ(t), qα)− Φc(xξ(t), qβ).



Action potential and weak KAM solutions 453

Taking the limit when t→ −∞, we get that v(qα) ≥ v(qβ)+bβ,qβ
(qα). This con-

tradicts the strict domination, hence β = α. Then, from the equality between (23)
and (24), we have that

(27) u(xξ(t)) = v(xξ(t)) for all t < 0, and ξ ∈ Σ− ∩ TqαM, α-lim(ξ) = α.

Now let x ∈ M and α ∈ B−. Let ξ ∈ Σ− ∩ TqαM with α-lim(ξ) = α. Then
for t < 0,

u(x) ≤ u(xξ(t)) + Φc(xξ(t), x)
= v(xξ(t)) + Φc(xξ(t), x) by (27)

= v(qα)− Φc(xξ(t), qα) + Φc(xξ(t), x), by (26).

Letting t→ −∞, we have that

u(x) ≤ v(qα) + bα,qα(x) = u(qα) + bα,qα(x).

Since α ∈ B− is arbitrary, from the definition of v we get that u ≤ v.  !
Theorem 5.7 Given u ∈ S−, for all α ∈ B−(u) choose qα ∈ π[Λ−

0 (α)∩Γ−
0 (u)],

and let A(u) := {qα |α ∈ B−(u) }. Then

u(x) = inf
qα∈A(u)

u(qα) + bα,qα(x) for all x ∈M.

Proof. Let u ∈ S−. For all α ∈ B−(u), choose qα ∈ π(Λ−
0 (α) ∩ Γ−

0 (u)). Let
A(u) := { qα |α ∈ B−(u) }. We show that u|A(u) is dominated. Let α, β ∈ B−(u)
and let θ ∈ Tqβ

M ∩ Λ−(β) ∩ Γ−(u). Then for t < 0,

u(qα) ≤ u(xθ(t)) + Φc(xθ(t), qα)
= u(qβ)− Φc(xθ(t), qβ) + Φc(xθ(t), qα).

Letting t→ −∞, we get that u(qα) ≤ u(qβ) + bβ,qβ
(qα), for all α, β ∈ B−(u).

Let

(28) v(x) := inf
qα∈A(u)

u(qα) + bα,qα(x).

The same arguments as in equation (20) show that v > −∞ and by Lemma (4.1)
v ∈ S−.

Given x ∈ M , let θ ∈ Γ−(u) ∩ TxM and let α ∈ B−(u) be the α-limit of θ.
Then,

u(x) = u(xθ(s)) + Φc(xθ(s), x) for all s < 0,
u(x) ≥ u(qα)− Φc(xθ(s), qα) + Φc(xθ(s), x) because u is dominated.

Since α ∈ B−(u), taking the limit when s→ −∞, we get that

(29) u(x) ≥ v(x) for all x ∈M.
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Now let x ∈ M and qα ∈ A(u). Let ξ ∈ Λ(α) ∩ Γ−(u) ∩ TqαM . Then for
s < 0,

u(x) ≤ u(xξ(s)) + Φc(xξ(s), x)
= u(qα)− Φc(xξ(s), qα) + Φc(xξ(s), x), because ξ ∈ Γ−(u) ∩ TqαM .

Since ξ ∈ Λ−(α), letting s→ −∞, we have that

u(x) ≤ u(qα) + bα,qα(x).

Since qα ∈ A(u) is arbitrary, we get that u ≤ v.  !

6 Examples

Example 6.1 A Lagrangian with h = +∞.

Let L : TR2 → R be L(x, v) = 1
2 |v|2 + ψ(x), where | · | is the euclidean

metric on R2 and ψ(x) is a smooth function with ψ(x) = 1
|x| for |x| ≥ 2, ψ ≥ 0

and ψ(x) = 2 for 0 ≤ |x| ≤ 1.
Then

c(L) = − inf ψ = 0,

because if γn is a smooth closed curve with length �(γn) = 1, |γn(t)| ≥ n and
energy E(γn) = 1

2 γ̇
2
n − ψ(γn) ≡ 0, then

c(L) ≥ − inf
n>0

AL(γn) = −
∫ Tn

0

1
2 γ̇

2
n + ψ(γn)

= −
∫ 1

|γ̇n|

0

|γ̇n|2 = −|γ̇n| ≤ −
√

2
n −→ 0.

On the other hand,

c(L) = − inf {AL(γ) | γ closed } ≤ 0,

because L ≥ 0.
Observe that since L > 0 and on compact subsets of R2, L > a > 0, then we

have that
dc(x, y) = Φc(x, y) > 0 for all x, y ∈ R2.

Hence Σ̂(L) = ∅.
Suppose that h(0, 0) < +∞. Then u(x) := h(x, 0) is in S+. Let ξ ∈ Γ+(u)∩

T0R2 and write xξ(t) = (r(t), θ(t)) in polar coordinates about the origin 0 ∈ R2.
Then lim supt→+∞ r(t) = +∞ because otherwise the orbit of ξ would lie on a
compact subset of E ≡ 0 and then ∅ �= ω-lim(ξ) ⊆ Σ(L) = ∅. Moreover,

|ẋξ(t)| =
√

2
r(t)

and
L(ϕt ξ) = |ẋξ(t)|2 =

√
2

r(t) |ẋξ(t)|.
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Let Tn → +∞ be such that r(Tn) → +∞. Since L+ c = L ≥ 0, then

h(0, 0) ≥
∫ +∞

0

L(ϕt(ξ)) + c(L) =
∫ +∞

0

√
2

r(t)

[ |ṙ|+ r |θ̇| ] dt
≥ lim sup

Tn

∫ Tn

0

√
2
r ṙ dt = lim sup

n

∫ r(Tn)

0

√
2
r dr = +∞.

 !

α 0oo

Fig. 2. Example 6.2

Example 6.2 0 < h < +∞, Σ̂ = ∅ and differentiable Busemann functions u
with B−(u) = B+(u) = {α}.

Let H := R×]0,+∞[ with the Poincaré metric ds2 = 1
y2 (dx2 + dy2). Let

L : TH → R be a Lagrangian of the form

L(x, v) = 1
2 ‖v‖2

x + ηx(v),

where ηx is a 1-form on H such that dη(v) is the area form an |·|x is the Poincaré
metric. The Euler-Lagrange equation is

(30) D
dt ẋ = Yx(ẋ) = ẋ⊥,

where Yx : TH → TH is a bundle map such that

dηx(u, v) = 〈Yx(u), v〉.

The energy function is E(x, v) = 1
2 ‖v‖2x. On the energy levels E < 1

2 the solu-
tions of (30) are closed curves, and on E = 1

2 the solutions are the horospheres
parametrized by arc length.

Choose the form η(x, y) = dx
y , where (x, y) ∈ H = R×]0,+∞[. Then

L
(
(x, y), (ẋ, ẏ)

)
=

1
2y2

(
ẋ2 + ẏ2

)
+
ẋ

y
·
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Observe that the form η is bounded in the Poincaré metric, so that the Lagrangian
is superlinear and satisfies the boundedness condition.

It can be seen directly from the Euler-Lagrange equation that the curves ẋ =
−y, ẏ = 0 are solutions with

(31) L(ẋ = −y, ẏ = 0) + 1
2 ≡ 0.

The images of these curves are the stable horospheres associated to the geodesic
x = 0, ẏ = y, parametrized by arc length.

We show that c(L) = 1
2 and hc < +∞. Observe that if v = (ẋ, ẏ), ẋ < 0,

then

(32) L = 1
2 ‖v‖2 − ‖(ẋ, 0)‖ ≥ 1

2 ‖v‖2 − ‖v‖ ≥ − 1
2 .

Hence L+ 1
2 ≥ 0 and then c(L) ≤ 1

2 .
Now fix x ∈ H. For r > 0 let Dr be a geodesic disc of radius r such that x ∈

∂Dr. Let γr be the curve whose image is the boundary of D r oriented clockwise
and with hyperbolic speed ‖γ̇‖ ≡ a. Since E(γ) = 1

2 a
2, then∫

γr

L+ 1
2a

2 =
∫
γr

v · Lv =
∫
γr

‖v‖2 +
∫
Dr

dA = a · length(γr)− area(Dr),

= a · 2π sinh(r) − 2π cosh(r) = 2π
[
1
2 (a− 1)er − e−r

]
+ 2π.(33)

If a < 1, for r > 0 large, formula (33) is negative. Hence c(L) ≥ 1
2 and

c(L) = 1
2 . Moreover,

h(x, x) ≤ lim inf
r→+∞ AL+ 1

2
(γr) = 2π < +∞.

We prove that Σ̂ = ∅. This implies that h > 0. First observe that if T is an
isometry of H, then d(T∗η) is also the area form, so that T∗η is cohomologous to η.
This implies that given any two points x, y ∈ D, there is a constant b = b(x, y) ∈ R

such that for all γ ∈ C(x, y),

AL(γ) = AL(T ◦ γ) + b(x, y).

In particular, the map dT leaves σ(L) and Σ̂(L) invariant. Since a horocycle h1

can be sent by an isometry to another horocycle h 2 with h1 ∩ h2 �= ∅, then the
horocycles can not be static because it would contradict the graph property.

The constant function u : H → {0} satisfies u ≺ L + 1
2 because L + 1

2 ≥ 0
and by (31) the vectors v = (−y, 0) ∈ Γ +(u) = Γ−(u) ∈ Σ− are semistatic.
Its derivative du = 0 is sent by the inverse of the Legendre transform v �→ L v =
〈v, ·〉x + dx

y to
1
y2 〈v, ·〉eucl = − dx

y ,

that is v = (−y, 0). Also

H(du) = 1
2

∥∥du − dx
y

∥∥2 = 1
2

∥∥dx
y

∥∥2 = 1
2 .
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Let T : H ←↩ be an isometry of the hyperbolic metric. Write η = dx
y . Then

dη = A is the hyperbolic area 2-form. Since T is an isometry, then

d(T ∗η) = T ∗(dη) = dη.

Hence the form T ∗η − η is exact on H and there is a smooth function v : H → R

such that
T ∗η − η = −dv.

We show that v is a weak KAM solution. Observe that

L ◦ dT (x, v) = 1
2 ‖v‖2

x + T ∗η(x, v)

= 1
2 ‖v‖2

x + η(x, v) − dv(x, v)
= L(x, v)− dv(x, v).(34)

Since by (32) L ◦ dT + 1
2 ≥ 0, then

(35) dv ≤ L+ 1
2 .

Hence v ≺ L+ 1
2 . Moreover, the equality in (35) holds exactly whenL◦dT (x, v)+

1
2 = 0, i.e. when dT (v) = (−y, 0) ∈ T(x,y)H.

Since the isometries send horospheres to horospheres, they are self-
conjugacies of the hamiltonian flow and hence the curves γ(t) = T −1(x − ty, y)
realize v, i.e.

v(γ(t))− v(γ(s)) =
∮
γ

dv =
∮
γ

L+ 1
2 .

Here v is the Busemann weak KAM solution associated to the class T (∞) ∈ ∂H,
on the sphere at infinity of H.

We now show a picture of a non-Busemann weak KAM solution. We use the
isometry T : H ←↩, T (z) = − 1

z , z = x + iy ∈ C. The isometry T = T−1 sends
the line t �→ −ty + iy to a horosphere with endpoint 0 ∈ C, oriented clockwise.
Choose v : H → R such that dv = η − T ∗η and v(0 + i) = 0. Since T leaves the
line Rez = 0 invariant and η = 0 on vertical vectors, hence v is constant (equal to
0) on Rez = 0.

Now we describe the weak KAM solution

w(z) := min{ u(z), v(z) } ∈ S−.

Let γ(t) = −ty + iy. Then, using (34),

v(T−1γ(t)) = v(T−1γ(0)) +
∮
T−1◦γ

dv

= 0 +
∫ t

0

[
L ◦ dT−1 ◦ γ̇ + 1

2

]− ∫ t

0

[
L ◦ γ̇ + 1

2

]
= 0 +

∫ t

0

[
L ◦ dT−1 ◦ γ̇ + 1

2

]− 0.
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Since by (35) L(x, v)+ 1
2 > 0 when v �= −y+ i0, then v(z) > 0 on Rez > 0 and

v(z) < 0 on Rez < 0. Thus

w(z) =

{
0 = u(z) if Rez > 0.
v(z) if Rez < 0.

(36)

The cut locus of w is Rez = 0 and the basin of w is Γ −(w) = A ∪ dT (A) where
A is the set of vectors (y, 0) ∈ Tx+iyH.

 !
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