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Introduction

Let M be a compact smooth manifold and let 2"(M) be the Banach space
of C" vector fields on M endowed with the topology of uniform C" convergence
on compact subsets. For XeZ" (M) let h,,(X) be the topological entropy of
X. Misiurewicz [18] proved that, for general C" flows on M" r<oo and n<3,
h,, need not be continuous. Yomdim and Newhouse [19, 23] proved that hyop
Z*(M™) - R is upper-semicontinous. Katok proved that for 3-manifolds hiop
(M3} -R 1s lower semi-continuous. By combining these two results, one
sees that h,,: #*°(M?)—R is continuous. See [8] for a survey of regularity
results for the topological entropy for general flows.

Let A4 be a hyperbolic basic set of XeZ”"(M), ie. a compact hyperbolic
transitive and isolated set. Isolated means that there exists a compact neighbour-
hood U of A such that A is the maximal X-invariant set of U, ie., the set
of points whose X-orbit is contained in U. By the standard theory of hyperbolic
sets there exists a neighbourhood % of X in 2" (M) such that if Ye# then
the maximal Y-invariant set of U, that we shall denote Ay, is a hyperbolic
basic set and X|, and Y|, are topologically equivalent.

Our objective is to study the regularity of the entropies of Y|,, arising from
variational principles, as functions of Y e%. We begin by cons1der1ng the topo-
logical entropy h,p(Y|4,).

Theorem A. The function #>Y - hy,, (Y|4, )eR is C".

For r=1 and A=M this result was proved by Katok et al. [8]. In [9]
Katok et al. proved the theorem above loosing one degree of dlfferentlablllty
To obtain the full regulatity of h,,,(Y|,,) we use the techniques of Maifié in
[15].

When 4 is an attractor of X (i.e. the w-limit set of every x nearby A is
contained in A) then Ay is an attractor of Y for every Ye#. The set W*(Ay)
of points xe M whose w-limit set under Y is contained in Ay (called the basin
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98 G. Contreras

of Ay) is then open and there exists a unique Y-invariant probability uy (called
the Bowen-Ruelle-Sinai measure) on the Borel g-algebra of A, such that for
almost every pe W*(Ay) (with respect to the Lebesgue measure on M), if the
forward Y-orbit of p is x:[0, + oo [ - M, then

. 17T
fcoduy=rlgngw?o§ o(x(t)dt

for every continuous ¢:M —R. Let h, (Y]|,,) be its metric entropy.
Theorem B. The function U>Y—h, (Y|,,)is C"~2.

It is interesting to apply this result to the geodesic flow of Riemannian
manifolds with negative curvature. Given a compact boundaryless manifold M
denote R"(M) the Banach manifolds of C" Riemannian structures g: TM x TM
— R and, if geR"(M) let h(g) denote the entropy of the geodesic flow of g
with respect to the Liouville measure. Let A"(M) be the (open) set of metrics
ge R"(M) whose geodesic flow is Anosov (in particular, metrics with negative
curvature). Then the geodesic flow is generated by a C"~! vector field for which
the whole unit tangent bundle is a hyperbolic basic set and the Liouville measure
is its Bowen-Ruelle-Sinai measure. Then Theorems A and B imply:

Corollary. The entropy of the geodesic flow of ge A"(M), r<3 with respect to
the Liouville measure is a C"~3 function. The topological entropy of the geodesic
flow of ge A"(M), r<1,isa C"™! function of g.

For r=4 the first part of this corollary was proved by Knieper and Weiss
[11]. Theorems A and B can be extended and unified to entropies with respect
to equilibrium states. Take X, 4, U and % as above. Denote C*(M,R), 0 <a <1,
the Banach space of a-Holder continuous real valued functions on M. Consider
a function ¥ : % — C*(M,R) and, for Ye%, denote uy, the Y-invariant probability
on the Borel c-algebra of A, that is the equilibrium state of ¥(Y)|,,. Let
h,,(Y|,,) be its entropy and

PN =R (Y)=h,,(Y4,)+]¥(Y)duy

the pressure of (Y(Y), 4y, Y). The Q-stability theorem gives for each Y in #
a homeomorphism hy: A — Ay such that it is Holder continuous and sends
orbits of (4, X) to orbits of (4y, Y). This topological equivalence hy is not unique
because by composing with translations along orbits of 4y we get other topologi-
cal equivalences. However this is the only obstruction to the uniqueness of
hy and on Proposition 1.2 we choose one such hy such that the map
U>Y—>hyeC*A,M)is C"™ 1.

Theorem C. If the map UsY—y(Y)ohyeC’(4,R) is C° and U3V
W (Y)ohye C*(4,R) is C*~ 1, then

(a P:#4-RisC-

(b) 3Y-h, (Y],,)is C~L

(© If 0<a<1 is small enough and denoting (C*(M,IR))* the dual Banach space
of C*(M,R) then %3 Y- pye(C*(M,R))* is C*~ 1.
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In Sect. 1 we see that the map #3Y— hyeC*(A4, M) is C" for some appro-
priate «, so that Theorem C is valid when we consider for example a .C"
map ¥:% — C"(U,RR) and a neighbourhood U of 4 in M. Considering puy as
an element of the dual Banach space of (C°(M,R))*, item (c) becomes false
(see [15]).

Theorem A follows from item (a) of Theorem C and y=0. Theorem B

. d
follows from letting Y (Y)(p)= TS log|det(D, @y (P, )|gu(oy (p.1y)li=0>, Where
@y(p, t) is the flow of Y and E“(q) is the strong unstable subspace of Y at geA,.
In Sect. 2 we prove that in this case the map #3Y— (Y)ohyeC*(4,R)is C"~2.
It also follows from Theorem C that the map #>Y— [y/(Y)duyeR is C" ™2,
Applying this for y/(Y) of Theorem B, we see that he sum of the positive Lyapun-
ov exponents is a C"? function of the vector field Y and that the rate of

T
escape of a neighbourhood U of Ay, lim Tlflog vol(ﬂ oy(U, —t))zP,,(t//(Y))
T=ow t=0
(see [5])is a C"~! function of the vector field Y €2 (M).

1 Preliminaries

Let M be a compact differentiable manifold and ¢,: M — M a differentiable
flow. A closed, ¢,-invariant set A4 without fixed points is hyperbolic if the tangent
bundle restrited to 4 decomposes as the Witney sum of three D ¢,-invariant
subbundles T, M = E°@E*@E* where E° is the 1-dimensional subbundle tangent
to the flow and there are constants C, 1> 0 satisfying:

(i) |D¢,v|£Ce*|v| for veEs, t >0.
(i) |[D¢_,v|<Ce *|v| for veE", t>0.
A closed ¢-invariant subset A<M is a basic set for ¢, if
(a) A does not have fixed points and is hyperbolic.
(b) The periodic orbits in A are dense in A.
(c) ¢4 is transitive (there is a dense orbit).
(d) There is an open set U > A such that A= [} ¢,(U).

teR

From now on, fix an Axiom A basic set 4 <M of the vector field X e Z*(M)
(*=r,r+a, oo or some $>0) and let ¢p: M xR - M, ¢(p, t)=¢,(p) be its flow.
We will always consider spaces of maps Z*(M)cC*(M,TM), C*(A, M),
C*(4, TM), etc. as Banach manifolds by composition with local charts. Let
A, B be metric spaces. We say that a map f: A — B is a-Hélder continuous if

1] d(fx,fy)
K(f)_ Ifla d(f,li%la d(x, y)a <

If B is a Banach space and K = 4 is compact, we write

| flo=sup | f(x)|

xeK
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and C*(K, B) for the Banach space of a-Holder maps, with the o-Holder norm
I fl=1flo+|fl.- Endow C*(4, B) with the topology given by the Holder norm
on compact parts of 4.

Consider the space

Ci(A, M):= {ueX"‘(A, M)|Du(p)= :ld_t u(¢(p, 1))l = o exists and is cx-H(’ilder},

with the topology of the a-Holder norm [ul| + | Dy ull.

1.1. Proposition [structural stability] (a) There exist 0<B<1 and a neighbour-
hood U < X" (M) of X and C"~' maps U — C4(A, M): Yisuy and % - Cf(A,[4,
+oo[): Y yy such that Youy=yyD u.

(b) Moreover, the maps U — Cy(4, M): Y%y and U —C%4, [&, +ol):
Yo py are C'.

Case (a) has been proved in [9]. Case (b) has been proved in [8] for r=1.
That proof can be immediately generalized to an arbitrary positive integer 7.

Note that for Y near X, the topological equivalence uy is uniquely determined
by uy(p)eexp(Ex (p)@ E% (p)), Youy=7Dguy and uy near the identity.

1.2. Corollary. For Ye% consider the map ty: A—-IR™ defined by Y (uy(¢_,p),
ty(p)) =uy(p), where  is the flow of Y. Then ’

1

y(p)= | (¢, s—1)ds

o

and the map U — C*(4,R"): Yoty is C".

2 Stability of the splitting

Let G be the Grassmann bundle of u—planes on TM, u=dim E}, ie. the set
of pairs (p, E) with peM and EcT,M a u-dimensional subspace. G has a natural
structure of compact differentiable manifold where a parametrization around
a subspace (p, E)eG is UxL(E, EY)—G, (x,L)}—>D.h (graph L), where
h:UcR"— M is a parametrization of a neighbourhood of p and we identify
E~(D,h)"'E. For YeZ" (M) near X, consider the topological equivalence uy
of Proposition 1.1 and its splitting TM|,, 4= EY® EYy®Ey.

2.1. Proposition. There exists a neighbourhood % of X in & "(M) and B>0 such
that the map U — C*(A, G): Y (pr> E%ouy(p)) is C"~* and the map U — C°(4, G):
Y Ebouy is C'™ 1.

Proof. Consider the product bundle n: TM®G M of triples (p,v, E) with

veT,M, EcT,M. Then TM @G is naturally a compact 2n+ u(n—u) manifold.
For Y near X let 7,€C#(4,IR™) be as in (1.2). Let C4(4, G) be the space of

B-Holder maps o:4 -G, 6(p)=(h(p), E(p)) where D, h(p):=% h(¢(p, 1)) is
t=0
B-Holder, with the topology of the f-Holder norm on h, D,h and E. Consider
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the map H: Z"(M)x C3(4,R*)x Ci(A, G) > C:(A, TM®G), H(Y,y,s)=(Yoh

—yDyh, DY (h(¢_1p), Tv(p)E(¢_,p)) where D, y(q, S)=%(q, s), ge M. Con-

sider oeC}(4, G) satisfying the equation H(Y,y, 0)=(0,0) and ¢ near o,(p)
=(p, EX(p))- Then it is easy to see that h=u, and F(q):= E-uy '(g) is an invariant
u-subbundle for Y on uy(A4) near E%. So that g F(q) should be the unstable
subbundle for Y. We need to see the second component H, of H in its local
form in order to apply the implicit function theorem.

We can extend the splitting TM|,=ES@®EY®E% to a C’-splitting
E°@®E*®E" (y as in (1.1)) of a neighbourhood U of A. In local coordinates,
a subspace EcT,M, En(E°@E®)=0 is seen as a linear map L: E*(q)
—E°(q)®E*(q). The local expression for H, is

(1) H,(Y, o)(p)=[C(Y, typ,hp_p)+D(Y,7yp,hd_, p)L(¢ -, p)]
‘LAY, typ,h¢_,p)+B(Y, typ.h¢_ p)L(d_,p)]~*
where

Doy (g 0)="17 A(Y,7,q9) B(Yr, q)]

2q ("”)=[C(xr,q) D(Y,z, q)

in the splitting E*@(E°@E’), for YeZ"(M) near X, teR and qeU. We can
replace C4(4,G) by Ch(A, #) where & is the bundle of linear maps
L(E*, E°®E’). Let F(Y,y,0)=H(Y,y,0)—(0,0). The formula (1) is analytic on
L,C""? on h and C"? on Y by (1.2). So that for a suitable f<y, F is C"~2.
We need to check that D,3;F(X,1,E%)=D,;H,®(D,;H,—1d) is invertible.
From (1.1) we already know that D, H, is invertible. Since we have chosen
maps on the bundle £ — M, the inverse D,;F(X, 1, E%) should have the form
(D23H,)"'®(D3H,—1d)™ . It is a standart fact (see [21]) that Dy H, (X, 1, E%)
is a contraction onto C°(A, %). We leave to the reader the proof that,
since in (1) only h and L are not Lipschitz, we can choose a>0 in the de-
finition of Hélder norm such that DyH,(X,1,E%) is a contraction onto
C4,%). 0O

3 Symbolic dynamics
For A=[A(i,})]€{0,1}"*" an n x n matrix of 0’s and 1’s we define

=X p={X=(x)22 ,€e{l, ..., n}*| A(x;, x; 4 1) =1 VieZ)}
E+ =2:== {f=(xi ,+=°8€{1, ceey n}ZIA(X,', xi+1)=1 ViEN}

and ¢: 2« by o(X)=(y);-2 , where y;=x;,,. Similarly we define ,: Z* <.
Endow X (resp. ") with the metric d(%, j)=b" where 0<b<1, N =max {m|x,
=k, V| k| <m}. Then X (resp. ¥ *) is compact and ¢ becomes a homeomorphism
which is called a subshift of finite type if 6: £« (resp. g, : Z* <) is topologically
transitive (i.e., for U, V non-empty open sets there is an n>0 with f"U N V).
For 7: X a positive continuous function consider the quotient space
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S(Z,1):=2 x [0, +oo[/= where (x, > r(a"x))z(a"“x, 0), for any neN. Then
k=0

S(Z, 1) is a compact metric space and the flow f*(x, s)=(x,s+1t) on Z xR induces

a flow f* on S(Z, 1) called the suspension of o at time t.

3.1 Lemma [3, 5] There exists a topologically mixing subshift of finite type
6: X%, a positive 1eC*(4,R"), for some a>0, and a continuous surjection
n: S(Z,7) - A such that

S(Z,71)—L 5 8(2,7)

A———¢5———>/1

conmutes.

4 Entropy and equilibrium states

Let X be a compact metric space and f': X =X be a flow (teR) or iterates
of a homeomorphism g=f!(teZ), and let ¢: X >R be a continuous function.
For given ¢>0 and T>0 (resp. TeN), a subset Ec X is called (n, ¢)-separated
if
x, yeE, x+y=-d(f'x,f'y)>¢ forsome te[0, T].
One defines the topological pressure of ¢, P(F, @), F =( 1 (resp. P(g, ) by

P(F, @)= lim lim sup % log(sup{ Y. exp Sy (x)|Eis(T, ¢g)—separated})

g0 T— oo xeE

T T
where S;p(x)= | o(f'x)dt (resp. Sre(x)= Y, w(g”x)). The topological entropy
0

n=0
is defined to be the pressure of ¢ =0. Let . (g) be the set of g-invariant Borel
probability measures, for flows .# E)=\) A )F=(f Y). For a definition of

teR
metric entropy h,(g) and the variational principle

P(g, ¢)= sup (h(g)+[odp)

peMig)
see [23]. An equilibrium state for ¢ with respect to g is a pe.# (g) which realizes
this supremum. If one lets ¢!(x):= jl @(f*x)dt, then it is easy to see that
P(F,p)=P(f*, ¢') and that for ,ue,/l?F), (@' dpu. Since M (F)c A (") one has
h(fO+fodu=h () +[e'dusP(f',e)=P(F.¢)
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for e # (F). For ve # (") let u be defined by [y dp=[y'dv for  measurable,
then pe.# (F) and ([6, p. 359-360]):

h(fY+fe' duzh,(f)+ o dy.
It follows that
P(F,p)= sup (h,(f")+[edp).

re M(F)

An equilibrium state for ¢ (with respect to F) is a ue.# (F) which realizes
this supremum. For ve.#(s) and m the Lebesgue measure on R, vxm gives
measure 0 to the identifications (x,7(x))=(c(x),0) on Y={(x,t)eZ x
R[0<t<7(x)} so that u,=(vxm(Y))"'vxm|Y induces a probability measure
on S(Z, 7). One can check that if ve.# (o) then u,e.# (F) for F=(f") the suspen-
sion flow and that .#(c)— .#(F): v—p, is a bijection. It is known [4] that
any @€ C*(Z, R) has a unique equilibrium state w.r.t. ¢ for any a> 0.

4.1 Lemma [Bowen, Franco-Sanchez] Let ¢: S(Z,7)—> R be continuous, ¢(x)
7(x)

= | o(x,t)dt and p=P(F, ¢). Assume that $C*(Z,R) for some >0 then
0

(a) There exists a unique equilibrium state y €. (F) for ¢ w.r.t. F.

(b) u,=mp,, where v is the unique equilibrium state for ¢ —pr.

(¢) P(a,p—p1)=0.

Proof. Let y=¢ —pr. Since ¢, peC*(Z,R) for some >0, we have yeC(2, R)
so that y has a unique equilibrium state v,. By Fubini’s theorem, for any ve.# (z),

(vxm)(Y)=[rdv and j(pduv:i‘fﬂ

fedv’ A theorem of Abramov [1] states that

Hence
p=P(F,9)= sup (h,(f")+[¢d,)

e M (F)
(h,(1)+ | pdv)
= Su T S E—
veml?r) deV

because vy, is a bijection. Thus P(g, y)=sup(h,(6)+ [(¢—p1)dv)=0 with v

attaining the supremum (v=v,) precisely if y, is the unique equilibrium state
forp. O

By considering the conjugacy n of Lemma 3.1 we obtain equilibrium states
for Axiom A basic sets ¢,: 4 <.

4.2. Corollary For ¢,:A« a basic set and p:A—R Hélder continuous, ¢ has
a unique equilibrium state w.r.t. ¢, and p,(A)=n*w(A)=w(n ' A) where w is
the equilibrium state for pom on S(Z, 1) w.r.t. F=(f7).
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For yeC*Z*,R) we now introduce the Perron-Frobenius operator
£, C°C, R)«.
(Zyo))= ), o) exp(yY(y)-

g+ (y)=x

Say that ,peC°(Z,R) (resp. C°(Z*,R)) are homologous if there exists
ueC°(Z,R) such that y=¢@—u+uco. It this case p is an equilibrium state
for y if and only if it is an equilibrium state for ¢.

4.3. Theorem (Ruelle [20] see also [4]) If yeC*(Z * R), 0<a =1, the spectrum
of £,:C*2 * R)« consists in a simple isolated eigenvalue A(y)>0 and a set
contained in a disc{zeC||z| <p < A())}. The pressure is P(o ., ) =log A(). More-
over, there exists a strictly positive eigenfunction h,eC*(Z *,R) uniquely deter-
mined up to a scalar multiple and a unique Borel probability v, on Zt satisfying

(b) [hydvy=1
(c) Lyvy=A)vy

(d) py=hyv, is o -invariant and is the unique equilibrium state for y W.r.t. ¢ .
(€) wy =4y, if and only if Y is homologous to Y, .
(f) Forall peC°(Z*,R): lim |A(Y) "Ly o —h,[edv,lo=0.
n—>+ o
The following is just a reformulation of (f) for p=1.
4.4. Corollary. If yeC*(Z*,R), 0<a =1, then
.1
lim —log }, exp(S,¥)(y)

no ko ot y)=x

n—1
uniformly on xeZ*, where (S, ¥)(¥)= Y. ¥(c% ).
k=0
4.5. Corollary. If Yy eC°(Z*,R) the limit

lim Llog Y exp(S,¥)()

n— + o (M =x
exists for all xeZ* and is independent of x.

Proof. Define &,:C°(Z*,R)« by cD,,(n//)(x)=—1n—log Y exp(S,¥)(y). Then

aty=x

L (5,0)0) exp(S,9) ()
@WNAN= 2 TS (S, 00)

ony=Xx

. Hence [(@,(y)@)x)=lplo for all

oRy=Xx

xeX™*. So that
[P, (Wlo=1

for all n. Then the sequence of maps @,: C°(Z¥,R)« is uniformly Lipschitz
and is pointwise convergent (by 4.4) in the dense subset C*(Z*,R)=C°(Z,R).
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Therefore the sequence @, converges uniformly on compact subsets of C°(Z*,IR)
to a continuous map @: C°(Z*,R)«. Since ¢())eC°(Z*,R), 0<a <1, then,
by the density of C*(£*,R) in C°(Z*,R) and the continuity of @ in C°(Z*,R),
it follows that @(}) is a constant function for each yeC°(Z*, R). O

Using (4.5), for yeC°(Z*, R) define

P()= lim log T exp(S, 0.

cly=x
4.6. Corollary. For all 0<a <1 the maps

P.C*C*,R)»R

C*(Z*, R)ay - v, e C*(Z*, R)*
C*(Z*,R)ay > h,eC*(Z*,R)

C* (2, R)>Y - uy=h,v,eC*(Z*, R)*

are real analytic.

Proof. For a given y,eC*(Z*,R) take disjoint circles y, and y, centered at
A(Yo) and 0 such that their interiors are disjoint and contain Sp(%,,). Denote
by S the space of continuous linear maps L: C*(X*, C)« endowed with the
norm topology. Let V be a neighbourhood of %, in S such that
Sp(L)<int(y,)wint(y,) for all LeV. Given LeV define the spectral projection
m(L): C*(Z*,C)«i=1,2by

7;(L):= ((L—zD™'dz

Y1

1
2ni
and let E;(L):=n;(L)(C*(Z™, @)). It is well known that [7, 3.3]

CHZ", ©)=E,(L)®E,(L)
I=m(L)+m,(L)
dimE,(L)=1
m;(L) is a projection and a complex analytic function of L
E;(L)is L-invariant.

We can normalize h,,, such that h, ==,(%,,)-1. Take v*eC*(Z", C)* such
that {v*, h,, > +0 and define for Le V

* Lh
h(L)=n,(L)-1, “’“):%%'

The map h: V- C*(2™*,C) is analytic. The denominator of A(L) is different
from zero if V' is taken small enough. Then the map A: V— C is analytic. Define
vV CHZY, O)* by

n, (L)g

n (L)1°

(D), 9> =
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The function V x C*(Z*, ©)3(L, p)—~<v(L), >eC is analytic. Since E, (L)
is 1-dimensional and L-invariant Lh(L)=Ah(L) for some A€, using the defini-
tion of 1(L) we see that

Lh(L)=2(L) h(L).
For LeV consider the adjoint map I*: C*(Z*, €C)«

ny (L)L _Lrmy(L)e _ Ty
(L)1~ w (D)1 =AL) T

Le
D1 =A(L)<v(L), @)

CEv(L), @) =<v(L), Loy = )

for any peC*(Z*, €). Hence

*v(L)=A(L)v(L)
and h(Zy)=h,, v(Z,)=v,, log L(y)=P(y) are real analytic functions of y for
Y real. [

Now we return frow X% to Z. Say that yeC*(Z*,R) is “homologous”’ to
@eC*(Z,R) if  is homologous to ¢, where W ((x,);=2 ) =¥ ((x,);-%).

4.7. Lemma. There exists a continuous linear map A: C*(Z,R) - C*(Z*,R), f=
/2, such that A(Y) is “homologous” to Y. In particular A*: C*(Z* R)* —»
C*(Z,R)*, (A* u)(p) = n(A @) is a continuous linear map.

The proof appears in p. 11 of [4].
4.38. Corollary. For any 0<a <1 the maps
the pressure P:C*(Z,R)—» R
C*(Z,R)ay— p,eC*(Z,R)*
the entropy C*(2,R)a¢—h(u,)=PW)—[ydp,eR*
are analytic, where 1, is the equilibrium state of Y w.r.t. ¢

Proof. Use the conmutative diagram

ce (Z, ]R) equilibrium state C“(Z, ]R)*

Al jm

Cﬂ(2+, lR) equilibrium state Cﬂ (Z+, ]R)*

for f=a/2. [
Here we reproduce the arguments of [15] in order to gain one more degree
of differentiability by considering P: C°(Z*,IR) > R, except for the use of Man-

. . . dP
ning’s curve [14] in order to realize —-.

dy
49. Corollary. For all 0<a<l1, v, is a weakly continuous function of
VveC*(Z*,R)ie.
lim [pdv, =[edv,

n— + oo
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for every convergent sequence Y, — 1 in C*(Z*,R) and all peC°(Z™*, R).

Proof. Let y,—> ¢ be a convergent sequence in C*(Z*,IR) and suppose that
vy, doesn’t converge weakly to v,. Then we can assume that v, converges
weakly to a probalitity v+v,, , and

Ly v="Lir:1Uo Ly vy = nlit-{lco AW vy, =AW)v.

Hence, ve C°(Z*,R)* =« C*(Z*,R)* is an eigenvector of £} : C*(Z*, R)* « asso-
ciated to the simple eigenvalue A(y) of £%. So that v=nv, for some nelR,
but since v and v, are probabilities v= vy O

4.10. Corollary. If 0<oa<1 and YyeC*ZE*,R), then the derivative P'({):
C*(Z*,R)> R is given by

Po=[edy,.

Proof. For seR consider the inequality given by the variational principle

S)=PW+sp)Zh(uy)+ ¥ dp,+sfodu,=2g(s).

Then f(s) is an analytic curve which lies above the straight line g(s) and only
touches it at s=0, hence P'(\)p=f"(0)=g'(0)=[pdy,. O

4.11. Proposition [Maiié] Let N be a Banach manifold and let ®: N - C*(Z*,IR),
0<a<l, be a C* map, k=1, such that &: N - C°(X*,R) is C**'. Then P-@:
N-oRis CkHE,

The proof of this requires two lemmas. For metric spaces K, K, we say
that a map f: K, — K, is compact if it maps bounded sets onto relatively compact
sets. One can see that if a sequence of compact maps f,: K, = K, converges
to a map f: K; - K, uniformly on bounded sets, then f is compact.

4.12. Lemma. Let E,, E, be Banach spaces and U< E, an open set. If f: U —>E,
is a C* compact map, then for all xeU, the derivatives fP(x): E; x . xE, —»E,
are compact for all 1 <iZk.

Proof. Given xe U let B be the unit ball centered at 0 and define mas f,: B—E,
by

ﬁ,(u):n(f (x+%v)—f(x)).

Then the sequence f, converges uniformly to f’(x)|. Since each map f, is
compact, it follows that f'(x) is compact. Now suppose that we have proved
that f¥(x) is compact for 1 <i<n. Define maps f,: — E, by

fn(v)=n"‘(f (x+% v)— f(x)—'flil l, fO(x) (% v, L. -:; v))

:=1l

Then the sequence f, converges uniformly to the map Bavi—f™(x)(v, ..., v)€E,.
Hence this map is compact. Since using the symmetry of the m-linear map
f™(x) it is possible to write f™(x)(vy, ..., ?,) as a linear combination of the
vectors f™(x)(v;, ..., v;), 1 Li<m, it follows that £ (x) is compact. []
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4.13. Lemma. Let E,, E,, E, be Banach spaces, U c E, an open set and suppose
that f: U>E,,L: E; > E, and P: E, >R are maps satisfying

(@) L is linear and compact.

() fis C* k=0

() Lofis Ck*1

(d) PoLis C**!

() There exists a function T that to each xeE, associates a continuous linear
map T(x): E, - R satisfying

1) (PoL)Y(x)=T(x)L
for all xeE,, and
2) _1'11+n T(x,)v="T(lim x,)v

for every convergent sequence {x,} = E, and all veE.
Then PoLofis C**1,

Proof. Clearly PoLof is C* because PoL is C* and f is C*. Suppose that k= 1.
The derivative (Po Lof)®(x) can be written as the sum of

©) (PoLY (f(x)-f®(x)

and a linear combination of compositions of derivatives (PoL)? and f% with
1<i<k and 1<j<k. Hence all these terms are C', because f is C* and PoL
is C¥*'. This means that in order to prove that f is C**' we have only to
prove that (3) is C'. Observe that

(PoL)(fx+1w)-f©(x+tw)—(PoL) (fx) ¥ (x)
=(PoL) (f(x+tw)—(PoL) (fx)fP(x+tw)
+(PoL) (fx)(f P (x+1tw)— ¥ (x).

Since PoL is C? by (d) and the assumption k> 1, it follows that
lim %((P oL) (f (x+tw)—(PoL) (fx) f P (x+tw)=((Po L)' (fX)(f' (x)-w)) [P (x).

Moreover, by (1):
(PoLY (fx)(f® (e +tw)— fP(x) = T(fX)(LS) (x+tw)—(Lf)P(x)).

Hence, since Lf is C¥*1,
lim L T(7)- (L) e+ 00— (L) = T (L) w).

Thus
y_{% % ((P-L)(f(x+ tw))f(k)(x +tw) —(POL)'(fx)f(k)(x)
=(PoL)" (F)U(5) W) f )+ TR D0 w.
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Therefore, if we prove that this (k+ 1)-linear map is a continuous function of
x, it will follow that (2) is C! and then that PoLof is C**!. Since PoL is
C? and f is C* it follows that the first term of the sum depends continuously
on x. To prove the continuity of T(fx)(Lf)** ! (x) first observe that if x, — x
and ScE, is a relatively compact set then, by (2), T(x,)|s converges uniformly
to T(x)|s- Moreover, Lf is compact because L is compact and then, by the
previous lemma, (Lf)** ! (y) is compact for all yeE,. Let B be the unit ball
of Ey x k+1 x E. Define

=LN* P)BU() (LAH*V(x,) B).

nz1

This set is relatively compact because every sequence {u,} =S either has a sub-
sequence contained in some (Lf)®(p)B, pe{x, x,, ...} (and then, since this set
is relatively compact, has a convergent subsequence) or has a subsequence that
can be written as

=(Lf)*" V(X)) Om,

with ©,, €B and m;— +oc0 when j— +co0. But now, by the compacity of
(Lf )"‘“’(x) we can assume that the sequence (Lf) "‘“’(x)@ ,»J=1, converges
to a point yeE, and then it is easy to prove that (Lf)** D(x,, )Om, converges
to y. This concludes the proof of the relative compacity of S and then T(x)|s
converges uniformly to T(x)|s. Since (Lf)**V(x)B<S and (Lf)**V(x,)B<S
for all n=1, it follows that T(x,)(Lf)**"(x,)|z converges to T(x)(Lf)"‘“’(x)l
uniformly. This completes the proof of the lemma when k=1. The case k=0
is handled by similar methods. []

Proof of (4.11) We apply Lemma 4.13 to an open set U < N, the Banach spaces
E,=C*Z2*,R)and E,=C°Z*,R), the C* map &: U —» C*(Z*, R), the compact
linear map i: C*(Z*,R)— C°(Z*,IR) given by the inclusion and the function
P: C°>*,IR) > R. Hypothesis (a), (b) and (c) are obviously satisfied. Hypothesis
(d) is satisfied because we proved (4.6) that P: C*(Z*,IR) - IR is real analytic.
To check (2) associate, to each YyeC*(X™*,R), the functional T(¥)eC°(Z*,R)*
given by T(w)(pzj(pd,uwzj(ph,,,dv,,,. Then, by (4.10), (P-i) (Y)¢ =T (¥)¢, thus
proving property (1) of hypothesis (e). Property (2) follows from the fact that
v, is, by (4.9), a weakly continuous function of yeC*(Z*,R) and h,, is a continu-
ous (in fact real analytic) function of by (4.6). Then (4.13) can be applied
and proves that Poicgp=Po¢ is C**1. []

5 Proofs of the theorems
5.1. Lemma. There exists a>0, a subshift of finite type X, a neighbourhood

U<Z"(M) of X and C"~! maps . U— C*(Z,R), k: % - C*(X, M) such that
T:U - C°Z,R), k: U - C°(Z, M) are C" and for Yeu

S(Z,1y) —L— (2, 1y)

L

A(Y) ¥ A(Y)

Kl
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conmutes. Where Yy is the flow of Y, ky(x, )=y (ky(x), 1) for xeZ, 0=t<1y(x)
and A(Y)= () yy(U,1) is the corresponding basic set for YeU where U is a
teR

small neighbourhood of A.

Proof. Take X, @, v as in Lemma 3.1 and uy, yy as in Proposition 1.1. Let
ky(x):=uyom(x) and

T(nXx)

()= | yy(d(nx,s) 'ds
0

where ¢(x,t) is the flow of X. Then 7y is the solution of Y y(uy(mx), Ty(nx))
=uy(@(nx, 1x(nx))), xe X, with 1y =1. From this the lemma follows easily. [J

5.2. Proof of theorems. Let % be as in Lemma 5.1. For Ye%, let ¢,eC*(Z,R)
ty(x)

be ¢y(x):== [ Y(Y)oky(x,s)ds. Then the map #s+>@yeC?(Z,R) is C°. The
4]

pressure Py(Y(Y))=:py is given by P(¢y—pyty)=0 where P is the pressure on
(Z,0). By Proposition 4.11, the function G: # x R - IR, G(Y,s):=P(¢y—pyTy)

is C°. By the same argument as in Corollary 4.10 we have %—(:(X, Px)=

— [ 1xdvy <0, where vy is the equilibrium state of —p,1y on (2, ¢) for Ye®.
X

So that the invertibility condition holds and the implicit function can be applied.

By Lemma 4.1(b) the equilibrium state uy for y(Y) on (A(Y),Y) is given
by

#y(<p)=ﬁ%;, for peC°(M,R)

Ty (x)

where  ¢(x)= [ @(ky(x,5)ds, xeX. Thus by Corollary 4.8,
0

Y uye(C*(M,R))* is C°~ . The differentiability of the metric entropy can be
seen using the variational principle h,= P (y)— j Y du. This completes the proof
of Theorem C.

In order to prove Theorem B, take # as in (2.1). For Ye% consider the

function ¢%: 2 - R,
@y (x)==—log|det D, ¢y (uyoky(x), Ty )| g oy oky ()]

where ty: Z - 1R is as in (5.1) and ¢y is the flow of Y. Then by (2.1) and (4.1),
the map Y ¢yeC*(Z,R) is C"2 for a suitable a>0 and Y @%eC*Z,R)
is C"~'. An obviuous adaptation of the arguments above conclude the proof
of Theorem B. []
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