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Abstract

The thesis tackles the problem of structural design through topology op-
timization methods. The main contributions are the following. Firstly, a
numerical benchmark is proposed considering the similarities of tests in the
related literature, every test of the benchmark is well-established and used
to compare the numerical and visual performance of the methods. Then,
an analysis of the local optimization method Solid Isotropic Material with
Penalization is carried out, in order to introduce two modifications: 1) to
reduce the computational cost in problems of stiffness maximization, and
2) to minimize the volume of the structures. Finally, a novel technique to
reduce the dimension of the problem through a proposal of a structure rep-
resentation is introduced. This representation is well suited for mono and
multi objective evolutionary algorithms in order to maximize stiffness and
minimize volume. All the algorithms take advantages of parallel computing
to distribute the computational cost implied in the evaluation of solutions.

i





To Andrea.
To my parents Dolores and Martin.

To my siblings Diana, Jessica and Daniel.
And to my nephew Daniel.

iii





Thanks

To Andrea and my family for your unconditional love and support during
this step of my live.

To my directors Ivvan Valdez and Salvador Botello for your guidance,
help and support. To Jordi Pons-Prats for your help during my stay in
Barcelona.

To the CIMAT institution and community, especially to my colleagues
and friends.

To CONACYT for the economic support during my Master formation and
my stay in Barcelona.

v





Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Motivation and justification . . . . . . . . . . . . . . . . . . 1

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical framework 7

2.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Local and global optimization . . . . . . . . . . . . . 8

2.1.2 Deterministic and stochastic optimization . . . . . . 9

2.2 Finite element method . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Linear elastic problem . . . . . . . . . . . . . . . . . 18

2.2.2 FEMT library . . . . . . . . . . . . . . . . . . . . . 23

2.3 Topology optimization . . . . . . . . . . . . . . . . . . . . . 24

2.4 Parallel computing . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Shared memory parallelization scheme . . . . . . . . 27

2.4.2 Distributed memory work scheme . . . . . . . . . . . 28

3 Thesis scope 31

3.1 Proposal of a numerical benchmark for topology optimiza-
tion methods . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Solving local and global topology optimization problems for
compliance and volume models . . . . . . . . . . . . . . . . 31

3.2.1 Compliance minimization with a volume constraint . 32

vii



3.2.2 Volume minimization with a stress constraint . . . . 33
3.2.3 Proposed solution for optimization models . . . . . . 34

4 Proposal of a numerical benchmark for topology optimiza-
tion 37
4.1 Methodology for selecting the benchmark problems . . . . . 39
4.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Proposed benchmark problems . . . . . . . . . . . . . . . . 46

4.3.1 Load magnitudes and properties of the material . . . 47
4.3.2 Domains, dimensions and boundary conditions . . . 48
4.3.3 Meshes . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 SIMP method: analysis and proposal of modifications 59
5.1 Analysis of the SIMP method . . . . . . . . . . . . . . . . . 59

5.1.1 Derivation of the variable update step . . . . . . . . 60
5.1.2 Heuristic Approach . . . . . . . . . . . . . . . . . . . 63
5.1.3 General structure for SIMP . . . . . . . . . . . . . . 66

5.2 SIMP with stress constraint: SIMP-SC . . . . . . . . . . . . 67
5.2.1 Convergence criteria . . . . . . . . . . . . . . . . . . 68

6 Evolutionary algorithms for topology optimization prob-
lems 75
6.1 Representation based on control points . . . . . . . . . . . . 76
6.2 Parallel evaluation . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Mono-objective algorithms: solving compliance problems . . 82

6.3.1 Volume constraint . . . . . . . . . . . . . . . . . . . 82
6.3.2 Mono-objective implementations details . . . . . . . 87

6.4 Multi-objective algorithms: solving compliance and volume
problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.1 Multi-objective implementations details . . . . . . . 90

7 Results 93
7.1 Cantilever with a Load at Center (CLC) . . . . . . . . . . . 95

7.1.1 Results for volume minimization methods . . . . . . 95
7.1.2 Results for compliance minimization methods . . . . 97

7.2 Cantilever with a Load at Bottom(CLB) . . . . . . . . . . . 102
7.2.1 Results for volume minimization methods . . . . . . 102



7.2.2 Results for compliance minimization methods . . . . 104

7.3 Cantilever with a Load at Top (CLT) . . . . . . . . . . . . 109

7.3.1 Results for volume minimization methods . . . . . . 109

7.3.2 Results for compliance minimization methods . . . . 111

7.4 Short Cantilever with a Load at Center(SCLC) . . . . . . . 116

7.4.1 Results for volume minimization methods . . . . . . 116

7.4.2 Results for compliance minimization methods . . . . 117

7.5 Short Cantilever with a Load at Bottom(SCLB) . . . . . . 122

7.5.1 Results for volume minimization methods . . . . . . 122

7.5.2 Results for compliance minimization methods . . . . 123

7.6 Short Cantilever with a Load at Top(SCLT) . . . . . . . . . 128

7.6.1 Results for volume minimization methods . . . . . . 128

7.6.2 Results for compliance minimization methods . . . . 129

7.7 LShape with a Load at Center(LLC) . . . . . . . . . . . . . 134

7.7.1 Results for volume minimization methods . . . . . . 134

7.7.2 Results for compliance minimization methods . . . . 135

7.8 LShape with a Load at Top(LLT) . . . . . . . . . . . . . . . 141

7.8.1 Results for volume minimization methods . . . . . . 141

7.8.2 Results for compliance minimization methods . . . . 142

7.9 One Load Michell(OLM) . . . . . . . . . . . . . . . . . . . . 147

7.9.1 Results for volume minimization methods . . . . . . 147

7.9.2 Results for compliance minimization methods . . . . 148

7.10 Two Equal Loads Michell(TELM) . . . . . . . . . . . . . . 154

7.10.1 Results for volume minimization methods . . . . . . 154

7.10.2 Results for compliance minimization methods . . . . 155

7.11 Two Different Loads Michell(TDLM) . . . . . . . . . . . . . 160

7.11.1 Results for volume minimization methods . . . . . . 160

7.11.2 Results for compliance minimization methods . . . . 161

7.12 MBBB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.12.1 Results for volume minimization methods . . . . . . 166

7.12.2 Results for compliance minimization methods . . . . 168

7.13 Two Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.13.1 Results for volume minimization methods . . . . . . 175

7.13.2 Results for compliance minimization methods . . . . 177

7.14 Results summary . . . . . . . . . . . . . . . . . . . . . . . . 181



8 Conclusions and future work 185
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.1.1 About the SIMP and SIMP-based methods . . . . . 185
8.1.2 About evolutionary algorithms . . . . . . . . . . . . 186

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Bibliography 189



List of Tables

4.1 Statistics from topology optimization literature. . . . . . . . 41
4.2 Statistics from topology optimization literature . . . . . . . 42
4.3 Statistics from topology optimization literature . . . . . . . 43
4.4 Statistics from topology optimization literature . . . . . . . 44
4.5 Statistics from topology optimization literature . . . . . . . 45
4.6 Statistics from topology optimization literature . . . . . . . 46
4.7 Loads values for tests . . . . . . . . . . . . . . . . . . . . . 47

5.1 Results of convergence tests for CFP, CSF, and CSV . . . . 73

7.1 Parameters for global optimization methods . . . . . . . . 94
7.2 CLC execution data . . . . . . . . . . . . . . . . . . . . . . 101
7.3 CLB execution data . . . . . . . . . . . . . . . . . . . . . . 108
7.4 CLT execution data . . . . . . . . . . . . . . . . . . . . . . 115
7.5 SCLC execution data . . . . . . . . . . . . . . . . . . . . . 121
7.6 SCLB execution data . . . . . . . . . . . . . . . . . . . . . 127
7.7 SCLT execution data . . . . . . . . . . . . . . . . . . . . . 133
7.8 LLC execution data . . . . . . . . . . . . . . . . . . . . . . 140
7.9 LLT execution data . . . . . . . . . . . . . . . . . . . . . . 146
7.10 OLM execution data . . . . . . . . . . . . . . . . . . . . . . 152
7.11 TELM execution data . . . . . . . . . . . . . . . . . . . . . 159
7.12 TDLM execution data . . . . . . . . . . . . . . . . . . . . . 165
7.13 MBBB execution data . . . . . . . . . . . . . . . . . . . . . 174
7.14 Two Bars execution data . . . . . . . . . . . . . . . . . . . 181
7.15 Numerical comparative of SIMP and SIMP-SVC . . . . . . 182

xi





List of Figures

1.1 Example of structural optimization . . . . . . . . . . . . . . 1

1.2 Topology optimization approach . . . . . . . . . . . . . . . 2

2.1 Examples of optimization models . . . . . . . . . . . . . . . 8

2.2 Examples of global and local optimization. . . . . . . . . . . 9

2.3 Graphical example of steps on evolutionary algorithm . . . 11

2.4 Graphical example of the evolution of solutions . . . . . . . 11

2.5 Example of population fitnesses on a multi-objective algo-
rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Multi Objective Fronts Example . . . . . . . . . . . . . . . 16

2.7 Multi Objective Crowding Distance . . . . . . . . . . . . . . 17

2.8 Stress and strain relation . . . . . . . . . . . . . . . . . . . 19

2.9 Example of geometry meshed. . . . . . . . . . . . . . . . . . 22

2.10 Resulting structure delivered by topology optimization method. 26

2.11 Serial and Paralell Computing . . . . . . . . . . . . . . . . . 27

2.12 Example of a multi-core architecture . . . . . . . . . . . . . 28

2.13 Example of a cluster architecture . . . . . . . . . . . . . . . 29

4.1 Cantilever tests. . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Short cantilever tests. . . . . . . . . . . . . . . . . . . . . . 50

4.3 LShape tests. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Michell tests. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 MBBB test . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Two Bars tests . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Cantilever mesh . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Short Cantilever mesh . . . . . . . . . . . . . . . . . . . . . 55

xiii



4.9 LShape mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.10 Michell mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.11 MBBB mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.12 Two Bars mesh . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Behavior of power penalization parameter . . . . . . . . . . 60
5.2 Behaviour of parameter η over Be . . . . . . . . . . . . . . . 64
5.3 SCLB compliance evolution . . . . . . . . . . . . . . . . . . 70
5.4 Evolution of Short Cantilever test . . . . . . . . . . . . . . . 71
5.5 LLT compliance evolution . . . . . . . . . . . . . . . . . . . 71
5.6 Evolution of LShape test . . . . . . . . . . . . . . . . . . . . 72
5.7 Convergences for criteria on both tests . . . . . . . . . . . . 73

6.1 Meshed design domain . . . . . . . . . . . . . . . . . . . . . 76
6.2 Control points example . . . . . . . . . . . . . . . . . . . . 77
6.3 Control points heights H . . . . . . . . . . . . . . . . . . . 77
6.4 Elemental neighbourhood example . . . . . . . . . . . . . . 78
6.5 Interpolation of elemental heights from control point heights 79
6.6 Thresholding of elemental heights to assign values to design

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.7 Calculating Times and Speed Up for test . . . . . . . . . . 82
6.8 Resulting structure after removing elements to fulfill the vol-

ume constraint . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.9 Marking zones with element reduction. . . . . . . . . . . . . 85
6.10 Control points gradients. . . . . . . . . . . . . . . . . . . . . 85
6.11 Generating structure with updated control points . . . . . . 87
6.12 Example of pareto front in topology optimization. . . . . . 90

7.1 CLC visual results with SIMP-SC . . . . . . . . . . . . . . . 95
7.2 CLC visual results with NSGA-SC . . . . . . . . . . . . . . 96
7.3 CLC: VM/YS elemental histogram . . . . . . . . . . . . . . 96
7.4 CLC visual results with SIMP-SVC . . . . . . . . . . . . . . 97
7.5 CLC visual results with SIMP . . . . . . . . . . . . . . . . . 98
7.6 CLC visual results with GA . . . . . . . . . . . . . . . . . . 98
7.7 CLC visual results with UMDA . . . . . . . . . . . . . . . . 99
7.8 CLC visual results with NSGA-VC . . . . . . . . . . . . . . 99
7.9 CLC: VM/YS elemental histogram . . . . . . . . . . . . . . 100



7.10 CLB visual results with SIMP-SC . . . . . . . . . . . . . . . 102

7.11 CLB visual results with NSGA-SC . . . . . . . . . . . . . . 103

7.12 CLB: VM/YS elemental histogram . . . . . . . . . . . . . . 103

7.13 CLB visual results with SIMP-SVC . . . . . . . . . . . . . . 104

7.14 CLB visual results with SIMP . . . . . . . . . . . . . . . . . 105

7.15 CLB visual results with GA . . . . . . . . . . . . . . . . . . 105

7.16 CLB visual results with UMDA . . . . . . . . . . . . . . . . 106

7.17 CLB visual results with NSGA-VC . . . . . . . . . . . . . . 106

7.18 CLB: VM/YS elemental histogram . . . . . . . . . . . . . . 107

7.19 CLT visual results with SIMP-SC . . . . . . . . . . . . . . . 109

7.20 CLT visual results with NSGA-SC . . . . . . . . . . . . . . 110

7.21 CLT: VM/YS elemental histogram . . . . . . . . . . . . . . 110

7.22 CLT visual results with SIMP-SVC . . . . . . . . . . . . . . 111

7.23 CLT visual results with SIMP . . . . . . . . . . . . . . . . . 112

7.24 CLT visual results with GA . . . . . . . . . . . . . . . . . . 112

7.25 CLT visual results with UMDA . . . . . . . . . . . . . . . . 113

7.26 CLT visual results with NSGA-VC . . . . . . . . . . . . . . 113

7.27 CLT: VM/YS elemental histogram . . . . . . . . . . . . . . 114

7.28 SCLC visual results with SIMP-SC . . . . . . . . . . . . . . 116

7.29 SCLC visual results with NSGA-SC . . . . . . . . . . . . . 116

7.30 SCLC: VM/YS elemental histogram . . . . . . . . . . . . . 117

7.31 SCLC visual results with SIMP-SVC . . . . . . . . . . . . . 118

7.32 SCLC visual results with SIMP . . . . . . . . . . . . . . . . 118

7.33 SCLC visual results with GA . . . . . . . . . . . . . . . . . 118

7.34 SCLC visual results with UMDA . . . . . . . . . . . . . . . 119

7.35 SCLC visual results with NSGA-VC . . . . . . . . . . . . . 119

7.36 SCLC: VM/YS elemental histogram . . . . . . . . . . . . . 120

7.37 SCLB visual results with SIMP-SC . . . . . . . . . . . . . . 122

7.38 SCLB visual results with NSGA-SC . . . . . . . . . . . . . 122

7.39 SCLB: VM/YS elemental histogram . . . . . . . . . . . . . 123

7.40 SCLB visual results with SIMP-SVC . . . . . . . . . . . . . 124

7.41 SCLB visual results with SIMP . . . . . . . . . . . . . . . . 124

7.42 SCLB visual results with GA . . . . . . . . . . . . . . . . . 124

7.43 SCLB visual results with UMDA . . . . . . . . . . . . . . . 125

7.44 SCLB visual results with NSGA-VC . . . . . . . . . . . . . 125

7.45 SCLB: VM/YS elemental histogram . . . . . . . . . . . . . 126



7.46 SCLT visual results with SIMP-SC . . . . . . . . . . . . . . 128

7.47 SCLT visual results with NSGA-SC . . . . . . . . . . . . . 128

7.48 SCLT: VM/YS elemental histogram . . . . . . . . . . . . . 129

7.49 SCLT visual results with SIMP-SVC . . . . . . . . . . . . . 130

7.50 SCLT visual results with SIMP . . . . . . . . . . . . . . . . 130

7.51 SCLT visual results with GA . . . . . . . . . . . . . . . . . 130

7.52 SCLT visual results with UMDA . . . . . . . . . . . . . . . 131

7.53 SCLT visual results with NSGA-VC . . . . . . . . . . . . . 131

7.54 SCLT: VM/YS elemental histogram . . . . . . . . . . . . . 132

7.55 LLC visual results with SIMP-SC . . . . . . . . . . . . . . . 134

7.56 LLC visual results with NSGA-SC . . . . . . . . . . . . . . 134

7.57 LLC: VM/YS elemental histogram . . . . . . . . . . . . . . 135

7.58 LLC visual results with SIMP-SVC . . . . . . . . . . . . . . 136

7.59 LLC visual results with SIMP . . . . . . . . . . . . . . . . . 136

7.60 LLC visual results with GA . . . . . . . . . . . . . . . . . . 137

7.61 LLC visual results with UMDA . . . . . . . . . . . . . . . . 137

7.62 LLC visual results with NSGA-VC . . . . . . . . . . . . . . 138

7.63 LLC: VM/YS elemental histogram . . . . . . . . . . . . . . 139

7.64 LLT visual results with SIMP-SC . . . . . . . . . . . . . . . 141

7.65 LLC visual results with NSGA-SC . . . . . . . . . . . . . . 141

7.66 LLT: VM/YS elemental histogram . . . . . . . . . . . . . . 142

7.67 LLT visual results with SIMP-SVC . . . . . . . . . . . . . . 143

7.68 LLT visual results with SIMP . . . . . . . . . . . . . . . . . 143

7.69 LLT visual results with GA . . . . . . . . . . . . . . . . . . 143

7.70 LLT visual results with UMDA . . . . . . . . . . . . . . . . 144

7.71 LLT visual results with NSGA-VC . . . . . . . . . . . . . . 144

7.72 LLT: VM/YS elemental histogram . . . . . . . . . . . . . . 145

7.73 OLM visual results with SIMP-SC . . . . . . . . . . . . . . 147

7.74 OLM visual results with NSGA-SC . . . . . . . . . . . . . . 147

7.75 OLM: VM/YS elemental histogram . . . . . . . . . . . . . . 148

7.76 OLM visual results with SIMP-SVC . . . . . . . . . . . . . 149

7.77 OLM visual results with SIMP . . . . . . . . . . . . . . . . 149

7.78 OLM visual results with GA . . . . . . . . . . . . . . . . . . 149

7.79 OLM visual results with UMDA . . . . . . . . . . . . . . . 150

7.80 OLM visual results with NSGA-VC . . . . . . . . . . . . . . 150

7.81 OLM: VM/YS elemental histogram . . . . . . . . . . . . . . 151



7.82 Hybrid algorithm results . . . . . . . . . . . . . . . . . . . . 153

7.83 TELM visual results with SIMP-SC . . . . . . . . . . . . . 154

7.84 TELM visual results with NSGA-SC . . . . . . . . . . . . . 154

7.85 TELM: VM/YS elemental histogram . . . . . . . . . . . . . 155

7.86 TELM visual results with SIMP-SVC . . . . . . . . . . . . 156

7.87 TELM visual results with SIMP . . . . . . . . . . . . . . . 156

7.88 TELM visual results with GA . . . . . . . . . . . . . . . . . 156

7.89 TELM visual results with UMDA . . . . . . . . . . . . . . . 157

7.90 TELM visual results with NSGA-VC . . . . . . . . . . . . . 157

7.91 TELM: VM/YS elemental histogram . . . . . . . . . . . . . 158

7.92 TDLM visual results with SIMP-SC . . . . . . . . . . . . . 160

7.93 TDLM visual results with NSGA-SC . . . . . . . . . . . . . 160

7.94 TDLM VM/YS elemental histogram . . . . . . . . . . . . . 161

7.95 TDLM visual results with SIMP-SVC . . . . . . . . . . . . 162

7.96 TDLM visual results with SIMP . . . . . . . . . . . . . . . 162

7.97 TDLM visual results with GA . . . . . . . . . . . . . . . . . 162

7.98 TDLM visual results with UMDA . . . . . . . . . . . . . . . 163

7.99 TDLM visual results with NSGA-VC . . . . . . . . . . . . . 163

7.100TDLM VM/YS elemental histogram . . . . . . . . . . . . . 164

7.101MBBB visual results with SIMP-SC . . . . . . . . . . . . . 166

7.102MBBB visual results with NSGA-SC . . . . . . . . . . . . . 167

7.103MBBB: VM/YS elemental histogram . . . . . . . . . . . . . 168

7.104MBBB visual results with SIMP-SVC . . . . . . . . . . . . 169

7.105MBBB visual results with SIMP . . . . . . . . . . . . . . . 169

7.106MBBB visual results with GA . . . . . . . . . . . . . . . . . 170

7.107MBBB visual results with UMDA . . . . . . . . . . . . . . . 171

7.108MBBB visual results with NSGA-VC . . . . . . . . . . . . . 172

7.109MBBB: VM/YS elemental histogram . . . . . . . . . . . . . 173

7.110Two Bars visual results with SIMP-SC . . . . . . . . . . . . 175

7.111Two bars visual results with NSGA-SC . . . . . . . . . . . 176

7.112Two bars: VM/YS elemental histogram . . . . . . . . . . . 176

7.113Two Bars visual results with SIMP-SVC . . . . . . . . . . . 177

7.114Two Bars visual results with SIMP . . . . . . . . . . . . . . 178

7.115TwoBars visual results with GA . . . . . . . . . . . . . . . 178

7.116TwoBars visual results with UMDA . . . . . . . . . . . . . 179

7.117Two bars visual results with NSGA-VC . . . . . . . . . . . 179



7.118Two bars: VM/YS elemental histogram . . . . . . . . . . . 180



Chapter 1

Introduction

1.1 Motivation and justification

Structural optimization is a process of mechanical design, its main objective
is to find an optimal structure, capable of fulfilling service conditions given
by 1) displacement conditions(regions where the structure is fixed) and
2) force conditions(regions where the structure is loaded). An example is
shown in figure 4.1, where two displacements conditions are located at the
bottom and the top on the left side respectively, and one force condition
is located at the bottom on the right side. Structural optimization has
represented advantages in fields as the mechanical and civil engineering,
due to optimization is oriented to generate benefits in the cost, safety and
functionality of the structures.

Figure 1.1: Example of structural optimization

1



2 CHAPTER 1. INTRODUCTION

One approach in structural optimization is topology optimization, which
process consists in distributing material over a design domain, assigning the
position and shape of the holes and structural elements that generate the
optimal design, an example is shown in figure 1.2. The two most common
manners to define the topology optimization problem are the compliance
minimization (which is directly related to the stiffness maximization of the
structure) and the volume minimization of the structure.

Figure 1.2: Topology optimization approach

Based on the above, the main objective of this work is to solve the
problem of optimal design through the following two perspectives:

• Structural functionality: related to the design of structures with max-
imum rigidity.

• Structural cost: related to the design of structures with minimal vol-
ume, and capable of fulfilling the service conditions with the minimum
material.

In order to solve these problems, it is necessary the use of optimiza-
tion algorithms. There are many algorithm categories to solve a topol-
ogy optimization problem, as homogenization methods[21], level set meth-
ods[9],phase field methods[24], heuristics[155] and meta-heuristics[16]. For
this work, a homogenization method: Solid Isotropic Material with Penal-
ization(SIMP), and meta-heuristics: Evolutionary Algorithms, are used.
SIMP is a computationally efficient local method that generates excellent
results in mechanical performance and, especially, in aesthetic. Evolution-
ary algorithms are global optimization methods, which have been success-
fully used to tackle a variety of optimal design problems, for this reason
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we consider that they have the potential for the solution of topology opti-
mization problems.

In this work, we establish a set of contributions for the SIMP and
evolutionary algorithms for topology optimization.

• SIMP: the first contribution is a convergence criterion that turns the
method considerably more efficient, through the reduction of iter-
ations, and generating structures with a similar performance than
the original criteria. The second contribution is a proposal for the
solution of both perspectives(functionality and cost).

• Evolutionary algorithms: the contribution is a proposal for the reduc-
tion of the problem dimension. A tractable dimension in the problem
makes feasible the use of mono and multi-objective evolutionary algo-
rithms for the solution of both perspectives(functionality and cost).

Another important contribution of this work is the establishment of
a benchmark set of problems for topology optimization. In an extensive
bibliographic review, we note that, despite authors use similar tests to
demonstrate the performance of their algorithms, there is not a set of well-
established problems. Tests differ, mainly, in domain sizes, position and
magnitudes of conditioned regions, properties of the material, and meshes.
For this reason, a set of 13 tests is established (according to the most
frequently used in literature) in order to generate fair comparisons between
algorithm implementations.

This document is structured as follows: chapter 1 introduces a motiva-
tion for this work, describing briefly the problem of topology optimization
and the importance of the use of these techniques in engineering. Then, it
briefly reviews the methods in the state of the art. Chapter 2 introduces the
theoretical framework, for contextualizing this work. This chapter presents
a review of some necessary concepts as general optimization, the finite el-
ement method, topology optimization and parallel computing. Chapter 3
contains the problem definition and the specific objectives. In this chapter,
the problems to solve are described in detail: 1) the benchmark establish-
ment and 2) the proposed solution for local and global topology optimiza-
tion, using different optimization models and algorithms. Chapter 4 con-
tains a detailed description of a well established benchmark, integrated by
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tests commonly used in specialized literature, with the purpose of applying
each algorithm to these tests, getting a real fair comparison between them.
Chapter 5 contains a description of the work related to local topology op-
timization. This chapter includes a detailed analysis of the SIMP method,
used for the solution of compliance problems, and a variant of this method
for the solution of volume problems. Chapter 6 contains a description of
the work related to global topology optimization. This chapter includes a
description of a proposed representation for structures, used to reduce the
problem dimension, and making it suitable for the use of evolutionary algo-
rithms. Also the implementation of mono and multi-objective evolutionary
algorithms for the solution of compliance and volume problems. Chapter
7 contains the results from every algorithm implementation. Results in-
clude material distribution, stresses and displacements behavior; efficiency,
objective functions, security factor and other interesting data. Chapter 8
contains observations and conclusions about the local and global optimiza-
tion algorithms implemented, as well as observations and conclusions about
the results obtained from each test. In addition, we propose directions for
future work.

1.2 State of the art

The topology optimization problem has been solved through different method-
ologies, they include from methods with a priori knowledge in the elastic
mechanic problem to meta-heuristics capable of solving optimization prob-
lems using only the objective function. The following is a categorization of
methods based on the way of tackling the topology optimization problem:

• Homogenization methods [21],[166],[69],[63],[62],[42]: this kind of meth-
ods is based on the idea that the volume and density of an element
can be varied by modifying the micro-structure of such element. A
macro parameter xe is assigned to each element, it can take values
between a range [xmin, xmax], which allows simulating the variation of
the micro-structure as well as its changes in density(volume) and stiff-
ness(Young modulus). The most popular homogenization method is
the Solid Isotropic Material with Penalization: SIMP [20],[21], [144].
In this method, the variables xe have a range with xmin around 1E−3
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and xmax = 1, they are used to scale Young modulus (denoted by E)
in the way Ee = E0x

p
e (where p is suggested as p = 3), reducing the

stiffness on the element e. The updating equation for variables x is
derived from a relaxed fixed point method applied to the derivative
of the compliance equaled to zero. The derivative is calculated under
the assumption that structural self-weight is not considered. It is
a local minimization method. This method is analyzed in detail in
chapter 5.

• Level set methods [9], [11], [7], [5]: a level set function γ(x) is defined
and known over the entire design domain. If γ(x) < T the struc-
ture has material in the x location, otherwise there is no material
in this position. An initial level set function is defined by the user
and it evolves iteratively using a Hamilton-Jacobi equation along to
the objective function gradient respect to the normal direction of
the boundary. In other words, a level set function is used to mod-
ify boundaries depending on the objective function derivative in a
direction normal to the boundaries. Level set methods have advan-
tages related to computational efficiency. As a disadvantage, they
depend strongly on the initial level set function, so the optimal result
is dependent on expertise of the user.

• Phase field methods [24]: also, a function describes the material exis-
tence. A phase field function represents the properties of the material
in every zone over all the domain. This phase field function describes
a smooth change between material and void phases. Numerical prob-
lems are reduced, in contrast with level set methods.

• Heuristics : in general, heuristic methods are based on the use of im-
plicit knowledge to get a solution, not necessarily on mathematical
principles. Possibly the most popular heuristic method for topology
optimization is the Evolutionary Structural Optimization(ESO)[155]
and its variants [77]. The main idea of ESO is to calculate a FEM
analysis of the elastic problem over the design domain, in order to
calculate a criterion in every element, such as Von Mises stress or ten-
sile stress. Then, the less stressed elements are removed according to
a rejection criterion. The process is repeated until reaching a conver-
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gence condition related to volume or stress. There is a Bidirectional
ESO which not only remove elements but add elements [112], [66].
The main advantage of heuristic methods is they are simple and com-
putationally efficient, nevertheless they do not guarantee convergence
to a minimum (even local) because they do not update variables ac-
cording to the minimization of an objective function, but according
to implicit knowledge.

• Meta-heuristics [16],[27],[29],[61]: meta-heuristics are stochastic op-
timization methods, capable of solving a variety of problems. For
topology optimization, the most common meta-heuristics methods
are based on populations and they are called Evolutionary Algo-
rithms. The main idea of these methods is based on the nature
evolution process of the species: a population of solutions is ran-
domly generated, then, the population is evaluated, and a group of
the best individuals is selected according to their fitness acquired
in the evaluation. Operators of crossover and mutation are applied
to the selected set in order to generate a children population which
replaces the current population. A detailed description of these meth-
ods is given in chapter 2. The main advantage of population-based
meta-heuristics is that they are capable avoid local optimal solutions
and approximate to global solutions, and the expertise about the
problem is not necessary, nevertheless, they are not capable of man-
aging a large amount of variables and they require a high amount of
computational resources.



Chapter 2

Theoretical framework

2.1 Optimization

Optimization is the process of finding the parameters x that minimize or
maximize an objective function f(x) subject to constraints.

There are different methods to solve optimization problems, all of them
require an optimization model that describes the problem. An optimiza-
tion model is composed of the following [104]:

• Objective function f(x): this is the function that describes the be-
havior of the phenomenon to optimize. This function extends for all
a region of feasible solutions. The main objective is to minimize or
maximize this function depending on the case.

• Design variables x: these are the variables whose objective function
depends on. They represent the parameters to find, to get the optimal
value in the objective function.

• Constraints ci(x): there are problems with or without constraints,
frequently in real world problems one must consider constraints that
delimit the region of feasible solutions.

Two optimization models are graphically shown in figure 2.1. Note that
to the solution is different due the model constraints.

7
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(a) Optimization model and so-
lution example 1.

(b) Optimization model and solu-
tion example 2.

Figure 2.1: Examples of optimization models

In order to find the optimum, we require of an optimization algorithm,
it usually consists of searching the values for design variables that minimize
(without loss of generality) the objective function and those values do not
violate the model constraints.

Optimization algorithms can be categorized as global and local. Also, they
can be categorized in deterministic and stochastic.

2.1.1 Local and global optimization

Nocedal et al.(2000) define a global minimum as follows: “A point x∗ is a
global minimizer if f(x∗) ≤ f(x) for all x, where x ranges over all of Rn(or
at least over the domain of interest to the modeler)”, in other words, a
global minimum is the lowest point in the feasible region of the objective
function. On the other hand, Nocedal et al.(2000) defines a local minimum
as follows: “A point x∗ is a local minimizer if there is a neighbourhood N of
x∗ such that f(x∗) ≤ f(x) for all x ∈ N, in other words, a local minimum
is the lowest point in a delimited region( sub-region of the domain ). This
is shown in figure 2.2.
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Figure 2.2: Examples of global and local optimization.

A method is considered global or local based on the capability to avoid
local optimums reaching global solutions. Nevertheless, a local optimiza-
tion method is capable to reach global optimums if it starts over a promis-
sory solution, and a global optimization method can be stuck on local
minimums.

2.1.2 Deterministic and stochastic optimization

Deterministic optimization

Deterministic optimization methods have a set of well-established steps
based on deterministic computations. For a specific entry data, there is
always the same result. Ming-Hua Lin et al.(2012) mentions about it:
“Deterministic optimization take advantage of the analytical properties of
the problem to generate a sequence of points that converge to an optimal
solution” [83].

Stochastic optimization

There are many real-world problems where deterministic optimization is
not effective, for example, the solution of combinatorial problems, discon-
tinuous or non-derivable optimization models, and problems with multiple
maximums or minimums on the objective functions.

In contrast, stochastic optimization methods use a random factor in the
updating process which could favor scaping from local minimums. They
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generate random updates expecting to improve the current solution and
expecting to lead the search to regions with better solutions. A kind
of stochastic optimization methods are the evolutionary algorithms [119],
which are inspired by the theory of evolution. In agreement with algorithm
1, evolutionary algorithms generate a set of random solutions called indi-
viduals (2. Generate population). Every individual is evaluated getting a
fitness(4. Evaluate population). A selection process is applied to popula-
tion: individuals with the best fitness are selected as parents(5. Selection).
Then, an operator of crossover(6. Crossover) and mutation(7. Mutation)
are applied to parents, in order to generate a (children) population, then,
applying a survival operator, it is decided which individuals from original
population and children form the next population(8. Replacement). The
process is repeated until a stopping criterion is reached.

Algorithm 1 Evolutionary Algorithm Structure
1: t = 1
2: Xt = Generate population()
3: while Stopping criterion is not reached do
4: F t=Evaluate population (Xt)
5: Xt

SEL=Selection (Xt, F t)
6: Xt

child=Crossover (Xt
SEL)

7: ˆXt
child=Mutation (Xt

child)

8: Xt+1=Replacement (Xt, ˆXt
child)

9: t = t+ 1
10: end while
11: Solution = Xt

best

Figure 2.3 graphically shows each step in algorithm 1. Each individual
in the current population is colored differently, the best solutions are se-
lected, genetic information of the first parent is shown in purple and the
second in red. Then, this information is recombined to generate children
via a crossover operator, notice that children preserve information from
parents. Then, small changes non-dependent on the parents are inserted
via a mutation operator. Finally, children replace old individuals, and the
process is repeated.
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Figure 2.3: Graphical example of steps on evolutionary algorithm

Figure 2.4 shows the performance of an evolutionary algorithm through
iterations. Red points are the current population and blue points are the
selected set. Notice that the population is grouped into regions with min-
imal objective values, and finalizes on the global minimum.

Figure 2.4: Graphical example of the evolution of solutions
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Selection, crossover, mutation and replacement procedures are called
operators. Each operator is used for different purposes:

• Selection: its objective is to select a set of the best nselec individuals
based on their fitness. nselec can be given as a parameter or managed
during execution. Common selection methods are [129]:

– Roulette wheel: the probability of choosing an individual is pro-
portional to its fitness. All fitnesses are accumulated and a
uniform random value is taken between the accumulated limits.
This way, individuals with the best fitness have more probabil-
ity to be selected. This is repeated nselec times until filling the
selected set.

– Binary tournament: two individuals are uniformly random cho-
sen and they compete to be selected. The competition consists
in comparing their fitness, the fittest is selected. This is repeated
nselec times until filling the selected set.

– Truncation : the population is sorted according to the individual
fitnesses, and the first nselec individuals are selected.

• Crossover: its objective is to generate the children from the selected
set. This step uses a parameter that determines the probability of
crossing two selected individuals, otherwise, children are a replica of
their parents. This step depends on individual representation: binary
strings[146], combinations [113],[101] or real[48],[93].

• Mutation: this process is applied to the children. A probability is
used to determine whether a gen (variables that form the solution)
of the child is mutated. This step depends on the individual repre-
sentation [146],[39],[47]

• Replacement: its objective is to generate a new population, consid-
ering individuals from the original population and the children. A
process called elitism can be used in the replacement step, which
consists in preserving the best nelitism individuals from the original
population for the next iteration[59].
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There are different many proposals on evolutionary algorithms, but the
idea is similar: the most suited individuals survive and transmit their in-
formation to the next generations. The main difference among them are
the operators: selection, crossover, mutation, and replacement.

Evolutionary algorithms used in this work are:

• Genetic Algorithms(GA): developed by John H. Holland in 1970
decade [64]. The formative algorithm only solved binary problems,
nevertheless, now it is possible to solve real-code variable problems
[44],[146],[48],[47]. The genetic algorithm implemented in here uses
all the operators in algorithm 1 and works with real variables. Oper-
ators are used as follows:

– Stopping criterion is established by a maximal iterations num-
ber.

– Selection is done by the truncation method.

– Crossover is done by a real variable method called simulated bi-
nary crossover(SBX), proposed by Deb and Agrawal in 1994.
This method simulates a binary representation. SBX controls
the children-parent similarity to preserve the population diver-
sity. For a detailed description, consult [44] and [48].

– Mutation is done by a real variable method known as the poly-
nomial mutation, proposed by Deb and Agrawal in 1999. This
method generates a controlled mutation on the neighborhood of
the parents. For a detailed description consult, [45] and [47].

– Replacement is done by preserving with the selected set, and
filling the rest of population with the children.

• Estimation Distribution Algorithms(EDA). Developed by Mühlenbein
at 1996 [99], these algorithms do not employ crossover, neither muta-
tion, instead, they try to infer the underlying probabilistic distribu-
tion of the selected set, then, using that distribution, new individuals
are generated. Thus, crossover and mutation steps are replaced by a
Calculate distribution step. There are EDAs for solving binary, com-
binatorial [40] [38] and real variable problems, [78], [129],[130],[94].
Algorithm 2 shows the general structure of an EDA.
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Algorithm 2 EDA Structure
1: t = 1
2: Xt=Generate population()
3: while Stopping criterion is not reached do
4: F t=Evaluate population (Xt)
5: Xt

SEL=Selection (Xt, F t)
6: p(x)t=Calculate distribution (Xt

SEL)
7: Xt+1=Replacement (Xt, p(x)t)
8: t = t+ 1
9: end while

10: Solution = Xbest

The EDA used in this work is the continuous Univariate Marginal
Distribution Algorithm (UMDA c), introduced by Larrañaga and Lozano
in 2002 [78]. For the Calculate distribution step in algorithm 2, the
UMDA c gets a search distribution by calculating the parameters
of a normal univariate distribution for each dimension. Algorithm
3 shows the computation of the search distribution parameters in
UMDA.

Algorithm 3 Calculate of search distribution for UMDA

1: for i = 1 to n do
2: µi = 1

NS

∑NS

j=1 xi,j

3: σ2i = 1
NS

∑NS

j=1(xi,j − µi)2
4: end for

Where x is the selected set, n is the dimension of the problem, NS

is the number of individuals in the selected set. The rest of the
operators in algorithm 2 are used as follows:

– Stopping criterion is established by a maximal iterations num-
ber.

– Selection is done by the truncation method.

– Replacement is done by preserving with the selected set, and
filling the rest of the population with the children generated
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with the calculated distribution.

A detailed description of the steps of genetic algorithm and UMDA is
given in the Global optimization chapter.

Multi-objective evolutionary algorithms In many practical optimiza-
tion cases, it is desirable to find the optimal solutions for more than one
objective function. Figure 2.5 shows the objective values of a population
for two objective functions F1 and F2.

Figure 2.5: Example of population fitnesses on a multi-objective algorithm.

The approach of this kind of algorithms is practically the same than
in mono-objective. They are based on the survival of the fittest individu-
als and the transfer of their information to next generations. The differ-
ence is the criterion to determine superiority among individuals. In mono-
objective it depends uniquely on comparing the fitness, in multi-objective,
identifying superiority is more complicated and depends on two or more
measurements according to the method used. By instance, many of them
use the Pareto criterion for determining whether an individual is better
than another.

For this work, the Non-dominated Sorting Genetic Algorithm-II(NSGA-
II) method[46] is implemented, which is a multi-objective version of the
genetic algorithm, where the individual superiority is determined by the
individual Pareto dominance and a crowding distance,[111],[97] .
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According to the Pareto dominance, a solution p dominates another q (de-
noted by p � q) in a set of objective functions f , if:

∀i ∈ {1, ..., k} : fi(p) ≤ fi(q) ∧ ∃i ∈ {1, ...k} : fi(p) < fi(q). (2.1)

Which means that the solution p dominates q if p is better in at least
one objective function and it is not worse in any other.

The main objective of the non-dominated sorting is to categorize the
population individuals in fronts (or ranks): the first front is formed by
the non-dominated individuals of the population, then they are removed
and the second front is formed by the new non-dominated individuals, the
process is repeated until every individual is ranked. Figure 2.6 shows an
example.

Figure 2.6: Multi Objective Fronts Example

Then, to determine superiority among individuals in the same front,
the crowding distance of every individual is calculated. It is an average of
the distances to the two closest neighbors in the same front. This value
is higher for farthest individuals. A high crowding distance determines
superiority. Figure 2.7 shows an example, individual A is clearly farthest
from its neighbors than individual B, so, individual A has the highest
crowding distance and is superior to B
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Figure 2.7: Multi Objective Crowding Distance

The NSGA-II uses these two criteria to get a selected set and for the
replacement process, the rest of the process is the same than in mono-
objective algorithms 1.

The main advantage of mono and multi-objective evolutionary algorithms
is the flexibility they have for solving a variety of kinds of optimization
problems, meanwhile, we have a function (or functions) to evaluate indi-
viduals. An evolutionary algorithm can be seen as a black-box method,
where the explicit optimization model of the problem is unknown, and the
only objective is to find an optimal solution. The main disadvantage is
the high computational cost implied, nevertheless, population based meth-
ods are parallelizable in order to distribute the computational cost among
different processing units.

2.2 Finite element method

The finite element method is used for the numerical solution of differential
equations, they are solved in order to describe the behavior of physics phe-
nomena, such as mechanical or thermal among others. Our interest in this
method is the solution of the elastic problem, which consist in the calcu-
lation of the displacements generated by forces to an elastic body, which
is fixed in determined regions. The role of the finite element method in
structural optimization, is related to the optimization models, due to ob-
jective functions and constraints are calculated with the displacements and
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stresses. Note that every evaluation of a solution implies a finite element
method analysis.

This work does not consider the finite element method implementation,
thus the description in here is brief and the reader can consult to [169] and
[23] for detailed sources. For this work, a C++ open source library is used
for the solution of the elastic problem: FEMT [1].

2.2.1 Linear elastic problem

Displacements, strain and stress

Displacements field in planar stress and strain problems is defined as the
displacements in x and y directions on each point belonging to the domain.
The displacements vector is defined by:

u = u(x,y) =

[
u(x, y)
v(x, y)

]
=

[
u
v

]
(2.2)

Where u(x, y) and v(x, y) represent the displacements on x and y-axis
respectively, at a specific point (x, y).

The strain field is calculated using the displacements in the xy plane,
based on the general theory of elasticity. The strain vector is defined by:

ε =

 εxεy
γxy

 =

 ∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 =

 ∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

[u
v

]
= Bu (2.3)

Where εx and εy are the normal strain on x and y-axis respectively
and γxy is the shear strain in the xy plane. In planar strain problems, the
strain in z-axis is considered as null(εz = 0), as well as shear strain related
to z-axis ( γxz = γyz = 0)[23].

Stress field is defined by the vector:

σ =

σxσy
τxy

 (2.4)
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Where σx and σy are the normal stresses in x and y-axis. τxy is the
tangential stress in the xy plane. In planar stress problems, the stress in
z-axis is considered as null(σz = 0), as well as tangential stresses related
to z-axis are null( τxz = τyz = 0 ). The relation between stress and strain
is the following:

σ = Dε (2.5)

The general relation considering initial stress and strain:

σ = D(ε− ε0) + σ0 (2.6)

This relation has a linear behavior until a limit known as elastic limit.
This is shown in figure 2.8. The phase before elastic limit is known as linear
static, where the behavior is proportional between stress and strain. Within
this phase, the geometry has elastic properties in response to the forces that
work on it, this means, when the forces are removed, the body returns to its
original shape. If the forces generate stresses over a maximal theoretical
permissible(or yield stress (YS) ), the body passes from an elastic to a
plastic behavior, where the body suffers permanent changes, even if the
forces stop to work over it.

Figure 2.8: Stress and strain relation

D is the constitutive matrix that contains the information about the
elastic properties of the material.

D =

d11 d12 0
d21 d22 0
0 0 d33

 (2.7)
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Based on the Maxwell-Betti theorem, D is symmetric [51]. Using
isotropic materials and, for a planar stress problem, D is calculated as:

d11 = d22 =
E

1− v2
d12 = d21 = vd11 (2.8)

d33 =
E

2(1 + v)

And for a planar strain problem, D is calculated as:

d11 = d22 =
E(1− v)

(1 + v)(1− 2v)

d12 = d21 = d11
v

1− v
(2.9)

d33 =
E

2(1 + v)

Where E is the Young modulus and v is the Poisson radius of the
material.

Discrete solution

The virtual work principle is an equation used in structural mechanics. It
allows representing the equilibrium between the work generated by internal
and external forces in a geometry. This equation is set using the relations
between displacements, strain and stress as following:

∫ ∫
A

(δεxσx + δεyσy + δγxyτxy)hdA =∫ ∫
A

(δubx + δvby)hdA+ (2.10)∫
s

(δutx + δvty+)hds+∑
i

(δuiUi + δviVi)
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The virtual work principle in a matrix form is:

∫ ∫
A
δεTσhdA =

∫ ∫
A
δuT bhdA+

∫
s
δuT thds+

∑
i

δuTi qi (2.11)

Where vectors δu, δε and σ represent the virtual displacements, virtual
strain and stress fields as described before. Vectors b, t and q represent
the forces that work over the geometry, specifically:

Forces over volume unities:

b =

[
bx
by

]
(2.12)

Forces over contour unities:

t =

[
tx
ty

]
(2.13)

Forces over points:

q =

[
Ux
Vy

]
(2.14)

These forces are given by the problem conditions. h is the thickness
of the geometry, for planar strain problems h = 1 and for planar stress
problems h is the real thickness.

Finite element method is capable of solving this equation in a discrete
way, this means, computing the solution in some points(nodes) and in-
terpolating the solution in intermediate points. Nodes and connections
among them form elements, generating a complete mesh of the geometry.
An example is shown in figure 2.9.
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Figure 2.9: Example of geometry meshed.

The virtual work principle is used on every element. Based on equation
2.3, it is possible to transform the first term in the following:

∫ ∫
Ae

δuTBTσhdAe =

∫ ∫
Ae

δuT bhdAe+

∫
se
δuT thdse+δuT qe (2.15)

Since virtual displacements are arbitrary, they can be factorized and
eliminated from the complete virtual work principle equation:∫ ∫

Ae

BTσhdAe =

∫ ∫
Ae

bhdAe +

∫
se
thdse + qe (2.16)

Now, substituting the general relation in equation 2.6 in the first term:

∫ ∫
Ae

BT (D(ε− ε0) + σ0)hdAe =

∫ ∫
Ae

bhdAe+

∫
se
thdse+qe (2.17)

The algebraic development is:

h

∫ ∫
Ae

BTDεdAe =

h

∫ ∫
Ae

BTDε0dA
e − h

∫ ∫
Ae

BTσ0dA
e+ (2.18)

h

∫ ∫
Ae

bdAe + h

∫
se
tdse + qe
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Substituting equation 2.3 in the first term:

h

∫ ∫
Ae

BTDBdAeu =

h

∫ ∫
Ae

BTDε0dA
e − h

∫ ∫
Ae

BTσ0dA
e+ (2.19)

h

∫ ∫
Ae

bdAe + h

∫
se
tdse + qe

The terms in this equation can be expressed as follows:

Keue = [feε − feσ + feb + fes ] + qe = fe + qe (2.20)

After an assembling process of elemental matrices and vectors, a linear
equation system is generated as follows:

Ku = f (2.21)

Where K is the stiffness matrix, u is the displacements vector and f is
the force vector. Solving this system, nodal displacements are calculated.
Stresses can be calculated by using the displacements derivatives.

2.2.2 FEMT library

”FEMT is an open source muli-platform library and tools (Windows, Linux,
and Mac OS) for solving large sparse systems of equations in parallel. This
software is specially set to solve systems of equations resulting from the
finite element, finite volume, and finite differences discretizations”(Miguel
Vargas, 2014 [1]). FEMT has different methods developed for solving heat
diffusion, electric potential, and solid deformation problems, all these mod-
ules work with the pre and post processor GID [2]. The general process
carried out by GID-FEMT teamwork is the following:

• Pre-process: GID is capable of designing and meshing geometries,
set materials, and boundary conditions. This data is known as pre-
process information.

• All pre-process information is used by FEMT to solve a particular
problem(heat, mechanical or electrical). Solution data is written in
a specific format established by GID.
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• Post process: GID visualizes the results.

For this work, we use the FEMT module for solid deformations, which
computes nodal displacements and elemental Von Mises stresses.

2.3 Topology optimization

Structural optimization is a mechanical design process, whose objective is
to find an optimal structure within a given design domain. The structure
must satisfy service conditions, given by displacements and forces.

This problem can be solved by three different optimization approaches:

• Size optimization: the optimization variables are given by structural
parameters, such as height, width, thickness, angles, etc.

• Shape optimization: the boundaries of an initial structure are modi-
fied in order to search for an optimal shape.

• Topology optimization: the design domain is discretized into elements
and an optimization parameter is set for each one. Those parameters
determine the existence of material on elements, allowing to set holes
in the domain. The objective is to find a parameter configuration
that defines an optimal distribution of the material over the domain.

In a topology optimization problem, it is necessary the solution of the
elastic problem, it implies to solve the following system of linear equations:

Ku = f (2.22)

Where K is the stiffness matrix, u is the displacement vector and f is the
forces vector. The stiffness matrix K can be factorized as:

K = EK̂ (2.23)

Where E is the Young modulus and K̂ is the factorized matrix. Young
modulus is a scalar with the property that determines the stiffness of the
material. It is valid factorizing the elemental stiffness matrices:
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ke = Eek̂e (2.24)

Where Ee is the Young modulus of the element e. In a common elastic
problem with homogeneous material Ee = E, this means, Young modulus
is the same in every element, due to all elements have the same material.
In contrast, in topology optimization, the elemental Young modulus could
be different(Ee ≤ E), simulating that an element e has a lower material
proportion(hence, a lower stiffness proportion) than a solid element. This
is a numerical form to represent the absence of material in the element e.

To calculate Ee, each element is associated with a design variable xe,
which scales the Young modulus Ee as follows:

Ee = xeE (2.25)

Replacing (2.25) in (2.24), we get:

ke = xeEk̂e = xeǩe (2.26)

Design variables x are the parameters in a topology optimization prob-
lem. They assign a gap to elements with xe = 0 or a solid material to
elements with xe = 1. Some methods use binary design variables, others
use them as continuous between 0 and 1, which allows assigning inter-
mediate properties, no matter, a formal final solution must differentiate
empty from solid material. Finding the optimal parameters x means to
distribute adequately the material over the domain, which results in the
optimal structure, as shown in figure 2.10.
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Figure 2.10: Resulting structure delivered by topology optimization
method.

For real-world problems where the structure self-weight is considered,
the material density(ρ) is also modified by the design variables. It is added
to the force vector assembling:

f̂ = ρf̂ (2.27)

Where f̂ is the vector of self-weight forces, which is formed by the elemental
weight forces f̂e. The material density is scaled from f̂e in a similar manner
than the Young modulus:

f̂e = ρef̂e (2.28)

ρe = xeρ (2.29)

f̂e = xeρf̂e = xefe (2.30)

This way, xe ∈ [0, 1] values determine the contribution of the elemental
weight to the complete structural weight.

2.4 Parallel computing

In this section concepts about parallel computing are reviewed, as well as
the schemes used in this work and the role of parallel computing in evo-
lutionary algorithms. For a more detailed information about this topic
consult [52], [132], [121], [96], [35], [54].
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Parallel computing includes programming techniques that allow the ex-
ecution of many instructions simultaneously, unlike the serial computing,
where instructions are executed one after another. Processing units can not
execute more than one instruction at the same time, so parallel computing
is based on the sectioning a process and executing every section in different
processing units, then achieve synchronization through the communication
of their results [52]. This accelerates the data processing. It is important
to ensure that algorithms can be sectioned for independent data, in order
to avoid affecting the complete process. Figure 2.11 shows the difference
between serial and parallel computing. Notice that in the second case every
task is independent from the others.

(a) Example 1. Serial computing. (b) Example 2. Paralell computing.

Figure 2.11: Serial and Paralell Computing

Parallel computing requires hardware with specialized architecture for
its use. It can be multi-core computers or computer clusters, these archi-
tectures correspond to the parallelization schemes known as shared memory
and distributed memory respectively.

2.4.1 Shared memory parallelization scheme

In this scheme all cores:(processing units) P1,P2,P3, ...,PN, have access
to the same memory unit through a data bus. Current computers use this
kind of architecture. In this scheme, any core can access to the information
that another core is using, this makes easy the data communication between
cores.
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Figure 2.12: Example of a multi-core architecture

OpenMP is a standard for an API for this type of architecture. It is
based on the use of compilation directives embedded in the code that allows
parallelizing fragments of it, specially cycles [35]. OpenMP is frequently
used for linear algebra operations, such as matrix and vector operations
or solving linear equations systems, where many processes are independent
between them. For example, the sum of two vectors Â + B̂ = Ĉ, both Â
and B̂ are sectioned in N parts corresponding to the same indexes, where
N is the number of available cores, each core sums a chunk of indexes and
save it in the corresponding indexes of Ĉ.

OpenMP is used indirectly in this work, due to FEMT uses it for linear
algebra operations.

2.4.2 Distributed memory work scheme

This parallelization scheme employs a computer cluster, which is a set of
computers(nodes), that communicate each other through a high-velocity
network, each node can be multi-core or not. Figure 2.13 shows an example.
In the distributed memory scheme, each node has its own memory unit
independent of the rest. This scheme gives to every node an identifier called
rank and allows to all nodes execute the same program simultaneously.
Each node does a specific task depending on its rank. All task together
built a global process. So, it is necessary that all nodes keep a periodic
communication. The way that a node can access to data in the memory of
another one is by the sending and receiving messages.
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Figure 2.13: Example of a cluster architecture

Message Passing Interface(MPI) is a standard for a message passing
system used for this scheme of parallelization. These libraries contain
functions that allow an efficient communication between nodes through
the high-velocity network [54]. A way to use this parallelization scheme is
a model known as master-slave, where one of the nodes is assigned as mas-
ter and all remaining are slaves. The master task is to execute the main
structure of the algorithm, sectioning the most computational expensive
tasks and sending them to available slaves for its execution.

The master-slave model is frequently used for evolutionary algorithms,
where the master executes the structure shown in algorithm 1. In the
Evaluate Population step, the master divides the complete population and
sends every section to the available slaves via a message. Each slave re-
ceives a section of the population, then executes the evaluation and sends
back the calculated fitness through another message to the master.

Evaluating a population usually is the most expensive process in evolu-
tionary algorithms. In topology optimization problems, every individual
evaluation requires solving an elastic problem via the finite element method.

A way to quantify the performance of a parallelized algorithm is compar-
ing the execution time for the serial algorithm Ts with the processing time
using a number of n cores or nodes depending on the case T (n), this value
is known as Speed Up. It determines how many times a parallel algorithm
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is faster than the serial one.

SU(n) =
Ts
T (n)

(2.31)



Chapter 3

Thesis scope

3.1 Proposal of a numerical benchmark for topol-
ogy optimization methods

Topology optimization algorithms require the following entry data: 1) the
design domain and its mesh, 2) the service conditions: location and magni-
tudes, 3) the properties of the material and 4) the optimization model. In
specialized literature, different research groups report similar tests. Those
tests frequently differ in the entry data. This makes difficult to performs
a fair comparison between the results of different algorithms due to differ-
ences in the tests. For the purpose of circunvent this issue, an objective
of this work is the establishment of a benchmark for topology optimiza-
tion in 2 dimensions, considering the similarities and statistics of the most
frequently used tests in 103 papers in the specialized literature.

3.2 Solving local and global topology optimiza-
tion problems for compliance and volume mod-
els

We have the interest in two optimization models: compliance minimization
with volume constraint(related to optimal structural functionality) and vol-
ume optimization with stress constraint(related to optimal structural cost).

31
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3.2.1 Compliance minimization with a volume constraint

This optimization model is given by the following objective function:

min C(x) = u(x)Tf(x) = u(x)TK(x)u(x) (3.1)

Subject to the constraints:

K(x)u(x) = f(x) (3.2)

V (x)

V0
− Vr =

∑N
e=1 Vexe
V0

− Vr = G(x) = 0 (3.3)

0 < xmin ≤ xe ≤ 1 (3.4)

Equation (3.1) is the evaluation function. It is formed by forces mul-
tiplying displacement. Work is the displacement generated by a force in
a body, this means that we are searching a distribution of material that
minimizes the work generated by the forces in the structure. Compliance
is the inverse of stiffness, so this model also means to maximize stiffness.
In equation (3.1) the vector x = [x1, x2, ..., xN ] contains the design vari-
ables. u(x), K(x) and f(x) are the global displacements vector, stiffness
matrix and forces vector, respectively calculated with the design variables
x. Equations (3.2), (3.3), (3.4) show the constraints of the model.

• The first constraint (equation (3.2)) indicates that displacements
u(x) must be calculated as the solution of the system formed by the
stiffness matrix K(x) and the force vector f(x). These components
are assembled according to the FEM.

• The second is the volume constraint (equation (3.3)), where V (x) is
the volume of the structure formed by the design variables x. It is
calculated as

∑N
e=1 Vexe, where Ve is the elemental volume. V0 is

the volume of the solid full structure, Vr is the volume constraint
parameter, it is a continuum value between (0, 1] and represents the
desired volume of the optimal rigid structure.
The volume constraint is employed as G(x) = V (x)

V0
− Vr = 0.
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• The third constraint(equation (3.4)), indicates that the design vari-
ables must take values between [xmin, 1], where xmin is a small value
close to 0 (for this work xmin = 1E − 3) for avoiding singularities in
the linear equations system.

An important characteristic of the compliance objective function is that
it avoid the formation of structures with unconnected elements, due to the
objective function value is high for that kind of structures.

The minimal compliance structures are those with full solid material, due
to compliance is calculated using displacements caused by forces, and dis-
placements are higher when the forces are acting over a low amount of
material. This is the reason why compliance optimization model has a
volume constraint, if it does not, the optimal structure is the full material
structure.

3.2.2 Volume minimization with a stress constraint

This optimization model is given by the following objective function:

min V (x) =
N∑
i=1

xeVe (3.5)

Subject to the constraints:

K(x)u(x) = f(x) (3.6)

σe ≤ σY S e = [1, 2, ..., N ] ∀ xe > xmin (3.7)

0 < xmin ≤ xe ≤ 1 (3.8)

Equation (3.5) is the evaluation function, where the values xe and Ve
are design variables and volumes of each element e in the design domain
respectively, and N is the number of elements. This sum represents the
total volume of the structure formed by variables x.

Equations (3.6), (3.7), (3.8) show the constraints of the model.



34 CHAPTER 3. THESIS SCOPE

• The first constraint (equation (3.6)) indicates that displacements
u(x) must be calculated as the solution of the system formed by the
stiffness matrix K(x) and the force vector f(x). These components
are assembled according to the FEM.

• The second is the stress constraint (equation (3.7)), where σe are
elemental stresses and, σY S is the theoretical yield stress. This means
that all elements in the structure must be within the elastic limit,
ensuring that the structure is feasible. This constraint is applied
only to solid elements.

• The third constraint(equation (3.8)), indicates that design variables
must take values between [xmin, 1], where xmin is a small value close
to 0 (for this work xmin = 1E − 3) in order to avoid singularities in
the linear equations system.

Minimal volume structures are those with no material, this is the rea-
son why the model has a stress constraint. Considering that compliance
structures are minimal with full solid material, compliance and volume are
opposed objective functions.

3.2.3 Proposed solution for optimization models

The compliance model does not consider stress, in our opinion, this is not
convenient for real-world problems because the resulting approximate opti-
mal structures could be physically infeasible. No matter, compliance is an
objective function that guide algorithms to find a distribution of material
that built a highly rigid structure for a volume constraint. On the other
hand, the volume model considers stress and ensures the physical feasibil-
ity of the result, but the objective function does not guide the algorithms
to find an efficient material distribution. Compliance problems are solved
with no other considerations than those in the model, no matter if results
could be physically infeasible, while volume problems are solved consider-
ing compliance as well as the stress constraint.

In this thesis, local compliance optimization problems are solved with the
Solid Isotropic Material with Penalization(SIMP) method. A detailed anal-
ysis of this method is carried out in section 5.1. A proposal for the reduction
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of computational cost for SIMP is introduced, as well as a modification for
the solution of volume optimization problems with stress constraint(SIMP-
SC).

Global optimization problems are solved using evolutionary algorithms.
Evolutionary algorithms for topology optimization require high computa-
tional resources due to the high dimension of the problems and the com-
plexity of the function evaluation. These inconveniences suggest that evo-
lutionary algorithms could not be convenient for this kind of problems, no
matter, evolutionary algorithms are capable of approximating global op-
timums. The proposals for circumventing the computational cost issues
are, 1) an adequate individual representation, in order to reduce the di-
mension of the problem, and 2) the use of parallel computing to distribute
the computational cost that structural evaluation implies. Mono-objective
optimization algorithms are used to solve compliance problems and multi-
objective algorithms are used to solve both, compliance and volume prob-
lems.
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Chapter 4

Proposal of a numerical
benchmark for topology
optimization

Despite the many categories of topology optimization algorithms and op-
timization models [41],[33], most of them use the finite element method
to evaluate candidate solutions; then all of these algorithms require the
previous specification of the following problem properties:

• Design domain. Search space dimensions and shape.

• Boundary conditions. Fixed displacements and load conditions:

– Zero displacement conditions. Regions where the structure
is fixed.

– Load conditions. Regions where the structure is affected by
external forces. It is necessary to establish the position and
magnitude.

– Self-body forces. The most common is the self-weight force,
but there could exist external forces dependent on the geometry
of the body.

• Properties of the material. Properties of the material used to
make numerical simulations: 1 )Young modulus 2 ) Poisson modulus

37
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3 ) maximal permissible stress or yield stress(YS). Even if the yield
stress is not used for the simulation, it can be used to determine
whether the material is working within the elastic range; then it must
be used not only to determine if the structure is physically feasible
but also to know if the numerical simulation using elastic theory is
valid.

• Mesh. Type, number, and dimensions of elements used to mesh
the domain, considering that the numerical error of the simulation
depends on the mesh.

Topology optimization researchers from different groups [4, 141, 13]
solve, in many cases, similar problems using different design domains,
boundary conditions, properties of the material and meshes, which could
cause the following issues:

• It is difficult to perform fair comparisons between algorithms and its
implementations.

• Some articles report results using properties of materials that does
not exist or without considering self-weight, which is not convenient
for the optimization of realistic structures.

• Using unrealistic materials and service conditions is a major concern
for an adequate method, because most of the researchers ([55],[154],[141]),
assume elastic properties in the material, but they do not verify if
the material is actually working in the elastic range, even more, the
problem formulation does not considers a constraint to verify that
the candidate structure is in the elastic range neither they provide a
real-world material where the elastic range is well defined.

Our proposal intends to alleviate the aforementioned concerns by intro-
ducing a well-defined benchmark. Other benchmark problems have been
proposed; for instance, Rozvany had proposed a benchmark in a paper
called: Exact analytical solutions for some popular benchmark problems in
topology optimization [116]. In this benchmark, the analytic solutions for a
set of topology optimization problems are computed. These problems are
based on the optimization of a configuration of bars( determining positions,
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sizes, etc.). However, this article proposes a benchmark for optimizing the
distribution of material on a domain. So, the benchmark of Rozvany is
not comparable with our benchmark because it cannot be used to compare
algorithms of a similar kind.

The objective on this part of the thesis is to establish a set of prob-
lems for topology optimization, that detail all the characteristics mentioned
above as well as realistic problem configurations. Using this benchmark,
we can ensure that comparable algorithms are solving exactly the same
problems, that the assumptions carried out by the simulations (elasticity)
are true, and that the final solutions consider real-world conditions and
materials. Therefore, we can perform fair comparisons among different
approaches.

4.1 Methodology for selecting the benchmark prob-
lems

We have gathered test problems from a set of 103 articles in the special-
ized literature. The frequency of similar problems has been computed and
grouped according to the following characteristics:

• Boundary conditions. The most frequent boundary conditions re-
garding the distance between fixed lines-areas and loads as well as
loads directions.

• The geometrical shape of the search domain, that is to say, rectan-
gular, quadrilateral, etc.

• Dimensions. The most frequent dimensions and proportions among
them.

The 13 most frequent problems are used significantly more than the
others. Usually, their geometrical shape is exactly defined, but the relative
position of the loads is only approximately specified. Most of the times,
they neither define exactly the size of fixed segments of the geometry nor
do they specify whether the loads are applied to a single point or to a line.
In addition, neither the thickness nor the system of units are reported, and
the properties of the material do not correspond to any real-world material.
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To circumvent these issues, we propose the following:

• We set the units to the standard International System; lengths are in
meters (m), force units are Newtons (N), Young modulus and yield
stress are given in Pascals, and Poisson modulus is dimensionless.

• We set the side’s lengths to those most frequently reported.

• We set the thickness to 1 percent of the maximal length size in order
to standardize the thickness and to fulfill the hypothesis of planar
stress.

• The external loads or forces are applied in a line whose length is
10% of the length of the side they are applied to, in order to avoid
numerical issues that arise with single-point loads.

• The properties of the material are set as those given by steel ASTM
A-36, whose properties are similar to the most common materials
used in real-life structures and in academic problems.

4.2 Statistics

In Tables 4.1, 4.2, 4.3 and 4.4 the obtained data from the 103 consulted
articles are condensed. The columns in tables report the following infor-
mation:

• Column 1. Analyzed article. The citation to the proper article refer-
enced at the bibliography.

• Column 2. Type of problem. Common problem types according to
their geometrical properties; they can be categorized as Cantilever,
Short Cantilever, LShape, MBBB, Two Bars and Michell. Some
Michell problems are marked as Michell*, this means that they are
defined with two loads as boundary conditions as shown in subfigures
(b) and (c) in Figure 4.4.

• Column 3. Load region. In Cantilever, Short Cantilever and LShape
tests, the load position sometimes varies at Top, Center or Bottom of
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the load side as shown in figures 4.1, 4.2 and 4.3. In Two Bars, MBBB
and Michell tests, load positions never vary as shown in figures 4.4,
4.5 and 4.6.

• Column 4. Load magnitude. For Michell* tests(multi-load) every
load is presented separated with a “/”.

• Columns 5, 6 and 7. Lengths of the initial domain. M , L are the
side lengths, as shown in Figures 4.1,4.2,4.3,4.4,4.5 and 4.6. t is the
thickness used. Thickness cells with “v” represent volume, so these
tests are in 3D.

• Column 8. Fixed regions. An asterisk means that fixed segments of
the test problems reported in the article are the same as those fixed
segments in the test problems of the proposed benchmark.

A sign - indicates that there is no information about the problem set-
tings.

Reference Test Type Load
region

Load Size M L t Hold
Type

[30] Cantilever Central 3000 6.4 4 0.1 *

[32] Short Cantilever Bottom - 250 250 - *

Short Cantilever Bottom - 20 20 20(v) *

[108] Cantilever Central - 30 10 10(v) *

Cantilever Central - 20 10 10(v) *

Lshape Top - 12 8 5(v)

MBBB - - 30 10 10(v)

[114] Michell - - 1 1 -

Short Cantilever Top - 1 1 -

[135] Cantilever Central 10000 0.4 0.1 - *

Cantilever Central 2000 0.08 0.02 0.02(v) *

[145] Cantilever Bottom 1 100 50 - *

Two Bar Central 1 80 40 - *

Michell* - 1/1 50 50 - *

Table 4.1: Statistics from topology optimization literature.
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Article Test Type Load
region

Load Size M L t Hold
Type

[149] MBBB - 1 - - -

Michell - 1 - - -

[153] - - - - - -

[157] - - - - - -

[167] Michell - 1 1 1 - *

Short Cantilever Bottom 1 1 1 - *

[168] MBBB - - - - - *

[4] Cantilever Central 1 2 1 -

Tshape - 1 120 80 -

Michell - 1 1 1.2 -

Cantilever Central 1 5 3 2.4(v) *

Tshape - - - - -(v) *

Lshape Central - - - -(v) *

MBBB - - - - -(v) *

[148] Cantilever Central 0.5 - - - *

Cantilever Central 1.5 - - - *

[31] Lshape Central 1 0.6 0.4 - *

[71] Lshape Central 1 0.6 0.4 - *

[58] Cantilever Central 1 2 1 - *

Michell* - 1/1 1 1 -

[70] Lshape Top 500 0.06 0.04 - *

Cantilever Central 1500 0.2 0.1 - *

[68] Lshape Top 250 0.06 0.04 - *

Cantilever Central 900 0.2 0.1 - *

[79] - - - - - -

[136] Cantilever Central 144000 1 0.25 0.1 *

Cantilever Central 240000 1 0.25 0.1 *

Cantilever Central 300000 1 0.25 0.1 *

Cantilever Central 500000 1 0.25 0.1 *

[126] MBBB - 1 - - -

Cantilever Bottom 1 - - - *

[124] Lshape Top 8000 0.06 0.04 - *

[134] Short Cantilever Bottom - 2 2 - *

[143] Cantilever Bottom 1 20 10 - *

[147] MBBB - 1 - - -

Michell - 1 - - -

[163] Cantilever Central 1 2 1 - *

[152] Short Cantilever Bottom 1 1 1 - *

[76] Cantilever Top 21000 - - -(v) *

Cantilever Central - - - -(v) *

Cantilever Bottom - - - -(v) *

Table 4.2: Statistics from topology optimization literature
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Article Test Type Load
region

Load Size M L t Hold
Type

[53] Cantilever Central 1.2 - - - *

Cantilever Central 1 - - - *

Cantilever Central 0.8 - - - *

[57] Two Bar - 1 2 1 - *

Lshape Central 1 0.6 0.4 - *

[73] - - - - - -

[82] Lshape Top - - - -

[88] Two Bar - 1 0.9 0.3 - *

Lshape Top 2.5 0.6 0.4 - *

[105] Cantilever Top 500 2 1 - *

[100] Cantilever Central 150 40 20 - *

[107] Cantilever Central 2000000 2 1 0.2 *

[109] MBBB - 1 3 1 -

[117] - - - - - -

[128] Short Cantilever Bottom 100 1 1 0.001

Cantilever Central 100 1.6 1 0.001

Lshape Central 100 0.6 0.4 0.001

[133] Cantilever Bottom 1 2 1 - *

Michell - 1 1 1 - *

[150] Cantilever Central 1 0.2 0.1 - *

Cantilever Bottom 1 0.15 0.1 - *

Cantilever Bottom 1 0.09 0.06 0.03(v) *

[156] Cantilever Central - 4 2 -

MBBB - - - - - *

[159] - - - - - -

[12] Lshape Top 40 1.5 1 - *

[49] Cantilever Central - 4 1 1(v) *

Cantilever Central - 2 1 - *

Michell* - -/- 2 1 -

[131] Cantilever Central 1 80 40 - *

Cantilever Bottom 1 80 40 - *

[67] Lshape Central - - - - *

[72] Cantilever Central 1 4 2 - *

MBBB - 1 6 2 -

[87] Two Bar Central 200 0.4 0.1 0.001 *

Lshape Central 20000 0.06 0.04 - *

[89] Cantilever Central 1 60 30 - *

Michell - 1 60 30 -

MBBB - 1 90 30 -

[103] Cantilever Central - 32 16 - *

Cantilever Central - 24 12 12(v) *

MBBB - - - - - *

Table 4.3: Statistics from topology optimization literature
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Article Test Type Load
region

Load Size M L t Hold
Type

[151] Lshape Central 1 0.6 0.4 - *

Lshape Top 1 0.6 0.4 - *

Michell - 1 1 1 - *

[75] Cantilever Central 500000 0.4 0.25 - *

Cantilever Central - 0.6 0.3 0.2(v) *

[56] MBBB - 1 3 1 -

Cantilever Central 1 1.5 1 - *

Lshape Central 1 0.6 0.4 - *

[165] Michell* - -/- 120 120 - *

[74] Cantilever Central 1 40 25 - *

Lshape Top 1 20 20 - *

MBBB - 1 60 20 -

[84] Cantilever Central 3000 0.16 0.1 0.001

Cantilever Bottom 3000 0.16 0.1 0.001

Cantilever Top 3000 0.16 0.1 0.001

[115] Cantilever Central 30000 0.16 0.1 0.02 *

Michell* - 1000 /1000 0.5 0.5 0.02

[127] Cantilever Bottom 100 0.16 0.08 - *

[55] Cantilever Central 1 40 25 -

Cantilever Central 1 40 25 25(v)

MBBB - 1 60 20 -

[65] MBBB - 100 0.05 0.05 -

MBBB - 1 1 0.04 -

[110] Cantilever Central 10000 3 1 0.001

Cantilever - 10000 1 0.5995 0.001

[158] Cantilever Central 1000 10 5 - *

Cantilever Central 1000 4 2 2(v) *

[164] Cantilever Bottom - 240 150 - *

MBBB - - 120 40 -

[85] Cantilever Top 3000 0.16 0.1 0.001

Cantilever Central 3000 0.16 0.1 0.001

Cantilever Bottom 3000 0.16 0.1 0.001

Cantilever - 3000 0.16 0.1 0.001

[91] Cantilever Central 450 1.2 0.6 - *

Michell - 1 2 1 -

[15] Short Cantilever Central - 1 1 -

Cantilever Central - 2 1 -

[102] Short Cantilever Top 40 10 10 - *

Short Cantilever Central 40 10 10 - *

Michell - - 100 100 -

[37] Two Bar - - 2 1 - *

Michell - - 100 100 -

Table 4.4: Statistics from topology optimization literature
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Article Test Type Load
region

Load Size M L t Hold
Type

[28] Cantilever Top - 2 1 - *

MBBB - - 2 1 - *

[81] - - - - - -

[86] Michell - 1 1 1 -

Cantilever Bottom 1 2 1 - *

[90] - - - - - -

[154] Cantilever Central 1 2 1 1 *

Michell - 1 1 1.2 1

[80] Lshape Central - - - -

[141] Cantilever Central 1 2 1 - *

Michell - 1 1 1.2 - *

[13] Cantilever Central 1 2 1 - *

Michell - 1 1 1.2 -

Michell* - 1/1 1 1.2 -

Tshape - 1 4 6 - *

[26] Cantilever Top - 2 1 - *

MBBB - - 3 1 - *

Michell - - 1.5 1 - *

[92] Cantilever Central - 2 1 - *

[122] Two Bar - 1 12 4 - *

Lshape Central 1 3 3 - *

[142] Cantilever Central 1 2 1 - *

Two Bar Central 1 2 1 - *

[6] Cantilever Central - 2 1 - *

Michell* - 1/1 1 1.2 -

[139] Michell* - 30/15 6 6 - *

Cantilever Bottom 80 3.2 2 - *

[137] MBBB - 1 3 1 1

Two Bar - 1 24 10 1 *

Cantilever Central 1 5 3 1 *

[10] Cantilever Central 1 2 1 - *

Michell - 1 1 1.2 -

Cantilever Central 1 5 3 2.4(v) *

Tshape - - - - - *

[95] Cantilever Top 1000000000 4 2 1 *

MBBB - 1 3 1 -

[138] Two Bar Central 80 2 1 - *

Michell* - 30/15 6 6 - *

[25] Cantilever Central 10 0.2 0.05 - *

MBBB - 10 0.3 0.05 -

[8] Cantilever Central - - - - *

Two Bar Central - - - -(v) *

Table 4.5: Statistics from topology optimization literature
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Article Test Type Load
region

Load Size M L t Hold
Type

[60] Lshape Central - - - - *

Cantilever Top - - - - *

[125] MBBB - - 3 1 -

[162] Cantilever Bottom 800 34 22 - *

Michell* - 300/150 6 6 - *

Two Bar - 800 60 25 - *

Michell - 800 60 60 - *

Michell - 800 60 60 -

MBBB - 80 12 4 - *

[140] Two Bar - 40000 2 1 - *

Cantilever Bottom - - - - *

MBBB - 20000 1.2 0.4 - *

Michell* - 30/5 - - - *

[22] Cantilever Central 1 3.2 2 - *

MBBB - 1 3 1 -

[36] - - - - - -

[106] Cantilever Central 500 0.48 0.08 0.08(v) *

[120] Cantilever Central - 8 5 - *

MBBB - - 3 1 - *

[34] Cantilever Central - 1.5 1 1(v) *

Cantilever Bottom - 1.5 1 0.4(v) *

[19] Cantilever Central - - - - *

[116] Cantilever Central - - - - *

MBBB - - - - -

[123] Cantilever Central 10 80 50 -

Michell* - 10/10 20 20 1

Michell - 10 20 20 1

MBBB - 10 500 200 -

[50] Cantilever Central - - - - *

[18] Cantilever Central - - - - *

Cantilever Bottom - - - - *

Table 4.6: Statistics from topology optimization literature

4.3 Proposed benchmark problems

In this section we provide and analyze the frequencies of different geome-
tries, service conditions and properties which are the basis for the proposed
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benchmark. First, we analyse the frequency of domain dimensions, fixed
regions and loads, based on information gathered from the corresponding
articles. Using this information, we propose a benchmark of problems for
the 13 most common configurations.

4.3.1 Load magnitudes and properties of the material

Loads

Loaded segments have been established in Figures 4.1,4.2,4.3,4.4,4.5 and
4.6 using literals P and Q. The magnitude of the loads is defined in Table
4.7.

Test Test type P Q

Cantilever(Figure 4.1) Load at Center(CLC) 8.6e4 N -

Load at Bottom(CLC) 6.2e4 N -

Load at Top(CLC) 6.2e4 N -

Short Cantilever(Figure 4.2) Load at Center(SCLC) 9.0e4 N -

Load at Bottom(SCLB) 5.8e4 N -

Load at Top(SCLT) 5.8e4 N -

LShape(Figure 4.3) Load at Center(LLC) 1.5e4 N -

Load at Top(LLT) 1.5e4 N -

Michell(Figure 4.4) One Load(OLM) 5.6e4 N -

Two Equal Loads(TELM) 2.8e4 N -

Two Different Loads(TDLM) 3.72e4 N 1.86e4 N

MBBB(Figure 4.5) - 2.7e4 N -

Two Bars(Figure 4.6) - 15.3e4 N -

Table 4.7: Loads values for tests

All the loads are uniformly distributed among 10% of the length of the
side to which they are applied. The loads are set in such a way that the
Security Factor(SF), calculated with the full domains (initial structures), is
approximately 0.75. Therefore, we can be sure that every initial structure
is feasible and that a realistic load is set, that is to say, that the work
performed by the structure is close to its limit. SF is the value given by
SF = σmax

σy
where σmax is the maximal von Mises stress in the structure,

and σy is the yield stress which is a material property.
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Properties of the material

For the proposed test problems the material used is the ASTM A-36 steel,
one of the most commonly used material in real-world structural mechanics.

• Young modulus = 2.11E11 Pa

• Poisson ratio = 0.29

• Density = 7874 kg/m3

• Yield stress = 2.2E8 Pa

4.3.2 Domains, dimensions and boundary conditions

Cantilever

Figure 4.1 shows a Cantilever domain and boundary conditions in three
different fashions. This test problem is reported in 67 of the 103 articles
reviewed. In these 67 articles, there are 91 different Cantilever tests prob-
lems. In 64 of the 91 tests, the load is at the center on the right side as
shown in Figure 4.1(a). In 19 tests it is at the bottom on the right side
as shown in Figure 4.1(b). In 8 tests, it is at the top on the right side
as shown in Figure 4.1(c). In 19 tests, the dimensions are the same as
those in Figure 4.1, and in 40 tests, the dimensions have the same relation
(R1 : R2) = (1 : 2). In 79 tests, the displacement-conditioned segment is
the same as the one proposed in this benchmark.

(a) Cantilever Load at Center (CLC) (b) Cantilever Load at Bottom (CLB)
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(c) Cantilever Load at Top (CLT)

Figure 4.1: Cantilever tests.

Short Cantilever

Figure 4.2 shows the Short Cantilever domain and boundary conditions.
This test problem is reported in 8 of the 103 articles reviewed. In these 8
articles, there are 10 different Short Cantilever test problems. In 2 of these
10 tests, the load is at the center on the right side as shown in Figure 4.2(a).
In 6 tests it is at the bottom on the right side as shown in Figure 4.2(b).
In 2 tests, it is at the top on the right side, as shown in Figure 4.2(c). In
5 tests the dimensions are the same as those in Figure 4.2, and in 10 tests
the dimensions have the same relation (R1 : R2) = (1 : 1). In 7 tests, the
displacement-conditioned segment is the same as the one proposed in this
benchmark.

(a) Short Cantilever Load at Center
(SCLC)

(b) Short Cantilever Load at Bottom
(SCLB)
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(c) Short Cantilever Load at Top
(SCLT)

Figure 4.2: Short cantilever tests.

L Shape test

Figure 4.3 shows the L Shape domain and boundary conditions. This test
is reported in 20 of the 103 articles reviewed. In these 20 articles, there are
21 different L Shape tests problems. In 12 tests, the load is at the center
on the right-bottom side, as shown in Figure 4.3(a). In 9 tests, it is at
the top on the right-bottom side, as shown in Figure 4.3(b). In 8 tests,
the dimensions are the same as those in Figure 4.3, and in 13 tests, the
dimensions have the same relation (R1 : R2) = (0.6 : 0.4). In 17 tests, the
displacement-conditioned segment is the same as the one proposed in this
benchmark.

(a) LShape Load at Center(LLC) (b) LShape Load at Top(LLT)

Figure 4.3: LShape tests.
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Michell

Figure 4.4 shows the Michell domain and boundary conditions. This test
problem is reported in 28 of the 103 articles reviewed. In 28 articles there
are 32 different Michell problems tests. In 20 of these 32 tests, there is only
one load on the left-bottom side, as shown in figure 4.4(a). In 7 tests there
are two equal loads, as shown in figure 4.4(b). In 5 tests, there are two
different loads, as shown in Figure 4.4(c). In 7 tests, the dimensions are
the same as those in Figure 4.4, and in 18 the dimensions have the same
relation (R1 : R2) = (1 : 1). In 20 tests, the displacement-conditioned
segment is the same as the one proposed in this benchmark.

(a) One Load Michell(OLM) (b) Two Equal Loads Michell(TELM)

(c) Two Different Loads
Michell(TDLM)

Figure 4.4: Michell tests.
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MBBB

Figure 4.5 shows the MBBB domain and boundary conditions. This test
problem is reported in 28 of the 103 articles reviewed. 29 different MBBB
problem tests are performed in the 28 articles. In all 29 tests, fixed and
loaded areas are located in the same position in the geometry. In 8 tests,
the dimensions are the same as those in Figure 4.5, and in 16 tests, the
dimensions have the same relation (R1 : R2) = (1 : 3). In 20 tests, the
displacement-conditioned segment is the same as the one proposed in this
benchmark.

Figure 4.5: MBBB test

Two Bars

Figure 4.6 shows the Two Bars domain and boundary conditions. This
test problem is reported in 12 of the 103 articles reviewed. There are 12
different Two Bars problem tests. In all 12 tests, fixed and loaded areas
are located in the same position in the geometry. In 5 tests, the dimensions
are the same as those in Figure 4.6, and in 6 tests, the dimensions have the
same relation (R1 : R2) = (1 : 2). In 12 tests, the displacement-conditioned
segment is the same as the one proposed in this benchmark.
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Figure 4.6: Two Bars tests

In the next section, we propose a set of meshes for the FEM that could
be used to approximate the displacements and stresses of the structures.

4.3.3 Meshes

Figures 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12 show meshes designed for each
test problem. Every side of each figure shows the number of elements into
which it is divided. The meshes were defined according to the following
criteria:

• They must use exact square elements. In general, it is assumed that
the final shape is not known, square elements represent a kind of
equilibrium for numerical error caused by the element shape.

• Nodes positions must permit the exact setting of the boundary con-
ditions, that is to say, one must be able to apply the load in the exact
segment where it is defined.

• All meshes must have at least 10 000 elements in order to produce
adequate numerical results and maintain a relatively short computa-
tional solving time.



54 CHAPTER 4. BENCHMARK FOR TOPOLOGY OPTIMIZATION

Using the shortest length side as a basis, and with the purpose of ac-
complishing the above conditions, we use the following algorithm:

1. Set a partition parameter p = 1.

2. The side of minimal length is partitioned by 10p.

3. The other sides are partitioned so that square elements are generated.

4. If the number of elements is less than 10 000, increase p = p+ 1 and
go to step 2. Otherwise, the procedure terminates.

Cantilever

Figure 4.7 shows the mesh for the Cantilever domain. The number of
elements/partitions for each side is indicated. For all of the Cantilever
test problems we propose to use 12 800 square elements with an area of
0.0125x0.0125 = 0.000156 m2. A uniformly distributed load P is applied
to 9 nodes.

Figure 4.7: Cantilever mesh

Short Cantilever

Figure 4.8 shows the mesh for the Short Cantilever domain. The num-
ber of elements/partitions for each side is indicated. For all of the Short
Cantilever test problems we propose to use a mesh with 10 000 elements.
Every square element has an area of 0.01x0.01 = 0.0001 m2. A uniformly
distributed load P is applied to 11 nodes.
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Figure 4.8: Short Cantilever mesh

L Shape

Figure 4.9 shows the mesh for the L-shape domain. The number of ele-
ments/partitions for each side is indicated. For all the LShape tests we
propose a mesh with 14 400 elements. Every square element has an area
of 0.01x0.01 = 0.0001 m2. A uniformly distributed load P is applied to 7
nodes in each test.

Figure 4.9: LShape mesh
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Michell

Figure 4.10 shows the mesh for the Michell domain. The number of el-
ements/partitions for each side is indicated. For all the Michell tests we
propose a mesh with 10 000 elements. Every square element has an area
of 0.01x0.01 = 0.0001 unit2. Uniformly distributed loads P and Q can be
applied to 11 nodes in each test.

Figure 4.10: Michell mesh

MBBB

Figure 4.11 shows the mesh for the MBBB domain. The number of ele-
ments/partitions for each side is indicated. We propose to use 10 800 square
elements with an area of 0.01666x0.01666 = 0.0002777 m2. A uniformly
distributed load P is applied to 19 nodes.

Figure 4.11: MBBB mesh
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Two Bars

Figure 4.12 shows the mesh for the Two Bars domain. The number of
elements/partitions for each side is indicated. We propose to use 12 800
square elements with an area of 0.0125x0.0125 = 0.000156 m2. A uniformly
distributed load P is applied to 17 nodes.

Figure 4.12: Two Bars mesh
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Chapter 5

SIMP method: analysis and
proposal of modifications

The Solid Isotropic Material with Penalization(SIMP) is one of the most
popular methods for topology optimization, developed by M. P. Bendsoe
[17] in 1989 and strongly studied since then. In this section of the work, a
detailed analysis of this method is presented. In addition, two modification
to the SIMP are introduced: 1) a new convergence criterion that consider-
ably reduces the computational cost, and 2) a SIMP version which could
be used to solve the minimal volume problem.

5.1 Analysis of the SIMP method

SIMP is an homogenization method where every element has a particular
micro-structure. A macro-parameter xe is assigned to the micro-structure
of every element e, it can take values in the range [xmin, xmax] (where xmin
is around to 1E − 3 and xmax = 1). The xe value corresponds to the
material proportion in the micro-structure of the element e, making pos-
sible the simulation of the structure under different material distributions.
Macro-parameters Young modulus E and material density ρ can be modi-
fied according to the formulas: Ee = xpeE and ρe = xpeρ. An element with
a lower material proportion is not as stiff as a solid one. The parameter p
is called power penalization, its objective is penalizing intermediate values

59
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of xe in function of its own value, carrying out a polynomial penalization
as shown in graph of figure 5.1, where a small change on material propor-
tion xe results a high penalization in stiffness and density of the element
e. Graph on figure 5.1 shows the performance of p = [1, 2, 3, 4]. For the
numerical simulations in this work p = 3.

Figure 5.1: Behavior of power penalization parameter

SIMP is a non-population based method for compliance problems. It
starts over an initial solution and updates the design variables, searching for
better solutions iteratively. The updating formula for the design variables
is based on mathematical and heuristic approaches. The mathematical ap-
proach computes the objective function gradient and applies a regularized
fixed point method to get the updating equation, which leads to values of
xe where the gradient is zero. The heuristic approach is composed by some
steps that modify the xe values obtained by the updating equation in order
to guide the algorithm through “smoother” solutions.

5.1.1 Derivation of the variable update step

In the compliance optimization model, if the problem considers self-weight,
the force vector f depends on design variables x, that is to say f = f(x).
If self-weight is not considered, f is constant and the compliance model in
equation (3.1) can be written an follows:
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min C(x) = u(x)Tf = u(x)TK(x)u(x). (5.1)

According to the first constraint in equation (3.2):

K(x)u(x) = f . (5.2)

In SIMP method, the objective function in equation (5.1) is augmented
considering the volume constraint in equation (3.3) through a Lagrangian:

min J(x) = C(x) + λG(x). (5.3)

The derivative of the function (5.3) is calculated by:

∂J(x)

∂xe
=
∂C(x)

∂xe
+ λ

∂G(x)

∂xe
. (5.4)

Where the first term is obtained from the derivative of equation (5.1) re-
spect to the design variables xe:

∂C(x)

∂xe
= u′(x)Tf = u′(x)TK(x)u(x). (5.5)

Deriving equation (5.2)(considering that f is constant):

K′(x)u(x) + K(x)u′(x) = 0.

We get the equality:

K(x)u′(x) = −K′(x)u(x).

This equality allows to calculate the derivative u′(x) in terms of the deriva-
tive K′(x), which is easier to calculate considering the factorization of the
variable xe in equation (2.26)
Transposing:

u′(x)TK(x) = −u(x)TK′(x).

Replacing this equality in equation (5.5)

∂C(x)

∂xe
= −uT(x)K′(x)u(x). (5.6)
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This way, we only require to calculate the derivative of the stiffness matrix
respect to each design variable xe, given by:

∂C(x)

∂xe
= −u(xe)

Tk′(xe)u(xe). (5.7)

Based on equation (2.26) and considering the penalization power p, the
derivative of the elemental stiffness matrix is:

k′(xe) = pxp−1e ke (5.8)

Replacing equation (5.8) in (5.7)

∂C(x)

∂xe
= −p(xe)p−1uT (xe)keu(xe) (5.9)

Continuing with the derivative of the second term in equation (5.3):

∂G(x)

∂xe
=
Ve
V0

(5.10)

due to G(x) =
∑N

e=1 xeVe
V0

and

λ = Lagrangian multiplier for volume constraint (5.11)

A local minimum is found when the first optimality condition is fulfilled:

∂J(x)

∂xe
=
∂C(x)

∂xe
+ λ

∂G(x)

∂xe
= 0 (5.12)

A fixed point method is applied to find the parameters x that fulfill
∂J(x)
∂xe

= 0. Substituting the derivatives in equation (5.9) and equation
(5.10):

pxp−1e uTe keue = λ
Ve
V0

(5.13)

pxpex
−1
e uTe keue = λ

Ve
V0

(5.14)

xe =
p[xpe]uTe keue

λVeV0
=
p[xp−1e xe]u

T
e keue

λVeV0
(5.15)
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The update function is :

xe = xe
pxp−1e uTe keue

λVeV0
= xe

−∂C(x)
∂xe

λ∂G(x)
∂xe

= xeBe (5.16)

Some observations about the update function in equation (5.16):

• The Be numerator (−∂C(x)
∂xe

= pxp−1e uTe keue) is always a positive
scalar, due to xe is a value in the range (xmin, 1], p = 3 and for
any ue 6= 0, uTe keue > 0.

• The Be denominator (λ∂G(x)
∂xe

) is also always positive due to λ is a

positive Lagrange multiplier, and ∂G(x)
∂xe

is a quotient between vol-
umes.

The update equation (5.16) updates positive values on design variables.
Nevertheless, it does not ensure that design variables fulfill the constraint
in equation (3.4).

5.1.2 Heuristic Approach

Parameter η for regularizing the fixed point method

The next adjustment is applied to equation (5.16):

xt+1
e = xte

(
−∂C(x)

∂xe

λ∂G(x)
∂xe

)η
= xteB

η
e (5.17)

Factorizing equations (5.16) and (5.17) in the fixed point:

xe − xeBe = xe(1−Be) = 0 (5.18)

xe − xeBη
e = xe(1−Bη

e ) = 0 (5.19)

The fixed points are the same for both equations, so the solution of the
problem is not affected by the use of the parameter η.
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The use of η is related to improving the performance of the method. Pa-
rameter η “smooths” the value of Be. Note that, in equation (5.17), the
update of a design variable, is formed by its current value xe multiplied by
a “factor” Bη

e . A value of Bη
e around 1 produces smooth changes in the

update of xe. The behavior of η on Be is shown in graphic in figure 5.2, it
shows how η approximates the value of Bη

e to 1. For this work η = 1
2

Figure 5.2: Behaviour of parameter η over Be

Update range

A parameter m is used to define an update range [xe−m,xe +m] for each
design variable xe. If equation (5.17) generates a value out of this range,
the variable is updated until the limit of the range that has been overcome
or, in which case, until the variable limit [xmin, 1] that has been overcome.
This heuristic is intended for:

• Avoiding abrupt changes through iterations.

• Validating that the design variables do not overcome the range (xmin, 1]
as is established in the constraint in equation (3.4).
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Considering the update range, the update step is carried out as follows:

xt+1
e = (5.20)

max(xmin,x
t
e −m) if xeB

η
e ≤ max(xmin, x

t
e −m)

xt
eB

η
e if max(xmin, x

t
e −m) < xteB

η
e < min(1, xte +m)

min(1,xt
e + m) if min(1, xte +m) ≤ xteB

η
e

Calculating λ

This parameter is used in equation (5.17), it is calculated by a bisection
method, searching a value that fulfills the volume constraint (equation
(3.3)) as it is stated in algorithm 4:

Algorithm 4 Calculating λ

1: A search range is established: [λinf : λsup]
2: while λsup − λinf > ε do

3: λtmp =
λinf+λsup

2
4: Temporal design variables(xtmp) are updated using λtmp and the vol-

ume for this temporal structure is calculated (V (xtmp)).
5: If V (xtmp) = Vr : break
6: If V (xtmp) > Vr : λinf = λtmp
7: If V (xtmp) < Vr : λsup = λtmp
8: end while
9: λ = λtmp

Filtering

A filtering process is applied to the values of the derivatives ∂C(x)
∂xe

calcu-
lated by (5.9). The filtering modifies the current values of the derivatives,
considering the values of the derivatives on its neighborhood. Neighbor-
hoods are established using radial basis functions. The filtered value on an
element is calculated as follows:

∂Ĉ(x)

∂xe
=

1

xe
∑N

f=1Hf

N∑
f=1

Hfxf
∂C(x)

∂xf
(5.21)
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Where:

Hf = rmin − dist(e, f) (5.22)

Where rmin is a ratio that delimits a region around each element e, all the
elements whose centroid lays inside this region are considered neighbours.
dist(e, f) is the Euclidean distance between centroids of elements e and f .

The filtering avoids the checkerboard phenomenon on the structure, which
occurs when derivatives are calculated independently.

5.1.3 General structure for SIMP

Algorithm 5 shows the general structure for the SIMP:

Algorithm 5 SIMP algorithm structure

1: Entries : p, η, r,m, x, t = 1
2: Initialize xt

3: (k, f)=Assembling(Mesh,Service Conditions)
4: while Convergence not reached do
5: u=FEM(k, f, xt)

6:
∂C(x)
∂xe

= ComplianceDerivative(p, u, k, xt)[Equation 5.9]

7:
ˆ∂C(x)
∂xe

= Filtering(∂C(x)
∂xe

, r)[Equation 5.21]

8:
∂G(x)
∂xe

= VolumeDerivative(xt)[Equation 5.10]
9: λ = Calculatingλ[Algorithm 4]

10: Be = CalculatingBe(λ,
ˆ∂C(x)
∂xe

,∂G(x)
∂xe

)[Equation 5.17]

11: xt+1 = Update(xt, Bη
e ,m)[Equation 5.20]

12: t = t+ 1
13: end while

Despite SIMP has a mathematical approach that ensures optimality, the
filtering could improve the aesthetic of the results, and could be convenient
for the minimization problem. In other words, sometimes the filtering
generates improvements of the aesthetic of the structure, but not for the
minimization of the objective function. An example of this phenomenon is
shown in Results chapter as an extra experiment in OLM test.
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5.2 SIMP with stress constraint: SIMP-SC

SIMP method does not consider information about elemental stresses in
the structure because its objective is to build an optimal structure for the
compliance problem, without considering if the structure is over or under-
stressed.

Stress values are directly calculated because they are derived from dis-
placements. They can be used to get the efficiency of the structure, by
comparing the elemental stresses σe with the yield stress(σY S). The closest
is σe to σY S( considering it is not over stressed, it means that σe < σY S)
the most efficient is such element. If an elemental stress is higher than
σY S , that element (and also the structure) is over stressed and its behavior
changes from elastic to plastic. This is not convenient for real structures,
due to it indicates that they are prone to fail.

Stress values are used to calculate the security factor(SF ) of the struc-
ture. It is given by:

SF =
σmax
σY S

(5.23)

Where σmax is the maximal elemental stress in the structure. If SF < 1,
the structure is not over-stressed.

A contribution of this work is adding the stress constraint to the SIMP
method: SIMP-SC, in order to get efficient structures through a bisec-
tion method. This implies to find an adequate volume that generates an
structure with an SF just below to 1. Algorithm 6 shows the structure of
SIMP-SC.
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Algorithm 6 SIMP-SC algorithm structure

1: A search range is established: [V rinf , V rsup] = [0, 1]
2: while V rsup − V rinf > ε do

3: Vr =
V rinf+V rsup

2
4: Execute SIMP using Vr as volume constraint until reaching conver-

gence and calculate the SF of the final structure.
5: If SF < 1 : V rsup = Vr
6: If SF ≥ 1 : V rinf = Vr
7: end while

The main issue with SIMP-SC is the convergence criterion for the SIMP
(taken from [118]), which is based on the convergence criterion of the fixed
point method. This criterion shows an inconvenience for using the same
ε stopping criterion to reach the convergence for different tests, so, the ε
value must be adapted for each one. Another issue is that sometimes, the
convergence is not reached even when the solution(visual and numerical)
does not change significantly in consecutive iterations, this provokes an
stagnation. In the SIMP-SC method it is important that SIMP converges
in a small number of iterations using the same convergence parameters, in
order to adjust the volume constraint Vr, so it is necessary to set a conver-
gence criterion less dependent on the particular problem.

In the following section, we carry out an analysis of the convergence cri-
terion (based on fixed point) for the SIMP, and two proposed convergence
criteria which circumvent the mentioned inconveniences. The analysis in-
cludes comparatives between all criteria, based on iterations, objective
function values, and visual differences of the structures for two tests.

5.2.1 Convergence criteria

The convergence criterion for the SIMP is based on the fixed point method,
it is considered that the fixed point method converges if the values of xe
are enough similar in two consecutive iterations. Thus, the algorithm stops
if the following criterion is accomplished:

|xt+1 − xt| < e (5.24)
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Equation (5.24) represents that the norm of the difference of the design
variables (xt and xt+1) of two consecutive iterations, must be lower than
a value ε close to zero. Consider that the larger the number of elements,
the larger the norm of the error is, due to the norm is calculated by the
sum of the differences of every element, this issue suggest that the ε value
must be adjusted to every test depending on the mesh size, which is not
convenient for a robust convergence metric. Another issue is that the fixed
point method could guide the updating process contrary to the heuristic,
this could generates an oscillatory phenomenon on the updating every it-
eration, which affects the value of the norm of the convergence criterion.
The fixed point convergence criterion considers only two consecutive itera-
tions, it does not capture the oscillatory phenomenon and complicates the
convergence.

To avoid these issues, we propose the use of the security factor of the
structures of two consecutive iterations, due to it is independent of the
number of elements and it could represent the similarity between two con-
secutive structures. The convergence is reached if the following criterion is
accomplished:

|SF t+1 − SF t| < e (5.25)

Where SF t and SF t+1 are the security factor of two consecutive itera-
tions. An small change in the security factor of two consecutive structures,
usually, represents a high similarity on the shape of those structures. No
matter, this criterion could generate an early convergence. In order to
avoid this inconvenience, we propose adding another criterion based on
the variance of the historic objective function values. This convergence is
reached if the following criterion is accomplished:

1

v

v−1∑
i=0

(c(x)t−i − ˆc(x)v)
2 < e (5.26)

Where v is the number of the last consecutive iterations, c(x)t−i rep-

resent every objective function value in those iterations and ˆc(x)v is the
mean of the objective function values in those iterations. Equation 5.26,
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calculates the variance of the objective function values of the last v con-
secutive iterations, then it evaluates if that variance is lower than a (close
to zero) value epsilon.

Every criterion is tested for two different problems to analyze their per-
formance. Notation for every criterion is 1) Convergence based on Fixed
Point: CFP(this is the original criterion used for SIMP), 2) Convergence
based on Security Factor: CSF and 3) Convergence based on Security factor
and historic Variance: CSV.

Convergence tests

An SCLB and a LLT tests were executed using the three convergence cri-
teria. The tests were stopped until all criterion converged.

Figure 5.3 shows the compliance evolution for the SCLB test, starting in
iteration 10 and finalizing in iteration 183 in logarithmic scale. Notice that
there is an stagnation in the compliance values which starts around the
iteration 20. The mean and variance of compliance from iteration 20 to
183 is 2.8295E1 and 1.0055E − 4 respectively, this suggest an stagnation
in all this range.

Figure 5.3: SCLB compliance evolution

Figure 5.4 shows the visual evolve of the tests results until the iteration
183. Every sub-figure shows the iteration and compliance(C) reached. Note
that visual solution does not change significantly between iterations 20 to
183.
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(a) It 4, C =
8.3641E1

(b) It 6, C =
4.9210E1

(c) It 8, C =
3.4879E1

(d) It
12, C =
2.9318E1

(e) It 16, C =
2.8442E1

(f) It 20, C =
2.8299E1

(g) It 30, C =
2.8279E1

(h) It
50, C =
2.8281E1

(i) It 80, C =
2.8291E1

(j) It
183, C =
2.8307E1

Figure 5.4: Evolution of Short Cantilever test

Figure 5.6 shows the compliance evolution for the LLT test, starting
in iteration 10 and finalizing in iteration 590 in logarithmic scale. Notice
that there is an stagnation in the compliance values which starts around
the iteration 20. The mean and variance of compliance from iteration 20
to 590 is 2.1044E1 and 2.6911E−4 respectively, this suggest an stagnation
in all this range.

Figure 5.5: LLT compliance evolution
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Figure 5.6 shows the visual evolve of the tests results until the iteration
590. Every sub-figure shows the iteration and compliance(C) reached. Note
that visual solution does not change significantly between iterations 20 to
590.

(a) It 6, C =
2.9537E1

(b) It 8, C =
2.6158E1

(c) It 12, C =
2.4125E1

(d) It
20, C =
2.1259E1

(e) It 30, C =
2.1084E1

(f) It 40, C =
2.1062E1

(g) It 80, C =
2.1043E1

(h) It
160, C =
2.1040E1

(i) It
300, C =
2.1037E1

(j) It
590, C =
2.1038E1

Figure 5.6: Evolution of LShape test

Table 5.1 shows the following data for both tests for each criterion:
the e value used for every criterion: eCFP ,eCSF and eCSV (for CSV cri-
terion, the e value is the same for both criteria used: eCSF and eCSV ),
the convergence iteration(CI ), the percent of iterations reached(%), the
compliance reached(C(x)), mean(M) and variance(V) of compliance val-
ues from the iteration 20 to the convergence iteration. This information
provides a comparative for the performance of each test.

Figure 5.7 shows the convergence iteration for every criterion for SCLB
test in sub-figure (a) and for LLT test in sub-figure (b).
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Test Crit e CI % C(x) M V

SCLB
CFP 1E−2 183 100% 2.830E1 2.829E1 1.005E−4

CSF 1E−3 11 6.01% 2.985E1 early early
CSV 1E−3 22 12.02% 2.828E1 2.829E1 4.288E−5

LLT
CFP 1E−2 590 100% 2.103E1 2.104E1 2.691E−4

CSF 1E−3 21 3.55% 2.119E1 2.122E1 2.409E−3

CSV 1E−3 27 4.57% 2.109E1 2.114E1 3.047E−3

Table 5.1: Results of convergence tests for CFP, CSF, and CSV

(a) Convergence criteria for SCLB (b) Convergence criteria for LLT

Figure 5.7: Convergences for criteria on both tests

Results in tests show: a) CFP is an unstable criterion, it requires a high
number of iterations for convergence, even when the method is stagnated
since a lot of iterations, also, compliance reached is not considerably differ-
ent from the other two criteria. There is a large difference in the number
of iterations to reach convergence, in order to reduce this difference, we
must adjust a priori the parameter ε, which is not possible. This shows
a dependence on the problem size. b) CSF is an early convergence crite-
rion, because it stops the algorithm before the compliance and shape of the
structure gets its best value and shape. c) CSV criterion has a well perfor-
mance according to the opportune convergence considering the stagnation
range observed, this avoids the issue with the CFP criterion for SIMP-SC,
also for the considerable reduction of the iterations used and the similarity
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of the compliance reached even for the lower number of iterations. CSV
criterion works using the same value of the parameter ε, even for different
tests, which shows an independence on the problem size.

The integration of the CSV criterion applied to SIMP is named: SIMP
with Stress and Variance convergence Criterion(SIMP-SVC). This version
is tested with all benchmark problems, in order to get a performance com-
parative with the original SIMP. A high saving of the computational cost
is expected, due to the iteration reduction, without diminishing the quality
of the results.

Results obtained for every method implementation is shown at Results
chapter. All 13 benchmark tests were executed using SIMP, SIMP-SVC
and SIMP-SC described in this chapter.



Chapter 6

Evolutionary algorithms for
topology optimization
problems

Evolutionary algorithms are populational-metaheuristic methods used to
solve a variety of global optimization problems with one or more objective
functions. On one hand, topology optimization algorithms are computa-
tionally expensive due to, usually, this kind of algorithms map a finite
element property to an optimization variable, such as the SIMP case, in
consequence, there are as many variables as elements in the finite element
mesh. On the other hand, evolutionary algorithms are not well suited to
handle more than dozens of variables. Another issue is the computational
cost of evaluating the objective function, in which the most expensive step
is to solve a system of linear equations. In order to avoid these incon-
veniences, we propose to modify the individual representation, by means
of a technique based on control points, for reducing the dimension of the
problem, and to use shared-memory parallel computing to distribute the
computational cost of the evaluation of structures.

75
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6.1 Representation based on control points

The proposed individual representation is used to reduce the dimension of
the problem. It turns the problem from binary to real, allowing the use of
mono or multi-objective evolutionary algorithms with real-value represen-
tation.

Figure 6.1 shows the design domain for an OLM test, every red point in-
side represents an element centroid. In the example, the mesh is formed by
10,000 elements. In a conventional topology optimization problem, every
red point would represent a design variable.

Figure 6.1: Meshed design domain

A group of points are randomly distributed over the design domain
and approximately equidistant among them, they are called control points.
Figure 6.2 shows an example of 100 control points over the domain of figure
6.1. Note that the number of control points is much lower than the number
of element centroids.
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Figure 6.2: Control points example

Every control point can take a random uniform value in the range [0, 1].
In the z-axis, these values can be seen as heights H, as shown in figure 6.3,
wherein the xy plane, the black and red points represent the control points
and element centroids over the design domain, respectively, and the blue
spheres represent the heights H assigned to control points.

Figure 6.3: Control points heights H
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The element heights h can be calculated through a interpolation given
by:

he =
m∑
j=1

wejHj (6.1)

Where he is the height of the element e, m is the number of control
points in its neighborhood, wej is the weight of the control point j in the
neighborhood of the element e, and Hj is the height of the control point
j. The heights H of control points are always known, and neighborhoods
and weights w are calculated using a radial basis function as follows, the
neighborhood of an element e is formed by the control points inside a circle
with radius r, and center at its centroid, as shown in figure 6.4, where the
four circles represent the neighborhoods for the four example elements,
which are represented by the four cross marks. Solid points represent the
control points in each neighborhood. Note that some control points belong
to many neighborhoods.

Figure 6.4: Elemental neighbourhood example

The weights w for control points in a neighborhood of an element e are
calculated by the following radial basis function:

wej =

{
r − dist(control pointj , e) if r − dist(control pointj , e) ≥ 0
0 otherwise

(6.2)
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Where r is the radius parameter and dist(control pointj , e) is the Eu-
clidean distance between control point j and the centroid of the element e.
Then weights wej are normalized as follows:

wej =
wej
Z

(6.3)

Where Z is the magnitude of the vector formed with the all the dis-
tances r − dist(control pointj , e) ≥ 0.

Figure 6.5 shows, from different views, the interpolation, using equation
6.1. Red spheres are the elemental heights forming a surface.

(a) Corner view 1 (b) Corner view 2

(c) Top view (d) Lateral view

Figure 6.5: Interpolation of elemental heights from control point heights
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The next step is thresholding the elemental heights h, in order to assign
a value to each design variable xe. The threshold value is t = 0.5. This way,
xe = xmin if he < t, or xe = 1 otherwise. Figure 6.6 shows, from different
views, the elemental heights h after the thresholding, the green surfaces,
above and below the red surface, are the thresholding result, he = xe = 1
at the top surface and he = xe = xmin at the bottom surface.

(a) Corner view 1 (b) Corner view 2

(c) Top view (d) Lateral view

Figure 6.6: Thresholding of elemental heights to assign values to design
variables

Once design variables values are assigned, the elastic problem is solved
by means of the finite element method, in order to calculate elemental dis-
placements, stresses and the objective function or functions.
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The number of design variables is considerably reduced from dozens of thou-
sands to hundreds, in consequence, and individual represents the heights
of the control points. Hereafter, the described process for generating a
structure from control points heights is called: structure generation.

Control point locations and neighborhoods are established only once during
the algorithm execution. An individual is coded as an array of heights of
control points. This representation allows the use of real-coded evolution-
ary algorithms. For this work, two mono-objective evolutionary algorithms
are implemented for the compliance optimization, and a multi-objective is
implemented for the optimization of both conflicting functions: compliance
and volume.

6.2 Parallel evaluation

As mentioned in chapter Theoretical framework, shared memory paral-
lelization is used indirectly for linear algebra operations ( mainly the solu-
tion of systems of linear equations) due to it is already implemented in the
FEMT library.

The evaluation step is parallelized using a master-slave scheme with dis-
tributed memory. Master sends a section of the population to each slave,
which receives it and carry out the structure generation. Then, slaves re-
turn the calculated fitnesses.

The scalability and performance of the parallelization is tested according
to the following conditions: using a population size of 750 with 75 control
points, in a mesh with 900 elements, we vary the number of slave nodes,
and compute the time and the speed-up(the quotient between the serial
and the parallel time). They are shown in figure 6.7. As it is shown, on
one hand, the speed-up shows an impressive reduction of the computational
time, about eight times faster than the original when using ten slaves, on
the other hand, the time reduction shows that the speed-up is, actually,
non-linear, and there is an overhead which increases with the number of
slaves. A logical explanation is that the master increases the overhead,
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because of it must manage more slaves, So, it is possible that a different
topology of the communication network for the paralellization would reduce
this overhead, nevertheless, the current scheme is sufficient for our needs.
The execution is carried out using from 1 node to 11 different nodes.

(a) Execution time for 1-11 slaves (b) SpeedUp for 1-11 slaves

Figure 6.7: Calculating Times and Speed Up for test

6.3 Mono-objective algorithms: solving compli-
ance problems

Two mono-objective evolutionary algorithms are implemented: the contin-
uous univariate marginal distribution algorithm (UMDA c) and a genetic
algorithm(GA). A general description of each one is given in the theoret-
ical framework in chapter 2. In this section, the details of these methods
oriented to the solution of the compliance problem are described.

6.3.1 Volume constraint

In order to solve the compliance problem in equation 3.1, we need to fullfil
the constraint of delivering a fraction of the initial volume. Hence, for this
purpose, we apply a volume fitting procedure based on the Evolutionary
Structural Optimization(ESO) method [160], which consists in iteratively
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eliminating a portion of low stressed elements until reaching the desired
volume. Note that this procedure involves modifying the xe values of low
stressed elements and, therefore, modifying their heights he. Once the
structure fulfills the volume constraint, we modify the heights of the con-
trol points H in the respective individual, through the solution of a local
optimization problem, with the purpose of mapping back the elemental
volume modifications.

• The structure generation procedure generates structures with a high
diversity of volumes, we are only interested in those with a volume
over and close to the volume constraint Vr. This group of structures
is called the interest group, and it is obtained using a parameter called
valid volume: vv. The interest group is formed by the structures with
a volume in the range [Vr, Vr +vv]. Figure 6.8a) shows an example of
one structure given by the structure generation process, its volume is
0.5 and the volume constraint is Vr = 0.45.

• For each structure in the interest group, elemental Von Mises stresses
are calculated. Then, the less stressed elements are removed until
reaching the volume constraint Vr. Note that the elements heights
h have been removed, but the control points heights H remain un-
changed. Figure 6.8 b) shows the structure after removing elements.

(a) Original structure (b) Structure after removing
elements

Figure 6.8: Resulting structure after removing elements to fulfill the volume
constraint
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• In order to map back the modifications to the control point heights
H, after removing elements, we use a gradient descend algorithm.
Thus, we propose an objective function in equation 6.4.

R =
1

2Z

n∑
e=1

(he − ĥe)2 (6.4)

Where n is the number of elements, he are the elemental heights in the
original structure, ĥe are the elemental heights after the removing-
elements procedure, and Z is a normalization variable. Replacing
equation 6.1 in 6.4:

R =
1

2Z

n∑
e=1

(
m∑
j=1

wejHj − ĥe)2 (6.5)

Then, we must minimize this function. For this purpose, we compute
its gradient respect to every height Hj :

∂R

∂Hj
=

1

Z

l∑
e=1

(

m∑
j=1

wejHj − ĥe)wej =

l∑
e=1

(he − ĥe)
wej
Z

(6.6)

Where l is the number of elements that contains the control point j
into its neighborhood. Weights wej are calculated with equation 6.2
and Z normalizes them respect to all elements in the neighborhood
of the control point j, in order to facilitate the search of an step size
for the gradient.

Figure 6.9 shows, with red circles, the regions where the most of the
elements have been removed. Hence, the gradients of control points
around those regions must be the highest.
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Figure 6.9: Marking zones with element reduction.

Figure 6.10 shows, with red strips the magnitude of every control
point gradient, and with red circles, the areas where the gradients
are higher. A high gradient represents a high modification of the
control point. Note that the elements which depend on a control
point with a high gradient are the most reduced, therefore, the most
affected elements are those with the lowest height value.

(a) Control point gradients view 1. (b) Control point gradients view 2.

Figure 6.10: Control points gradients.

• To update the control points that generate a structure that fulfills
the volume constraint, a steepest descend algorithm is followed us-
ing the calculated gradient, in agreement to the updating formula:
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Hj = Hj − α ∂R
∂Hj

, where α is a step size. To calculate α, a bisection

method is used as follows: we tests an initial α, then it is reduced or
increased until the volume constraint is fulfilled. Algorithm 7 shows
the calculation of α and the update of the control point heights H.

Algorithm 7 Calculate of α and update of control points heights H
1: α = 100
2: update = α

2

3: Htemp = H − α ∂R
∂H

4: xtemp = generate structure(Htemp)
5: if vr < V (xtemp) < vr + e then
6: H = Htemp

7: exit
8: end if
9: if V (xtemp) > vr then

10: α = α+ update
11: else
12: α = α− update
13: end if
14: update = update

2
15: go to 3 :

Where V (xtemp) is the volume of the temporal structure xtemp.

• Once control points are updated, the new structure is generated, and
displacements and compliance are calculated ensuring the structure
fulfills the volume constraint. Figure 6.11a) shows a comparative be-
tween the structure with removed elements by stress(at the bottom
with blue) and the new structure generated with the upgraded control
points(at front with yellow). Note that the elements around to re-
gions of control points with the highest gradients have been removed.
Figure 6.11b) shows the new structure which fulfills the volume con-
straint Vr.
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(a) Structure with removed
elements(blue) vs new struc-
ture(yellow)

(b) New structure

Figure 6.11: Generating structure with updated control points

6.3.2 Mono-objective implementations details

Mono-objective implementations are taken from algorithm 1 for GA case
and algorithms 2 and 3 for the UMDA. A general description of each step is
given in the theoretical framework chapter. The following are the details,
of each step in the implementations, oriented to the solution of compliance
problems:

• Generate population: the initial population is generated using a uni-
form distribution with a range [xmin, 1] for each control point value
on every individual.

• Stopping criterion: it is established by a maximal number of itera-
tions.

• Selection: it consist of two sub-steps:

– Sub-step 1: selection by valid volume(vv). All the individuals
that generate structures with a volume in the range [Vf , Vf +vv]
are selected.



88 CHAPTER 6. EVOLUTIONARY ALGORITHMS FOR TO

– Sub-step 2: selection by truncation. The currently selected in-
dividuals are sorted upwardly by compliance, and the first half
is selected.

• Mutation and crossover step:

– For UMDA, the crossover and mutation are replaced by the
process described in algorithm 3. Children are generated by
estimated distribution.

– For GA, the crossover and mutation are carried out with the op-
erators simulated binary crossover(using parameters crossover probability =
0.9 and ηc = 10 from [48]) and polynomial mutation (using
parameters mutation probability = 1

number of control points and
ηm = 20 from in [47]). The implemented codes of these meth-
ods and parameters values are taken from [3].

• Replacement: it is carried out by the following process:

– The selected individuals are preserved for the next generation.

– The remaining individuals are generated using the respective
method, generating n new individuals, where n = population size−
selected size. For each algorithm the respective method to gen-
erate individuals is as follows:

∗ UMDA: using the estimated distribution to generate new n
individuals.

∗ GA: we randomly take two individuals from the selected set
and apply the crossover operator to generate two children,
the operator is repeated until generating n individuals. If n
is an odd number, the last children is generated as a replica
of one individual randomly chosen.

6.4 Multi-objective algorithms: solving compli-
ance and volume problems

The NSGA-II is described in the section Stochastic optimization. It is used
to optimize both, compliance and volume objective functions.
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Compliance and volume are opposed objective functions, the minimal com-
pliance structure is full of material and the minimal volume structure is
empty of material.

For this case, the constraints of both optimization models are not consid-
ered during the execution, but they are taken into account as a post-process
explained below with an example. The solution the NSGA-II is a Pareto
front as shown in figure 6.12. Among these solutions, there are optimal
compliance(full material) and optimal volume(empty material) approxi-
mations, but additionally, there are other solutions with an intermediate
compromise between compliance and volume which are interest because
they fullfil the model constraints (equation (3.3) and (3.7)). For example,
1) for compliance problems, we can select only structures around a specific
volume, for example V (x) = 0.41 as shown with a red box in figure 6.12
or 2) for volume problems, we can select only structures with a specific
security factor, for example SF (x) = 0.98 as shown with a blue box in
figure 6.12. This way, we can deliver solutions for both problems.
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Figure 6.12: Example of pareto front in topology optimization.

Thus, in the results chapter, NSGA-II solutions for compliance prob-
lems are reported as NSGA-VC(volume constrained) and NSGA-II solu-
tions for volume problems are reported as NSGA-SC(stress constrained).

6.4.1 Multi-objective implementations details

NSGA-II implementation is based on algorithm 1. A general description of
each step is given in the theoretical framework chapter. The following are
the details of each step in the implementation of NSGA-II oriented to the
solution of compliance and volume problems:

• Generate population: the initial population is generated using a uni-
form distribution with a range [xmin, 1] for each dimension of each
individual.
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• Stopping criterion: it is established by a maximal number of itera-
tions.

• Selection step: this process is by a binary tournament, two individuals
are uniformly random taken and the best is selected according to
their Pareto rank and crowding distance. This operation is repeated
n times, where n is the population size.

• Mutation and crossover step: they are carried out through the opera-
tors: simulated binary crossover(using parameters crossover probability =
0.9 and ηc = 10 from [48]) and polynomial mutation (using parame-
ters mutation probability = 1

number of control points and ηm = 20 from
in [47]). The implemented codes of these methods and parameters
values are taken from [3]. These steps generate n children, where n
is the population size.

• Replacement step: it is carried out adding the children to the original
population generating a population of size 2n, where n is the original
population size. The population for the next iteration is generated
according to the following criteria:

– Adding individuals from the first ranks until reach n individuals.

– If the next front to add, generates a population bigger than
n, only the necessary individuals are added according to their
crowding distances.

The results obtained by each algorithm are shown at the Results chap-
ter. The 13 benchmark tests are reported with the GA, UMDA and
NSGA(VC and SC) methods.
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Chapter 7

Results

In this chapter, results for the SIMP, SIMP-SVC, SIMP-SC, GA, UMDA
and NSGA are presented. Results are grouped by 1) volume minimization
results from: SIMP-SC and NSGA-SC and 2) compliance minimization
results from: SIMP-SVC, SIMP, UMDA, GA, and NSGA-VC. They are
reported from table 7.2 to 7.14.

In result tables we report the following information: Row 1) Initial se-
curity factor(ISF), this is calculated with the whole domain with all design
variables equal to 1. It is the same for all methods and relevant only for
volume problems. Row 2) Number of iterations(NI). Row 3) Initial vol-
ume(IV). Row 4) Final volume(FV). Row 5) Final volume fraction(FVF),
which is also the volume constraint for compliance problems. Row 6) Final
compliance reached(C(x)). Row 7) Average of the of X displacements in
nodes with external forces(ADX). Row 8) Average of absolute X displace-
ment in nodes with external forces(|ADX|). Row 9) Average of Y displace-
ments in nodes with external forces(ADY). Row 10) Average of absolute
Y displacements in nodes with external forces(|ADY|). Row 11) Average
of norms of displacements in nodes with external forces(A||DXY||). Row
12) Security factor of the delivered solution(SF). Row 13) and row 14) Av-
erage and standard deviation of the elemental von Mises stresses over the
yield stress(Avg(Eff) and SD(Eff) respectively). This value gives a general
idea of the efficiency of the structure, the most efficient structure has an
average of 1 and standard deviation of 0. Row 14) Maximal elemental Von
Mises stress in structure(MaxVM). The last four values are not relevant

93
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for the compliance problems, because stresses are not considered in these
problems. In addition, we report for each test: 1) material distribution,
2) displacement distribution, 3) stress distribution, and 4) histograms of
the von Mises stress over yield stress, which describe the structure effi-
ciency,(the most efficient structure has the most of these values close to 1,
which means that the most of the elements are not low stressed).

Parameters for the local optimization algorithms (described in chapter 4)
are: a) p = 3, b) η = 1

2 , c) m = 0.2, d) rmin = 0.05 d) Vr is reported in
tables as Final Volume Fraction (for compliance problems it is a param-
eter, for volume problems, it is the minimal volume obtained), e) v = 5,
f) convergence values are, e = 1.0e − 2 for SIMP and e = 1.0e − 3 for
SIMP-SVC and SIMP-SC(for all e values), and g) itermax = 150 for SIMP
and SIMP-SVC and itermax = 250 for SIMP-SC. Despite the derivation of
the SIMP does not consider structural self-weight, tests executed in here
do it, in order to consider as much as possible real-world problems.

Parameters for the global optimization methods (described in chapter 5)
are:

Test r vv Control Points Population size Max Iterations
(Dimension (Stopping

size) criterion)

CLC 0.15 0.2 200 2000 500

CLB 0.15 0.2 200 2000 500

CLT 0.15 0.2 200 2000 500

SCLC 0.15 0.1 100 1000 500

SCLB 0.15 0.1 100 1000 500

SCLT 0.15 0.1 100 1000 500

LLC 0.15 0.1 100 1000 500

LLT 0.15 0.1 100 1000 500

OLM 0.15 0.1 100 1000 500

TELM 0.15 0.1 100 1000 500

TDLM 0.15 0.1 100 1000 500

MBBB 0.15 0.3 300 1500 500

Two Bars 0.15 0.2 200 2000 500

Table 7.1: Parameters for global optimization methods
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An extra experiment is carried out for OLM test. It is an hybrid (or
memetic) optimization test: global + local, mixing the results of an evo-
lutionary algorithm as the entry variables configuration for SIMP-SVC.
A detailed explanation of this experiment is described in the section One
Load Michell(OLM).

7.1 Cantilever with a Load at Center (CLC)

CLC test is described in chapter 4 in figure 4.1(a). First, we describe
the results obtained for volume minimization and then, for compliance
minimization.

7.1.1 Results for volume minimization methods

Figures 7.1 and 7.2 show results for the SIMP-SC and NSGA-SC respec-
tively: (a) the material distribution on the design domain, (b) the normal-
ized displacements over the structure, and c) the von Mises stresses over
the structure.

(a) CLC material

(b) CLC displacements (c) CLC VonMises

Figure 7.1: CLC visual results with SIMP-SC
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(a) CLC material

(b) CLC displacements (c) CLC VonMises

Figure 7.2: CLC visual results with NSGA-SC

SIMP-SC shows the most aesthetic shape according to the material
distribution and the best minimization performance according to the vol-
ume reached (shown in the volume minimization columns of table 7.2),
where the volumes are 1.2714e0 and 1.3879e0 for SIMP-SC and NSGA-SC
respectively.

Figures 7.3(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.

(a) SIMP-SC (b) NSGA-SC

Figure 7.3: CLC: VM/YS elemental histogram
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SIMP-SC shows the most efficient performance, according to the his-
tograms and the average and standard deviation (shown in the volume
minimization columns of table 7.2), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SC than when using NSGA-SC.

7.1.2 Results for compliance minimization methods

Figures 7.4, 7.5, 7.6, 7.7 and 7.8 show results for the SIMP-SVC, SIMP,
GA, UMDA and NSGA-VC, respectively: (a) the material distribution on
the design domain, (b) the normalized displacements over the structure,
and c) the von Mises stresses over the structure.

(a) CLC material

(b) CLC displacements (c) CLC VonMises

Figure 7.4: CLC visual results with SIMP-SVC
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(a) CLC material

(b) CLC displacements (c) CLC VonMises

Figure 7.5: CLC visual results with SIMP

(a) CLC material

(b) CLC displacements (c) CLC VonMises

Figure 7.6: CLC visual results with GA
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(a) CLC material

(b) CLC displacements (c) CLC VonMises

Figure 7.7: CLC visual results with UMDA

(a) CLC material

(b) CLC displacements (c) CLC VonMises

Figure 7.8: CLC visual results with NSGA-VC
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SIMP shows the most aesthetic shape according to the material distri-
bution and the best minimization performance according to the compliance
reached (shown in the compliance minimization columns of table 7.2). On
the other hand, considering the iterations, SIMP does not converge within
the maximal iterations, and SIMP-SVC does it in 42, saving at least the
71.34% of the iterations. The compliance reached is 2.3086e− 1 for SIMP
and 2.3029e− 1 for SIMP-SVC, which do not represent a significant differ-
ence.

Figures 7.9(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.

(a) SIMP-SVC (b) SIMP

(c) UMDA (d) GA

(e) NSGA-VC

Figure 7.9: CLC: VM/YS elemental histogram
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SIMP-SVC shows the most efficient performance, according to the his-
tograms, and the average and standard deviation (shown in the compliance
minimization columns of table 7.2), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SVC than any other.

Table 7.2 shows the details of the performance of each method. In the
volume minimization columns, it is marked with blue the method that
shows the best performance for volume minimization, and with red the
method that shows the best performance on efficiency. In the compliance
minimization columns it is marked with blue the method that shows the
best performance for compliance minimization and with red the method
that shows the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.4947e-1 - 7.4947e-1 7.4947e-1 - - -

NI 176 500 42 150 500 500 500

IV 2.0e0 2.0e0 2.0e0 2.0e0 2.0e0 2.0e0 2.0e0

FV 1.2714e0 1.3879e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0

FVF 6.3574e-1 6.9395e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

C(x) 1.8473e2 1.6864e2 2.3086e2 2.3029e2 2.4076e2 2.3384e2 2.3748e2

ADX -3.2311e-10 -2.6413e-6 -1.9895e-10 -6.7693e-10 1.4694e-5 -1.6610e-5 1.7415e-5

|ADX| 3.7892e-5 3.8368e-5 4.3923e-5 4.5094e-5 5.7588e-5 5.4477e-5 5.8972e-5

ADY -1.9256e-2 -1.7570e-2 -2.4083e-2 -2.4024e-2 -2.5109e-2 -2.4392e-2 -2.4773e-2

|ADY| 1.9256e-2 1.7570e-2 2.4083e-2 2.4024e-2 2.5109e-2 2.4392e-2 2.4773e-2

A||DXY|| 2.1400e-3 1.9527e-3 2.6764e-3 2.6698e-3 2.7907e-3 2.7110e-3 2.7534e-3

SF 9.9962e-1 9.9916e-1 1.2499e0 1.2435e0 1.4986e0 1.4185e0 1.4764e0

A(Eff) 2.2621e-1 2.2123e-1 3.4061e-1 3.3977e-1 3.1501e-1 3.1178e-1 3.0993e-1

SD(Eff) 6.9561e-2 8.6076e-2 7.2220e-2 7.2117e-2 1.1264e-1 1.0844e-1 1.2082e-1

MaxVM 2.1991e8 2.1981e8 2.7499e8 2.7357e8 3.2969e8 3.1208e8 3.2481e8

Table 7.2: CLC execution data



102 CHAPTER 7. RESULTS

7.2 Cantilever with a Load at Bottom(CLB)

CLB test is described in chapter 4 in figure 4.1(b). First, we describe
the results obtained for volume minimization and then, for compliance
minimization.

7.2.1 Results for volume minimization methods

Figures 7.10 and 7.11 show results for the SIMP-SC and NSGA-SC re-
spectively: (a) the material distribution on the design domain, (b) the
normalized displacements over the structure, and c) the von Mises stresses
over the structure.

(a) CLB material

(b) CLB displacements (c) CLB VonMises

Figure 7.10: CLB visual results with SIMP-SC
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(a) CLB material

(b) CLB displacements (c) CLB VonMises

Figure 7.11: CLB visual results with NSGA-SC

SIMP-SC shows the most aesthetic shape according to the material dis-
tribution and the best minimization performance according to the volume
reached (shown in the volume minimization columns of table 7.3), where
the volumes are 9.2578e − 1 and 1.1354e0 for SIMP-SC and NSGA-SC
respectively.

Figures 7.12(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.

(a) SIMP-SC (b) NSGA-SC

Figure 7.12: CLB: VM/YS elemental histogram
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SIMP-SC shows the most efficient performance, according to the his-
tograms and the average and standard deviation (shown in the volume
minimization columns of table 7.3), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SC than when using NSGA-SC.

7.2.2 Results for compliance minimization methods

Figures 7.13, 7.14, 7.15, 7.16 and 7.17 show results for the SIMP-SVC,
SIMP, GA, UMDA and NSGA-VC, respectively: (a) the material distri-
bution on the design domain, (b) the normalized displacements over the
structure, and c) the von Mises stresses over the structure.

(a) CLB material

(b) CLB displacements (c) CLB VonMises

Figure 7.13: CLB visual results with SIMP-SVC
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(a) CLB material

(b) CLB displacements (c) CLB VonMises

Figure 7.14: CLB visual results with SIMP

(a) CLB material

(b) CLB displacements (c) CLB VonMises

Figure 7.15: CLB visual results with GA
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(a) CLB material

(b) CLB displacements (c) CLB VonMises

Figure 7.16: CLB visual results with UMDA

(a) CLB material

(b) CLB displacements (c) CLB VonMises

Figure 7.17: CLB visual results with NSGA-VC
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On one hand, SIMP-SVC and SIMP show the most aesthetic shape
according to the material distribution, on the other hand, the GA shows
the best minimization performance according to the compliance reached
(shown in the compliance minimization columns of table 7.3). Note that
SIMP does not converge within the maximal iterations, and SIMP-SVC
does it in 39, saving at least the 74% of the iterations. The compliance
reached is 1.2828e2 for SIMP and 1.2911e2 for SIMP-SVC, which do not
represent a significant difference.

Figures 7.18(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.

(a) SIMP-SVC (b) SIMP

(c) UMDA (d) GA

(e) NSGA-VC

Figure 7.18: CLB: VM/YS elemental histogram
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SIMP-SVC shows the most efficient performance, according to the his-
tograms, and the average and standard deviation (shown in the compliance
minimization columns of table 7.3), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SVC than any other.

Table 7.3 has the details of the performance of each method. In the volume
minimization columns, it is marked with blue the method that shows the
best performance for volume minimization, and with red the method that
shows the best performance on efficiency. In the compliance minimization
columns it is marked with blue the method that shows the best perfor-
mance for compliance minimization and with red the method that shows
the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.5264e-1 - 7.5264e-1 7.5264e-1 - -

NI 167 500 39 150 500 500 500

IV 2.0e0 2.0e0 2.0e0 2.0e0 2.0e0 2.0e0 2.0e0

FV 9.2578e-1 1.1354e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0

FVF 4.6289e-1 5.6770e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

C(x) 1.3955e2 1.1602e2 1.2911e2 1.2828e2 1.4255e2 1.2499e2 1.3176e2

ADX -5.6312e-4 -4.8702e-4 -5.3832e-4 -5.3654e-4 -7.4513e-4 -5.2506e-4 -5.3909e-4

|ADX| 5.6312e-4 4.8702e-4 5.3832e-4 5.3654e-4 7.4513e-4 5.2506e-4 5.3909e-4

ADY -2.0173e-2 -1.6755e-2 -1.8660e-2 -1.8540e-2 -2.0598e-2 -1.8062e-2 -1.9037e-2

|ADY| 2.0173e-2 1.6755e-2 1.8660e-2 1.8540e-2 2.0598e-2 1.8062e-2 1.9037e-2

A|DXY|2.311752e-3 1.9250e3 2.1427e-3 2.1293e-3 2.4087e-3 2.0752e-3 2.1835e-3

SF 9.9689e-1 9.9656e-1 9.2184e-1 9.1895e-1 1.0942e0 1.0042e0 1.1945e0

A(Eff) 2.7648e-1 2.0310e-1 2.5631e-1 2.5515e-1 2.4143e-1 2.2981e-1 2.3193e-1

SD(Eff) 5.6441e-2 7.9881e-2 5.4746e-2 5.4179e-2 8.7452e-2 7.5448e-2 8.8541e-2

MaxVM 2.1931e8 2.1924e8 2.0280e8 2.0216e8 2.4074e8 2.2093e8 2.7279e8

Table 7.3: CLB execution data
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7.3 Cantilever with a Load at Top (CLT)

CLT test is described in chapter 4 in figure 4.1(c). First, we describe
the results obtained for volume minimization and then, for compliance
minimization.

7.3.1 Results for volume minimization methods

Figures 7.19 and 7.20 show results for the SIMP-SC and NSGA-SC re-
spectively: (a) the material distribution on the design domain, (b) the
normalized displacements over the structure, and c) the von Mises stresses
over the structure.

(a) CLT material

(b) CLT displacements (c) CLT VonMises

Figure 7.19: CLT visual results with SIMP-SC
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(a) CLT material

(b) CLT displacements (c) CLT VonMises

Figure 7.20: CLT visual results with NSGA-SC

SIMP-SC shows the most aesthetic shape according to the material
distribution and the best minimization performance according to the vol-
ume reached (shown in the volume minimization columns of table 7.4),
where the volumes are 9.257e − 1 and 1.0e0 for SIMP-SC and NSGA-SC
respectively.

Figures 7.21(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.

(a) SIMP-SC (b) NSGA-SC

Figure 7.21: CLT: VM/YS elemental histogram
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SIMP-SC shows the most efficient performance, according to the his-
tograms and the average and standard deviation (shown in the volume
minimization columns of table 7.4), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SC than when using NSGA-SC.

7.3.2 Results for compliance minimization methods

Figures 7.22, 7.23, 7.24, 7.25 and 7.26 show results for the SIMP-SVC,
SIMP, GA, UMDA and NSGA-VC, respectively: (a) the material distri-
bution on the design domain, (b) the normalized displacements over the
structure, and c) the von Mises stresses over the structure.

(a) CLT material

(b) CLT displacements (c) CLT VonMises

Figure 7.22: CLT visual results with SIMP-SVC



112 CHAPTER 7. RESULTS

(a) CLT material

(b) CLT displacements (c) CLT VonMises

Figure 7.23: CLT visual results with SIMP

(a) CLT material

(b) CLT displacements (c) CLT VonMises

Figure 7.24: CLT visual results with GA
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(a) CLT material

(b) CLT displacements (c) CLT VonMises

Figure 7.25: CLT visual results with UMDA

(a) CLT material

(b) CLT displacements (c) CLT VonMises

Figure 7.26: CLT visual results with NSGA-VC
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On one hand, SIMP-SVC and SIMP show the most aesthetic shape
according to the material distribution, on the other hand, the GA shows
the best minimization performance according to the compliance reached
(shown in the compliance minimization columns of table 7.4).

Note that SIMP does not converge within the maximal iterations, and
SIMP-SVC does it in 39, saving at least the 74% of the iterations. The
compliance reached is 1.2828e2 for SIMP and 1.2911e2 for SIMP-SVC,
which do not represent a significant difference.

Figures 7.27(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.

(a) SIMP-SVC (b) SIMP

(c) UMDA (d) GA

(e) NSGA-VC

Figure 7.27: CLT: VM/YS elemental histogram
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SIMP-SVC shows the most efficient performance, according to the his-
tograms, and the average and standard deviation (shown in the compliance
minimization columns of table 7.4), due to the most of the values are closer
to 1 when using SIMP-SVC than any other.

Table 7.4 has the details of the performance of each method. In the volume
minimization columns, it is marked with blue the method that shows the
best performance for volume minimization, and with red the method that
shows the best performance on efficiency. In the compliance minimization
columns it is marked with blue the method that shows the best perfor-
mance for compliance minimization and with red the method that shows
the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.5264e-1 - 7.5264e-1 7.5264e-1 - -

NI 167 500 39 150 500 500 500

IV 2.0e0 2.0e0 2.0e0 2.0e0 2.0e0 2.0e0 2.0e0

FV 9.257e-1 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0

FVF 4.6289e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

C(x) 1.3955e2 1.2803e2 1.2911e2 1.2828e2 1.2906e2 1.2390e2 1.2803e2

ADX 5.6312e-4 5.2836e-4 5.3832e-4 5.3656e-4 5.4327e-4 5.2492e-4 5.2836e-4

|ADX| 5.6312e-4 5.2836e-4 5.3832e-4 5.3656e-4 5.4327e-4 5.2492e-4 5.2836e-4

ADY -2.0173e-2 -1.8504e-2 -1.8659e-2 -1.8540e-2 -1.8651e-2 -1.7906e-2 -1.8504e-2

|ADY| 2.0173e-2 1.8504e-2 1.8659e-2 1.8540e-2 1.8651e-2 1.7906e-2 1.8504e-2

A||DXY|| 2.3117e-3 2.1236e-3 2.1426e-3 2.1293e-3 2.1431e-3 2.0584e-3 2.1236e-3

SF 9.9688e-1 9.9936e-1 9.2182e-1 91892e-1 1.0082e0 1.0038e0 9.9936e-1

A(Eff) 2.7649e-1 2.3371e-1 2.5630e-1 2.5513e-1 2.3295e-1 2.2942e-1 2.3371e-1

SD(Eff) 5.6441e-2 7.4658e-2 5.4744e-2 5.4175e-2 7.7602e-2 7.3949e-2 7.4658e-2

MaxVM 2.1931e8 2.1986e8 2.0280e8 2.0216e8 2.2180e8 2.2085e8 2.1986e8

Table 7.4: CLT execution data
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7.4 Short Cantilever with a Load at Center(SCLC)

SCLC test is described in chapter 4 in figure 4.2(a). First, we describe
the results obtained for volume minimization and then, for compliance
minimization.

7.4.1 Results for volume minimization methods

Figures 7.28 and 7.29 show results for the SIMP-SC and NSGA-SC re-
spectively: (a) the material distribution on the design domain, (b) the
normalized displacements over the structure, and c) the von Mises stresses
over the structure.

(a) SCLC material (b) SCLC displacements (c) SCLC VonMises

Figure 7.28: SCLC visual results with SIMP-SC

(a) SCLC material (b) SCLC displacements (c) SCLC VonMises

Figure 7.29: SCLC visual results with NSGA-SC



7.4. SHORT CANTILEVER WITH A LOAD AT CENTER(SCLC) 117

For this case, we consider that there is a high similarity between visual
results of SIMP-SC and NSGA-SC according to the material distribution,
nevertheless, the NSGA-SC shows the best minimization performance ac-
cording to the volume reached (shown in the volume minimization columns
of table 7.5), where the volumes are 4.3945e−1 and 3.9890e−1 for SIMP-SC
and NSGA-SC respectively.

Figures 7.30(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.

(a) SIMP-SC (b) NSGA-SC

Figure 7.30: SCLC: VM/YS elemental histogram

SIMP-SC shows the most efficient performance, according to the his-
tograms and the average and standard deviation (shown in the volume
minimization columns of table 7.5), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SC than when using NSGA-SC.

7.4.2 Results for compliance minimization methods

Figures 7.31, 7.32, 7.33, 7.34 and 7.35 show results for the SIMP-SVC,
SIMP, GA, UMDA and NSGA-VC, respectively: (a) the material distri-
bution on the design domain, (b) the normalized displacements over the
structure, and c) the von Mises stresses over the structure.
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(a) SCLC material (b) SCLC displacements (c) SCLC VonMises

Figure 7.31: SCLC visual results with SIMP-SVC

(a) SCLC material (b) SCLC displacements (c) SCLC VonMises

Figure 7.32: SCLC visual results with SIMP

(a) SCLC material (b) SCLC displacements (c) SCLC VonMises

Figure 7.33: SCLC visual results with GA
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(a) SCLC material (b) SCLC displacements (c) SCLC VonMises

Figure 7.34: SCLC visual results with UMDA

(a) SCLC material (b) SCLC displacements (c) SCLC VonMises

Figure 7.35: SCLC visual results with NSGA-VC

On one hand, SIMP-SVC and SIMP show the most aesthetic shape
according to the material distribution, on the other hand, the GA shows
the best minimization performance according to the compliance reached
(shown in the compliance minimization columns of table 7.5).

Note that in table 7.5, SIMP-SVC reaches a better compliance than
SIMP, even when SIMP has reached the maximal iterations, in addition,
SIMP-SVC converges in 27 iterations, saving at least the 82% of the max-
imal number. The compliance reached is 5.6164e1 for SIMP and 5.6125e1
for SIMP-SVC, which do not represent a significant difference.

Figures 7.36(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.
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(a) SIMP-SVC (b) SIMP

(c) UMDA (d) GA

(e) NSGA-VC

Figure 7.36: SCLC: VM/YS elemental histogram

SIMP shows the most efficient performance, according to the histograms,
and the average and standard deviation (shown in the compliance mini-
mization columns of table 7.5), due to the average of elemental efficiencies
is closer to 1 when using SIMP than any other.

Table 7.5 has the details of the performance of each method. In the volume
minimization columns, it is marked with blue the method that shows the
best performance for volume minimization, and with red the method that
shows the best performance on efficiency. In the compliance minimization
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columns it is marked with blue the method that shows the best perfor-
mance for compliance minimization and with red the method that shows
the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.5516e-1 - 7.5516e-1 7.5516e-1 - -

NI 138 500 27 150 500 500 500

IV 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0

FV 4.3945e-1 3.9890e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

FVF 4.39453e-1 3.9890e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e0

C(x) 6.2921e1 6.4176e1 5.6125e1 5.6164e1 5.1147e1 5.0920e1 5.1667e1

ADX 9.6287e-9 -2.4251e-6 -1.2925e-8 6.2024e-9 1.4412e-6 7.5318e-7 2.7494e-6

|ADX| 1.8152e-5 2.0347e-5 1.5652e-5 1.5125e-5 1.7288e-5 1.6953e-5 1.7714e-5

ADY -7.6768e-3 -7.8315e-3 -6.8468e-3 -6.8517e-3 -6.2396e-3 -6.2119e-3 -6.3032e-3

|ADY| 7.6768e-3 7.8315e-3 6.8468e-3 6.8517e-3 6.2396e-3 6.2119e-3 6.3032e-3

A||DXY|| 6.9821e-4 7.1234e-4 6.2271e-4 6.2313e-4 5.6759e-4 5.6506e-4 5.7338e-4

SF 9.9822e-1 9.9922e-1 9.0120e-1 8.9053e-1 8.4889e-1 8.4854e-1 8.5900e-1

A(Eff) 2.7610e-1 2.7195e-1 2.4709e-1 2.4739e-1 2.1598e-1 2.1569e-1 2.1682e-1

SD(Eff) 5.4350e-2 7.2235e-2 5.2463e-2 5.0792e-2 6.0822e-2 5.9772e-2 6.2438e-2

MaxVM 2.1960e8 2.1982e8 1.9826e8 1.9591e8 1.8675e8 1.8668e+8 1.8898e8

Table 7.5: SCLC execution data
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7.5 Short Cantilever with a Load at Bottom(SCLB)

SCLB test is described in chapter 4 in figure 4.2(b). First, we describe
the results obtained for volume minimization and then, for compliance
minimization.

7.5.1 Results for volume minimization methods

Figures 7.37 and 7.38 show results for the SIMP-SC and NSGA-SC re-
spectively: (a) the material distribution on the design domain, (b) the
normalized displacements over the structure, and c) the von Mises stresses
over the structure.

(a) SCLB material (b) SCLB displacements (c) SCLB VonMises

Figure 7.37: SCLB visual results with SIMP-SC

(a) SCLB material (b) SCLB displacements (c) SCLB VonMises

Figure 7.38: SCLB visual results with NSGA-SC
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On one hand, SIMP-SC shows the most aesthetic shape according to
the material distribution, on the other hand, NSGA-SC shows the best
minimization performance according to the volume reached (shown in the
volume minimization columns of table 7.6), where the volumes are 2.6367e−
1 and 2.3690e− 1 for SIMP-SC and NSGA-SC respectively.

Figures 7.39(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.

(a) SIMP-SC (b) NSGA-SC

Figure 7.39: SCLB: VM/YS elemental histogram

SIMP-SC shows the most efficient performance, according to the his-
tograms and the average and standard deviation (shown in the volume
minimization columns of table 7.6), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SC than when using NSGA-SC.

7.5.2 Results for compliance minimization methods

Figures 7.40, 7.41, 7.42, 7.43 and 7.44 show results for the SIMP-SVC,
SIMP, GA, UMDA and NSGA-VC, respectively: (a) the material distri-
bution on the design domain, (b) the normalized displacements over the
structure, and c) the von Mises stresses over the structure.
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(a) SCLB material (b) SCLB displacements (c) SCLB VonMises

Figure 7.40: SCLB visual results with SIMP-SVC

(a) SCLB material (b) SCLB displacements (c) SCLB VonMises

Figure 7.41: SCLB visual results with SIMP

(a) SCLB material (b) SCLB displacements (c) SCLB VonMises

Figure 7.42: SCLB visual results with GA
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(a) SCLB material (b) SCLB displacements (c) SCLB VonMises

Figure 7.43: SCLB visual results with UMDA

(a) SCLB material (b) SCLB displacements (c) SCLB VonMises

Figure 7.44: SCLB visual results with NSGA-VC

On one hand, SIMP-SVC and SIMP show the most aesthetic shape
according to the material distribution, on the other hand, the NSGA-
VC shows the best minimization performance according to the compliance
reached (shown in the compliance minimization columns of table 7.6).

Note that in table 7.6, SIMP-SVC reaches a better compliance than
SIMP, even when SIMP has reached the maximal iterations, in addition,
SIMP-SVC converges in 23 iterations, saving at least the 84% of the max-
imal number. The compliance reached is 2.8305e1 for SIMP and 2.8286e1
for SIMP-SVC, which do not represent a significant difference.

Figures 7.45(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.
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(a) SIMP-SVC (b) SIMP

(c) UMDA (d) GA

(e) NSGA-VC

Figure 7.45: SCLB: VM/YS elemental histogram

SIMP shows the most efficient performance, according to the histograms,
and the average and standard deviation (shown in the compliance mini-
mization columns of table 7.6), due to the average of elemental efficiencies
is closer to 1 when using SIMP than any other.

Table 7.6 has the details of the performance of each method. In the volume
minimization columns, it is marked with blue the method that shows the
best performance for volume minimization, and with red the method that
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shows the best performance on efficiency. In the compliance minimization
columns it is marked with blue the method that shows the best perfor-
mance for compliance minimization and with red the method that shows
the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.4841e-1 - 7.4841e-1 7.4841e-1 - - -

NI 139 500 23 150 500 500 500

IV 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0

FV 2.6367e-1 2.3690e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

FVF 2.6367e-1 2.3690e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

C(x) 5.7462e1 6.4536e1 2.8286e1 2.8305e1 2.8067e1 2.7639e1 2.7221e1

ADX -3.2983e-4 -2.7966e-4 -1.6440e-4 -1.6480e-4 -1.6595e-4 -1.6005e-4 -1.6249e-4

|ADX| 3.2983e-4 2.7966e-4 1.6440e-4 1.6480e-4 1.6595e-4 1.6005e-4 1.6249e-4

ADY -1.0880e-2 -1.2220e-2 -5.3506e-3 -5.3544e-3 -5.3105e-3 -5.2286e-3 -5.1503e-3

|ADY| 1.0880e-2 1.2220e-2 5.3506e-3 5.3544e-3 5.3105e-3 5.2286e-3 5.1503e-3

A||DXY|| 1.0429e-3 1.1463e-3 5.1400e-4 5.1445e-4 5.1120e-4 5.0222e-4 4.9630e-4

SF 9.9849e-1 9.7514e-1 7.2492e-1 7.2553e-1 7.2830e-1 7.2981e-1 7.3156e-1

A(Eff) 3.7022e-1 3.4602e-1 1.6864e-1 1.6906e-1 1.5734e-1 1.5552e-1 1.5501e-1

SD(Eff) 4.4009e-2 1.2499e-1 4.3037e-2 4.2259e-2 5.2652e-2 5.3567e-2 5.2052e-2

MaxVM 2.1966e8 2.1453e8 1.5948e8 1.5931e8 1.6022e8 1.6056e8 1.6094e8

Table 7.6: SCLB execution data
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7.6 Short Cantilever with a Load at Top(SCLT)

SCLT test is described in chapter 4 in figure 4.2(c). First, we describe
the results obtained for volume minimization and then, for compliance
minimization.

7.6.1 Results for volume minimization methods

Figures 7.46 and 7.47 show results for the SIMP-SC and NSGA-SC re-
spectively: (a) the material distribution on the design domain, (b) the
normalized displacements over the structure, and c) the von Mises stresses
over the structure.

(a) SCLT material (b) SCLT displacements (c) SCLT VonMises

Figure 7.46: SCLT visual results with SIMP-SC

(a) SCLT material (b) SCLT displacements (c) SCLT VonMises

Figure 7.47: SCLT visual results with NSGA-SC
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On one hand, SIMP-SC shows the most aesthetic shape according to
the material distribution, on the other hand, NSGA-SC shows the best
minimization performance according to the volume reached (shown in the
volume minimization columns of table 7.7), where the volumes are 2.6367e−
1 and 2.3520e− 1 for SIMP-SC and NSGA-SC respectively.

Figures 7.48(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.

(a) SIMP-SC (b) NSGA-SC

Figure 7.48: SCLT: VM/YS elemental histogram

SIMP-SC shows the most efficient performance, according to the his-
tograms and the average and standard deviation (shown in the volume
minimization columns of table 7.7), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SC than when using NSGA-SC.

7.6.2 Results for compliance minimization methods

Figures 7.49, 7.50, 7.51, 7.52 and 7.53 show results for the SIMP-SVC,
SIMP, GA, UMDA and NSGA-VC, respectively: (a) the material distri-
bution on the design domain, (b) the normalized displacements over the
structure, and c) the von Mises stresses over the structure.
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(a) SCLT material (b) SCLT displacements (c) SCLT VonMises

Figure 7.49: SCLT visual results with SIMP-SVC

(a) SCLT material (b) SCLT displacements (c) SCLT VonMises

Figure 7.50: SCLT visual results with SIMP

(a) SCLT material (b) SCLT displacements (c) SCLT VonMises

Figure 7.51: SCLT visual results with GA
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(a) SCLT material (b) SCLT displacements (c) SCLT VonMises

Figure 7.52: SCLT visual results with UMDA

(a) SCLT material (b) SCLT displacements (c) SCLT VonMises

Figure 7.53: SCLT visual results with NSGA-VC

On one hand, SIMP-SVC and SIMP show the most aesthetic shape
according to the material distribution, on the other hand, the NSGA-
VC shows the best minimization performance according to the compliance
reached (shown in the compliance minimization columns of table 7.7).

Note that in table 7.7, SIMP-SVC reaches a better compliance than
SIMP, even when SIMP has reached the maximal iterations, in addition,
SIMP-SVC converges in 23 iterations, saving at least the 84% of the max-
imal number. The compliance reached is 2.8304e1 for SIMP and 2.8285e1
for SIMP-SVC, which do not represent a significant difference.

Figures 7.54(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.
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(a) SIMP-SVC (b) SIMP

(c) UMDA (d) GA

(e) NSGA-VC

Figure 7.54: SCLT: VM/YS elemental histogram

SIMP shows the most efficient performance, according to the histograms,
and the average and standard deviation (shown in the compliance mini-
mization columns of table 7.7), due to the average of elemental efficiencies
is closer to 1 when using SIMP than any other.

Table 7.7 has the details of the performance of each method. In the volume
minimization columns, it is marked with blue the method that shows the
best performance for volume minimization, and with red the method that
shows the best performance on efficiency. In the compliance minimization
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columns it is marked with blue the method that shows the best perfor-
mance for compliance minimization and with red the method that shows
the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.4841e-1 - 7.4841e-1 7.4841e-1 - -

NI 139 500 23 150 500 500 500

IV 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0

FV 2.6367e-1 2.3520e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

FVF 2.6367e-1 2.3520e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

C(x) 5.7451e1 6.3057e1 2.8285e1 2.8304e1 2.7781e1 2.7244e1 2.7168e1

ADX 3.2972e-4 3.1303e-4 1.6439e-4 1.6482e-4 1.5896e-4 1.6223e-4 1.5580e-4

|ADX| 3.2972e-4 3.1303e-4 1.6439e-4 1.6482e-4 1.5896e-4 1.6223e-4 1.5580e-4

ADY -1.0878e-2 -1.1940e-2 -5.3504e-3 -5.3543e-3 -5.2554e-3 -5.1539e-3 -5.1398e-3

|ADY| 1.0878e-2 1.1940e-2 5.3504e-3 5.3543e-3 5.2554e-3 5.1539e-3 5.1398e-3

A||DXY||1.0427e0-3 1.1303e-3 5.1398e-4 5.1445e-4 5.0418e-4 4.9647e-4 4.9314e-4

SF 9.9795e-1 9.9256e-1 7.2490e-1 7.2551e-1 7.3191e-1 7.2161e-1 7.3043e-1

A(Eff) 3.7014e-1 3.4263e-1 1.6863e-1 1.6905e-1 1.5656e-1 1.5444e-1 1.5524e-1

SD(Eff) 4.3981e-2 1.2334e-1 4.3037e-2 4.2255e-2 5.1862e-2 5.2562e-2 5.0707e-2

MaxVM 2.1955e8 2.1836e8 1.5947e8 1.5961e8 1.6102e8 1.5875e8 1.6069e8

Table 7.7: SCLT execution data
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7.7 LShape with a Load at Center(LLC)

LLC test is described in chapter 4 in figure 4.3(a). First, we describe
the results obtained for volume minimization and then, for compliance
minimization.

7.7.1 Results for volume minimization methods

Figures 7.55 and 7.56 show results for the SIMP-SC and NSGA-SC re-
spectively: (a) the material distribution on the design domain, (b) the
normalized displacements over the structure, and c) the von Mises stresses
over the structure.

(a) LLC material (b) LLC displacements (c) LLC VonMises

Figure 7.55: LLC visual results with SIMP-SC

(a) LLC material (b) LLC displacements (c) LLC VonMises

Figure 7.56: LLC visual results with NSGA-SC
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SIMP-SC shows the most aesthetic shape according to the material dis-
tribution and the best minimization performance according to the volume
reached (shown in the volume minimization columns of table 7.8), where
the volumes are 2.9125e − 1 and 3.0417e − 1 for SIMP-SC and NSGA-SC
respectively.

Note that, SIMP-SC reaches a volume/SF of 2.9125e-1/9.9802e-1 and
NSGA-SC reaches a volume/SF of 3.0417e-1/9.3353e-1. This relation shows
a small change in the volume, but a high difference in the security factor.

Figures 7.57(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.

(a) SIMP-SC (b) NSGA-SC

Figure 7.57: LLC: VM/YS elemental histogram

SIMP-SC shows the most efficient performance, according to the his-
tograms and the average and standard deviation (shown in the volume
minimization columns of table 7.8), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SC than when using NSGA-SC.

7.7.2 Results for compliance minimization methods

Figures 7.58, 7.59, 7.60, 7.61 and 7.62 show results for the SIMP-SVC,
SIMP, GA, UMDA and NSGA-VC, respectively: (a) the material distri-
bution on the design domain, (b) the normalized displacements over the
structure, and c) the von Mises stresses over the structure.
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(a) LLC material (b) LLC displacements (c) LLC VonMises

Figure 7.58: LLC visual results with SIMP-SVC

(a) LLC material (b) LLC displacements (c) LLC VonMises

Figure 7.59: LLC visual results with SIMP
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(a) LLC material (b) LLC displacements (c) LLC VonMises

Figure 7.60: LLC visual results with GA

(a) LLC material (b) LLC displacements (c) LLC VonMises

Figure 7.61: LLC visual results with UMDA
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(a) LLC material (b) LLC displacements (c) LLC VonMises

Figure 7.62: LLC visual results with NSGA-VC

SIMP shows the most aesthetic shape according to the material distri-
bution and the best minimization performance according to the compliance
reached (shown in the compliance minimization columns of table 7.8).

Note that SIMP does not converge within the maximal iterations, and
SIMP-SVC does it in 30, saving at least the 80% of the iterations. The
compliance reached is 2.0794e1 for SIMP and 2.0906e1 for SIMP-SVC,
which do not represent a significant difference.

Note that NSGA-VC reaches a compliance of C(x) = 2.0805e1, which is
better than SIMP-SVC and very similar to SIMP, nevertheless its material
distribution shows not an aesthetic shape.

Figures 7.63(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.
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(a) SIMP-SVC (b) SIMP

(c) UMDA (d) GA

(e) NSGA-VC

Figure 7.63: LLC: VM/YS elemental histogram

SIMP-SVC shows the most efficient performance, according to the his-
tograms, and the average and standard deviation (shown in the compliance
minimization columns of table 7.8), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SVC than any other.

Table 7.8 has the details of the performance of each method. In the volume
minimization columns, it is marked with blue the method that shows the
best performance for volume minimization, and with red the method that
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shows the best performance on efficiency. In the compliance minimization
columns it is marked with blue the method that shows the best perfor-
mance for compliance minimization and with red the method that shows
the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.5569e-1 - 7.5569e-1 7.5569e-1 - - -

NI 170 500 30 150 500 500 500

IV 6.4e-1 6.4e-1 6.4e-1 6.4e-1 6.4e-1 6.4e-1 6.4e-1

FV 2.9125e-1 3.0417e-1 3.2e-1 3.2e-1 3.2e-1 3.2e-1 3.2e-1

FVF 4.5508e-1 4.7527e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

C(x) 2.3231e1 2.2499e1 2.0906e1 2.0794e1 3.8191e1 2.1641e1 2.0805e1

ADX -5.8670e-4 -5.6973e-4 -5.1391e-4 -5.1657e-4 -1.0323e-3 -5.4948e-4 -4.9724e-4

|ADX| 5.8670e-4 5.6973e-4 5.1391e-4 5.1657e-4 1.0323e-3 5.4948e-4 4.9724e-4

ADY -1.0810e-2 -1.0469e-2 -9.7257e-3 -9.6748e-3 -1.7769e-2 -1.0063e-2 -9.6798e-3

|ADY| 1.0810e-2 1.0469e-2 9.7257e-3 9.6748e-3 1.7769e-2 1.0063e-2 9.6798e-3

A||DXY|| 1.6459e-3 1.6007e-3 1.4816e-3 1.4757e-3 2.7410e-3 1.5394e-3 1.4698e-3

SF 9.9802e-1 9.3353e-1 9.4391e-1 9.3930e-1 1.7872e0 1.0029e0 9.0179e-1

A(Eff) 2.1641e-1 1.6680e-1 1.8954e-1 1.8868e-1 2.0392e-1 1.5910e-1 1.5673e-1

SD(Eff) 4.2650e-2 7.7830e-2 3.9668e-2 3.9945e-2 1.1849e-1 7.3881e-2 7.2532e-2

MaxVM 2.1956e8 2.0537e8 2.0766e8 2.0664e8 3.9320e8 2.2065e8 1.9839e8

Table 7.8: LLC execution data
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7.8 LShape with a Load at Top(LLT)

LLC test is described in chapter 4 in figure 4.3(b). First, we describe
the results obtained for volume minimization and then, for compliance
minimization.

7.8.1 Results for volume minimization methods

Figures 7.64 and 7.65 show results for the SIMP-SC and NSGA-SC re-
spectively: (a) the material distribution on the design domain, (b) the
normalized displacements over the structure, and c) the von Mises stresses
over the structure.

(a) LLT material (b) LLT displacements (c) LLT VonMises

Figure 7.64: LLT visual results with SIMP-SC

(a) LLT material (b) LLT displacements (c) LLT VonMises

Figure 7.65: LLC visual results with NSGA-SC
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SIMP-SC shows the most aesthetic shape according to the material dis-
tribution and the best minimization performance according to the volume
reached (shown in the volume minimization columns of table 7.9), where
the volumes are 2.7246e − 1 and 3.0271e − 1 for SIMP-SC and NSGA-SC
respectively.

Figures 7.66(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.

(a) SIMP-SC (b) NSGA-SC

Figure 7.66: LLT: VM/YS elemental histogram

SIMP-SC shows the most efficient performance, according to the his-
tograms and the average and standard deviation (shown in the volume
minimization columns of table 7.9), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SC than when using NSGA-SC.

7.8.2 Results for compliance minimization methods

Figures 7.67, 7.68, 7.69, 7.70 and 7.71 show results for the SIMP-SVC,
SIMP, GA, UMDA and NSGA-VC, respectively: (a) the material distri-
bution on the design domain, (b) the normalized displacements over the
structure, and c) the von Mises stresses over the structure.
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(a) LLT material (b) LLT displacements (c) LLT VonMises

Figure 7.67: LLT visual results with SIMP-SVC

(a) LLT material (b) LLT displacements (c) LLT VonMises

Figure 7.68: LLT visual results with SIMP

(a) LLT material (b) LLT displacements (c) LLT VonMises

Figure 7.69: LLT visual results with GA
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(a) LLT material (b) LLT displacements (c) LLT VonMises

Figure 7.70: LLT visual results with UMDA

(a) LLT material (b) LLT displacements (c) LLT VonMises

Figure 7.71: LLT visual results with NSGA-VC

SIMP-SVC shows the most aesthetic shape according to the material
distribution and the best minimization performance according to the com-
pliance reached (shown in the compliance minimization columns of table
7.9), even with a lower number of iterations than SIMP.

Note that, SIMP does not converge within the maximal iterations, and
SIMP-SVC does it in 28, saving at least the 81.33% of the iterations.

Figures 7.72(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.
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(a) SIMP-SVC (b) SIMP

(c) UMDA (d) GA

(e) NSGA-VC

Figure 7.72: LLT: VM/YS elemental histogram

SIMP-SVC shows the most efficient performance, according to the his-
tograms, and the average and standard deviation (shown in the compliance
minimization columns of table 7.9), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SVC than any other.

Table 7.9 has the details of the performance of each method. In the volume
minimization columns, it is marked with blue the method that shows the
best performance for volume minimization, and with red the method that
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shows the best performance on efficiency. In the compliance minimization
columns it is marked with blue the method that shows the best perfor-
mance for compliance minimization and with red the method that shows
the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.5550e-1 - 7.5550e-1 7.5550e-1 - - -

NI 183 500 28 150 500 500 500

IV 6.4e-1 6.4e-1 6.4e-1 6.4e-1 6.4e-1 6.4e-1 6.4e-1

FV 2.7246e-1 3.0271e-1 3.2e-1 3.2e-1 3.2e-1 3.2e-1 3.2e-1

FVF 4.25724e-1 4.7298e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

C(x) 2.5389e1 2.3852e1 2.0191e1 2.1044e1 2.2254e1 2.1912e1 2.1542e1

ADX -1.8755e-4 -1.7816e-4 -1.6784e-4 -1.6760e-4 -1.5077e-4 -1.1424e-4 -1.9548e-4

|ADX| 1.8755e-4 1.7816e-4 1.6784e-4 1.6760e-4 1.5077e-4 1.1424e-4 1.9548e-4

ADY -1.1819e-2 -1.1094e-2 -9.8113e-3 -9.7886e-3 -1.0350e-2 -1.0190e-2 -1.0020e-2

|ADY| 1.1819e-2 1.1094e-2 9.8113e-3 9.7886e-3 1.0350e-2 1.0190e-2 1.0020e-2

A||DXY|| 1.6992e-3 1.5955e-3 1.4119e-3 1.4087e-3 1.4868e-3 1.4608e-3 1.4453e-3

SF 9.9995e-1 9.7756e-1 9.0702e-1 9.0651e-1 9.9858e-1 9.6628e-1 8.4851e-1

A(Eff) 2.3528e-1 1.6896e-1 1.8814e-1 1.8762e-1 1.6328e-1 1.6156e-1 1.5991e-1

SD(Eff) 4.1240e-2 8.7014e-2 3.8693e-2 3.8581e-2 7.1339e-2 7.1437e-2 7.2082e-2

MaxVM 2.1998e8 2.1506e8 1.9954e8 1.9943e8 2.1968e8 2.1258e8 1.8667e8

Table 7.9: LLT execution data
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7.9 One Load Michell(OLM)

OLM test is described in chapter 4 in figure 4.4(a). First, we describe
the results obtained for volume minimization and then, for compliance
minimization.

7.9.1 Results for volume minimization methods

Figures 7.73 and 7.74 show results for the SIMP-SC and NSGA-SC re-
spectively: (a) the material distribution on the design domain, (b) the
normalized displacements over the structure, and c) the von Mises stresses
over the structure.

(a) OLM material (b) OLM displacements (c) OLM VonMises

Figure 7.73: OLM visual results with SIMP-SC

(a) OLM material (b) OLM displacements (c) OLM VonMises

Figure 7.74: OLM visual results with NSGA-SC
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SIMP-SC shows the most aesthetic shape according to the material dis-
tribution and the best minimization performance according to the volume
reached (shown in the volume minimization columns of table 7.10), where
the volumes are 4.4531e − 1 and 5.5080e − 1 for SIMP-SC and NSGA-SC
respectively.

Figures 7.75(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.

(a) SIMP-SC (b) NSGA-SC

Figure 7.75: OLM: VM/YS elemental histogram

SIMP-SC shows the most efficient performance, according to the his-
tograms and the average and standard deviation (shown in the volume
minimization columns of table 7.10), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SC than when using NSGA-SC.

7.9.2 Results for compliance minimization methods

Figures 7.76, 7.77, 7.78, 7.79 and 7.80 show results for the SIMP-SVC,
SIMP, GA, UMDA and NSGA-VC, respectively: (a) the material distri-
bution on the design domain, (b) the normalized displacements over the
structure, and c) the von Mises stresses over the structure.
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(a) OLM material (b) OLM displacements (c) OLM VonMises

Figure 7.76: OLM visual results with SIMP-SVC

(a) OLM material (b) OLM displacements (c) OLM VonMises

Figure 7.77: OLM visual results with SIMP

(a) OLM material (b) OLM displacements (c) OLM VonMises

Figure 7.78: OLM visual results with GA
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(a) OLM material (b) OLM displacements (c) OLM VonMises

Figure 7.79: OLM visual results with UMDA

(a) OLM material (b) OLM displacements (c) OLM VonMises

Figure 7.80: OLM visual results with NSGA-VC

On one hand, SIMP-SVC and SIMP show the most aesthetic shape
according to the material distribution, on the other hand, the GA shows
the best minimization performance according to the compliance reached
(shown in the compliance minimization columns of table 7.10).

Note that SIMP does not converge within the maximal iterations, and
SIMP-SVC does it in 30, saving at least the 80% of the iterations. The
compliance reached is 2.7777e1 for SIMP and 2.8184e1 for SIMP-SVC,
which do not represent a significant difference.

Figures 7.81(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.
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(a) SIMP-SVC (b) SIMP

(c) UMDA (d) GA

(e) NSGA-VC

Figure 7.81: OLM: VM/YS elemental histogram

SIMP-SVC shows the most efficient performance, according to the his-
tograms, and the average and standard deviation (shown in the compliance
minimization columns of table 7.10), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SVC than any other.

Table 7.10 has the details of the performance of each method. In the vol-
ume minimization columns, it is marked with blue the method that shows
the best performance for volume minimization, and with red the method
that shows the best performance on efficiency. In the compliance mini-
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mization columns it is marked with blue the method that shows the best
performance for compliance minimization and with red the method that
shows the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.5248e-1 - 7.5248e-1 7.5248e-1 - - -

NI 138 500 30 150 500 500 500

IV 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0

FV 4.4531e-1 5.5080e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

FVF 4.4531e-1 5.5080e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

C(x) 3.2247e1 2.4009e1 2.8184e1 2.7777e1 2.6185e1 2.5972e1 2.6684e1

ADX 1.9085e-5 1.7469e-5 1.7803e-5 1.7974e-5 1.8856e-5 1.8363e-5 1.8796e-5

|ADX| 1.9085e-5 1.7469e-5 1.7803e-5 1.7974e-5 1.8856e-5 1.8363e-5 1.8796e-5

ADY -6.3126e-3 -4.6949e-3 -5.5149e-3 -5.4353e-3 -5.1226e-3 -5.0812e-3 -5.2204e-3

|ADY| 6.3126e-3 4.6949e-3 5.5149e-3 5.4353e-3 5.1226e-3 5.0812e-3 5.2204e-3

A||DXY|| 5.7431e-4 4.2731e-4 5.0180e-4 4.9457e-4 4.6623e-4 4.6244e-4 4.7511e-4

SF 9.9963e-1 9.9694e-1 9.3160e-1 9.2516e-1 1.0324e0 9.7989e-1 1.0508e0

A(Eff) 2.0239e-1 1.3719e-1 1.7432e-1 1.7361e-1 1.5120e-1 1.5170e-1 1.5271e-1

SD(Eff) 3.7517e-2 4.8971e-2 3.6663e-2 3.6530e-2 5.1058e-2 4.7925e-2 5.0999e-2

MaxVM 2.1992e8 2.1926e8 2.0495e8 2.0353e8 2.2714e8 2.1557e8 2.3118e8

Table 7.10: OLM execution data

For this tests, an extra experiment is executed. It is an hybrid (or
memetic) algorithm that mixes global and local optimization, this means,
the solution from an evolutionary algorithm is the input for a local op-
timization algorithm: SIMP-SVC. Based on tests executed, SIMP-SVC
delivers aesthetic results, and the GA delivers better results in objective
function. The purpose of this experiment is to get results mixing the aes-
thetic and the objective function from SIMP-SVC and GA respectively.

Figure 7.82(a) shows (in the left side) the result obtained with the ge-
netic algorithm until 100 iterations. Note that the compliance reached is
C(x) = 26.8982. Then, starting from this solution, SIMP-SVC is executed.
The convergence for SIMP-SVC is at 41 iterations and the compliance
reached is C(x) = 27.9224.
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Figure 7.82(b) shows a graphic with the compliance evolution of the hybrid
algorithm. Note that, starting from the iteration 100 (end of the evolution-
ary algorithm, and beginning of the SIMP-SVC), the compliance increases,
thus, it gets worse.

(a) Material distribution

(b) Graphic of compliance behavior

Figure 7.82: Hybrid algorithm results

The reason of this behavior is due to SIMP-SVC is updating the design
variables based on the heuristics(filtering mainly), not in the mathematical-
optimization approach. In other words, SIMP-SVC is updating the design
variables to reach an aesthetic shape, no matter the objective if the objec-
tive function is increasing.
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7.10 Two Equal Loads Michell(TELM)

TELM test is described in chapter 4 in figure 4.4(b). First, we describe
the results obtained for volume minimization and then, for compliance
minimization.

7.10.1 Results for volume minimization methods

Figures 7.83 and 7.84 show results for the SIMP-SC and NSGA-SC re-
spectively: (a) the material distribution on the design domain, (b) the
normalized displacements over the structure, and c) the von Mises stresses
over the structure.

(a) TELM material (b) TELM displacements (c) TELM VonMises

Figure 7.83: TELM visual results with SIMP-SC

(a) TELM material (b) TELM displacements (c) TELM VonMises

Figure 7.84: TELM visual results with NSGA-SC



7.10. TWO EQUAL LOADS MICHELL(TELM) 155

SIMP-SC shows the most aesthetic shape according to the material dis-
tribution and the best minimization performance according to the volume
reached (shown in the volume minimization columns of table 7.11), where
the volumes are 4.0820e − 1 and 5.1870e − 1 for SIMP-SC and NSGA-SC
respectively.

Figures 7.85(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.

(a) SIMP-SC (b) NSGA-SC

Figure 7.85: TELM: VM/YS elemental histogram

SIMP-SC shows the most efficient performance, according to the his-
tograms and the average and standard deviation (shown in the volume
minimization columns of table 7.11), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SC than when using NSGA-SC.

7.10.2 Results for compliance minimization methods

Figures 7.86, 7.87, 7.88, 7.89 and 7.90 show results for the SIMP-SVC,
SIMP, GA, UMDA and NSGA-VC, respectively: (a) the material distri-
bution on the design domain, (b) the normalized displacements over the
structure, and c) the von Mises stresses over the structure.
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(a) TELM material (b) TELM displacements (c) TELM VonMises

Figure 7.86: TELM visual results with SIMP-SVC

(a) TELM material (b) TELM displacements (c) TELM VonMises

Figure 7.87: TELM visual results with SIMP

(a) TELM material (b) TELM displacements (c) TELM VonMises

Figure 7.88: TELM visual results with GA
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(a) TELM material (b) TELM displacements (c) TELM VonMises

Figure 7.89: TELM visual results with UMDA

(a) TELM material (b) TELM displacements (c) TELM VonMises

Figure 7.90: TELM visual results with NSGA-VC

On one hand, SIMP-SVC and SIMP show the most aesthetic shape
according to the material distribution, on the other hand, the GA shows
the best minimization performance according to the compliance reached
(shown in the compliance minimization columns of table 7.11).

Note that in table 7.11, SIMP-SVC reaches a better compliance than
SIMP, even when SIMP has reached the maximal iterations, in addition,
SIMP-SVC converges in 29 iterations, saving at least the 80.66% of the
maximal number.

Figures 7.91(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.
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(a) SIMP-SVC (b) SIMP

(c) UMDA (d) GA

(e) NSGA-VC

Figure 7.91: TELM: VM/YS elemental histogram

SIMP shows the most efficient performance, according to the histograms,
and the average and standard deviation (shown in the compliance mini-
mization columns of table 7.11), due to the average of elemental efficiencies
is closer to 1 when using SIMP than any other.

Table 7.11 has the details of the performance of each method. In the vol-
ume minimization columns, it is marked with blue the method that shows
the best performance for volume minimization, and with red the method
that shows the best performance on efficiency. In the compliance mini-
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mization columns it is marked with blue the method that shows the best
performance for compliance minimization and with red the method that
shows the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.4867e-1 - 7.4867e-1 7.4867e-1 - - -

NI 156 500 29 150 500 500 500

IV 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0

FV 4.0820e-1 5.1870e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

FVF 4.0820e-1 5.1870e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

C(x) 2.9077e1 2.1260e1 2.2515e1 2.2538e1 2.1912e1 2.1469e1 2.2294e1

ADX 4.6020e-5 4.0206e-5 3.8176e-5 3.8311e-5 3.9072e-5 4.0445e-5 4.3158e-5

|ADX| 4.6020e-5 4.0206e-5 3.8176e-5 3.8311e-5 3.9072e-5 4.0445e-5 4.3158e-5

ADY -1.1384e-2 -8.3140e-3 -8.8085e-3 -8.8171e-3 -8.5697e-3 -8.3973e-3 -8.7200e-3

|ADY| 1.1384e-2 8.3140e-3 8.8085e-3 8.8171e-3 8.5697e-3 8.3973e-3 8.7200e-3

A||DXY|| 5.2082e-4 3.8145e-4 4.0333e-4 4.0367e-4 3.9254e-4 3.8506e-4 4.0029e-4

SF 9.9362e-1 9.9988e-1 9.0963e-1 9.0184e-1 1.0059e0 1.0082e0 1.0330e0

A(Eff) 2.0362e-1 1.3365e-1 1.5617e-1 1.5654e-1 1.3865e-1 1.3757e-1 1.3877e-1

SD(Eff) 3.2775e-2 4.5230e-2 2.9895e-2 2.9579e-2 4.4272e-2 4.3766e-2 4.8552e-2

MaxVM 2.1815e8 2.1997e8 2.0012e8 1.9840e8 2.2130e8 2.2181e8 2.2726e8

Table 7.11: TELM execution data
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7.11 Two Different Loads Michell(TDLM)

TDLM test is described in chapter 4 in figure 4.4(c). First, we describe
the results obtained for volume minimization and then, for compliance
minimization.

7.11.1 Results for volume minimization methods

Figures 7.92 and 7.93 show results for the SIMP-SC and NSGA-SC re-
spectively: (a) the material distribution on the design domain, (b) the
normalized displacements over the structure, and c) the von Mises stresses
over the structure.

(a) TDLM material (b) TDLM displacements (c) TDLM VonMises

Figure 7.92: TDLM visual results with SIMP-SC

(a) TDLM material (b) TDLM displacements (c) TDLM VonMises

Figure 7.93: TDLM visual results with NSGA-SC
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SIMP-SC shows the most aesthetic shape according to the material dis-
tribution and the best minimization performance according to the volume
reached (shown in the volume minimization columns of table 7.12), where
the volumes are 4.1601e − 1 and 5.4000e − 1 for SIMP-SC and NSGA-SC
respectively.

Figures 7.94(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.

(a) SIMP-SC (b) NSGA-SC

Figure 7.94: TDLM VM/YS elemental histogram

SIMP-SC shows the most efficient performance, according to the his-
tograms and the average and standard deviation (shown in the volume
minimization columns of table 7.12), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SC than when using NSGA-SC.

7.11.2 Results for compliance minimization methods

Figures 7.95, 7.96, 7.97, 7.98 and 7.99 show results for the SIMP-SVC,
SIMP, GA, UMDA and NSGA-VC, respectively: (a) the material distri-
bution on the design domain, (b) the normalized displacements over the
structure, and c) the von Mises stresses over the structure.
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(a) TDLM material (b) TDLM displacements (c) TDLM VonMises

Figure 7.95: TDLM visual results with SIMP-SVC

(a) TDLM material (b) TDLM displacements (c) TDLM VonMises

Figure 7.96: TDLM visual results with SIMP

(a) TDLM material (b) TDLM displacements (c) TDLM VonMises

Figure 7.97: TDLM visual results with GA
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(a) TDLM material (b) TDLM displacements (c) TDLM VonMises

Figure 7.98: TDLM visual results with UMDA

(a) TDLM material (b) TDLM displacements (c) TDLM VonMises

Figure 7.99: TDLM visual results with NSGA-VC

On one hand, SIMP-SVC and SIMP show the most aesthetic shape
according to the material distribution, on the other hand, the GA shows
the best minimization performance according to the compliance reached
(shown in the compliance minimization columns of table 7.12).

Note that in table 7.12, SIMP-SVC reaches a better compliance than
SIMP, even when SIMP has reached the maximal iterations, in addition,
SIMP-SVC converges in 29 iterations, saving at least the 80.66% of the
maximal number.

Figures 7.100(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.
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(a) SIMP-SVC (b) SIMP

(c) UMDA (d) GA

(e) NSGA-VC

Figure 7.100: TDLM VM/YS elemental histogram

SIMP shows the most efficient performance, according to the histograms,
and the average and standard deviation (shown in the compliance mini-
mization columns of table 7.12), due to the average of elemental efficiencies
is closer to 1 when using SIMP than any other.

Table 7.12 has the details of the performance of each method. In the vol-
ume minimization columns, it is marked with blue the method that shows
the best performance for volume minimization, and with red the method
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that shows the best performance on efficiency. In the compliance mini-
mization columns it is marked with blue the method that shows the best
performance for compliance minimization and with red the method that
shows the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.4729e-1 - 7.4729e-1 7.4729e-1 - - -

NI 130 500 29 150 500 500 500

IV 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0 1.0e0

FV 4.1601e-1 5.4000e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

FVF 4.1601e-1 5.4000e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

C(x) 2.9675e1 2.0983e1 2.3782e1 2.3804e1 2.2795e1 2.2359e1 2.2697e1

ADX 4.6116e-5 4.1457e-5 3.9801e-5 3.9140e-4 4.3113e-5 4.2634e-5 4.4686e-5

|ADX| 4.6116e-5 4.1457e-5 3.9801e-5 3.9140e-4 4.3113e-5 4.2634e-5 4.4686e-5

ADY -1.1274e-2 -7.9782e-3 -9.0578e-3 -9.0486e-3 -8.6897e-3 -8.5276e-3 -8.6388e-3

|ADY| 1.1274e-2 7.9782e-3 9.0578e-3 9.0486e-3 8.6897e-3 8.5276e-3 8.6388e-3

A||DXY|| 5.1584e-4 3.6648e-4 4.1483e-4 4.1426e-4 3.9874e-4 3.9145e-4 3.9682e-4

SF 9.9502e-1 9.9937e-1 9.2524e-1 9.1705e-1 1.0278e0 9.9151e-1 9.9881e-1

A(Eff) 1.9987e-1 1.3013e-1 1.5972e-1 1.6052e-1 1.4162e-1 1.4051e-1 1.4148e-1

SD(Eff) 3.4099e-2 4.3549e-2 3.3142e-2 3.0831e-2 4.5740e-2 4.4637e-2 4.3935e-2

MaxVM 2.1890e8 2.1986e8 2.0355e8 2.0175e8 2.2612e8 2.1813e8 2.1973e8

Table 7.12: TDLM execution data
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7.12 MBBB

MBBB test is described in chapter 4 in figure ??. First, we describe the
results obtained for volume minimization and then, for compliance mini-
mization.

7.12.1 Results for volume minimization methods

Figures 7.101 and 7.102 show results for the SIMP-SC and NSGA-SC re-
spectively: (a) the material distribution on the design domain, (b) the
normalized displacements over the structure, and c) the von Mises stresses
over the structure.

(a) MBBB material

(b) MBBB displacements

(c) MBBB VonMises

Figure 7.101: MBBB visual results with SIMP-SC
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(a) MBBB material

(b) MBBB displacements

(c) MBBB VonMises

Figure 7.102: MBBB visual results with NSGA-SC

SIMP-SC shows the most aesthetic shape according to the material dis-
tribution and the best minimization performance according to the volume
reached (shown in the volume minimization columns of table 7.13), where
the volumes are 8.7304e − 1 and 1.3075e0 for SIMP-SC and NSGA-SC
respectively.

Figures 7.103(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.
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(a) SIMP-SC (b) NSGA-SC

Figure 7.103: MBBB: VM/YS elemental histogram

7.12.2 Results for compliance minimization methods

Figures 7.104, 7.105, 7.115, 7.116 and 7.108 show results for the SIMP-
SVC, SIMP, GA, UMDA and NSGA-VC, respectively: (a) the material
distribution on the design domain, (b) the normalized displacements over
the structure, and c) the von Mises stresses over the structure.

(a) MBBB material

(b) MBBB displacements
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(c) MBBB VonMises

Figure 7.104: MBBB visual results with SIMP-SVC

(a) MBBB material

(b) MBBB displacements

(c) MBBB VonMises

Figure 7.105: MBBB visual results with SIMP
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(a) MBBB material

(b) MBBB displacements

(c) MBBB VonMises

Figure 7.106: MBBB visual results with GA

(a) MBBB material
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(b) MBBB displacements

(c) MBBB VonMises

Figure 7.107: MBBB visual results with UMDA

(a) MBBB material

(b) MBBB displacements
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(c) MBBB VonMises

Figure 7.108: MBBB visual results with NSGA-VC

SIMP shows the most aesthetic shape according to the material distri-
bution and the best minimization performance according to the compliance
reached (shown in the compliance minimization columns of table 7.13).

Note that SIMP does not converge within the maximal iterations, and
SIMP-SVC does it in 32, saving at least the 78.66% of the iterations. The
compliance reached is 4.1311e1 for SIMP and 4.1618e1 for SIMP-SVC,
which do not represent a significant difference.

Figures 7.109(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.
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(a) SIMP-SVC (b) SIMP

(c) UMDA (d) GA

(e) NSGA-VC

Figure 7.109: MBBB: VM/YS elemental histogram

SIMP and SIMP-SVC show the most efficient performance, according
to the histograms, and the average and standard deviation (shown in the
compliance minimization columns of table 7.13), due to the average of el-
emental efficiencies is closer to 1 when using SIMP-SVC than any other.

Table 7.13 has the details of the performance of each method. In the vol-
ume minimization columns, it is marked with blue the method that shows
the best performance for volume minimization, and with red the method
that shows the best performance on efficiency. In the compliance mini-
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mization columns it is marked with blue the method that shows the best
performance for compliance minimization and with red the method that
shows the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.4724e-1 - 7.4724e-1 7.4724e-1 - - -

NI 174 500 32 150 500 500 500

IV 3.0e0 3.0e0 3.0e0 3.0e0 3.0e0 3.0e0

FV 8.7304e-1 1.3075e0 1.5e0 1.5e0 1.5e0 1.5e0 1.5e0

FVF 2.9101e-1 4.3583e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

C(x) 7.2730e1 1.1300e1 4.1618e1 4.1311e1 4.3148e1 4.1633e1 6.7223e1

ADX -5.6241e-5 5.5125e-5 -4.0913e-5 -3.9833e-5 -4.0331e-5 -4.5024e-5 -6.6861e-5

|ADX| 5.6241e-5 5.5125e-5 4.0913e-5 3.9833e-5 4.0331e-5 4.5024e-5 6.6861e-5

ADY -5.0429e-2 -3.5388e-2 -2.8525e-2 -2.8313e-2 -2.9599e-2 -2.8562e-2 -4.6623e-2

|ADY| 5.0429e-2 3.5388e-2 2.8525e-2 2.8313e-2 2.9599e-2 2.8562e-2 4.6623e-2

A||DXY||-2.65497e-3 1.8636e-3 1.5020e-3 1.4909e-3 1.5585e-3 1.5041e-3 2.4550e-3

SF 9.9933e-1 9.9976e-1 8.3442e-1 8.4178e-1 1.0569e0 8.979624e-1 1.0596e0

A(Eff) 2.1763e-1 1.2439e-1 1.1495e-1 1.1495e-1 1.0566e-1 1.0571e-1 1.6350e-1

SD(Eff) 3.6821e-2 5.2451e-2 3.3244e-2 3.3244e-2 4.8247e-2 4.2546e-2 6.6697e-2

MaxVM 2.1985e8 2.1994e8 1.8357e8 1.8519e8 2.3253e8 1.9755e8 2.3311e8

Table 7.13: MBBB execution data



7.13. TWO BARS 175

7.13 Two Bars

Two bars test is described in chapter 4 in figure 4.6. First, we describe the
results obtained for volume minimization and then, for compliance mini-
mization.

7.13.1 Results for volume minimization methods

Figures 7.110 and 7.111 show results for the SIMP-SC and NSGA-SC re-
spectively: (a) the material distribution on the design domain, (b) the
normalized displacements over the structure, and c) the von Mises stresses
over the structure.

(a) Two bars
material

(b) Two bars displace-
ments

(c) Two bars Von-
Mises

Figure 7.110: Two Bars visual results with SIMP-SC
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(a) TwoBars ma-
terial

(b) TwoBars displace-
ments

(c) TwoBars VonMises

Figure 7.111: Two bars visual results with NSGA-SC

SIMP-SC shows the most aesthetic shape according to the material dis-
tribution and the best minimization performance according to the volume
reached (shown in the volume minimization columns of table 7.14), where
the volumes are 2.880e − 1 and 3.6796e − 1 for SIMP-SC and NSGA-SC
respectively.

Figures 7.112(a) and (b) show the histograms of efficiency for SIMP-SC
and NSGA-SC respectively.

(a) SIMP-SC (b) NSGA-SC

Figure 7.112: Two bars: VM/YS elemental histogram
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SIMP-SC shows the most efficient performance, according to the his-
tograms and the average and standard deviation (shown in the volume
minimization columns of table 7.14), due to the average of elemental effi-
ciencies is closer to 1 when using SIMP-SC than when using NSGA-SC.

7.13.2 Results for compliance minimization methods

Figures 7.113, 7.114, 7.115, 7.116 and 7.117 show results for the SIMP-
SVC, SIMP, GA, UMDA and NSGA-VC, respectively: (a) the material
distribution on the design domain, (b) the normalized displacements over
the structure, and c) the von Mises stresses over the structure.

(a) TwoBars ma-
terial

(b) TwoBars displace-
ments

(c) TwoBars VonMises

Figure 7.113: Two Bars visual results with SIMP-SVC
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(a) TwoBars ma-
terial

(b) TwoBars displace-
ments

(c) TwoBars VonMises

Figure 7.114: Two Bars visual results with SIMP

(a) TwoBars ma-
terial

(b) TwoBars displace-
ments

(c) TwoBars VonMises

Figure 7.115: TwoBars visual results with GA
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(a) TwoBars ma-
terial

(b) TwoBars displace-
ments

(c) TwoBars VonMises

Figure 7.116: TwoBars visual results with UMDA

(a) TwoBars ma-
terial

(b) TwoBars displace-
ments

(c) TwoBars VonMises

Figure 7.117: Two bars visual results with NSGA-VC

For this case we consider there is a high similarity between visual results
of SIMP, SIMP-SC and NSGA-VC according to the material distribution,
nevertheless, the NSGA-VC shows the best minimization performance ac-
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cording to the volume reached (shown in the volume minimization columns
of table 7.14).

Figures 7.118(a), (b), (c), (d) and (e) show the histograms of efficiency
for SIMP-SVC, SIMP, UMDA, GA and NSGA-VC, respectively.

(a) SIMP-SC (b) NSGA-SC

(c) SIMP-SVC (d) SIMP

(e) UMDA

Figure 7.118: Two bars: VM/YS elemental histogram

SIMP shows the most efficient performance, according to the histograms,
and the average and standard deviation (shown in the compliance mini-
mization columns of table 7.14), due to the average of elemental efficiencies
is closer to 1 when using SIMP than any other.
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Table 7.14 has the details of the performance of each method. In the vol-
ume minimization columns, it is marked with blue the method that shows
the best performance for volume minimization, and with red the method
that shows the best performance on efficiency. In the compliance mini-
mization columns it is marked with blue the method that shows the best
performance for compliance minimization and with red the method that
shows the best performance on efficiency.

Data
Volume min. Compliance min.

SIMP NSGA SIMP
SIMP UMDA GA

NSGA
SC SC SVC VC

ISF 7.4920e-1 - 7.4920e-1 7.4920e-1 - - -

NI 192 500 68 96 500 500 500

IV 2.0e0 2.0e0 2.0e0 2.0e0 2.0e0 2.0e0 2.0e0

FV 2.880e-1 3.6796e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1 5.0e-1

FVF 1.4404e-1 1.8398e-1 2.5e-1 2.5e-1 2.5e-1 2.5e-1 2.5e-1

C(x) 1.9446e2 1.3529e2 9.8653e1 9.8640e1 1.3486e2 1.3934e2 9.2952e1

ADX -3.9891e-10 6.8456e-5 -4.2028e-11 -6.1112e-11 1.6984e-4 -1.9331e-4 -6.9929e-6

|ADX| 1.0968e-5 6.8456e-5 4.4010e-6 4.5801e-6 1.6984e-4 1.9331e-4 1.5632e-5

ADY -2.1587e-2 -1.5018e-2 -1.0945e-2 -1.0943e-2 -1.4970e-2 -1.5466e-2 -1.0317e-2

|ADY| 2.1587e-2 1.5018e-2 1.0945e-2 1.0943e-2 1.4970e-2 1.5466e-2 1.0317e-2

A||DXY|| 1.2699e-3 8.8608e-4 6.4386e-4 6.4378e-4 8.9939-4 9.3379e-4 6.0714e-4

SF 9.9857e-1 9.9920e-1 6.1681e-1 6.0319e-1 8.9939e-4 1.1683e0 6.3975e-1

A(Eff) 6.8345e-1 4.2792e-1 3.4487e-1 3.4487e-1 3.5718e-1 3.5895e-1 3.0893e-1

SD(Eff) 4.3589e-2 9.8310e-2 3.0273e-2 2.9974e-2 9.1786e-2 1.0523e-1 5.7233e-2

MaxVM 2.1968e8 2.1982e8 1.3569e8 1.3270e8 2.2657e+8 2.5703e8 1.4074e8

Table 7.14: Two Bars execution data

7.14 Results summary

The table 7.15 contains a numerical comparative of the methods SIMP
and SIMP-SVC according to the computational cost saved and the objec-
tive function reached. The columns show the following: 1) the name of
the test, 2) the percentage of iterations of SIMP saved by SIMP-SVC, 3)
the difference of the compliance between SIMP and SIMP-SVC, where the
cells marked with * represent that the SIMP-SVC reaches a better compli-
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ance than SIMP, even with a lower number of iterations, 4) the percentage
that the difference value in third column represents of the total compli-
ance reached by SIMP, in order to demonstrate that the difference is not
significant.

Test SIMP-SVC C(x) % difference
% iterations difference

CLC 71.34% 0.57 0.2475%

CLB 74% 0.83 0.6470%

CLT 74% 0.83 0.6470%

SCLC 82% 0.039* 0.0694%

CLB 84% 0.019* 0.0671%

SCLT 84% 0.019* 0.0671%

LLC 80% 0.11 0.5291%

LLT 81.33% 0.853* 4.0534%

OLM 80% 0.414 1.4904%

TELM 80.66% 0.023* 0.1020%

TDLM 80.66% 0.018* 0.0756%

MBBB 78.66% 0.307 0.7431%

TBars 29.17% 0.013 0.01317%

Table 7.15: Numerical comparative of SIMP and SIMP-SVC

The following is a list of every test and the method with the better per-
formance for volume and compliance problems, according to the objective
function obtained. As mentioned in this chapter, SIMP based methods has
a better aesthetic solution for almost all tests, so, in this results analysis it
is only considered objective functions results.
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Best performance method

Test Volume minimization Compliance minimization

CLC SIMP-SC SIMP

CLB SIMP-SC GA

CLT SIMP-SC GA

SCLC NSGA-SC GA

SCLB NSGA-SC NSGA-VC

SCLT NSGA-SC NSGA-VC

LLC SIMP-SC SIMP

LLT SIMP-SC SIMP-SVC

OLM SIMP-SC GA

TELM SIMP-SC GA

TDLM SIMP-SC GA

MBBB SIMP-SC SIMP

Two Bars SIMP-SC NSGA-VC
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Chapter 8

Conclusions and future work

8.1 Conclusions

First, we describe the observations and conclusions about local and global
optimization methods. Then, we describe observations and conclusions
about the results obtained from all the case studies and algorithms.

8.1.1 About the SIMP and SIMP-based methods

• The SIMP is a simple and efficient topology optimization algorithm
for compliance minimization with a volume constraint. Its imple-
mentation is not computationally expensive, due to there is only one
structure evaluation per iteration, and it requires at most hundreds
of iterations, which represents less than 5% of the evolutionary algo-
rithms cost.

• The SIMP methodology gives as solution a structure with an aesthetic
shape due to the heuristic approach (principally the filtering step).
Comparing the visual results, the SIMP based methods frequently are
more aesthetic than evolutionary algorithms. In many cases, SIMP
is capable to reach objective functions values close to those delivered
by global methods in a considerable lower execution time.

• The SIMP principles are based on the non-consideration of the struc-
tural self-weight. It is an inconvenience due to it does not represent

185
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a real-world problem. No matter, results in this work consider self-
weight.

• The SIMP does not reach convergence in many cases and it stops until
the maximal iterations are reached, on the other hand, SIMP-SVC
detects the stagnations of the objective function, and there are very
small changes in the structure through the iterations to determine
the convergence. SIMP-SVC delivers competitive results for all the
tests using the same convergence parameters, these results are better
than the original SIMP in 6/13 tests and similar in the rest of the
cases. The reduction of iterations is an average of 75.3707% for 13
tests.

• The SIMP-SC shows a better performance than evolutionary algo-
rithms on visual results and volume minimization in 10/13 tests.

8.1.2 About evolutionary algorithms

• The proposed individual representation based in control points re-
duces the dimension size an average of 98.771% in the 13 tests, and it
makes suitable(along with parallel computing) the use of evolution-
ary algorithms for the solution of topology optimization problems,
for solving compliance and volume problems. This technique can be
used for mono and multi-objective algorithms because of it is used
to calculate a fitness(or fitnesses) with a lower number of variables,
independently of the optimization method.

• The UMDA generates the worst results according to the visual solu-
tions, compliance or efficiency. Nevertheless, the probability distri-
bution calculated during its execution can help to reduce the design
domain, this is to say, when learning the probability distribution, the
probability of existing in some elements is set to zero, this reduces
the search domain.

• The GA reaches a better objective function that others algorithms
in 6 of 13 tests for compliance minimization. The reason of this is
the capability of GA for exploring solutions with shapes that SIMP
based methods can not explore.
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• NSGA-II has an interesting performance in some tests for compliance
and volume problems. Despite this algorithm is employed in a sim-
ple way (it does not consider constraints neither the use of filtering
techniques), it delivers the best solution in 3 of 13 tests for com-
pliance minimization and 3 of 13 tests for volume minimization. In
contrast with the other algorithms, it is used to optimize more than
one objective functions.

8.2 Future work

• Propose a 3d numerical benchmark for topology optimization, solve
it with the SIMP, SIMP-SVC and SIMP-SC and report the results.

• Based on the SIMP analysis, generate a local optimization algorithm
for the solution of volume problems, adding the stress constraint di-
rectly to the augmented objective function, and develop the variable
update equation considering the stress constraint. There are methods
that work for volume problems as evolutionary structural optimiza-
tion, no matter, those methods do not have a mathematical basis
that ensure, at least, local optimality.

• For compliance problems solved by evolutionary algorithms, a frac-
tion of the population according to the vv parameter is selected. This
population fraction is subject to a volume fitting procedure, which
consists in modifying the control points heights until reaching the
volume constraint. This causes selecting only a small fraction of the
population and in consequence, a high selection pressure. A proposal
is to modify the control points for each individual to fullfil the volume
constraint, this way, we can increase the number of selected individ-
uals, as consequence, reducing the selection pressure, and increasing
the exploration of the search space, and the use of the information of
those individuals which are not selected, but that are evaluated.

• Apply a filter with the purpose of getting smoother structures. It is
possible to reduce the stress concentrators by smoothing the shape
borders, in other words, smooth borders could improve the structure
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performance delivering lower objective function values and aesthetic
structures.

• Note that, in figures of the Results chapter, the contours of von Mises
stresses are smoother than the material distribution contours, which
present abrupt changes on the border. For example the contour of
figure 7.35(c) is smoother than those of figure 7.35(a). Based on
this observation, we could propose a post-process that improve the
appearance of the results.

• Continue exploring other ways of representation for individuals in or-
der to reduce the dimension of the problem for topology optimization.
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