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Abstract

This paper introduces a new approach for estimation of distribution algo-
rithms called the Boltzmann Univariate Marginal Distribution Algorithm
(BUMDA). It uses a Normal-Gaussian model to approximate the Boltzmann
distribution, hence, formulae for computing the mean and variance parame-
ters of the Gaussian model are derived from the analytical minimization of
the Kullback-Leibler divergence. The resulting formulae explicitly introduces
information about the fitness landscape for the Gaussian parameters com-
putation, in consequence, the Gaussian distribution obtains a better bias to
sample intensively the most promising regions than simply using the max-
imum likelihood estimator of the selected set. In addition, the BUMDA
formulae needs only one user parameter. Accordingly to the experimental
results, the BUMDA excels in its niche of application. We provide theo-
retical, graphical and statistical analysis to show the BUMDA performance
contrasted with state of the art EDAs.
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1. Introduction

The Estimation of Distribution Algorithms (EDAs) were derived from
probabilistic modeling of Genetic Algorithms (GAs) [12] [1]. Nevertheless,
EDAs and other evolutionary algorithms differ in the strategy taken for ap-
proximating the optimum. One of the main differences between EDAs and
evolutionary algorithms such as GAs, is the way the population is regener-
ated: while GAs use a subset of the fittest individuals in the current popu-
lation (selected set), EDAs use a probability distribution, called the search
distribution, to sample new candidate solutions. Hence, the search strategy
in EDAs is to increment the probability of sampling the optimum from the
search distribution. Practical EDAs assume that the most promising regions
for finding the optimum are such regions which contain the individuals with
the greatest objective values (for a maximization case). Therefore, the search
distribution must reflect the fitness values of the selected set. This imply that
the greater the fitness value of an individual is, the greater the probability
of sampling the region around such individual must be. Hence, for the sake
of sampling intensively the most promising regions, it is desirable that the
probability density function f(x, t) accomplish the following characteristics:

1. Considering the objective/fitness function as g(x), if g(x1) > g(x2) then
f(x1, t) > f(x2, t).

2. When the fitness function g(x) increases/decreases, the probability den-
sity function (PDF) increases/decreases.

3. As consequence, if f(x, t) is the PDF, and x∗ is the unique maximum,
then f(x∗, t) > f(x, t), for any generation t, and x ̸= x∗.

A widely used and successful way of achieving the mentioned character-
istics is by using the Boltzmann distribution, Equation 1, as the conceptual
search distribution. Where g(x) is the fitness function. For this article we
use the objective function as fitness function directly.

The Gibbs or Boltzmann probability function of an fitness function g(x)
is defined by:

p(x) :=

∫
x

exp (β · g(x))
Z

dx (1)

The Boltzmann distribution was introduced to explain the distribution of
distinguishable particles in several energy states. The Z parameter is a nor-
malization value in order to have a probability function which integrates 1.
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Z could be computed by integrating the exponential function in the numer-
ator in the whole search domain, which requires to know the function value
for all the points in the search domain, thus it is one of the reasons why
we approximate the Boltzmann by a Gaussian. The parameter β has been
called the exponentiation factor in the EDAs context [16, 10], it is related
with the inverse temperature and the Boltzmann constant in the original
distribution. Nevertheless, when defining the distribution as in Equation 1,
β is related with the selection pressure: if g(x) is the fitness function, the
greater fitness function, the greater the probability, additionally, if β is large
enough (infinite valued), the optimum has probability 1.

It has been proven that conceptual EDAs based on the Boltzmann selec-
tion, such as the Boltzmann EDA (BEDA) [11, 9], converge to the optimum
[16]. This work is about an indirect way to use the Boltzmann distribu-
tion through the Gaussian model which best explains it, according to the
Kullback-Leibler divergence. The goal is to preserve the desired character-
istics of the Boltzmann distribution, while maintaining a low computational
cost in the estimation and sampling steps.

This approach conceptually revises the EDA goals, by arguing that one of
the most important aims in EDAs is to sampling intensively the most promis-
ing regions. If this goal is accomplished, then we only will evaluate promising
candidate solutions. Otherwise, we could be sampling and evaluating useless
candidate solutions. Notice that, frequently, practical EDAs does not accom-
plish that goal by one or all the following issues: 1) most of the selected could
be not positioned in the most promising region. Thus the search distribution
could be biased to the region containing most of the selected individuals but
not where the most fittest individuals are. 2) If the shape of the search dis-
tribution could not capture the selected set structure, then promising regions
would not be sampled intensively. These issues have been studied and tackled
by researchers, by instance, by inferring which solutions are promising before
evaluating [8]. Notice that this way of approaching such issue is a correction
step, while our proposal focuses on sampling as many promising solutions
as possible, avoiding to sample promising and non-promising solutions and
then reject some of them.

The organization of this paper is the following: Section 2 develops the
formulae to approximate the Boltzmann PDF with a Gaussian PDF and
the computation of the parameters of the Gaussian. Section 3 explains the
Boltzman Univariate Distribution Algorithm (BUMDA). Section 4 presents
an analysis of the BUMDA characteristics an expected performance. Section
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5 provides test problems and performance analysis for comparison with state
of the art EDAs. Section 6 presents the main conclusions and discussion
about the proposal presented.

2. Approximating the Boltzmann PDF with a Gaussian Model

This Section tackles the approximation of a univariate Boltzmann dis-
tribution P (x) = Px = exp(βg(x))/Z, by a univariate Gaussian model
Q(x, µ, v) = Qx. Where the parameters are the mean µ and variance v
of the distribution. The Gaussian model for independent variables is given
by Equation (2).

Q(x) =
n∏

i=1

Qi(x), where Qi(x) = Q(xi, µi, vi) =
e

[
− (xi−µi)

2

2vi

]
(2πvi)1/2

(2)

A widely used measure of the difference between two distributions P (x) =
Px and Q(x, µ, v) = Qx is the Kullback-Leibler divergence (KLD) given in
Equation (3). In order to approximate the Gaussian distribution Qx to
the Boltzmann distribution Px, we minimize the Kullback-Leibler divergence
with respect to the Gaussian parameters (µ, v), as shown in Equation (3).

KQ,P =

∫
x

Qx log
Qx

Px

dx,
∂KQ,P

∂θ
=

∫
x

[
1 + log

Qx

Px

]
∂Qx

∂θ
dx. (3)

By substituting ∂Qx

∂µ
= Qx

(x−µ)
v

into (3) we get Equation (4).

∂KQ,P

∂µ
=

∫
x

[
1− (x− µ)2

2v

]
Qx

(x− µ)

v
dx

−
∫
x

[
log 2πv1/2 − logZ + βg(x)

]
Qx

(x− µ)

v
dx. (4)

The fact that (x−µ) is an odd function about µ becomes useful to evaluate
some integrals, which become equal to 0. We get:

∂KQ,P

∂µ
= −β

v

∫
x

Qx(x− µ)g(x)dx ≈ −β

v

∑
xj∈X

(xj − µ)g(xj). (5)
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Where X is the selected set. Gallagher and Frean [3] used the gradient
approximation in Equation (5) and µt to compute µt+1. In this work we
propose to directly compute the µ value which best fits the known informa-
tion about the fitness function (selected set objective values), as shown in
Equation (6):

µ ≈
∑

j g(xj)xj∑
j g(xj)

. (6)

In the same way, substituting ∂Qx

∂v
= Qx

(
(x−µ)2

2v2
− 1

2v

)
, into (3):

∂KQ,P

∂v
=

∫
x

[
1 + log

Qx

Px

]
Qx

(
(x− µ)2

2v2
− 1

2v

)
dx =∫

x

[
1 + log[(2πv)1/2]

]
Qx

[
(x− µ)2

2v2
− 1

2v

]
dx+∫

x

[
−(x− µ)2

2v
+ logZ − βg(x)

]
Qx

[
(x− µ)2

2v2
− 1

2v

]
dx (7)

By substituting, in Equation (7), the following equalities:∫
x
Qx(x− µ)2dx = v,

∫
x
Qxdx = 1, and

∫
x
(x− µ)4Qxdx = 3v2,

We obtain Equation (8), which is set equal to 0, in order to minimize the
KLD.

− 3

4v
− β

2v2

∫
x

g(x)Qx(x− µ)2dx+
1

4v
+

β

2v

∫
x

g(x)Qxdx = 0. (8)

Finally, the expressions to analytically compute the variance and its nu-
merical stochastic approximation are given by Equation (9).

v =

∫
x
g(x)(x− µ)2Qxdx

−1
β
+
∫
x
g(x)Qxdx

, v ≈
∑

xj∈X g(xj)(xj − µ)2

T ′ +
∑

xj∈X g(xj)
, (9)

In order to simplify the Equation (9), consider the following:

5
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• v =
∫
x g(x)(x−µ)2Qxdx
−1
β

+
∫
x g(x)Qxdx

=
β
∫
x g(x)(x−µ)2Qxdx

−1+β
∫
x g(x)Qxdx

. Consequently, for large values

of β:

v
β→∞

=
β
∫
x
g(x)(x− µ)2Qxdx

β
∫
x
g(x)Qxdx

=

∫
x
g(x)(x− µ)2Qxdx∫

x
g(x)Qxdx

. (10)

Also, for large values of the objective function:

v
g(x)>>0,(x−µ)2>0

≈
β
∫
x
g(x)(x− µ)2Qxdx

β
∫
x
g(x)Qxdx

=

∫
x
g(x)(x− µ)2Qxdx∫

x
g(x)Qxdx

.

(11)
For these cases:

v
g(x)>>0, (x−µ)2>0 or β>>0

≈
∑

xj∈X g(xj)(xj − µ)2∑
xj∈X g(xj)

(12)

• A second consideration is if
∑

i g(xi) ≈ 0, for this case there is a nu-

merical problem in the following division:

∑
xj∈X g(xj)(xj−µ)2∑

xj∈X g(xj)
.

• A third consideration for the Equation:

∑
xj∈X g(xj)(xj−µ)2∑

xj∈X g(xj)+T ′ is: if T ′ < 0

and
∑

xj∈X g(xj) < |T ′|, then v < 0 (considering that g(x) > 0∀x).

According to these considerations:

• T ′ must be greater than 0.

• The value of T ′ becomes irrelevant, for large values of β or large values
of g(x). Even more, β itself becomes irrelevant, according to Equations
10,11, 11.

Due to these considerations we propose a T ′ = 1. That means that we
assume a sufficiently large β value, and we avoid numerical problems. Notice
that a small beta value could be used for regulating the variance, only for
increasing the variance, it can not be decreased by β.

This section concludes with two important result given by Equations (6)
and (9), which are the needed formulae to compute the parameters of a
univariate Gaussian model which approximate the Boltzmann distribution by
minimizing the KLD. A possible drawback of the univariate model is that it is

6
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restricted to problems which present weak variable correlation. On the other
hand, the advantages of this model are simplicity and low computational
cost, not to mention the promising results reported, such as the UMDAG

c [6],
PBIL [1] and BG-UMDA [15].

3. The Boltzmann Estimation of Distribution Algorithm (BUMDA)

Two desired characteristics of an EDA, and in general of any evolutionary
algorithm, are the following:

• A non-decreasing sequence of the expected value of the population fit-
ness function. In order to obtain better samples than the generation
before.

• Convergence to the best solution found. In order to refine the solu-
tion, and to determine when the algorithm rarely will improve the best
solution known.

A simple way to ensure both characteristics is to apply a truncation selec-
tion method which increases the mean of the fitness value, such as explained
in Figure 1. As the mean of the fitness value of the elected set (and the
population) is bounded by the elite fitness value, then, the mean converges
to it. We ensure that it is always at least one element in the selected set by
preserving the elite individual.

Truncation Selection Method

Consider a population of decreasingly sorted individuals (maximization case), such that
x1 are the decision variables of the individual with the maximum objective function in
the population. :

1. For the initial generation t = 0, let be g(xi, 0) for i = 1..N , the objective values
of the initial population. Define: θ0 = min g(xi, 0).

2. For t > 0, set:
θt = max

(
g(xN/2, t),min(g(xi, t)|g(xi, t) ≥ θt−1)

)
.

3. Truncate the population such that g(xs, t) ≥ θt. Where xs are all the individuals
whose objective values are equal or greater than θt.

Figure 1: Truncation method to ensure convergence in a population based algorithm.

7
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Now, we have all the elements needed to introduce the BUMDA, shown
in Figure 2. Notice that the BUMDA uses the truncation selection method
to ensure an increasing average (mean estimator) of the objective function of
the population. In addition, the fitness function of the selected set is used to
incorporate information about the fitness landscape into the Gaussian model.

A simplification for the variance calculation was done by setting T ′ = 1.
A reason to set T ′ = 1 is due to analysis of several experiments conducted,
which suggest that the BUMDA performance is significantly more impacted
by changes in the population size than the value of T ′.

The reader must observe that the fixed T ′ does not imply a fixed distri-
bution because the distribution is computed according the selected set which
is changing every generation. Hence, the current distribution discard all the
regions in which g(x) < θ, as it is shown in Figure 3.

BUMDA

1. Give the parameter and stopping criterion:
nsample ← Number of individuals to be sample.
minvar ← minimum variance allowed.

2. Uniformly generate the initial population P0, set t = 0.

3. While v > minvar for all dimensions

(a) t← t+ 1
(b) Evaluate and truncate the population according algorithm in Figure 1.
(c) Compute the approximation to µ and v (for all dimensions) by using the

selected set (of size nselec), and Equations (6) and (9), as follows:

µ ≈
∑nselec

1 xiḡ(xi)∑nselec
1 ḡ(xi)

, v ≈
∑nselec

1 ḡ(xi)(xi−µ)2

1+
∑nselec

1 ḡ(xi)
,

where ḡ(xi) = g(x)− g(xnselec) + 1.
Note: the individuals can be sorted to simplify the computation, and
g(xnselec) is the minimum (for maximization case) objective value of the
selected individuals.

(d) Generate nsample − 1 individuals from the new model Q(x, t), and insert
the elite individual.

4. Return the elite individual as the best approximation to the optimum.

Figure 2: Pseudo-code for BUMDA

According to the proposals presented in this section we infer some inter-
esting characteristics, which will be discussed in the next section:

• The BUMDA converges to the best approximation to the optimum.

8
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• The variance tends to 0 for a large number of generations.

• The BUMDA only needs one parameter (population size).

• The estimation of the search distribution parameters results in a fast
automatic adaptation. The variance could be increased or decreased,
according to the solutions in the selected set and their objective values,
and the mean moves fast to the region where the best solutions are.

4. BUMDA Analysis

This section presents a brief analysis of the BUMDA characteristics men-
tioned at Section 3. Firstly we analyze the convergence property of BUMDA,
and in general the convergence with the truncation method shown in Figure
1. Secondly we discuss the tendency of variance to 0 for a large number of
generations, which can be used as a stopping criterion. Finally, we present
the differences between BUMDA and maximum likelihood estimation.

4.1. BUMDA Convergence

Let us call the worst objective value at the initial population as θ0, and
the best objective value found by BUMDA during all the generations as θn.
Due to step 2 in Figure 1, θt ≥ θt−1, thus the set {θt} is a non-decreasing
sequence. Also note that the θt value is always taken from the population
generated during the search process, and the best value generated through
all the generations is θn (the last objective value of the elite individual).
Then we have a non-decreasing sequence upper bounded by θn. Note that
the probability of sampling an individual xθ with the same value of θt−1 is
0, say P (g(xθ) = θt−1) = 0, by consequence P (θt > θt−1) = 1, then the
non-decreasing sequence {θt} becomes an strictly increasing sequence. Note
that the objective values of the selected set are always greater or equal to
θt, say g(xs) ≥ θt, then the whole selected set converge to θn. That is to
say, for any continuous function, all the points will be clustered around the
best solution found. The convergence of the whole population to a point is
especially important in order to use a variance measure as stopping criterion.
The Figure 3 graphically shows the effect of the truncation method during
several generations.

9
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Figure 3: The effects of the truncation method for the BUMDA.

4.2. BUMDA parameter adaptation

It has been noticed that in general the maximum likelihood (ML) param-
eter estimation is not the best strategy for approximating the optimum in an
EDA [5]. Some alternative strategies have been proposed [4]. This section
show how the BUMDA parameter estimation differs from ML estimation,
and how these differences improve the search process.

Consider a selected set as the one shown in Figure 4 (labeled as sample
points). This selected set is used to compute the parameters for the Gaussian
distribution. Suppose that most of the population has been clustered around
x = −1, and new promising solutions have been discovered near to the
optimum around x = 6. The dashed line is the density function obtained
when using the ML formulae, the bold line is the density function obtained
by using the BUMDA formulae.

The weights used in the BUMDA leads the Gaussian mean (vertical bold

10



Pr
ep
rin
t

line) closer to the optimum than the ML mean (vertical dashed line), addi-
tionally the variance for the BUMDA density is larger than the ML variance,
thus, BUMDA increases its exploration capacity in a region closer to the
optimum.

−4 −2 0 2 4 6

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

mean= −0.681
max. likelihood formula

mean= −0.127
computed with BUMDA

variance= 2.35
max. likelihood formula

variance= 5.49
computed with BUMDA

objective function
 sample point

Figure 4: Comparison between BUMDA and maximum likelihood parameter estimation.

In the same vein, the BUMDA implicitly incorporate information about
the multiple local maxima in the objective function. This characteristic is
shown in Figure 5. An equally spaced sample has been taken in the same
domain in functions (a) and (b), then we compute the mean and variance
according to BUMDA formulae. Notice that when optimizing the function
in Figure 5(a) the distribution has a smaller variance than that in Figure
5(b), even though both samples use the same set of points before truncation.
When the population is truncated the BUMDA detects that a wider explo-
ration is needed for the function with more local maxima. The mentioned
characteristics of the BUMDA, justifies the application of both truncation
and Boltzmann selections, the first helps to achieve convergence and the
latter incorporates information of the function landscape.

5. Test Problems and Performance Analysis

This section presents experiments and comparison among the BUMDA
and state of the art EDAs proposed by different researchers. The BUMDA
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Figure 5: Comparison of functions with different local maxima. We took equally spaced
points in both cases a) and b), both samples have the same average in x and y, but
note how the function with more local maxima has a larger variance. Thus, the BUMDA
maintains a wider exploration when the sample is truncated. µ =mean, v =, variance,
bf = before truncation, af = after truncation.

is compared with an univariate state of the art EDA, for instance, BG-
UMDA [15] which is the most similar approach in the literature. In ad-
dition, the BUMDA is compared with multivariate Gaussian based EDAs
such as the EMNA-B [15], the Iterated Density Estimation Evolutionary Al-
gorithm (IDEA), the Evolution Strategy with Covariance Matrix Adaptation
(CMA-ES), and the Correlation-Triggered Adaptive Variance Scaling IDEA
(CT-AVS-IDEA) [4]. This multivariate EDAs can be unified as multivari-
ate Gaussian based estimation of distribution algorithms [2], which have in
common a similar complexity in the model. This kind of algorithm intends
to capture the search directions from the structure of the selected set. Our
experiments show that an adequate bias of the search distribution via the
selection step, is at least as important as the model used to capture the
selected set structure.

12



Pr
ep
rin
t

5.1. Problem Test 1.

This set of problems, taken from [14], compares the BUMDA with the
EMNA-B and BG-UMDA reported in [15]. . The BG-UMDA also uses
an univariate Gaussian function to approximate the Boltzmann distribution.
This set of functions has been widely used to compare EDAs [7]. Some of
these functions have many local maxima/minima. In addition, as the func-
tions are defined for any dimension, this set could be used to analyze the
scalability of the algorithms.
Experiment and BUMDA parameter settings. All the algorithms were
tested for 3 × 105 function evaluations or when they found a solution with
an error less than or equal to 10−6. To make a fair comparison we used the
same stopping criteria of the experiments reported in [15]. The population
size for this test is 3000 for the Sum Cancellation, and 300 for all the other
functions. In general, the BUMDA population size could be set in a straight-
forward way, increasing it until the best optimum approximation is found or
the performance does not change.
Results analysis. The BUMDA finds the best average value of the objective
functions in three of five cases, as shown in Table 1, and it is significantly
better than BG-UMDA in two cases. On the other hand, as can be no-
ticed the BUMDA fails to reach a close optimum approximation in the Sum
Cancellation and Rosenbrock problems. These functions have a multivariate
interaction, hence it is reasonable that the best performing algorithm is the
EMNA-B. When looking at the objective function value, we can conclude
that the BUMDA is competitive in such problems which do not require a
multivariate model. In other vein, since the approximation error is used as
stopping criterion, a useful comparison is given by the number of function
evaluations required to reach it. See Table 2, the BUMDA uses the less
average number of evaluations for those cases which are successfully solved
by it. Observe that the difference in the number of evaluations between 10
dimension and 50 dimension problems increased less than 3 times but the
dimensionality increased 5 times (when the optimum is found by BUMDA).
According to the results just presented, we can derive various observations:

• The BUMDA performs well in univariate problems, as expected.

• The selection pressure given by the BUMDA selection method: trunca-
tion/weighting, is more adequate than such of the BG-UMDA for this
kind of problems, according to Table 2, because with a smaller number
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of function evaluations the BUMDA delivers similar or better results
than the BG-UMDA.

• As can be notice, the Sphere and Griewangk functions require a simi-
lar computational effort to reach the desired optimum approximation,
while the Ackley function has a different requirement. The explanation
is that the Griewangk function in high dimensions (10 or more) becomes
similar to the sphere. The three compared algorithms require a similar
number of function evaluations in the Griewangk and Sphere functions
for 50-dimension, and quite similar also for the 10-dimension case. As
can be noticed the number of function evaluations depends completely
on the problem, similar problems have a similar cost. This means that
the three algorithms are using information about the function land-
scape to perform the search. This is interesting because instead of
require as user parameter the number of generations or evaluations,
one can fix the desired precision, by using a variance based stopping
criterion which is a more easy-to-tune parameter, because usually it
completely depends on the optimization problem.

Statistical test. The comparison among the BUMDA, the BG-UMDA
and EMNA-B uses the z − test with α = 0.05. It is used to compare both,
objective values and function evaluations. This is the recommendable test
because the only data available are the means and standard deviations. The
t − test should not be used, because in general the variances could not be
considered homogeneous, according with the Fmax test. The rightmost co-
lumn of Tables 1 and 2 show the z−test results. If the alternative hypothesis
H1 is accepted, the BUMDA is better than the other algorithm. Otherwise
the null hypothesis is not rejected, therefore, there is not enough statistical
evidence to say which algorithm is better.

5.2. Problem test 2

This set of problems is taken from [4]. All the functions are convex
and have been generalized for any number of dimensions. Most of these
problems can be solved by well performed EDAs as the presented in [4].
Then, an objective comparison, must be based on scalability or effort needed
by the algorithm to reach the optimum, by relating the number of evaluations
with the problem dimensionality. For these problems we report a plot of
the problem dimensionality (2,4,8,10,20,40,80) versus the average number of
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H1 : F̄BUMDA better than F̄other

Function BUMDA EMNA-B BG-UMDA EMNA-B BG-UMDA

SumC 10d 7.5E3± 8.4E3 1E5± 1.1E-7 5.8E4± 2.3E4 no no
SumC 50d 2.07± 0.12 99910± 160 1.39± 0.1 no yes
Grie. 10d 7.3E-7± 1.7E-7 7.4E-7± 1.1E-7 1.27E-4± 4E-4 no no
Grie. 50d 9E-7± 8.4E-8 9.2E-7± 5E-8 8.8E-7± 7E-8 no no
Sphe. 10d 7E-7± 1.6E-7 7.5E-7± 2.1E-7 5.9E-7± 1.8E-7 no no
Sphe. 50d 8.7E-7± 8.1E-8 8.8E-7± 1.1E-7 8.4E-7± 8E-8 no no
Rose. 10d 8.1± 0.08 6.33± 0.37 7.74± 0.08 no no
Rose. 50d 47.7± 0.18 47.08± 0.44 47.54± 0.07 no no
Ackl. 10d 8.3E-7± 1.2E-7 8.4E-7± 1E-7 8.3E-7± 1.6E-7 no no
Ackl. 50d 9.3E-7± 4.3E-8 9.42E-7± 4E-8 9.6E-7± 4E-8 no yes

Table 1: Mean and standard deviation of best function value found in 20 runs for the Test
problem 1. yes= the BUMDA is better than the other algorithm.

H1 : N̄eval
BUMDA < N̄eval

other
Function BUMDA EMNA-B BG-UMDA EMNA-B BG-UMDA

SumC. 10d 3E5± 0 92520± 840 300400± 0 NP NP
SumC. 50d 3E5± 0 301000± 0 300400± 0 NP NP
Grie. 10d 17262± 384 134000± 47000 229E3± 64E3 yes, p=5.8E-29 yes, p=7.8E-50
Grie. 50d 39675± 342 170100± 1700 71880± 420 yes, p=0 yes, p=0
Sphe. 10d 14541± 261 35200± 420 35720± 840 yes, p=0 yes, p=0
Sphe. 50d 40695± 325 192900± 1600 82400± 460 yes, p=0 yes, p=0
Rose. 10d 3E5± 0 300400± 0 300400± 0 NP NP
Rose. 50d 3E5± 0 301000± 0 300400± 0 NP NP
Ackl. 10d 23257± 287 43560± 610 44000± 530 yes, p=0 yes, p=0
Ackl. 50d 58850± 348 231800± 4300 98920± 530 yes, p=0 yes, p=0

Table 2: Average and standard deviation of evaluations for Test problem 1. yes= the
BUMDA is better than the other algorithm. NP= Comparison Not Possible.

evaluations (to preserve the experimental conditions of the results presented
in [4]), as well as a regression coefficient.

The comparison includes well performed algorithms reviewed in [4]: the
Iterated Density Estimation Evolutionary Algorithm (IDEA), the Evolution
Strategy with Covariance Matrix Adaptation (CMA-ES), and the Correlation-
Triggered Adaptive Variance Scaling IDEA (CT-AVS-IDEA). The BUMDA
successfully solves 30 independent consecutive runs for all the test problems
except the Rosenbrock (which is not presented). The linear least squares re-
gressions on log-log data are presented in Table 3, where the average number
of evaluations e depends on the dimensionality l as follows:

log e = β log l + β0 + ϵ (13)
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The regression coefficient β can be seen as an empirical order of the algo-
rithm, it shows how the number of evaluations grows with the dimensionality.

Experiment and BUMDA Parameter Setting. All the algorithms
use the closeness to the optimum as termination criterion, it was set in 10−10

for all the functions except the different powers function which optimum
closeness was set in 10−15. The population size for the sphere is 200, for the
ellipsoid is 200 from 2 to 10 variables, 400 for 20 and 40 variables, and 500
for 80 variables. For the cigar function, 200 for 2 and 4 variables, 300 for 8
and 10 variables, 400 for 20, 600 for 40 and 900 for 80. For the tablet, 200
from 2 to 20 variables, 300 for 40, and 400 for 80. For the two axes 200 from
2 to 8 variables, 300 for 10, 500 for 20, 600 for 40, and 700 for 80. For the
different powers 200 from 2 to 8, 300 for 10, 600 for 20, 1200 for 40 and 2400
for 80. For the parabolic ridge 300 from 2 to 10 variables, 400 for 20, 500 for
40, and 600 for 80. For the sharp ridge 200 from 2 to 20 variables, 300 for
40 and 400 for 80.
Results analysis. As shown in Table 3 the BUMDA order can be considered
less than the other EDAs compared, even more, most of the problems have
a regression coefficient closed to 1, this means linear scaling. This is quite
important, in spite of the fact that the objective function used in this test are
all convex, the BUMDA performs better than other algorithms which niche
of application are convex functions. The results in Table 3 shows that for
this kind of problems the BUMDA computational scalability is sublinear or
linear at maximum.

The BUMDA plot in Figure 6 shows the linear behavior, of BUMDA, the
reader can compare this plot with the presented in [4], in order to observe
how BUMDA can outperform more complex models such as multivariate
Gaussians. The symbols used to represented the different test problems are:
Cigar + , Cigar tablet ×, Different powers *, Ellipsoid □, Parabolic
Ridge ■, Sharp Ridge •, Sphere △, Tablet ▲, Two axes ▽.

6. Conclusions

According to the results obtained it is worth to notice that the BUMDA
represents a different point of view in EDAs: while many researchers have
presented proposals which intend to capture as better as possible the fitness
landscape in a probability model, using very complex and computational ex-
pensive models [13] [17], the BUMDA shows that complex probability mod-
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Function IDEA AVS-IDEA CMA-ES BUMDA

Sphere 1.1635 1.6563 0.9601 0.6250
Ellipsoid 1.2171 1.6870 1.1093 0.9214
Cigar 1.1865 1.6976 1.1093 1.0817
Tablet 1.0860 1.6397 1.4178 0.7679

Cigar Tablet 1.1142 1.7155 1.2431 1.03823
Two Axes 1.2854 1.6551 1.7208 1.0437

Different Powers 1.4983 1.1692 1.5845 1.3487
Parabolic Ridge not solved 1.1160 1.0853 0.7956
Sharp Ridge not solved 0.8563 1.4764 0.7959

Worst Coefficient 1.4983 1.9154 1.7208 1.3487
Best Coefficient 1.086 0.8563 0.9601 0.6250

Coefficient Average 1.2216 1.5108 1.3603 0.9353

Table 3: Regression coefficients can be seen as an empirical order of the algorithm, thus
in average the BUMDA is O(n0.9353) (sublinear), where n is the number of variables.
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Figure 6: Dimensionality (X-axis) vs Average Number of Evaluations (Y-axis), plotted in
log-log scale for 30 independent runs of BUMDA.

els can be outperformed by a simple univariate Gaussian distribution. The
explanation is the focus on increasing the probability of finding the opti-
mum (sampling intensively promising regions) instead of fitting the data. In
this vein, when using maximum likelihood estimation or any other estimator
which fits the data, there is not guaranty that the most promising regions
will be intensively sampled, because: 1) The data could have a wrong bias.
It is to say, we have many individuals with a middle-range fitness value and
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few fittest individuals in the selected set, as they are usually equally weighted
for the parameter computation, the most promising regions could be lost. 2)
The search distribution model is incapable of capturing the structure of the
data. For example, if the fittest individuals are clustered in two separated
regions, and the search distribution uses a unimodal model, it is very possible
that most of the probability mass be positioned in the middle of the most
promising regions, instead of one of them. On the other hand, the BUMDA
actually intends to fit a Gaussian which has the maximum probability value
in the best known solution. The last statement does not mean that com-
plex models or distribution factorizations are useless, but that the parameter
computation must ensure that the most promising regions are intensively
explored, regardless the parametric model used as search distribution.

The Boltzmann Univariate Marginal Distribution Algorithm (BUMDA),
ensures convergence to the best solution found for a large number of (increasing-
expectation) generations. The BUMDA can solve an extensive type of prob-
lems with a very competitive effort (number of evaluations). In addition, the
computational cost required to calculate the parameters of the probabilistic
model is O(nm) (linear) with the number of dimensions n, and the popula-
tion sizem. The order of the algorithm empirically computed, shows that the
function evaluations grow sublinearly O(n0.9353) with respect to the number
of variables. The BUMDA achieves the reduction of user-given parameters,
requiring just one : the population size, which can be easily tuned.

We suggest to use a stopping criterion based on minimum variance, be-
cause this criterion detects a poor exploration and when the optimum ap-
proximation is being rarely improved.

The Test problems presented in Section 5, are used to contrast conver-
gence, optimum approximation and scalability of the BUMDA versus state of
the art EDAs. The results provide evidence about the BUMDA competitive-
ness when it is compared with approaches based on univariate models, such
as BG-UMDA, presented in Test problems 1. Even more, the BUMDA is
competitive in the accuracy of the optimum approximation and the compu-
tational cost with multivariate models such as: EMNA-B, IDEA, CT-AVS-
IDEA and CMA-ES, presented in Test problems 1 and 2.

Future work will contemplate the approximation of the Boltzmann distri-
bution by a more complex model which captures dependencies among vari-
ables. Another important issue is to adopt the concept of using a search
distribution which really incorporates information about the fitness land-
scape, and allows to sample more intensively the most promising regions.
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Finally, according to our results we conclude that new EDAs proposals must
consider the following issues: 1) to use all the information at hand to per-
form the exploration, particularly to use the fitness values of the population
to estimate the search distribution, and 2) to use the explicit probabilistic
modeling in EDAs to ensure that the most promising regions (the regions
known with the best objective function), be intensively explored. 3) to use
the explicit probabilistic modeling in EDAs to explain: when EDAs should
work, why EDAs should work, and which guidelines one must follow in order
to design successful EDAs.
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