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OVERVIEW - ANALYSIS OF BRAIN SIGNALS

Data: multi-channel EEG, fMRI time series at several ROIs



OVERVIEW - ANALYSIS OF BRAIN SIGNALS

Goals of our research

Characterize and define dependence in a brain network

Develop estimation and inference methods

Develop classification methods that use connectivity as a
biomarker

Predicting motor intent (Left vs. Right movement)
Differentiating patient groups (bipolar vs. healthy)



OVERVIEW - ANALYSIS OF BRAIN SIGNALS

Models and methods must incorporate information

Across trials, across subjects

Models for estimating effect of a stimulus on brain network

Model that use multi-modal data (EEG, fMRI, DTI)

Dimension reduction: extract information from massive
data that is most relevant for estimating dependence



OVERVIEW - ANALYSIS OF BRAIN SIGNALS

Some References for Time Series Analysis

Brillinger (1981) - Theory for Spectral Analysis.

Brockwell and Davis (1991) - Theory book with emphasis
on time domain analysis.

Shumway and Stoffer (2007) - Combination of theory,
methods, real-life examples.



SOME TIME SERIES DATA

Speech Signal "GREASY"



SOME TIME SERIES DATA
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SOME TIME SERIES DATA

Local Field Potentials



SOME TIME SERIES DATA

Magnetoencephalograms



SOME TIME SERIES DATA

Epileptic Seizure EEGs



SOME TIME SERIES DATA

Epileptic Seizure EEGs



SPECIFIC GOALS IN ANALYZING TIME SERIES DATA

Time-domain Analysis

Dependence. What is the correlation between Y (t) and
Y (t + h)?
Prediction. Suppose that you have monthly sales data for
2000-2010, predict the monthly sales in January 2011
using

Past data for January 2000,2001, . . . (annual seasonality)
Immediate past months December, November, 2010
(lagged relationships)



SPECIFIC GOALS IN ANALYZING TIME SERIES DATA

Spectral-domain Analysis

Signal decomposition. What oscillations are present in the
time series?

Coherence. What is the interactions between oscillations
in different time series?



BASIC TIME DOMAIN ANALYSIS

Time Series Data [X (t),Y (t)]′, t = 1,2, . . .

Mean µ(t) = [EX (t),EY (t)]′, t = 1,2, . . .

Variance

γXX (t , t) = Cov[X (t),X (t)]

γYY (t , t) = Cov[Y (t),Y (t)]

Auto-covariance function

γXX (s, t) = Cov[X (s),X (t)]

γYY (s, t) = Cov[Y (s),Y (t)]

Cross-covariance function

γXY (s, t) = Cov[X (s),Y (t)]

γXY (t , s) = Cov[X (t),Y (s)]



BASIC TIME DOMAIN ANALYSIS

[X (t),Y (t)]′ is a weakly stationary time series if

Mean is constant in time

µ(t) = [µX , µY ]
′ for all t = 1,2, . . .

Variance is constant in time

γXX (t , t) = γXX (0,0)

γYY (t , t) = γYY (0,0)

Auto-covariance and cross-covariance depends only on
the lag h

γXX (t + h, t) = Cov[X (t + h),X (t)] = γXX (h,0) := γXX (h)

γXY (t + h, t) = Cov[X (t + h),Y (t)] = γXY (h,0) := γXY (h)

γXY (t , t + h) = Cov[X (t),Y (t + h)] = γXY (0,h) := γXY (−h)



BASIC TIME DOMAIN ANALYSIS

Cross-correlation function

Auto-correlation function

ρXX (h) = Corr[X (t + h),X (t)] =
γXX (h)
γXX (0)

ρYY (h) = Corr[Y (t + h),Y (t)] =
γYY (h)
γYY (0)

Cross-correlation function

ρXY (h) = Corr[X (t + h),Y (t)] =
γXY (h)√

γXX (0)γYY (0)

ρXY (−h) = Corr[X (t),Y (t + h)] =
γXY (−h)√

γXX (0)γYY (0)



SOME BASIC TIME DOMAIN MODELS

White Noise

Time Series X (t)

EX (t) = µ

Var X (t) = σ2
X

Auto-covariance function

γXX (h) =
{

σ2
XX , h = 0
0, h 6= 0

Plot of the auto-covariance and auto-correlation functions.



SOME BASIC TIME DOMAIN MODELS

Moving Average Model MA(q)

Z (t) ∼WN(0, σ2
Z )

X (t) is MA(q) if it has the representation

X (t) = Z (t) + θ1Z (t − 1) + . . .+ θqZ (t − q)

Intuition: applying a moving window of size q + 1 on the
white noise {Z (t)}
Auto-covariance function

γXX (h) =





[1 + θ2
1 + . . .+ θ2

q]σ
2
Z , h = 0

something, h = ±1
. . . , . . .

something, h = ±q
0, h = ±(q + 1), . . .



SOME BASIC TIME DOMAIN MODELS

Auto-regressive Model AR(p)

Z (t) ∼WN(0, σ2
Z )

X (t) is AR(p) if it has the representation

X (t) =
p∑

ℓ=1

φℓX (t − ℓ) + Z (t)

Consider the simple case AR(1). When |φ1| < 1,

X (t) =
∞∑

ℓ=0

φℓ
1Z (t − ℓ)

Causal: X (t) depends only on the current and past noise
values
Auto-covariance function

γXX (h) =





σ2
Z

1−φ2
1
, h = 0

φ
|h|
1

σ2
Z

1−φ2
1
, h = ±1,±2, . . .

Auto-correlation function



SOME BASIC TIME DOMAIN MODELS

Estimating the AR parameters

φ = [φ1, . . . , φp]
′

Conditional least squares criterion

S(φ) =

T∑

t=p+1

[X (t)− (φ1X (t − 1) + . . .+ φpX (t − p))]2

Conditional maximum likelihood
X(t) = φ1X(t − 1) + . . .+ φpX(t − p) + ǫ(t); ǫ(t) ∼ N(0, σ2)
Define mp(t) = φ1X(t − 1) + . . .+ φpX(t − p)
Define X (t − 1) = [X(t − 1),X(t − 2), . . .]′

X(t)|X (t − 1) ∼ N(mp(t), σ2)
Conditional likelihood

LC(φ) = f (X(p + 1), . . .X(T ) |X (p)) (1)

= f (X(p + 1)|X (p)) . . . f (X(T )|X (T − 1)) (2)



SOME BASIC TIME DOMAIN MODELS

Selecting the best order - acf and pacf plots

ACF PACF
MA zero after q tapers slowly
AR tapers slowly zero after p

ARMA tapers slowly tapers slowly



SOME BASIC TIME DOMAIN MODELS

Selecting the best order - information criteria

Data X (t), t = 1,2, . . . ,T
Set of candidate orders p ∈ {1, . . . ,P}
Use data only for t = P + 1, . . . ,T
For each p, estimate φ1, . . . , φp, compute the noise
variance estimate

σ̂2(p) =
1

T − P

T∑

t=P+1

[X (t) − m̂p(t)]2

Akaike information criterion (AIC)

AIC(p) = log(σ̂2) + (2p + 1)/(T − P)

Bayesian information criterion (BIC)

BIC(p) = log(σ̂2) + (log(p)p + 1)/(T − P)

Choose p∗ argmin of AIC(p) or BIC(p).



SOME EXAMPLES IN R

Time domain Models

See file CorrelationsandModels



SOME EXAMPLES IN R

Example - Time domain analysis of EEG

See file CLASS-EEG



SPECTRUM - GIVES VARIANCE DECOMPOSITION

X (t) STATIONARY TEMPORAL PROCESS

Cramér Representation

Xt =
∫

exp(i2πωt)dZ (ω), t = 0,±1,±2, . . .

Basis Fourier waveforms exp(i2πωt), ω ∈ (−π, π)
Random coefficients dZ (ω) – increment random process

EdZ (ω) = 0 and
Cov[dZ (ω), dZ (λ)] = δ(ω − λ)f (ω)dωdλ



SPECTRUM - GIVES VARIANCE DECOMPOSITION

Mixing of oscillations
Wave (2 oscillations)

Wave (10 oscillations)

−4 40

Distribution of Random Coeff

−4 40

Distribution of Random Coeff



SPECTRUM - GIVES VARIANCE DECOMPOSITION

SPECTRUM – decomposition of variance

X = [X (1), . . . ,X (T )]′ - zero mean stationary time series

Φ - columns are the orthogonal Fourier waveforms

d = [d(ω0), . . . ,d(ωT−1)]
′ - Fourier coefficients

X = Φd

X′X = d′d
1
T EX′X = 1

T Ed′d

Var X (t) ≈
∫

f (ω)dω



SPECTRUM - GIVES VARIANCE DECOMPOSITION

A more formal derivation ...

X (t) =
∫

exp(i2πωt)dZ (ω)

γ(h) = Cov[X (t + h),X (t)]

f (ω) =
∑∞

h=−∞ γ(h)exp(−i2πωh)

γ(h) =
∫ 0.5
−0.5 f (ω)exp(−i2πωh)dω

γ(0) =
∫

f (ω)dω



SPECTRUM - GIVES VARIANCE DECOMPOSITION

AR(1): Xt = 0.9Xt−1 + ǫt
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SPECTRUM - GIVES VARIANCE DECOMPOSITION

Spectrum of AR(1) with φ = 0.9
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SPECTRUM - GIVES VARIANCE DECOMPOSITION

AR(1): Xt = −0.9Xt−1 + ǫt
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SPECTRUM - GIVES VARIANCE DECOMPOSITION

Spectrum of AR(1) with φ = −0.9
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SPECTRUM - GIVES VARIANCE DECOMPOSITION

Mixture: Low + High Frequency Signal
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SPECTRUM - GIVES VARIANCE DECOMPOSITION

Spectrum of the mixed signal
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GENERATING MIXTURES OF OSCILLATIONS

Discrete Cramér representation

X (t) =
T/2∑

k=−(T/2−1)

A(ωk )exp
(

2πkt
T

)

Fourier waveforms φk (t) = exp
(2πkt

T

)
,

k = −(T/2− 1), . . . ,T/2
Generate coefficients for k = 0,T/2: A(ωk ) ∼ (0, f (ωk ))
Generate coefficients for k = 1, . . . , (T/2− 1):

AR(ωk ) ∼ (0,
f (ωk)

2
)

AI(ωk ) ∼ (0,
f (ωk)

2
)

A(ωk ) = AR(ωk ) + iAI(ωk )

Generate coefficients for k = −1, . . . ,−(T/2− 1):

A(ωk) = AR(−ωk )− iAI(−ωk)



GENERATING MIXTURES OF OSCILLATIONS

See file IntroSpectralModels



ESTIMATING THE SPECTRUM

Xt , t = 1, . . . ,T (assume X = 0)

Estimate the spectrum

Fourier coefficients d(ωk) =
∑

t Xt exp(−i2πωk t)



ESTIMATING THE SPECTRUM

1 512
−5

5
Wave with 2 cycles

1 512
−5

5
Wave with 3 cycles

1 512
−5

5
Wave with 15 cycles

Fourier coefficients d(ωk) =< X, φk >

Correlation between X and the waveform φk



ESTIMATING THE SPECTRUM

Fourier periodograms I(ωk ) =
1
T |d(ωk)|2

EI(ω) ≈ f (ω) but Var I(ω) = f 2(ω)

f̂ (ω) = smoothλ∈N (ω) I(λ)
Other approaches: wavelet denoising, parametric (ARMA)



ESTIMATING THE SPECTRUM

Examples in R

See notes PeriodogramSmoothingNotes



IMPORTANCE OF THE SPECTRUM

SLEEP Studies

Depression study: among recoverers (IPT + flouxetine) [joint

with Psychiatry, Univ Pittsburgh]

Alpha power Post treatment < baseline
Beta power Post treatment > baseline

Cognitive Experiment working memory load

Gamma (32-50 hertz) power

Heart Rate Variability

Feature of interest: high frequency power in inter-beat
interval sequence in EKG (parasymphathetic modulation)
Across NREM periods in the entire night: increase among
controls, near-constant among stress group.



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

Three time series X, Y, Z

Cross-dependence between X and Y

Simple measures: cross-correlation and partial
cross-correlation

Indirect vs direct dependence



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

Cross-correlation and Partial cross-correlation

Indirect vs Direct



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

Time series at 3 channels: X,Y,Z

Cross-correlation ρ(X,Y) = Cov(X,Y)√
Var XVar Y

Partial cross-correlation between X and Y given Z

Remove Z from X: ǫX = X− βX Z
Remove Z from Y: ǫY = Y− βY Z
ρ(X,Y|Z) = Cov(ǫX ,ǫY )√

Var ǫX Var ǫY



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

Model A Model B
Cross-Corr Yes Yes
Partial CC NO Yes



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

When ρ(X,Y|Z) 6= 0, we want to identify the frequency
bands that drive the linear association.

Notation

U(t) =




X (t)
Y (t)
Z (t)


 dZ (ω) =




dZX (ω)
dZY (ω)
dZZ (ω)




Spectral representation of a stationary process

U(t) =
∫ 0.5

−0.5
exp(i2πωt)dZ (ω).

Formal definition of coherency (correlation of Fourier
coefficients)

ρω(X ,Y ) = Corr[dZX (ω),dZY (ω)]



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

Filtered Signals

Xω(t) = FωX (t) Yω(t) = FωY (t) Zω(t) = FωZ (t)

Coherency at frequency band around ω

ρX ,Y (ω) = Corr[Xω(t),Yω(t)]

Partial coherence

Remove Zω(t) from Xω(t): ξX
ω (t) = Xω(t) − βX Zω(t)

Remove Zω(t) from Yω(t): ξY
ω (t) = Yω(t) − βY Zω(t)

ρ2
ω(X ,Y |Z ) =

∣∣∣∣
Cov(ξX

ω
(t),ξY

ω
(t))√

Var ξX
ω
(t)Var ξY

ω
(t)

∣∣∣∣
2

Relevant work:
Ombao and Van Bellegem (2008, IEEE Trans Signal
Processing)
Fiecas and Ombao (2010, Annals of Applied Statistics)



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

An Illustration

Latent Signals

U1(t) - low frequency
U2(t) - high frequency

Observed Signals

X(t) = U1(t) + U2(t) + Z2(t)
Y (t) = U1(t + ℓ) + Z1(t)

X and Y are linearly related through U1.



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

Low Freq Oscillation

High Freq Oscillation

Signal Y

Low Freq Oscillaton

High Freq Oscillation

Signal X



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

COHERENCE

Identifies the oscillations that drive the linear association
between X and Y.

Identical Oscillations

Low freq oscillations in X vs Low freq oscillations in Y
High freq oscillations in X vs High freq oscillations in Y



GENERALIZED COHERENCE

Frequency bands

(1, 4) Hertz - Delta
(4, 8) Hertz - Theta
(8, 12) Hertz - Alpha
(16, 30) Hertz - Beta
(30, 70) Hertz - Gamma

Dependence between alpha oscillation activity in X and
beta activity in Y



GENERALIZED COHERENCE

Low Freq Oscillation

High Freq Oscillation

Signal Y

Low Freq Oscillaton

High Freq Oscillation

Signal X



GENERALIZED COHERENCE

Applications in the Neuroscience literature

Working memory (hippocampus)

Gamma activity (amplitude) phase-locked to theta activity
Cross-frequency coupling predicts WM performance

Reward processing (basal ganglia)

Bursts of high frequency activity (gamma) occurs
preferentially during specific phases of lower frequency
activity (alpha)



GENERALIZED COHERENCE

Probability and Statistics

Harmonizable Processes

X (t) =
∫

exp(i2πωt)dZ (ω)

where {dZ (ω)} not necessarily uncorrelated
References

Loéve 1955 (Probability Theory)
Martin 1982
Sharf (1990’s onwards)
Hindberg and Hanssen 2007



GENERALIZED COHERENCE

Generalizations

In the neuroscience literature

Ideas are present; several descriptive analysis
There is a need to introduce formal framework for testing

In the signal processing literature

No framework for comparing across conditions and patient
groups
No framework for replicated time series

No models for studying how past alpha activity may predict
future beta activity.



GENERALIZED COHERENCE FOR HARMONIZABLE

PROCESSES

Harmonizable process

X (t) =
∫ 0.5

−0.5
exp{2πiωt}dZ (ω)

{dZ (ω)} not necessarily uncorrelated.

GENERALIZED SPECTRUM - LOEVE SPECTRUM

Cov(dZ (ω),dZ (λ)) = f (ω, λ)dωdλ

Allow correlation between different frequencies.



GENERALIZED COHERENCE FOR HARMONIZABLE

PROCESSES

Generalized Spectrum∫ ∫
|f (ω, λ)|dωdλ <∞

Relation with time varying covariance function

γ(s, t) = E[X(s)X∗(t)]

=

∫ ∫
exp{2πi(sω − tλ)}f (ω, λ)dωdλ

Var(X(t)) =

∫ ∫
exp{2πis(ω − λ)}f (ω, λ)dωdλ

f (ω, λ) = 1
4π2

∑
s

∑
t γ(s, t)exp{−i(ωs − λt)}



GENERALIZED COHERENCE (DUAL FREQUENCY

COHERENCE)

X (t) at ω ←→ X (t) at λ ?

UNIVARIATE X (t)
ρ2

XX (ω, λ) =
|E[dZ (ω)dZ∗(λ)]|2
E|dZ (ω)|2E|dZ (λ)|2

X (t) at ω ←→ Y (t) at λ ?

BIVARIATE X (t),Y (t)

ρ2
XY (ω, λ) =

|E[dZX (ω)dZ∗

Y (λ)]|2
E|dZX (ω)|2E|dZY (λ)|2



GENERALIZED COHERENCE (DUAL FREQUENCY

COHERENCE)

X (t) at ω ←→ X (t) at λ ?

UNIVARIATE X (t)
ρ2

XX (ω, λ) =
|E[dZ (ω)dZ∗(λ)]|2
E|dZ (ω)|2E|dZ (λ)|2

X (t) at ω ←→ Y (t) at λ ?

BIVARIATE X (t),Y (t)

ρ2
XY (ω, λ) =

|E[dZX (ω)dZ∗

Y (λ)]|2
E|dZX (ω)|2E|dZY (λ)|2



INTERPRETATION OF DUAL FREQUENCY COHERENCE

Quantifies linear correlation between random oscillations
at any pair of frequencies.

When ρ2
X ,Y (ω, λ) close to 1→ ⇒ linear relationship

between dZX (ω) and dZY (λ)

The proportion of variance at ω in X that can be explained
by the linear relationship between the

ω oscillation in X
λ oscillation in Y
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INTERPRETATION OF DUAL FREQUENCY COHERENCE

Quantifies linear correlation between random oscillations
at any pair of frequencies.

When ρ2
X ,Y (ω, λ) close to 1→ ⇒ linear relationship

between dZX (ω) and dZY (λ)

The proportion of variance at ω in X that can be explained
by the linear relationship between the

ω oscillation in X
λ oscillation in Y



GENERALIZED COHERENCE

Harmonizable processes are generally non-stationary.

A1,B1 iid (0, σ2
1);

A2 = A1 + ZA; B2 = B1 + ZB;

Consider the harmonizable sinusoidal process

X (t) = A1 cos(ω1t)+B1 sin(ω1t)+A2 cos(ω2t)+B2 sin(ω2t)

Var X (t) = σ2
1 + σ2

2 + σ2
1 cos[(ω1 − ω2)t]



GENERALIZED COHERENCE

Estimation

Xr ,Yr time series on trial r = 1, . . . ,R

Fourier coefficient

d r
X (ω) =

T∑

t=1

X r (t)exp(−i2πωt)

Generalized cross-periodgram for the r -th trial

I r
X ,Y (ω, λ) = d r

X (ω)d
r∗
Y (λ)

Estimate of the generalized spectrum

f̂X ,Y (ω, λ) =
1
R

R∑

r=1

I r
X ,Y (ω, λ)



GENERALIZED COHERENCE

Estimation

Estimate of the generalized coherence

ρ̂X ,Y
2(ω, λ) =

|̂fX ,Y (ω, λ)|2

f̂X ,X (ω, ω)̂fY ,Y (λ, λ)



PRELIMINARY EEG DATA ANALYSIS

Visual Motor experiment (PI: J Sanes, Brown
Neuroscience)

Replicated trials (r = 1, . . . ,R = 100+)

Time blocks b = 1, . . . ,4

Stimulus presented at block 3

Each time block has T = 128 time points

We computed Generalized Coherence

between different channels
between pairs of different frequencies
for both the same and successive time blocks



PRELIMINARY EEG DATA ANALYSIS

EEG Time Series
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PRELIMINARY EEG DATA ANALYSIS

Alpha-Beta coherence at Block 3

[ 3,α ]   [ 3,β ] 
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PRELIMINARY EEG DATA ANALYSIS

Connectivity – CZ seed channel

FC5 FC3 FC4 FC6

C3 CZ C4

P3 P4

O1 OZ O2

FC5 FC3 FC4 FC6

C3 CZ C4

P3 P4

O1 OZ O2

[1 alpha]             [2  beta ] [3 alpha]             [4  beta ]



PRELIMINARY EEG DATA ANALYSIS

Connectivity – C4 seed channel

FC5 FC3 FC4 FC6

C3 CZ C4

P3 P4

O1 OZ O2

FC5 FC3 FC4 FC6

C3 CZ C4

P3 P4

O1 OZ O2

[1 alpha]             [2  beta ] [3 alpha]             [4  beta ]



PRELIMINARY EEG DATA ANALYSIS

Connectivity – P3 seed channel

FC5 FC3 FC4 FC6

C3 CZ C4

P3 P4

O1 OZ O2

FC5 FC3 FC4 FC6

C3 CZ C4

P3 P4

O1 OZ O2

[1 alpha]             [2  beta ] [3 alpha]             [4  beta ]



SPECTRAL AUTOREGRESSIVE MODEL

dc(α,b)
alpha-band coefficient
channel c
time block b

The Spectral-AR model

dc(α,b) = dc(α,b − 1) + dc(β,b − 1) +

dc′(α,b − 1) + dc′(β,b − 1) + ǫc(α,b)



SPECTRAL AUTOREGRESSIVE MODEL

Parietal-Frontal connectivity

Complex-valued data

Potential variations

Magnitute(b − 1) → Magnitude(b)
Phase(b − 1) → Phase(b)



SPECTRAL AUTOREGRESSIVE MODEL

[3]               [4]

FC3FC5 FC4 FC6

C3 CZ C4

P4

O1 OZ O2

P3

FC3

P3

FC5 FC4 FC6

C3 CZ C4

P4

O1 OZ O2

[1]               [2]

  alpha            alpha          

  alpha            beta          

  beta            alpha          



CURRENT WORK

Establish conditions for mean-squared consistency of the
estimator

Testing for differences in generalized coherence - across
conditions

Penalized likelihood estimation method for the spectral-AR
model



COLLABORATORS - BROWN NEURO-STATS

Graduate Students

Fiecas, Mark
Gorrostieta, Cristina
Joo, LiJin
Kang, Hakmook

Undergraduate Student

Van Lunen, Daniel
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