INTRODUCTION TO SPECTRAL ANALYSIS

Hernando Ombao

Brown University Biostatistics Program

February 18, 2011

◆ロ〉 ◆聞〉 ◆臣〉 ◆臣〉 三臣 - のへで

OUTLINE OF TALK

TIME-DOMAIN ANALYSIS

SPECTRAL ANALYSIS

COHERENCE ANALYSIS

◆ロ〉 ◆聞〉 ◆臣〉 ◆臣〉 三臣 - のへで

OUTLINE OF TALK

TIME-DOMAIN ANALYSIS

SPECTRAL ANALYSIS

COHERENCE ANALYSIS

◆ロ〉 ◆聞〉 ◆臣〉 ◆臣〉 三臣 - のへで

OUTLINE OF TALK

TIME-DOMAIN ANALYSIS

SPECTRAL ANALYSIS

COHERENCE ANALYSIS

・ロット ●日 ・ 山マ ・ 山マ ・ 白マ

• Data: multi-channel EEG, fMRI time series at several ROIs

Goals of our research

- Characterize and define dependence in a brain network
- Develop estimation and inference methods
- Develop classification methods that use connectivity as a biomarker

- Predicting motor intent (Left vs. Right movement)
- Differentiating patient groups (bipolar vs. healthy)

- Models and methods must incorporate information
 - Across trials, across subjects
- Models for estimating effect of a stimulus on brain network

- Model that use multi-modal data (EEG, fMRI, DTI)
- Dimension reduction: extract information from massive data that is most relevant for estimating dependence

Some References for Time Series Analysis

- Brillinger (1981) Theory for Spectral Analysis.
- Brockwell and Davis (1991) Theory book with emphasis on time domain analysis.

 Shumway and Stoffer (2007) - Combination of theory, methods, real-life examples.

EEG Motor Experiment

< ロ > < 部 > < き > < き</p>

Local Field Potentials

Magnetoencephalograms

Epileptic Seizure EEGs

Epileptic Seizure EEGs

SPECIFIC GOALS IN ANALYZING TIME SERIES DATA

Time-domain Analysis

- Dependence. What is the correlation between Y(t) and Y(t + h)?
- Prediction. Suppose that you have monthly sales data for 2000-2010, predict the monthly sales in January 2011 using
 - Past data for January 2000,2001, ... (annual seasonality)

(日) (日) (日) (日) (日) (日) (日) (日)

 Immediate past months December, November, 2010 (lagged relationships)

SPECIFIC GOALS IN ANALYZING TIME SERIES DATA

Spectral-domain Analysis

- Signal decomposition. What oscillations are present in the time series?
- Coherence. What is the interactions between oscillations in different time series?

BASIC TIME DOMAIN ANALYSIS

- Time Series Data [*X*(*t*), *Y*(*t*)]', *t* = 1, 2, ...
- Mean $\mu(t) = [\mathbb{E}X(t), \mathbb{E}Y(t)]', t = 1, 2, ...$
- Variance

$$\gamma_{XX}(t,t) = \mathbb{C}\mathrm{ov}[X(t),X(t)]$$

$$\gamma_{YY}(t,t) = \mathbb{C}\mathrm{ov}[Y(t),Y(t)]$$

Auto-covariance function

$$\gamma_{XX}(s,t) = \mathbb{C}\mathrm{ov}[X(s), X(t)]$$

$$\gamma_{YY}(s,t) = \mathbb{C}\mathrm{ov}[Y(s), Y(t)]$$

Cross-covariance function

$$\gamma_{XY}(\mathbf{s}, t) = \mathbb{C}\mathrm{ov}[X(\mathbf{s}), Y(t)]$$

$$\gamma_{XY}(t, \mathbf{s}) = \mathbb{C}\mathrm{ov}[X(t), Y(\mathbf{s})]$$

BASIC TIME DOMAIN ANALYSIS

[X(t), Y(t)]' is a weakly stationary time series if

Mean is constant in time

$$\mu(t) = [\mu_X, \mu_Y]'$$
 for all $t = 1, 2, ...$

Variance is constant in time

$$\gamma_{XX}(t,t) = \gamma_{XX}(0,0)$$

 $\gamma_{YY}(t,t) = \gamma_{YY}(0,0)$

 Auto-covariance and cross-covariance depends only on the lag h

$$\begin{split} \gamma_{XX}(t+h,t) &= \mathbb{C}\operatorname{ov}[X(t+h),X(t)] = \gamma_{XX}(h,0) := \gamma_{XX}(h) \\ \gamma_{XY}(t+h,t) &= \mathbb{C}\operatorname{ov}[X(t+h),Y(t)] = \gamma_{XY}(h,0) := \gamma_{XY}(h) \\ \gamma_{XY}(t,t+h) &= \mathbb{C}\operatorname{ov}[X(t),Y(t+h)] = \gamma_{XY}(0,h) := \gamma_{XY}(-h) \end{split}$$

BASIC TIME DOMAIN ANALYSIS

Cross-correlation function

Auto-correlation function

$$\rho_{XX}(h) = \mathbb{C}\operatorname{orr}[X(t+h), X(t)] = \frac{\gamma_{XX}(h)}{\gamma_{XX}(0)}$$
$$\rho_{YY}(h) = \mathbb{C}\operatorname{orr}[Y(t+h), Y(t)] = \frac{\gamma_{YY}(h)}{\gamma_{YY}(0)}$$

Cross-correlation function

$$\rho_{XY}(h) = \mathbb{C}\operatorname{orr}[X(t+h), Y(t)] = \frac{\gamma_{XY}(h)}{\sqrt{\gamma_{XX}(0)\gamma_{YY}(0)}}$$
$$\rho_{XY}(-h) = \mathbb{C}\operatorname{orr}[X(t), Y(t+h)] = \frac{\gamma_{XY}(-h)}{\sqrt{\gamma_{XX}(0)\gamma_{YY}(0)}}$$

・ロト・雪・・雪・・雪・・白・

White Noise

- Time Series *X*(*t*)
- $\mathbb{E}X(t) = \mu$
- $\operatorname{Var} X(t) = \sigma_X^2$
- Auto-covariance function

$$\gamma_{XX}(h) = \begin{cases} \sigma_{XX}^2, & h = 0\\ 0, & h \neq 0 \end{cases}$$

Plot of the auto-covariance and auto-correlation functions.

▲ロ → ▲ 圖 → ▲ 画 → ▲ 画 → の Q @

Moving Average Model MA(q)

- $Z(t) \sim WN(0, \sigma_Z^2)$
- X(t) is MA(q) if it has the representation

$$X(t) = Z(t) + \theta_1 Z(t-1) + \ldots + \theta_q Z(t-q)$$

- Intuition: applying a moving window of size q + 1 on the white noise {Z(t)}
- Auto-covariance function

$$\gamma_{XX}(h) = \begin{cases} [1 + \theta_1^2 + \ldots + \theta_q^2] \sigma_Z^2, & h = 0\\ \text{something}, & h = \pm 1\\ \ldots, & \ldots\\ \text{something}, & h = \pm q\\ 0, & h = \pm (q+1), \ldots \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Auto-regressive Model AR(p)

Z(t) ~ WN(0, σ_Z²)
X(t) is AR(p) if it has the representation

$$X(t) = \sum_{\ell=1}^{p} \phi_{\ell} X(t-\ell) + Z(t)$$

• Consider the simple case AR(1). When $|\phi_1| < 1$,

$$X(t) = \sum_{\ell=0}^{\infty} \phi_1^{\ell} Z(t-\ell)$$

- Causal: X(t) depends only on the current and past noise values
- Auto-covariance function

$$\gamma_{XX}(h) = \begin{cases} \frac{\sigma_Z^2}{1-\phi_1^2}, & h = 0\\ \phi_1^{|h|} \frac{\sigma_Z^2}{1-\phi_1^2}, & h = \pm 1, \pm 2, \dots \end{cases}$$

Estimating the AR parameters

•
$$\phi = [\phi_1, \ldots, \phi_p]'$$

Conditional least squares criterion

$$S(\phi) = \sum_{t=p+1}^{T} \left[X(t) - \left(\phi_1 X(t-1) + \ldots + \phi_p X(t-p)\right)\right]^2$$

- Conditional maximum likelihood
 - $X(t) = \phi_1 X(t-1) + \ldots + \phi_p X(t-p) + \epsilon(t); \ \epsilon(t) \sim N(0, \sigma^2)$
 - Define $m_p(t) = \phi_1 X(t-1) + ... + \phi_p X(t-p)$
 - Define $\mathcal{X}(t-1) = [X(t-1), X(t-2), \ldots]'$
 - $X(t)|\mathcal{X}(t-1) \sim N(m_{\rho}(t),\sigma^2)$
 - Conditional likelihood

$$\mathcal{L}_{\mathcal{C}}(\phi) = f(X(p+1), \dots X(T) \mid \mathcal{X}(p))$$
(1)

$$= f(X(p+1)|\mathcal{X}(p)) \dots f(X(T)|\mathcal{X}(T-1))$$
 (2)

Selecting the best order - acf and pacf plots

	ACF	PACF
MA	zero after q	tapers slowly
AR	tapers slowly	zero after p
ARMA	tapers slowly	tapers slowly

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

Selecting the best order - information criteria

• Data
$$X(t), t = 1, 2, ..., T$$

- Set of candidate orders $p \in \{1, \dots, P\}$
- Use data only for $t = P + 1, \dots, T$
- For each *p*, estimate φ₁,..., φ_p, compute the noise variance estimate

$$\widehat{\sigma}^2(p) = \frac{1}{T - P} \sum_{t=P+1}^T [X(t) - \widehat{m}_p(t)]^2$$

Akaike information criterion (AIC)

$$AIC(p) = \log(\widehat{\sigma}^2) + (2p+1)/(T-P)$$

• Bayesian information criterion (BIC)

$$BIC(p) = \log(\widehat{\sigma}^2) + (\log(p)p + 1)/(T - P)$$

• Choose *p*^{*} argmin of *AIC*(*p*) or *BIC*(*p*).

Some Examples in R

Time domain Models

See file CorrelationsandModels

Some Examples in R

Example - Time domain analysis of EEG

See file CLASS-EEG

X(t) STATIONARY TEMPORAL PROCESS

Cramér Representation

 $X_t = \int \exp(i2\pi\omega t) dZ(\omega), \ t = 0, \pm 1, \pm 2, \dots$

- Basis Fourier waveforms $\exp(i2\pi\omega t), \omega \in (-\pi, \pi)$
- Random coefficients $dZ(\omega)$ increment random process

- $\mathbb{E} dZ(\omega) = 0$ and
- $\mathbb{C}ov[dZ(\omega), dZ(\lambda)] = \delta(\omega \lambda)f(\omega)d\omega d\lambda$

Mixing of oscillations

◆ロ> ◆母 > ◆臣 > ◆臣 > ● 臣 = の Q @

SPECTRUM – decomposition of variance

• $\mathbf{X} = [X(1), \dots, X(T)]'$ - zero mean stationary time series

- Φ columns are the orthogonal Fourier waveforms
- $\mathbf{d} = [\mathbf{d}(\omega_0), \dots, \mathbf{d}(\omega_{T-1})]'$ Fourier coefficients
- $\mathbf{X} = \Phi \mathbf{d}$
- X'X = d'd
- $\frac{1}{T}\mathbb{E}\mathbf{X}'\mathbf{X} = \frac{1}{T}\mathbb{E}\mathbf{d}'\mathbf{d}$
- $\operatorname{Var} X(t) \approx \int f(\omega) d\omega$

A more formal derivation ...

•
$$X(t) = \int \exp(i2\pi\omega t) dZ(\omega)$$

• $\gamma(h) = \mathbb{C}\operatorname{ov}[X(t+h), X(t)]$
• $f(\omega) = \sum_{h=-\infty}^{\infty} \gamma(h) \exp(-i2\pi\omega h)$
• $\gamma(h) = \int_{-0.5}^{0.5} f(\omega) \exp(-i2\pi\omega h) d\omega$
• $\gamma(0) = \int f(\omega) d\omega$

AR(1): $X_t = 0.9X_{t-1} + \epsilon_t$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ のへで

Spectrum of AR(1) with $\phi = 0.9$

AR(1):
$$X_t = -0.9X_{t-1} + \epsilon_t$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ のへで

Spectrum of AR(1) with $\phi = -0.9$

Mixture: Low + High Frequency Signal

◆ロ → ◆ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ →
SPECTRUM - GIVES VARIANCE DECOMPOSITION

Spectrum of the mixed signal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

GENERATING MIXTURES OF OSCILLATIONS

Discrete Cramér representation

$$X(t) = \sum_{k=-(T/2-1)}^{T/2} A(\omega_k) \exp\left(\frac{2\pi kt}{T}\right)$$

- Fourier waveforms $\phi_k(t) = \exp\left(\frac{2\pi kt}{T}\right)$, $k = -(T/2 - 1), \dots, T/2$
- Generate coefficients for k = 0, T/2: A(ω_k) ~ (0, f(ω_k))
- Generate coefficients for k = 1, ..., (T/2 1):

$$egin{aligned} & \mathcal{A}^R(\omega_k)\sim(0,rac{f(\omega_k)}{2})\ & \mathcal{A}^I(\omega_k)\sim(0,rac{f(\omega_k)}{2})\ & \mathcal{A}(\omega_k)=\mathcal{A}^R(\omega_k)+i\mathcal{A}^I(\omega_k) \end{aligned}$$

• Generate coefficients for k = -1, ..., -(T/2 - 1): $A(\omega_k) = A^R(-\omega_k) - iA^I(-\omega_k)$

GENERATING MIXTURES OF OSCILLATIONS

See file IntroSpectralModels

- $X_t, t = 1, \dots, T$ (assume $\overline{X} = 0$)
- Estimate the spectrum
- Fourier coefficients $d(\omega_k) = \sum_t X_t \exp(-i2\pi\omega_k t)$

- Fourier coefficients $d(\omega_k) = < \mathbf{X}, \phi_k >$
- Correlation between **X** and the waveform ϕ_k

- Fourier periodograms $\mathcal{I}(\omega_k) = \frac{1}{T} |d(\omega_k)|^2$
- $\mathbb{E}\mathcal{I}(\omega) \approx f(\omega)$ but \mathbb{V} ar $\mathcal{I}(\omega) = f^2(\omega)$

•
$$\widehat{f}(\omega) = \mathsf{smooth}_{\lambda \in \mathcal{N}(\omega)} \, \mathcal{I}(\lambda)$$

• Other approaches: wavelet denoising, parametric (ARMA)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Examples in R

See notes PeriodogramSmoothingNotes

IMPORTANCE OF THE SPECTRUM

SLEEP Studies

- Depression study: among recoverers (IPT + flouxetine) [joint with Psychiatry, Univ Pittsburgh]
 - Alpha power Post treatment < baseline
 - Beta power Post treatment > baseline
- Cognitive Experiment working memory load
 - Gamma (32-50 hertz) power
- Heart Rate Variability
 - Feature of interest: high frequency power in inter-beat interval sequence in EKG (parasymphathetic modulation)
 - Across NREM periods in the entire night: increase among controls, near-constant among stress group.

- Three time series X, Y, Z
- Cross-dependence between X and Y
- Simple measures: cross-correlation and partial cross-correlation

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Indirect vs direct dependence

◆ロ → ◆ 御 → ◆ 臣 → ◆ 臣 → ○ ● ○ ○ ○ ○

- Cross-correlation and Partial cross-correlation
- Indirect vs Direct

- Time series at 3 channels: X, Y, Z
- Cross-correlation $\rho(\mathbf{X}, \mathbf{Y}) = \frac{\mathbb{C}ov(\mathbf{X}, \mathbf{Y})}{\sqrt{\mathbb{V}ar \mathbf{X} \mathbb{V}ar \mathbf{Y}}}$
- Partial cross-correlation between X and Y given Z

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Remove **Z** from **X**:
$$\epsilon_X = \mathbf{X} - \beta_X \mathbf{Z}$$

• Remove **Z** from **Y**:
$$\epsilon_{\mathbf{Y}} = \mathbf{Y} - \beta_{\mathbf{Y}}\mathbf{Z}$$

•
$$\rho(\mathbf{X}, \mathbf{Y} | \mathbf{Z}) = \frac{\mathbb{C}ov(\epsilon_X, \epsilon_Y)}{\sqrt{\mathbb{V}ar \, \epsilon_X \, \mathbb{V}ar \, \epsilon_Y}}$$

	Model A	Model B
Cross-Corr	Yes	Yes
Partial CC	NO	Yes

- When *ρ*(X, Y|Z) ≠ 0, we want to identify the frequency bands that drive the linear association.
- Notation

$$\boldsymbol{U}(t) = \begin{pmatrix} X(t) \\ Y(t) \\ Z(t) \end{pmatrix} \quad \boldsymbol{d}Z(\omega) = \begin{pmatrix} dZ_X(\omega) \\ dZ_Y(\omega) \\ dZ_Z(\omega) \end{pmatrix}$$

Spectral representation of a stationary process

$$oldsymbol{U}(t) = \int_{-0.5}^{0.5} \exp(i2\pi\omega t) oldsymbol{d} Z(\omega).$$

Formal definition of coherency (correlation of Fourier coefficients)

$$\rho_{\omega}(X, Y) = \mathbb{C}\operatorname{orr}[dZ_X(\omega), dZ_Y(\omega)]$$

Filtered Signals

 $X_{\omega}(t) = \mathcal{F}_{\omega}X(t) \quad Y_{\omega}(t) = \mathcal{F}_{\omega}Y(t) \quad Z_{\omega}(t) = \mathcal{F}_{\omega}Z(t)$

 $\bullet\,$ Coherency at frequency band around $\omega\,$

$$\rho_{X,Y}(\omega) = \mathbb{C}\operatorname{orr}[X_{\omega}(t), Y_{\omega}(t)]$$

Partial coherence

- Remove $Z_{\omega}(t)$ from $X_{\omega}(t)$: $\xi_{\omega}^{X}(t) = X_{\omega}(t) \beta_{X} Z_{\omega}(t)$
- Remove $Z_{\omega}(t)$ from $Y_{\omega}(t)$: $\tilde{\xi}_{\omega}^{\tilde{Y}}(t) = Y_{\omega}(t) \beta_{Y}Z_{\omega}(t)$

•
$$\rho_{\omega}^{2}(X, Y|Z) = \left| \frac{\mathbb{Cov}(\xi_{\omega}^{X}(t), \xi_{\omega}^{Y}(t))}{\sqrt{\mathbb{Var}\,\xi_{\omega}^{X}(t)\,\mathbb{Var}\,\xi_{\omega}^{Y}(t)}} \right|$$

- Relevant work:
 - Ombao and Van Bellegem (2008, IEEE Trans Signal Processing)
 - Fiecas and Ombao (2010, Annals of Applied Statistics)

An Illustration

▲ロ▶ ▲御▶ ★ 臣▶ ★ 臣▶ ― 臣 … のへで

- Latent Signals
 - $U_1(t)$ low frequency
 - $U_2(t)$ high frequency
- Observed Signals

•
$$X(t) = U_1(t) + U_2(t) + Z_2(t)$$

•
$$Y(t) = U_1(t+\ell) + Z_1(t)$$

• X and Y are linearly related through U₁.

COHERENCE

- Identifies the oscillations that drive the linear association between X and Y.
- Identical Oscillations
 - Low freq oscillations in X vs Low freq oscillations in Y
 - High freq oscillations in X vs High freq oscillations in Y

Frequency bands

- (1,4) Hertz Delta
- (4,8) Hertz Theta
- (8, 12) Hertz Alpha
- (16, 30) Hertz Beta
- (30,70) Hertz Gamma
- Dependence between alpha oscillation activity in X and beta activity in Y

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Applications in the Neuroscience literature

- Working memory (hippocampus)
 - Gamma activity (amplitude) phase-locked to theta activity
 - Cross-frequency coupling predicts WM performance
- Reward processing (basal ganglia)
 - Bursts of high frequency activity (gamma) occurs preferentially during specific phases of lower frequency activity (alpha)

Probability and Statistics

Harmonizable Processes

$$X(t) = \int \exp(i2\pi\omega t) dZ(\omega)$$

where $\{dZ(\omega)\}$ not necessarily uncorrelated

- References
 - Loéve 1955 (Probability Theory)
 - Martin 1982
 - Sharf (1990's onwards)
 - Hindberg and Hanssen 2007

Generalizations

- In the neuroscience literature
 - Ideas are present; several descriptive analysis
 - There is a need to introduce formal framework for testing
- In the signal processing literature
 - No framework for comparing across conditions and patient groups
 - No framework for replicated time series
- No models for studying how past alpha activity may predict future beta activity.

GENERALIZED COHERENCE FOR HARMONIZABLE PROCESSES

Harmonizable process

$$X(t) = \int_{-0.5}^{0.5} \exp\{2\pi i\omega t\} dZ(\omega)$$

• $\{dZ(\omega)\}$ not necessarily uncorrelated.

GENERALIZED SPECTRUM - LOEVE SPECTRUM $\mathbb{C}ov(dZ(\omega), dZ(\lambda)) = f(\omega, \lambda)d\omega d\lambda$

• Allow correlation between different frequencies.

GENERALIZED COHERENCE FOR HARMONIZABLE PROCESSES

Generalized Spectrum

•
$$\int \int |f(\omega,\lambda)| d\omega d\lambda < \infty$$

Relation with time varying covariance function

$$\begin{aligned} \gamma(s,t) &= \mathbb{E}[X(s)X^*(t)] \\ &= \int \int \exp\{2\pi i(s\omega - t\lambda)\}f(\omega,\lambda)d\omega d\lambda \\ \mathbb{V}ar(X(t)) &= \int \int \exp\{2\pi i s(\omega - \lambda)\}f(\omega,\lambda)d\omega d\lambda \end{aligned}$$

• $f(\omega, \lambda) = \frac{1}{4\pi^2} \sum_{s} \sum_{t} \gamma(s, t) \exp\{-i(\omega s - \lambda t)\}$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

GENERALIZED COHERENCE (DUAL FREQUENCY COHERENCE)

 $X(t) \text{ at } \omega \longleftrightarrow X(t) \text{ at } \lambda ?$ UNIVARIATE X(t) $\rho_{XX}^{2}(\omega, \lambda) = \frac{|\mathbb{E}[dZ(\omega)dZ^{*}(\lambda)]|^{2}}{\mathbb{E}[dZ(\omega)]^{2}\mathbb{E}[dZ(\lambda)]^{2}}$ $X(t) \text{ at } \omega \longleftrightarrow Y(t) \text{ at } \lambda ?$ BIVARIATE X(t), Y(t) $\rho_{XY}^{2}(\omega, \lambda) = \frac{|\mathbb{E}[dZ_{X}(\omega)dZ^{*}_{Y}(\lambda)]|^{2}}{\mathbb{E}[dZ_{X}(\omega)]^{2}\mathbb{E}[dZ_{Y}(\lambda)]^{2}}$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → Ѻ < ♡

GENERALIZED COHERENCE (DUAL FREQUENCY COHERENCE)

$$X(t) \text{ at } \omega \longleftrightarrow X(t) \text{ at } \lambda ?$$
UNIVARIATE $X(t)$

$$\rho_{XX}^{2}(\omega, \lambda) = \frac{|\mathbb{E}[dZ(\omega)dZ^{*}(\lambda)]|^{2}}{\mathbb{E}|dZ(\omega)|^{2}\mathbb{E}|dZ(\lambda)|^{2}}$$

$$X(t) \text{ at } \omega \longleftrightarrow Y(t) \text{ at } \lambda ?$$
BIVARIATE $X(t), Y(t)$

$$\rho_{XY}^{2}(\omega, \lambda) = \frac{|\mathbb{E}[dZ_{X}(\omega)dZ^{*}_{Y}(\lambda)]|^{2}}{\mathbb{E}|dZ_{Y}(\lambda)|^{2}\mathbb{E}|dZ_{Y}(\lambda)|^{2}}$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ ののの

 Quantifies linear correlation between random oscillations at any pair of frequencies.

When ρ²_{X,Y}(ω, λ) close to 1 → ⇒ linear relationship between dZ_X(ω) and dZ_Y(λ)

 The proportion of variance at ω in X that can be explained by the linear relationship between the

• ω oscillation in X

• λ oscillation in **Y**

- Quantifies linear correlation between random oscillations at any pair of frequencies.
- When ρ²_{X,Y}(ω, λ) close to 1 → ⇒ linear relationship between dZ_X(ω) and dZ_Y(λ)
- The proportion of variance at ω in **X** that can be explained by the linear relationship between the

- ω oscillation in X
- λ oscillation in **Y**

- Quantifies linear correlation between random oscillations at any pair of frequencies.
- When ρ²_{X,Y}(ω, λ) close to 1 → ⇒ linear relationship between dZ_X(ω) and dZ_Y(λ)
- The proportion of variance at ω in X that can be explained by the linear relationship between the

- ω oscillation in **X**
- λ oscillation in **Y**

- Quantifies linear correlation between random oscillations at any pair of frequencies.
- When ρ²_{X,Y}(ω, λ) close to 1 → ⇒ linear relationship between dZ_X(ω) and dZ_Y(λ)
- The proportion of variance at ω in **X** that can be explained by the linear relationship between the

- ω oscillation in **X**
- λ oscillation in **Y**

- Quantifies linear correlation between random oscillations at any pair of frequencies.
- When ρ²_{X,Y}(ω, λ) close to 1 → ⇒ linear relationship between dZ_X(ω) and dZ_Y(λ)
- The proportion of variance at ω in X that can be explained by the linear relationship between the

- ω oscillation in X
- λ oscillation in Y

Harmonizable processes are generally non-stationary.

- A₁, B₁ iid (0, σ²₁);
- $A_2 = A_1 + Z_A$; $B_2 = B_1 + Z_B$;
- Consider the harmonizable sinusoidal process

 $X(t) = A_1 \cos(\omega_1 t) + B_1 \sin(\omega_1 t) + A_2 \cos(\omega_2 t) + B_2 \sin(\omega_2 t)$

< 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

• $\operatorname{Var} X(t) = \sigma_1^2 + \sigma_2^2 + \sigma_1^2 \cos[(\omega_1 - \omega_2)t]$

Estimation

- $\mathbf{X}^r, \mathbf{Y}^r$ time series on trial $r = 1, \dots, R$
- Fourier coefficient

$$d_X^r(\omega) = \sum_{t=1}^T X^r(t) \exp(-i2\pi\omega t)$$

• Generalized cross-periodgram for the r-th trial

$$\mathcal{I}_{X,Y}^{r}(\omega,\lambda) = d_{X}^{r}(\omega)d_{Y}^{r*}(\lambda)$$

Estimate of the generalized spectrum

$$\widehat{f_{X,Y}}(\omega,\lambda) = \frac{1}{R} \sum_{r=1}^{R} \mathcal{I}_{X,Y}^{r}(\omega,\lambda)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Estimation

Estimate of the generalized coherence

$$\widehat{\rho_{X,Y}}^{2}(\omega,\lambda) = \frac{|\widehat{f}_{X,Y}(\omega,\lambda)|^{2}}{\widehat{f}_{X,X}(\omega,\omega)\widehat{f}_{Y,Y}(\lambda,\lambda)}$$

PRELIMINARY EEG DATA ANALYSIS

- Visual Motor experiment (PI: J Sanes, Brown Neuroscience)
- Replicated trials (*r* = 1,..., *R* = 100+)
- Time blocks *b* = 1,...,4
- Stimulus presented at block 3
- Each time block has T = 128 time points
- We computed Generalized Coherence
 - between different channels
 - between pairs of different frequencies
 - for both the same and successive time blocks

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PRELIMINARY EEG DATA ANALYSIS

EEG Time Series

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣 - の々で
Alpha-Beta coherence at Block 3

Connectivity - CZ seed channel

Connectivity - C4 seed channel

Connectivity - P3 seed channel

SPECTRAL AUTOREGRESSIVE MODEL

d_c(α, b)
alpha-band coefficient
channel c
time block b

The Spectral-AR model

$$\begin{aligned} d_c(\alpha, b) &= d_c(\alpha, b-1) + d_c(\beta, b-1) + \\ d_{c'}(\alpha, b-1) + d_{c'}(\beta, b-1) + \epsilon_c(\alpha, b) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

SPECTRAL AUTOREGRESSIVE MODEL

- Parietal-Frontal connectivity
- Complex-valued data
- Potential variations
 - Magnitute $(b-1) \rightarrow$ Magnitude(b)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Phase $(b-1) \rightarrow$ Phase(b)

SPECTRAL AUTOREGRESSIVE MODEL

◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ へ ○

CURRENT WORK

- Establish conditions for mean-squared consistency of the estimator
- Testing for differences in generalized coherence across conditions
- Penalized likelihood estimation method for the spectral-AR model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○

COLLABORATORS - BROWN NEURO-STATS

▲ロ▶ ▲御▶ ★ 臣▶ ★ 臣▶ ― 臣 … のへで

Graduate Students

Fiecas, Mark Gorrostieta, Cristina Joo, LiJin Kang, Hakmook

Undergraduate Student

Van Lunen, Daniel