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OVERVIEW - ANALYSIS OF BRAIN SIGNALS

o Data: multi-channel EEG, fMRI time series at several ROIs



OVERVIEW - ANALYSIS OF BRAIN SIGNALS

Goals of our research

@ Characterize and define dependence in a brain network
@ Develop estimation and inference methods

@ Develop classification methods that use connectivity as a
biomarker

o Predicting motor intent (Left vs. Right movement)
+ Differentiating patient groups (bipolar vs. healthy)



OVERVIEW - ANALYSIS OF BRAIN SIGNALS

@ Models and methods must incorporate information

o Across trials, across subjects
@ Models for estimating effect of a stimulus on brain network
o Model that use multi-modal data (EEG, fMRI, DTI)

@ Dimension reduction: extract information from massive
data that is most relevant for estimating dependence



OVERVIEW - ANALYSIS OF BRAIN SIGNALS

Some References for Time Series Analysis

o Brillinger (1981) - Theory for Spectral Analysis.
@ Brockwell and Davis (1991) - Theory book with emphasis
on time domain analysis.

@ Shumway and Stoffer (2007) - Combination of theory,
methods, real-life examples.
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SOME TIME SERIES DATA
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SOME TIME SERIES DATA
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SOME TIME SERIES DATA
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SOME TIME SERIES DATA

EEG T3 channel
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SOME TIME SERIES DATA
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SPECIFIC GOALSIN ANALYZING TIME SERIES DATA

Time-domain Analysis

e Dependence. What is the correlation between Y (t) and
Y (t+h)?

@ Prediction. Suppose that you have monthly sales data for
2000-2010, predict the monthly sales in January 2011
using

o Past data for January 2000,2001, ... (annual seasonality)
» Immediate past months December, November, 2010
(lagged relationships)



SPECIFIC GOALSIN ANALYZING TIME SERIES DATA

Spectral-domain Analysis

@ Signal decomposition. What oscillations are present in the
time series?

@ Coherence. What is the interactions between oscillations
in different time series?



BAsSIC TIME DOMAIN ANALYSIS

e Time Series Data [X(t),Y (1)],t =1,2,...
@ Mean pu(t) = [EX(t),EY (t)],t=1,2,...
@ Variance

x (1) = Cov[X(t), X(t)]
vy (8 1) = Cov[Y (), Y ()]

@ Auto-covariance function

x (8, 1) = Cov[X(s), X (t)]
vy (8,1) = Cov[Y (s), Y (t)]

@ Cross-covariance function

My (8,1) = Cov[X(s), Y (t)]
Ty (£, 8) = Cov[X(t), Y (s)]



BAsSIC TIME DOMAIN ANALYSIS
[X(t),Y (t)] is a weakly stationary time series if

@ Mean is constant in time

p(t) = [ux, py] forallt=1,2,...

@ Variance is constant in time

yxx (t,t) = 7xx (0,0)
vy (t,t) = vy (0,0)

@ Auto-covariance and cross-covariance depends only on
the lag h

YXX (t aF h,t) = (COV[X (t + h),X(t)] = ’)/X)((h,O) = ’)/X)((h)
Yxy (t + h,t) = Cov[X(t +h),Y (t)] = vxy (h,0) := yxy (h)
Yxy (4, +h) = Cov[X(t), Y (t + h)] = 7y (0, h) := yxy (—h)



BAsSIC TIME DOMAIN ANALYSIS

Cross-correlation function

@ Auto-correlation function

pxx (h) = Corr[X(t + h),X(t)] = xx (h)

vxx (0)
pyy (h) = Corr[Y (t +h), Y (t)] = z::gg;
@ Cross-correlation function
pxy (—h) = Corr[X(t),Y (t + h)] = xv (=)

¥xx (0) vy (0)



SOME BAsIC TIME DOMAIN MODELS

White Noise

o Time Series X(t)

o EX(t) =pn

o VarX(t) = 0%

@ Auto-covariance function

2
_J o, h=0
FVXX(h)_{ 0, h+£0

o Plot of the auto-covariance and auto-correlation functions.



SOME BAsIC TIME DOMAIN MODELS

Moving Average Model MA(q)

e Z(t) ~ WN(0,02)
@ X(t) is MA(q) if it has the representation
X(t)=Z(t)+601Z(t—1)+... +64Z(t —q)

@ Intuition: applying a moving window of size g + 1 on the
white noise {Z (1)}
@ Auto-covariance function

[1+6%+... 46302, h=0
something, h=+1

xx (h) = e
something, h =+q

0, h=+(q+1),...



SOME BAsIC TIME DOMAIN MODELS
Auto-regressive Model AR(p)

©

Z(t) ~ WN(0,0%)
X(t) is AR(p) if it has the representation

©

p
X(t) =) oX(t—0)+2Z(t)

=1
Consider the simple case AR(1). When |¢1| < 1,

X(t) =) ¢1Z(t—1)
(=0

©

©

Causal: X (t) depends only on the current and past noise
values
Auto-covariance function

©



SOME BAsIC TIME DOMAIN MODELS

Estimating the AR parameters

o ¢:[¢17~-~7¢p]/

@ Conditional least squares criterion

Z [X(t) = (¢1X(t — 1) + ... + ¢pX(t — p))]?

t=p+1

@ Conditional maximum likelihood
o X(t) = g1 X(t — 1)+ ...+ ¢pX(t —p) +€(t); €(t) ~N(0,0?)
o Define mp(t) = g1 X(t — 1) + ...+ ¢gpX(t — p)
s Define X(t — 1) = [X(t — 1),X(t —2),...]
X(0)|X(t = 1) ~ N(mp(t),0?)
o Conditional likelihood
Le(¢) =f(X(p +1),...X(T) |X(p)) @)
=f(X(p +1)[X(p))... F(X(T)X(T —-1)) (2



SOME BAsIC TIME DOMAIN MODELS

Selecting the best order - acf and pacf plots

ACF PACF
MA zero after g | tapers slowly
AR tapers slowly | zero after p

ARMA | tapers slowly | tapers slowly




SOME BAsIC TIME DOMAIN MODELS
Selecting the best order - information criteria

Data X (t),t =1,2,...,T

Set of candidate orders p € {1,...,P}
Usedataonlyfort =P +1,...,T

For each p, estimate ¢4, ..., ¢p, compute the noise
variance estimate

i
2(0) = =5 3 X(O) - W0
t=P+1

¢ ¢ ¢ ¢

©

Akaike information criterion (AIC)
AIC(p) = log(?) + (2p + 1)/(T — P)
Bayesian information criterion (BIC)
BIC(p) = log(%) + (log(p)p + 1)/(T — P)
Choose p* argmin of AIC(p) or BIC(p).

©

©



SOME EXAMPLESIN R

Time domain Models

See file Correl ati onsandMbdel s



SOME EXAMPLESIN R

Example - Time domain analysis of EEG

See file CLASS- EEG



SPECTRUM - GIVES VARIANCE DECOMPOSITION

X(t) STATIONARY TEMPORAL PROCESS

@ Cramér Representation
Xi = [exp(i2nwt)dZ (w), t =0,+1,£2,...
@ Basis Fourier waveforms exp(i2rwt),w € (—m, )
@ Random coefficients dZ (w) — increment random process

o EdZ(w)=0and
e Cov[dZ(w),dZ(N\)] = §(w — N)f (w)dwd X



SPECTRUM - GIVES VARIANCE DECOMPOSITION

Mixing of oscillations

Wave (2 oscillations) Distribution of Random Coeff

-4 0

Wave (10 oscillations) Distribution of Random Coeff
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SPECTRUM - GIVES VARIANCE DECOMPOSITION

SPECTRUM — decomposition of variance

1EX'X = +Ed'd
VarX(t) = [f(w)dw

o X =[X(1),...,X(T)] - zero mean stationary time series
@ & - columns are the orthogonal Fourier waveforms

o d =[d(wo),-..,d(wr_1)] - Fourier coefficients

o X=¢ad

o X'X=d'd

]

]



SPECTRUM - GIVES VARIANCE DECOMPOSITION

A more formal derivation ...

(7]
X
=
I
—
®
x
=
=
3
&,
N—"
o
N
S

h) = [°°, f(w) exp(—i2rwh)dw

)
)
o f(w) = 52 o 7(h) exp(~i2meh)
) — J-05

)

(7]
2



SPECTRUM - GIVES VARIANCE DECOMPOSITION

AR(l) Xi = 0.9X_1 + €

-10 I I I I I I I I I
0

I
100 200 300 400 500 600 700 800 900 1000
Time



SPECTRUM - GIVES VARIANCE DECOMPOSITION

Spectrum of AR(1) with ¢ = 0.9

Frequency

Time



SPECTRUM - GIVES VARIANCE DECOMPOSITION

AR(l) Xi = —0.9X(_1 + €
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SPECTRUM - GIVES VARIANCE DECOMPOSITION

Spectrum of AR(1) with ¢ = —0.9
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SPECTRUM - GIVES VARIANCE DECOMPOSITION

Mixture: Low + High Frequency Signal
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SPECTRUM - GIVES VARIANCE DECOMPOSITION

Spectrum of the mixed signal

Frequency

Time



GENERATING MIXTURES OF OSCILLATIONS
@ Discrete Cramér representation

T/2

x0= Y Awden ()

k=—(T/2—-1)

o Fourier waveforms ¢ (t) = exp (25<),
k=—(T/2-1),...,T/2

o Generate coefficients for k = 0, T /2: A(wk) ~ (0,f(wk))

@ Generate coefficients fork =1,...,(T/2 — 1):

AR () ~ (0,1
A'(wk) ~ (0’ f((;k))
Awi) = AR (wy) +iAl (wk)
@ Generate coefficients fork = —1,...,—(T /2 — 1):

Awi) = AR (—wy) — A (—uwx)



GENERATING MIXTURES OF OSCILLATIONS

See file IntroSpectral Model s



ESTIMATING THE SPECTRUM

o Xy,t=1,...,T (assume X = 0)
o Estimate the spectrum
@ Fourier coefficients d (wx) = > _; Xt exp(—i2mwt)



ESTIMATING THE SPECTRUM

Wave with 2 cycles

Wave with 3 cycles

o Fourier coefficients d(wx) =< X, ¢ >
@ Correlation between X and the waveform ¢y



ESTIMATING THE SPECTRUM

o Fourier periodograms Z(wy) = # |d (wk)|?

o EZ(w) ~ f(w) but Var Z(w) = f?(w)

° ?(w) = Smoothyepr(w) Z(A)

o Other approaches: wavelet denoising, parametric (ARMA)



ESTIMATING THE SPECTRUM

Examplesin R

See not es Peri odogr antSnoot hi ngNot es



| MPORTANCE OF THE SPECTRUM

o SLEEP Studies

o Depression study: among recoverers (IPT + flouxeting) [joint
with Psychiatry, Univ Pittsburgh]

@ Alpha power Post treatment < baseline
o Beta power Post treatment > baseline

@ Cognitive Experiment working memory load
@ Gamma (32-50 hertz) power
o Heart Rate Variability

o Feature of interest: high frequency power in inter-beat
interval sequence in EKG (parasymphathetic modulation)

o Across NREM periods in the entire night: increase among
controls, near-constant among stress group.



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

@ Three time series X, Y, Z
@ Cross-dependence between X and Y

@ Simple measures: cross-correlation and partial
cross-correlation

@ Indirect vs direct dependence



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

Model A Model B

@ Cross-correlation and Partial cross-correlation
o Indirect vs Direct



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

o Time series at 3 channels: X,Y,Z

@ Cross-correlation p(X,Y) = \/%

o Partial cross-correlation between X and Y given Z

o Remove Z from X: ex = X — BxZ
o Remove ZfromY: ey =Y — GyZ

Cov(ex ,e
° p(X,Y[2) = e



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

Model A Model B

Model A | Model B
Cross-Corr Yes Yes
Partial CC NO Yes




CROSS-COHERENCE - A MEASURE OF DEPENDENCE

@ When p(X,Y|Z) # 0, we want to identify the frequency
bands that drive the linear association.

( X(t) ) ( dZx (w) )
u) = Y@) | dzw)=| dzy()
Z(t) dZz (w)

o Notation

@ Spectral representation of a stationary process
0.5
u(t) = / exp(i2mwt)d Z (w).
—-0.5

o Formal definition of coherency (correlation of Fourier
coefficients)

pw(X,Y) = Corr[dZy (w),dZy (w)]



CROSS-COHERENCE - A MEASURE OF DEPENDENCE
o Filtered Signals

Xu(t) = FuX(t) Yo(t) = FLY (1) Z,(t) = F,Z(1)
@ Coherency at frequency band around w

pxy (W) = Corr[X,, (1), Yo ()]

o Partial coherence

o Remove Z,(t) from X, (t): €X(t)
o Remove Z,,(t) from Y, (t): £ (t)

Cov(&X (1),£5,(1))
Var £4(t) Var £7,(t)

Xu(t) — BxZu(t)
Yo (t) — By Zu(t)

o RA(X,Y|Z) =

@ Relevant work:

@ Ombao and Van Bellegem (2008, IEEE Trans Signal
Processing)

o Fiecas and Ombao (2010, Annals of Applied Statistics)



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

An lllustration

o Latent Signals

o Uj(t) - low frequency
s Uy(t) - high frequency

@ Observed Signals

o X(t) = Us(t) + Ua(t) + Zo(t)
o Y(t) = Us(t+¢) + Z4(t)

@ Xand Y are linearly related through U;.



CROSS-COHERENCE - A MEASURE OF DEPENDENCE

Signal X

oM s

Signal Y

Low Freq Oscillation
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CROSS-COHERENCE - A MEASURE OF DEPENDENCE

COHERENCE

o ldentifies the oscillations that drive the linear association
between X and Y.

o |dentical Oscillations

o Low freq oscillations in X vs Low freq oscillations in Y
@ High freq oscillations in X vs High freq oscillations in Y



GENERALIZED COHERENCE

@ Frequency bands

o (1,4) Hertz - Delta
s (4,8) Hertz - Theta

s (8,12) Hertz - Alpha

s (16, 30) Hertz - Beta

o (30,70) Hertz - Gamma

@ Dependence between alpha oscillation activity in X and
beta activity in Y



GENERALIZED COHERENCE

Signal X Signal Y

M g ) WP

Low Freq Oscillation Low Freq Oscillaton

WA b |
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GENERALIZED COHERENCE

Applications in the Neuroscience literature

@ Working memory (hippocampus)

e Gamma activity (amplitude) phase-locked to theta activity
o Cross-frequency coupling predicts WM performance

@ Reward processing (basal ganglia)

o Bursts of high frequency activity (gamma) occurs
preferentially during specific phases of lower frequency
activity (alpha)



GENERALIZED COHERENCE

Probability and Statistics

@ Harmonizable Processes
X (t) = / exp(i2mwt)dZ (w)

where {dZ (w)} not necessarily uncorrelated
o References
Loéve 1955 (Probability Theory)
Martin 1982
Sharf (1990’s onwards)
Hindberg and Hanssen 2007

©

¢ ¢ ¢



GENERALIZED COHERENCE

Generalizations

@ In the neuroscience literature

o |deas are present; several descriptive analysis
@ There is a need to introduce formal framework for testing

@ In the signal processing literature

* No framework for comparing across conditions and patient
groups
o No framework for replicated time series
@ No models for studying how past alpha activity may predict
future beta activity.



GENERALIZED COHERENCE FOR HARMONIZABLE
PROCESSES

Harmonizable process
0.5
X(t) = / exp{ 2ot }dZ ()
-05

o {dZ(w)} not necessarily uncorrelated.

GENERALIZED SPECTRUM - LOEVE SPECTRUM
Cov(dZ (), dZ (\)) = f(w, \)dwd A

o Allow correlation between different frequencies.



GENERALIZED COHERENCE FOR HARMONIZABLE
PROCESSES

Generalized Spectrum
o [ [|f(w,N)]dwdX < o0
@ Relation with time varying covariance function

v(s,t) = E[X(s)X*(t)]
_ / / exp{2mi(sw — )} (w, A)dwd A

/ / exp{2ris(w — A)}(w, A)dwd A

Var(X(t))

o f(w,A) = 74 0 Y 7(s. ) exp{—i(ws — At)}



GENERALIZED COHERENCE (DUAL FREQUENCY
COHERENCE)

X(t)atw +— X(t)at A ?

UNIVARIATE X(t)
2 _ [B[dZ(w)dz*(\)]?
P (@: A) = E[dZ ()]PE[dZ (\)[2




GENERALIZED COHERENCE (DUAL FREQUENCY
COHERENCE)

X(t)atw +— X(t)at A ?

UNIVARIATE X(t)
2 _ [E[dZ(w)dz*(\)]?
Px (9 X) = 5igz (Eaiaz ()P

X(t)atw«— Y(t)at A ?

BIVARIATE X (t), Y (t)
) _|EldZx w)dzg ]|
Py (W, A) = E|dZy (w)*EldZy (V)?




INTERPRETATION OF DUAL FREQUENCY COHERENCE

@ Quantifies linear correlation between random oscillations
at any pair of frequencies.



INTERPRETATION OF DUAL FREQUENCY COHERENCE

@ Quantifies linear correlation between random oscillations
at any pair of frequencies.

o When p y (w, ) close to 1 — = linear relationship
between dZy (w) and dZy ()



INTERPRETATION OF DUAL FREQUENCY COHERENCE

@ Quantifies linear correlation between random oscillations
at any pair of frequencies.

o When p y (w, ) close to 1 — = linear relationship
between dZy (w) and dZy ()

@ The proportion of variance at w in X that can be explained
by the linear relationship between the



INTERPRETATION OF DUAL FREQUENCY COHERENCE

@ Quantifies linear correlation between random oscillations
at any pair of frequencies.

o When p y (w, ) close to 1 — = linear relationship
between dZy (w) and dZy ()

@ The proportion of variance at w in X that can be explained
by the linear relationship between the

e w oscillation in X



INTERPRETATION OF DUAL FREQUENCY COHERENCE

@ Quantifies linear correlation between random oscillations
at any pair of frequencies.

o When p y (w, ) close to 1 — = linear relationship
between dZy (w) and dZy ()

@ The proportion of variance at w in X that can be explained
by the linear relationship between the
e w oscillation in X
@ )\ oscillation in Y



GENERALIZED COHERENCE

Harmonizable processes are generally non-stationary.

o Aq,Byiid (0,0%);
0 Ay =A1+2Zp; Ba=B1+Zg;
@ Consider the harmonizable sinusoidal process

X(t) = Ay cos(wit) + By sin(wit) + Az cos(wat) + By sin(wat)

o VarX(t) = 0% + 05 + 03 cos[(w1 — wa)t]



GENERALIZED COHERENCE

Estimation
o X" Y'"time seriesontrialr =1,... R
o Fourier coefficient
T
dy (w) = Z X'(t) exp(—i2mwt)
t=1

o Generalized cross-periodgram for the r-th trial
Iy v (w, A) = dy (w)dy* (M)

o Estimate of the generalized spectrum

R
— 1
fy(wA) == D> Ty (w, A)



GENERALIZED COHERENCE

Estimation

o Estimate of the generalized coherence

— i w, A 2
Px,vz(wa/\):A |X’Y(A )
fx’x (w, w)fyy ()\, )\)



PRELIMINARY EEG DATA ANALYSIS

©

Visual Motor experiment (PI: J Sanes, Brown
Neuroscience)

Replicated trials (r = 1,...,R = 100+)
Time blocksb =1,...,4

Stimulus presented at block 3

Each time block has T = 128 time points
We computed Generalized Coherence

¢ & ¢ ¢ ¢

o between different channels
o between pairs of different frequencies
o for both the same and successive time blocks



PRELIMINARY EEG DATA ANALYSIS

EEG Time Series
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Time



PRELIMINARY EEG DATA ANALYSIS

Alpha-Beta coherence at Block 3
[3.a] [3.B1]

1 2 3 4 5 6 7 8 9 10 11 12



PRELIMINARY EEG DATA ANALYSIS

Connectivity — CZ seed channel

[1 alpha] — [2 beta] [3 alpha] — [4 beta]




PRELIMINARY EEG DATA ANALYSIS

Connectivity — C4 seed channel

[1 alpha] — [2 beta ] [3 alpha] — [4 beta]




PRELIMINARY EEG DATA ANALYSIS

Connectivity — P3 seed channel

[1 alpha] — [2 beta] [3 alpha] — [4 beta]




SPECTRAL AUTOREGRESSIVE M ODEL

@ dc(a,b)
alpha-band coefficient
channel c
time block b

@ The Spectral-AR model

de(a,b) = de(a,b—1)+d(B,b— 1)+
der(, b — 1) + der(B,b — 1) + ec(av, b)



SPECTRAL AUTOREGRESSIVE M ODEL

o Parietal-Frontal connectivity
o Complex-valued data
@ Potential variations

o Magnitute(b — 1) — Magnitude(b)
s Phase(b — 1) — Phase(b)



SPECTRAL AUTOREGRESSIVE MODEL

[ — [2] B] — [4]

alpha— beta
beta— alpha



CURRENT WORK

@ Establish conditions for mean-squared consistency of the
estimator

@ Testing for differences in generalized coherence - across
conditions

o Penalized likelihood estimation method for the spectral-AR
model



COLLABORATORS - BROWN NEURO-STATS

o Graduate Students

Fiecas, Mark
Gorrostieta, Cristina
Joo, LiJin

Kang, Hakmook

@ Undergraduate Student
Van Lunen, Daniel
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