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Abstract

Profile likelihood intervals of large quantiles in Extreme Value distributions provide
a good way to estimate these parameters of interest since they take into account the
asymmetry of the likelihood surface in the case of small and moderate sample sizes;
however they are seldom used in practice. In contrast, maximum likelihood asymptotic
(mla) intervals are commonly used without respect to sample size. It is shown here
that profile likelihood intervals actually are a good alternative for the estimation of
quantiles for sample sizes n ≥ 25 of block maxima, since they presented adequate
coverage frequencies in contrast to the poor coverage frequencies of mla for these sample
sizes, which also tend to underestimate the quantile and therefore might be a dangerous
statistical practice.

In addition, maximum likelihood estimation can present problems when Weibull
models are considered for moderate or small sample sizes due to singularities of the
corresponding density function when the shape parameter is smaller than one. These
estimation problems can be traced to the commonly used continuous approximation
to the likelihood function and could be avoided by using the exact or correct likeli-
hood function, at least for the settings considered here. A rainfall data example is
presented to exemplify the suggested inferential procedure based on the analyses of
profile likelihoods.

Key words: Exact likelihood function, extreme value distributions, maximized likelihood,
profile likelihood, likelihood-confidence intervals, rainfall data.

AMS-subject classification: 62G32, 68U20.

1 Introduction

According to the Fisher-Tippet theorem [2], only three families of distributions are the limits
for the distribution of normalized maxima of i.i.d. random variables: Weibull, Gumbel, and
Fréchet. These three families of Extreme Value distributions (EV) are submodels of a single
family of distributions proposed independently by Von Mises [7] and Jenkinson [3] which is
now known as the Generalized Extreme Value distribution (GEV).
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Usually large quantiles Qα of probability α of these distributions are of interest. Different
confidence intervals for these quantiles can be obtained depending on the model used, the
GEV or a specific subfamily of models–Fréchet, Gumbel or Weibull. Under the selected
model, the usual procedure is to obtain asymptotic maximum likelihood (aml) confidence
intervals which are symmetric about the maximum likelihood estimate (mle) and usually do
not take into account the commonly marked asymmetry of the likelihood surface of large
quantiles in the case of small or moderate samples and thus tend to underestimate the true
value of the quantile.

Profile likelihood intervals for quantiles have not been fully explored in statistical liter-
ature for Extreme Value Theory and neither have their coverage properties in the cases of
small and moderate samples. In this work, the coverage frequencies and lengths of likeli-
hood intervals for quantiles are explored and compared to those of aml confidence intervals
through a simulation study.

In addition, the profile likelihood intervals for the shape parameter of the GEV were
also considered and shown to have good coverage frequencies. These intervals are of special
importance since they can be used as an aid for submodel selection.

The use of the exact likelihood function, described in the following section, is recom-
mended for the case of small sample sizes where a Weibull model might be reasonable, in
order to avoid maximum likelihood estimation problems due to singularities of the corre-
sponding density function.

As an example, a data set of yearly rain maxima collected at a monitoring station in
Michoacán, México is presented to exemplify the likelihood based estimation procedures.

2 Relevant Related Statistical Concepts

The relative and profile or maximized likelihood functions of a parameter of interest will be
presented here. In addition, the exact or correct likelihood function is defined as well. These
functions contribute to simplify and improve the estimation of parameters of interest such
as quantiles of Extreme Value distributions. Also, expressions for the probability densities
and distribution functions of all the models involved are here provided, as well as for their
corresponding quantiles, which are the main parameters of interest.

The densities of the three EV families for maxima are
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with location, scale and shape parameters µ ∈ R, σ > 0 and β > 0, respectively. For the
Weibull and Fréchet densities, µ is also a threshold parameter, since it represents an upper
or lower bound, respectively, for the support of the corresponding random variable. Note
that for β < 1, the Weibull density has a singularity at x = µ.

2



The Generalized Extreme Value distribution (GEV) density function is
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where a, b, c are location, scale and shape parameters, respectively, b > 0 and a, c ∈ R. The
GEV corresponds to the Weibull, Gumbel, or Fréchet distributions according to whether c is
negative, zero, or positive, respectively. Note that the expression given for c = 0 is the limit
of g(z; a, b, c) when c tends to zero. The parameters of the EV models and the corresponding
GEV are connected through a one to one relationship given in Table 1.

Parameter: Threshold/Location Scale Form
Weibull c < 0 µ = a− b/c σ = −b/c β = −1/c
Gumbel c = 0 µ = a σ = b —
Fréchet c > 0 µ = a− b/c σ = b/c β = 1/c

Table 1. Parameters for the EV and GEV distributions

In the case of the Weibull and Fréchet models for maxima, the threshold is isolated in
a single parameter µ that may have a clear physical interpretation. Inferences in terms of
estimation intervals for this parameter are simpler with an EV distribution in contrast to
the corresponding threshold for the GEV, which is a function of all three parameters a, b, c.

It is important to note that there exist Weibull and Fréchet models that are very close
and practically indistinguishable from a Gumbel model. That is, the Gumbel distribution is
a limit of Weibull distributions with parameters related as shown in Table 1. The Gumbel
model is embedded in the Weibull family of models in this sense, as well as in the Fréchet
family (Cheng and Iles [1]).

All these models can be parametrized in terms of a quantile of interest by direct algebraic
substitution in (1), (2) and (3) since any quantile can be expressed as a function of the other
parameters as shown in Table 2. Therefore, the model can be expressed in terms of the
quantile of interest which substitutes one of the remaining parameters. For example, the
Weibull model can be reparametrized in terms of (Qα, σ, β) instead of (µ, σ, β).

Quantile of probability α

Weibull Qα = µ− σ (− log α)1/β

Gumbel Qα = µ− σ log (− log α)

Fréchet Qα = µ + σ (− log α)−1/β

GEV Qα =

{
a− b log (− log α) , if c = 0,

a− b
c

[
1− (− log α)−c] , if c 6= 0.

Table 2. Quantiles for the EV and GEV distributions.

The asymptotic properties of maximum likelihood estimators are invoked in order to
obtain confidence intervals for the parameters of interest. Usually the continuous approx-
imation to the likelihood function as defined in Kalbfleisch [4] is the one used in most
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statistical textbooks to define the likelihood function for continuous random variables, with-
out taking notice that it is an approximation. For an observed sample of n independent
continuous random variables identically distributed, the continuous approximation to the
likelihood function is

L (θ; x1, ..., xn) =
n∏

i=1

f (xi; θ) , (5)

where θ is the vector of parameters, and f is the density function of the selected model.
This continuous approximation to the likelihood is only valid if the density functions do

not have singularities (see Montoya et al [6]). For example, for a given observed sample,
the joint Weibull density has a singularity when the threshold parameter equals the largest
observation, µ = x(n), if the shape parameter β is smaller than one, β < 1.

However, the data are always discrete since all measuring instruments have finite pre-
cision. Therefore, the data can only be recorded to a finite number of decimals. Thus the
observation X = x can be interpreted as x− 1

2h ≤ X ≤ x + 1
2h, where h is the precision of

the measuring instrument, and so is a fixed positive number. For independent observations
x = (x1, ..., xn), the exact or correct likelihood function LE is defined to be proportional
to the joint probability of the sample,
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=
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2h; θ
)− F

(
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where F is the corresponding distribution function of the continuous model in consideration.
Allowing h = 0 implies that the measuring instrument has infinite precision and that

the observations can be recorded to an infinite number of decimals. Since for a continuous
random variable X, P (X = x; θ) = 0 for all x and θ, this cannot be the basis for obtaining
a likelihood function. If in contrast, one assumes that the precision of the measuring in-
strument is h > 0, then conditions are required for the density function f (y; θ) to be used
as an approximation to the likelihood function (6) , as required by the Mean Value Integral
Theorem of Calculus. But if the density function has a singularity at any given value of θ,
then these conditions are violated and f (y; θ) cannot be used to approximate the likelihood
function at that value of θ ([4], Section 9.4).

As Meeker and Escobar ([5], p. 275) mention, there is a path in the parameter space
for which the continuous approximation to the likelihood (5) goes to infinity, in particular
for the Weibull case, when β < 1 and µ → x(n). It should be stressed that the likelihood
approaches infinity not necessarily because the probability of the data is large in that region
of the parameter space, but instead because of a breakdown in the density approximation to
the likelihood function. There is usually, as happened with all simulations considered here,
though not necessarily always, a local maximum for this likelihood surface corresponding to
the maximum of the exact likelihood based on the probability of the data shown in (6) .

A useful standardized version of a likelihood function L (θ; x) that will be used here, is
the relative likelihood function that has a value of 1 at its maximum, the mle θ̂, and is
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defined as

R (θ; x) =
L (θ; x)

L
(
θ̂; x

) , (7)

so that 0 ≤ R (θ; x) ≤ 1. Values of θ with R (θ; x) close to one are more plausible than values
close to zero. A relative likelihood is easy to plot and to interpret. Likelihood intervals or
regions of k% likelihood level are obtained by cutting horizontally this likelihood function;
that is

{θ : R (θ; x) ≥ k} , 0 ≤ k ≤ 1. (8)

For example, if k = 0.15, under some regularity conditions, the corresponding likelihood
interval has an asymptotic approximate 95% confidence level, using the Chi-squared limit
distribution for the likelihood ratio statistic ([4] Section 11.3). However this result may also
hold for moderate samples, and even small samples, if the likelihood surface is symmetric
about the mle. In these cases the interval in (8) is called a likelihood-confidence interval.

If the GEV model is parametrized in terms of a quantile of interest, then the profile or
maximized likelihood function of Qα (Kalbfleisch, 1985, Section 10.3) is defined for sample
x = (x1, ..., xn) as

Lp (Qα; x) = max
b,c|Qα

L (Qα, b, c; x) .

The corresponding relative likelihood can be calculated as in (7) . Profile relative likelihoods
and their plots are very informative about plausible ranges for the parameter of interest, in
the light of the observed sample.

In the case of the profile likelihood of the GEV shape parameter c, the relative likelihood
at c = 0 is indicative of the support given by the sample to the Gumbel model, which
corresponds to c = 0. For example if Rp (c = 0) ≥ 0.5, the Gumbel model has moderate or
high plausibility and should definitely be considered as a possible model; its fit to the sample
should be compared with the fit of the best member of the family of EV models suggested
by the sign and value of the mle ĉ.

Summarizing, in order to make inferences about a parameter of interest, for example a
quantile, the corresponding plot of the relative profile likelihood should be analyzed because
it is very informative. Inferences about the parameter of interest should be presented in terms
of likelihood-confidence intervals, especially in the case of small or moderate samples. These
intervals calculated for two large quantiles, Q.95, Q.99, and for the GEV shape parameter c
showed through simulations, reported in the following sections, to have adequate coverage
frequencies for moderate sample sizes (n ≥ 50), and even for n = 25 in the case of Gumbel
and Fréchet models.

3 Simulations

For the simulation study, the samples of maxima were chosen to come from one of the EV
distributions, (or equivalently a GEV distribution) and not from a distribution belonging to
the domain of attraction of an EV. Samples were simulated from the GEV with parameters
a = 1, b = 1 and

c ∈ {−0.5,−0.4,−0.3,−0.2,−0.1,−0.05, 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} ,
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for sample sizes of n = 25 and 50. Additional values of c, ±0.01 and ±0.001 were considered
as well as the previous ones, for n = 100 in order to explore the cases around c = 0. These
cases are such that there are models from the three subfamilies of EV that are very close to
each other.

Size 50 is frequently found in samples coming from meteorological applications, and
sample size 100 was chosen to explore the effect of increasing sample size. For each value of
c and sample size, 10,000 samples were generated in Matlab 7.

For each sample of maxima, the mle’s of the parameters (a, b, c) of the GEV distribution
were calculated using the continuous approximation to the likelihood function. This is the
current procedure in Extreme Value literature. The cases where the singularities of this
density caused numerical problems for finding the local maximum (the mle) were registered
and the exact likelihood function was used then to obtain the mle’s.

For each simulated sample, the corresponding EV model was selected automatically ac-
cording as ĉ < −10−5 (Weibull), |ĉ| < 10−5 (Gumbel) or ĉ > 10−5 (Fréchet). The mle’s of the
corresponding parameters were obtained by maximizing the likelihood derived from (1), (2)
or (3), accordingly, reparametrized in terms of the quantile of interest, which worked well in
most of the cases. Only when ĉ < −1 and β̂ < 1, it was necessary to use the corresponding
exact Weibull likelihood function, as mentioned above. These cases were registered, since
they represent cases where the continuous approximation to the likelihood function would
not have been able to produce an mle with these EV distributions.

Using the invariance property of the likelihood function, the mle’s of quantiles Q.95 and
Q.99 can be obtained from the mle’s of the parameters of the EV or GEV, though they
were obtained directly from the corresponding likelihood function parametrized in terms
of these quantiles. From their corresponding relative likelihoods, 15% likelihood intervals
were obtained for c, Q.95, and Q.99. As mentioned above, these intervals may have an
approximate 95% confidence level in the case of moderate sample sizes, using the Chi-squared
limit distribution for the likelihood ratio statistic ([4] Section 11.3). For each of these intervals
it was checked whether they included the true value of the corresponding parameter in order
to calculate the associated coverage frequency. For those intervals that excluded the true
value of the parameter of interest, the number of times that the interval underestimated or
overestimated was registered. Also the lengths of the intervals that covered the true value of
the parameter were registered and compared as shown in the following section. In addition,
the asymptotic maximum likelihood (aml) confidence intervals were obtained for Q.95 and
Q.99 and their coverage frequencies were registered.

4 Results

Tables 3 and 4 present the coverage frequencies for Q.95 and Q.99 of 15% relative profile
likelihood intervals and their corresponding aml intervals in the case of samples of size
n = 25, 50, and 100. Asymptotically these 15% likelihood intervals should have 95% coverage
frequencies. Table 5 gives the coverage frequencies of 15% relative profile likelihood intervals
for the parameter c of the GEV model for samples of size 100 and 50. The last two columns
of this table report for each scenario the number of samples that selected the correct EV
model according to the sign of the mle ĉ and the number of samples where the product of the
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interval endpoints was negative. These are cases where the three EV models are plausible,
since the value of c = 0 is included in the interval.

Figure 1 shows the coverage frequencies of the quantiles of interest contained in Tables
3 to 5 in a graphical way. Figures 2 and 3 show the ratios of the lengths of the relative
profile likelihood intervals under the selected EV model compared to those under the GEV
model and Figures 4 and 5 give the length of profile likelihood intervals for the GEV using
boxplots in which the box corresponds to the interquartile range and the whiskers have a
maximum length of 1.5 times the interquartile range. Points beyond the end of the whiskers
are represented individually and the line inside the box is the median. Only samples for
which all intervals covered the true value of the quantile were considered in these graphs.

Some remarks about the tables and figures are given below. Note that EV submodels
are selected automatically, based only on the sign and size of ĉ, so the reported coverage
frequencies correspond to a ‘worst case’ scenario. With a real data set, additional external
information from experts would be taken into account for choosing an adequate submodel,
and consequently the statistical modeling would be more efficient.

1. Coverage frequencies of GEV profile likelihood intervals and number of
samples with estimation problems. Coverage frequencies of relative profile like-
lihood intervals for the GEV were very stable throughout the range of values of c for
both quantiles. They tend to decrease as c moves towards more negative values. For
n = 100 there were no numerical problems when calculating the mle’s. For n = 50 the
number of samples with numerical problems was insignificant. However for n = 25,
more samples presented problems in the case of Weibull models with values of c smaller
than −0.2. The number of problematic cases grows as c goes to −0.5 and is above 1.8%
for c = −0.4 and above 5% for c = −0.5. The number of samples that had numerical
problems was the same for both quantiles considered. Therefore, numerical problems
are associated to small sample sizes and Weibull models with large negative values of
c.

2. Coverage frequencies of EV profile likelihood intervals. Coverage frequencies
of relative profile likelihood function intervals for the EV were not so stable, and in
all cases there is a region of decrease, mainly in the Fréchet domain, where frequencies
drop, as shown in Figure 1. This region grows wider as the sample size gets smaller,
and the value where the minimum occurs shifts to the right from around 0.1 for n = 100
to around 0.2 for n = 25. The drop is always more pronounced for Q.99 than for Q.95.
This can be explained by the fact that for the samples that did not cover the true value
of the quantile, the mle ĉ was negative in most cases and the whole interval lay below
this true value and therefore underestimated it (see the second columns in Tables 3 and
4). In the Fréchet cases, these problems were associated to estimating a large Fréchet
quantile with a Weibull model that has a bounded right tail.

3. Coverage frequencies of aml intervals. Aml intervals always had poorer coverage
frequencies than relative profile likelihood intervals for the GEV for all the sample
sizes considered here. Coverage frequencies for aml intervals calculated for the GEV
and EV distributions are almost identical. Although coverage frequencies for these
intervals improve as the sample size grows, as predicted by asymptotic theory, they
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can be very poor for n = 25 and 50, and still unsatisfactory even for n = 100. This
indicates that samples of greater size are required for these intervals to have suitable
coverage frequencies. In all cases the intervals that failed to cover the true values
tended to underestimate them.

4. Asymmetry of proportions of intervals that exclude the true value. Except for
one single case (n = 50, Q.99, c = 0.5) there were always more relative profile likelihood
intervals that underestimated than overestimated the true value of the quantile. This
asymmetry is more pronounced for smaller sample sizes, n = 25. The asymmetry also
increases as c becomes smaller and is very marked in the Weibull case. This may be
due to the fact that the Weibull distribution has a finite upper limit and intervals
tend to increase in size with c. Therefore estimating a large quantile from a sample
with ĉ << c will tend to underestimate the true value while in the case ĉ >> c the
interval will be larger and more likely to include the true value. However, even if this
asymmetry is not desirable, the asymmetry of aml intervals is certainly much more
marked than the one for profile likelihood intervals.

5. Interval lengths. Almost always intervals obtained with the GEV models are larger
than those obtained with EV distributions as shown in Figures 2 and 3. Only samples
where both intervals included the true value of the parameter were considered. The
length of the intervals tended to be alike for large values of |c|, although there is some
asymmetry in this, with Fréchet intervals being closer in length than the corresponding
Weibull cases. Also, the ratio of lengths is closer to one for Q.95 than for Q.99. For
both quantiles the largest difference occurs at c = −0.05 for n = 100 and 50, and at
c = −0.1 for n = 25. In Figures 2 and 3, the region where the interquartile boxes are
visible (i.e. where the length differences are more important) coincides roughly with
the region where there is a drop in the coverage frequencies for the EV distributions.
This shows that there is a trade off between coverage and precision in the choice of a
model: There is the possibility of gaining precision in the estimation but a the risk of
reducing the confidence level of the interval. It is important to note that for the same
quantile and sample size, the lengths of confidence intervals grow with c, as shown by
Figures 4 and 5. This is to be expected since Weibull distributions are bounded above
while Gumbel and Fréchet are not. Figure 6 shows the length between the true values
of Q.01 and Q.99 of the corresponding distribution, as the parameter c increases.

6. Effect of sample size on interval length. As one would expect, the length of
the intervals decreases as the sample size increases, but not uniformly. Halving the
sample size from n = 50 to 25 increases interval length by a factor between 1.84 to
2.65, depending on the value of c, and by a factor of 1.56 to 1.78 when decreasing from
n = 100 to 50. Also, for a fixed sample size the length of intervals for Q.99 is always
larger than those of Q.95, as shown in Figure 5.

7. Coverage frequencies of GEV shape parameter c. The coverage frequencies of the
profile likelihood intervals of this parameter, shown in Table 5, are stable throughout
the range of values of c, with a slight decrease for the more negative values of c. The
proportion of intervals that underestimate is much larger than those that overestimate
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the true value of c, especially in the Weibull cases. This asymmetry diminishes as c
takes larger positive values.

8. Asymmetry in the correct automatic selection of a model. The number of
simulated samples where the estimator ĉ has the same sign as the true value of c,
as the column “correct” shows in Table 5, depends on the value of c. Although the
difference is not pronounced, it is always more likely for the same value of |c| that the
signs coincide in a Weibull case than in the corresponding Fréchet case. On the other
hand, it is more likely that intervals in the Fréchet case cover the origin, and therefore
make plausible a Gumbel model, as the “negative” column shows in Table 5.

5 Rain Data Example

In the state of Michoacán, México, near its capital city Morelia, there is a monitoring me-
teorological station located at the Cointzio dam. This station is representative of rainfall
patterns in this area. Yearly maxima of daily rainfall were obtained for 58 years in a period
between 1940 and 2002. In this area, there is a marked rainy season from May to September.
This data set will serve to illustrate the statistical modelling procedures suggested here. As
a first step, the relative profile likelihood of the GEV shape parameter c shown in Figure
7(a) assigns plausibility only to positive values of c and the mle is ĉ = 0.21. therefore sug-
gesting a Fréchet model. Since rain data are necessarily non-negative, for physical reasons
it is important to consider a Fréchet model with a non-negative lower threshold parameter
µ ≥ 0 that could very well simplify to a two parameter Fréchet model, where µ = 0. The
relative profile likelihood of µ under the three parameter Fréchet model shown in Figure
7(b), clearly assigns a very high plausibility to the value of µ = 0, so that the data appear to
support strongly a two parameter Fréchet model. Under this model, the maximum likelihood
estimates are

σ̂ β̂ Q̂.95 Q̂.99

36.99 4.57 70.87 101.25
.

Figures 8(a) and 8(b) present together, for the sake of comparison, the corresponding
relative profile likelihoods of these large quantiles of interest under the two parameter Fréchet
model and also under the GEV model without any restrictions to its parameters. The GEV
model without restrictions for its threshold corresponds as well to a three parameter Fréchet
model without restriction to its threshold parameter; the corresponding Fréchet mle’s are

µ̂ σ̂ β̂ Q̂.95 Q̂.99

-1.55 38.57 4.76 70.64 100.44
.

In terms of the GEV distribution’s parameters, the mle’s are given by

â b̂ ĉ
37.02 8.1 0.21

The likelihood intervals obtained for these quantiles with the GEV model are larger
and imply that larger values of these quantiles are plausible. Also in these graphs, the
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aml GEV intervals are marked and show that their right endpoints tend to coincide with
the right endpoints of the profile likelihood intervals of the two Fréchet model for these
quantiles; nevertheless the left points are much smaller than the other likelihoods endpoints
and therefore include small values of the quantiles that are implausible under both models
(two parameter Fréchet and the GEV). That is, the aml intervals tend to underestimate the
values of the quantiles.

The likelihood ratio statistic of these two models for this data set is

LFréchet

(
µ = 0, σ̂, β̂; x

)

LFréchet

(
µ̂, σ̂, β̂; x

) = 0.9983.

Since these models are nested, this likelihood ratio has a chi squared distribution with one
degree of freedom. The observed value of 0.9983 with a p-value of 0.32, indicates that the two
Fréchet parameter model makes the observed sample equally probable. However since the
two Fréchet parameter model is simpler and fits adequately the data set as shown in Figure
9(a), this model should be preferred. Figure 9(a) shows the corresponding quantile-quantile
plot with pointwise likelihood bands that includes all observed values. Moreover, this model
should be taken into account due to the physical considerations stated above.

Likelihood-confidence intervals of 15% likelihood level and approximate 95% confidence
level for the quantiles of interest Q.95 and Q.99 under the two parameter Fréchet model are
(61.6, 85.06) and (83.02, 131.66) respectively. Finally Figure 9(b) shows the return periods
plot with profile likelihood 15% level bands marked for both the GEV model and the two
Fréchet model. Since rainfall levels higher than 200ml are associated with floodings of
Morelia, and since a return period of a 100 years is associated to quantile Q.99, then the
probability is extremely low that the city of Morelia gets flooded within 100 years.

6 Conclusions

Overall, profile likelihood intervals of large quantiles of Extreme Value distributions and
of the GEV shape parameter c performed well and had adequate coverage frequencies for
moderate and small sample sizes. In contrast, the corresponding aml intervals are symmetric
about the mle and had lower and poor coverage frequencies in the case of samples of size
n ≤ 100. Moreover, a large proportion of the aml intervals that excluded the true value
tended to underestimate it. The aml intervals are frequently used in Extreme Value Theory
applications without notice of these issues.

Profile likelihood intervals of EV submodels tend to be shorter than the corresponding
GEV profile likelihood intervals when the true value of c is close to zero, that is when c ∈
(−.05, .05) if the sample size is n ≤ 50. Nevertheless, their coverage frequencies are adequate
so that they should be preferred when the model selection of an EV is clear. However, if there
is no additional external information on a given preferred EV model suggested by the theory
behind the specific phenomenon of interest, then using GEV profile likelihood intervals is
a conservative procedure since they also had good coverage frequencies, even though these
intervals tended to be larger.
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Profile likelihood intervals of c may serve as an aid in model selection. They also had
adequate coverage frequencies. For values of c in a region around zero (−0.01, 0.01) approx-
imately 95% of the likelihood intervals for the simulated samples included the value of zero.
These are cases where the three EV models are plausible for the given sample, and also where
the Gumbel model usually has a moderate or high plausibility given by the relative profile
likelihood of c at zero. This is indicative of the need of additional external information of
experts and other diagnostic methods to select adequately the best and most simple model
for the phenomenon of interest. This will improve the estimating precision, and will prevent
underestimating the quantile of interest.

Finally, for sample sizes smaller than 50 and in the case that a Weibull model might be
an appropriate choice, then the use of the exact likelihood function is suggested in order to
make inferences about the parameters of interest through profile likelihood intervals.
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n=100, Q95

SUBMODEL GEV
Profile Likelihood Ints. AML Profile Likelihood Ints. AML

c < C. F. > < C. F. > < C. F. > SNP < C. F. >
-0.5 543 9314 143 984 8877 139 543 9314 143 0 984 8877 139
-0.4 438 9408 154 884 9003 113 438 9408 154 0 884 9003 113
-0.3 442 9374 184 888 9023 89 442 9374 184 0 887 9024 89
-0.2 379 9449 172 872 9076 52 378 9450 172 0 872 9076 52
-0.1 347 9457 196 844 9120 36 344 9469 187 0 842 9124 34
-0.05 392 9423 185 805 9169 26 363 9464 173 0 805 9170 25
-0.01 400 9395 205 755 9215 30 315 9496 189 0 755 9216 29
-0.001 423 9374 203 778 9191 31 338 9469 193 0 777 9192 31
0.0 394 9415 191 751 9221 28 325 9490 185 0 751 9221 28

0.001 416 9380 204 792 9180 28 332 9473 195 0 792 9182 26
0.01 443 9396 161 785 9194 21 341 9509 150 0 784 9196 20
0.05 446 9358 196 735 9240 25 309 9501 190 0 731 9245 24
0.1 496 9302 202 781 9195 24 321 9477 202 0 781 9195 24
0.2 285 9495 220 727 9262 11 267 9513 220 0 727 9262 11
0.3 280 9506 214 757 9232 11 280 9506 214 0 757 9232 11
0.4 298 9477 225 782 9214 04 298 9477 225 0 782 9214 04
0.5 296 9472 232 740 9260 0 296 9472 232 0 740 9260 0

n=50
c < C. F. > < C. F. > < C. F. > SNP < C. F. >

-0.5 576 9288 136 1382 845 168 572 9287 136 5 1379 8448 168
-0.4 552 9309 139 1346 8547 107 551 9308 139 2 1343 8548 107
-0.3 505 9345 15 1271 8663 66 505 9345 15 0 1271 8663 66
-0.2 433 9435 132 1195 8763 42 433 9435 132 0 1195 8763 42
-0.1 412 9432 156 1105 8881 14 383 9466 151 0 1105 8882 13
-0.05 447 9379 174 1111 8875 14 388 9449 163 0 1112 8876 12
0.0 503 9327 17 1047 8945 8 351 9486 163 0 1045 8947 8
0.05 567 9243 19 1067 8927 6 346 9466 188 0 1063 8931 6
0.1 64 9168 192 1069 8929 2 359 9449 192 0 1068 893 2
0.2 461 9333 206 1001 8997 2 304 9491 205 0 1001 8997 2
0.3 333 9458 209 978 9022 0 297 9494 209 0 977 9023 0
0.4 309 9492 199 985 9015 0 307 9494 199 0 985 9015 0
0.5 283 9468 249 993 9007 0 283 9468 249 0 993 9007 0

n=25
c < C. F. > < C. F. > < C. F. > SNP < C. F. >

-0.5 757 9107 136 2165 755 285 583 8787 115 515 1826 7469 19
-0.4 639 9244 117 2037 7834 129 55 9153 109 188 1886 7815 111
-0.3 599 9287 114 1839 8097 64 545 9264 112 79 1773 8089 59
-0.2 556 9313 131 1759 8209 32 526 9328 129 17 1744 8208 31
-0.1 547 9315 138 1658 833 12 499 9356 136 9 1648 8331 12
-0.05 595 9259 146 1659 8334 7 485 9365 145 5 1656 8332 7

0 586 9252 162 1535 8457 8 398 9439 158 5 1528 8459 8
0.05 714 9103 183 1576 8421 3 43 9385 182 3 1571 8423 3
0.1 734 9109 157 1481 8518 1 382 9458 157 3 1478 8518 1
0.2 819 9008 173 1457 8543 0 392 9435 173 0 1457 8543 0
0.3 625 9195 18 1434 8566 0 338 9482 18 0 1433 8567 0
0.4 398 9414 188 1311 8689 0 286 9526 188 0 1311 8689 0
0.5 353 9434 213 1385 8615 0 307 948 213 0 1385 8615 0

Table 3. Coverage frequencies for Q.95 with sample sizes 100, 50 and 25. C.F. stands for Coverage
Frequencies, ‘<’ is the number of intervals that fell below the true value, ‘>’ the number that fell

above and SNP represents the number of samples with numerical problems.
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n=100, Q99

SUBMODEL GEV
Profile Likelihood Ints. AML Profile Likelihood Ints. AML

c < C. F. > < C. F. > < C. F. > SNP < C. F. >
-0.5 590 9332 78 1730 8258 12 590 9332 78 0 1731 8257 12
-0.4 448 9460 92 1376 8622 2 448 9460 92 0 1375 8623 2
-0.3 418 9440 142 1227 8770 3 418 9440 142 0 1227 8770 3
-0.2 401 9444 155 1128 8870 2 401 9448 151 0 1128 8870 2
-0.1 335 9376 289 1054 8940 6 335 9493 172 0 1053 8943 4
-0.05 353 9325 322 967 9028 5 341 9479 180 0 966 9031 3
-0.01 431 9286 283 913 9083 4 299 9490 211 0 913 9084 3
-0.001 494 9242 264 923 9074 3 330 9468 202 0 923 9075 2

0.0 490 9264 246 923 9077 0 324 9476 200 0 924 9076 0
0.001 510 9247 243 930 9065 5 349 9458 193 0 930 9069 1
0.01 570 9223 207 907 9091 2 337 9485 178 0 905 9094 1
0.05 863 8913 224 875 9124 1 293 9490 217 0 869 9130 1
0.1 857 8925 218 887 9113 0 315 9467 218 0 883 9117 0
0.2 282 9486 232 845 9155 0 263 9505 232 0 845 9155 0
0.3 269 9496 235 857 9143 0 269 9496 235 0 857 9143 0
0.4 291 9472 237 887 9113 0 291 9472 237 0 888 9112 0
0.5 288 9477 235 865 9135 0 288 9477 235 0 864 9136 0

n=50
SUBMODEL GEV

-0.5 628 9306 66 2297 7690 13 623 9306 66 5 2293 7689 13
-0.4 576 9355 69 1915 8083 2 575 9354 69 2 1913 8083 2
-0.3 521 9356 123 1702 8298 0 521 9359 120 0 1702 8298 0
-0.2 429 9412 159 1475 8525 0 429 9452 119 0 1475 8525 0
-0.1 555 9177 268 1399 8598 3 399 9440 161 0 1398 8602 0
-0.05 421 9320 259 1326 8672 2 383 9460 157 0 1325 8675 0
0.0 624 9157 219 1249 8750 1 361 9459 180 0 1249 8751 0
0.05 923 8872 205 1261 8739 0 348 9455 197 0 1257 8743 0
0.1 1131 8661 208 1232 8768 0 333 9460 207 0 1231 8769 0
0.2 577 9190 233 1138 8862 0 289 9478 233 0 1137 8863 0
0.3 313 9459 228 1127 8873 0 281 9491 228 0 1127 8873 0
0.4 286 9479 235 1172 8828 0 286 9479 235 0 1173 8827 0
0.5 264 9461 275 1137 8863 0 264 9461 275 0 1136 8864 0

n=25
SUBMODEL GEV

-0.5 772 9166 62 3069 6896 35 530 8893 62 515 2600 6872 13
-0.4 668 9247 85 2687 7309 4 549 9199 64 188 2509 7299 4
-0.3 624 9221 155 2321 7678 1 564 9257 100 79 2244 7677 0
-0.2 531 9290 179 2078 7922 0 516 9354 113 17 2061 7922 0
-0.1 535 9250 215 1916 8083 1 497 9349 145 9 1907 8084 0
-0.05 572 9234 194 1901 8099 0 458 9389 148 5 1896 8099 0
0.0 659 9149 192 1755 8245 0 405 9437 153 5 1748 8247 0
0.05 1015 8790 195 1822 8178 0 418 9396 183 3 1817 8180 0
0.1 1252 8555 193 1639 8361 0 377 9431 189 3 1636 8361 0
0.2 1363 8435 202 1618 8382 0 389 9409 202 0 1616 8384 0
0.3 788 8999 213 1607 8393 0 330 9457 213 0 1606 8394 0
0.4 411 9357 232 1492 8508 0 286 9482 232 0 1492 8508 0
0.5 326 9414 260 1593 8407 0 298 9442 260 0 1593 8407 0

Table 4. Coverage frequencies for Q.99 with sample sizes 100, 50 and 25. C.F. stands for Coverage
Frequencies, ‘<’ is the number of intervals that fell below the true value, ‘>’ the number that fell

above and SNP represents the number of samples with numerical problems.
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15% Profile Likelihood Intervals for c with n=100
c < Cov. Freq. > Correct Negative

-0.5 564 9328 108 10000 0
-0.4 396 9479 125 10000 0
-0.3 410 9425 165 10000 45
-0.2 371 9451 178 9993 1721
-0.1 348 9465 187 9375 6988
-0.05 297 9458 245 7787 8766
-0.01 272 9490 238 5772 9416
-0.001 296 9465 239 5264 9458

0.0 303 9460 237 0 9460
0.001 309 9461 230 4735 9454
0.01 286 9483 231 5357 9392
0.05 255 9482 263 7299 8605
0.1 299 9444 257 8866 6773
0.2 244 9463 293 9902 2232
0.3 246 9465 289 9992 265
0.4 236 9483 281 10000 5
0.5 259 9467 274 10000 0
15% Profile Likelihood Intervals for c with n=50
c < Cov. Freq. > Correct Negative

-0.3 467 9394 139 9989 1653
-0.2 388 9441 171 9821 5015
-0.1 371 9416 213 8515 8206
-0.05 327 9466 207 7075 8996
0.0 317 9442 241 0 9442
0.05 287 9456 257 6445 8987
0.1 321 9419 260 7939 7917
0.2 255 9460 285 9426 5022
0.3 256 9463 281 9833 2276
0.4 271 9458 271 9969 767
0.5 246 9434 320 9988 158

Table 5. Coverage frequencies for c with sample sizes 100 and 50: ‘<’ is the number of intervals
that fell below the true value, ‘>’ the number that fell above, ‘Correct’ stands for the number of
samples with correct choice of EV and ‘Negative’ stands for the number of samples with negative

product of interval endpoints.
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Figure 1: Coverage frequencies. The left column corresponds to Q95, the right to Q99. The
first row corresponds to a sample size of 100, the middle row to sample size 50 and the
bottom row to sample size 25.
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Figure 2: Ratio of length of likelihood-confidence intervals for Q95 (top) and Q99 (bottom)
for the submodel over length of intervals for the GEV, sample size 100.
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Figure 3: Ratio of length of likelihood-confidence intervals for Q95 (left) and Q99 (right) for
the submodel over length of intervals for the GEV, sample sizes 50 (top) and 25 (bottom).
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Figure 4: Length of profile likelihood-confidence intervals for Q95 (top) and Q99 (bottom)
for the GEV, sample size 100.
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Figure 5: Length of profile likelihood-confidence intervals for Q95 (left) and Q99 (right),
sample sizes n = 50 (top) and n = 25 (bottom) for the GEV. One outlying sample was
excluded from plots (c) and (d).
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Figure 6: Difference between Q01 and Q99 for the GEV.
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Figure 7: Rain data example: (a) Relative profile likelihood of GEV shape parameter c. (b)
Relative profile likelihood of threshold parameter in three parameter Fréchet model.
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Figure 8: Rain data example: Relative profile likelihood of (a) Q.95, (b) Q.99.
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Figure 9: Rain data example: (a) Q-Q plot for the two parameter Fréchet model. (b) Return
period plot.

21


