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ABSTRACT 
The Hilbert-Huang Transform (HHT) was proposed by Huang 
et al. [1] as a method for the analysis of non-linear, non-
stationary time series. This procedure requires the 
decomposition of the signal into intrinsic mode functions using 
a method called empirical mode decomposition. These 
functions represent the essential oscillatory modes contained in 
the original signal. Their characteristics ensure that a 
meaningful instantaneous frequency is obtained through the 
application of the Hilbert Transform.  
The Hilbert Transform is applied to each intrinsic mode 
function and the amplitude and instantaneous frequency for 
every time-step is computed. The resulting representation of the 
energy in terms of time and frequency is defined as the Hilbert 
Spectrum. 

In previous work [6] using the HHT for the analysis of 
storm waves it has been observed that number of IMFs needed 
for the decomposition and the amount of energy associated to 
different IMFs differ from what has been observed for the 
analysis of waves under ‘normal’ sea conditions by other 
authors. In this work we explore in detail the effect that the 
sampling rate has in the empirical mode decomposition and in 
the Hilbert Spectrum for storm waves. The results show that the 
amount of energy associated to different IMFs varies with the 
sampling rate and also that the number of IMFs needed for the 
empirical mode decomposition changes with record length. 
 
INTRODUCTION 
 The Hilbert-Huang Transform (HHT) was proposed 
by Huang et al. [1, 2, 3] as an adequate method for the spectral 
analysis of non-stationary, nonlinear processes. Since then it 
has been used by several authors for the analysis of sea waves 
under different conditions (Schlumann [7], Veltcheva and 
Guedes Soares [8], Veltcheva [9], among others).  

 
In previous work the authors used the HHT for the analysis of  
a North-Sea storm [6] and found some differences with the 
results previously obtained by other authors. Specifically, the 
number of Intrinsic Mode Function (IMF) obtained in the 
Empirical Mode Decomposition and the energy distribution 
among the different IMFs are different. In this paper we 
explore the effect of the sampling frequency on the results of 
the HHT algorithm, as a possible explanation for the 
differences found. 
 
HHT 
We give a brief description of the Hilbert Huang Transform. A 
detailed presentation can be found in the original articles of 
Huang et al. [1, 2] as well as in Huang [4, 5]. 
The Hilbert Huang Transform is based on an empirical 
algorithm called the Empirical Mode Decomposition (EMD), 
used to decompose a time series into individual characteristic 
oscillations known as the Intrinsic Mode Functions (IMF).  
This technique is based on the assumption that any signal 
consists of different modes of oscillation based on different 
time scales, so that each IMF represents one of these embedded 
oscillatory modes. Each IMF has to satisfy two criteria: 1) The 
number of local extreme points and of zero-crossings must 
either be equal or differ at most by one, 2) At any instant, the 
mean of the envelope defined by the local maxima and the 
envelope corresponding to the local minima must be zero. 
These two conditions are required to avoid inconsistencies in 
the definition of the instantaneous frequency. 
Once the signal is decomposed, the Hilbert Transform is 
applied to each IMF. The Hilbert transform y(t) of a function 
x(t) is defined as (1/π) times the convolution of x with the 
function 1/t: 
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where the integral is taken as the Cauchy principal value. Then, 
if z(t) is the analytical signal associated to x(t), we have for all t 
 
z(t) = x(t) + iy(t) = A(t) exp(iθ(t)) (2) 
 
with A(t) = (x2(t) + y2(t))1/2 and θ(t) = arctan(y(t)/x(t)). The 
instantaneous frequency is defined now as the derivative of the 
phase function of the analytical signal z(t): 

dt
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Once the signal has been decomposed into IMFs and the 
Hilbert transform for each has been obtained, the signal x(t) 
can be represented as 
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which is a generalized form of the Fourier expansion for x(t) in 
which both amplitude and frequency are functions of time.  
The time-frequency distribution of the amplitude or the 
amplitude squared is defined as the Hilbert amplitude spectrum 
or the Hilbert energy spectrum, respectively.  

 
DATA 
Data was recorded from the North Alwyn platform situated in 
the northern North Sea, about 100 miles east of the Shetland 
Islands (60º48.5' North and 1º44.17' East) in a water depth of 
approximately 130 metres. There are three Thorn EMI Infra-red 
wave height meters mounted on the platform and their heights 
are between 25 and 35 metres above the water. The data are 
recorded continuously and simultaneously at 5 Hz and then 
divided into 20 minute records for which the summary statistics 
of Hs, Tp and the spectral moments are calculated. For data with 
Hs > 3m all the surface elevation records are kept. Further 
details are available in Wolfram et al. [10]. Only data from the 
North East altimeter are used here. 
The data set examined consists of a series of 410 records of 20 
minutes, sampled by the altimeter at a rate of 5 Hz., starting on 
November 16th, 1997. There is a 16 minutes gap of missing 
data after 32 hours and 20 minutes so that we have two long 
records, one of 97, 20-minutes records (32h. 20m.) and the 
other of 313 intervals of 20 minutes (104 h. 20m.). 
For the analysis, the data set was divided into 10 intervals of 12 
hours, plus two remainders of 8h. 20 min, denoted by P and R, 
respectively,, in figure 1. This shows the significant wave 
height (Hs) for the data, calculated for each 20 min. interval, 
and the divisions of the data into intervals. Also shown is a 7 
point moving average of the significant wave height, which 
gives a regularized view of the evolution of this parameter 
during the storm.  
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Figure 1. Significant wave height calculated every 20 minutes. 

The line is a 7 point moving average. 

A detailed account of the HHT analysis of these data is given in 
[6] where we used, as we also did for this work, the Hilbert-
Huang Transform Data Processing System (HHT-DPS), a 
software developed by NASA. This implementation of the 
HHT algorithm has several options for the stopping criteria and 
the endpoint behaviour of the splines. We used Copy Endpoints 
as the Endpoint Prediction choice with 7 siftings. The 
procedure for choosing these values is described in detail in 
[6]. We found that the number of IMFs obtained in the EMD of 
the data was between 20 and 27 IMFs, depending on the 
interval considered, which is about twice the amount needed 
for the HHT analysis  reported by other authors under different 
sea conditions. Also, the energy distribution among the 
different IMFs is different. Figure 2 shows the contribution of 
each IMF as a percentage of the total energy of the period. 

 
Contribution of each IMF to the Total Variance

0

10

20

30

40

50

60

1 3 5 7 9 11 13

IMfs

%
 C

on
tri

bu
tio

n

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10

 
 

Figure 2: Contribution of each IMF to the Total Variance, all 
Periods. 

 
As can be seen, the main contribution comes from IMFs 5 to 
11, and this is in contrast to what has been reported previously 
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by Veltcheva and Guedes Soares [8] for various sea conditions 
off the Portugal coast and Veltcheva [9] for various sea 
conditions off the coast of Japan, where the first three IMFs are 
the most energetic ones. For example, in [8], IMF2 was found 
to be the most energetic followed by IMF3 for two of the data 
sets, and for the other data set IMF1 is first followed by IMF2. 
Schlurmann [7] analyses a transient wave recorded in the Sea 
of Japan and reports IMF2 as having the highest energy. 
To explore possible reasons for these differences, we look here 
at the effect of sampling frequency on the results of the EMD. 
We consider intervals of one, three and five hours, which are 
constructed adding 1-hour intervals on each side of the initial 
one hour interval.  
The original data was sampled at a frequency of 5 Hz. To 
‘change’ the sampling frequency we subsample the data we 
have taking one datum in two, one in three, and so on up to one 
in ten, so the sampling frequency goes from 5 Hz to 0.5 Hz. 

 
Table 1. Subsampling rates. 

 
For each subsampling rate there are as many starting points for 
the subsampled series as the rate denominator. Whenever the 
starting point is not explicitly chosen, the same starting point as 
the original series is used. In this work we focus on the 
following issues: 

• Effect on the number of IMFs. 
• Effect on the amount of energy for each IMF. 
• Effect on the joint distribution of amplitude and 

frequency. 
• Effect on the EMD. 

 
NUMBER OF IMFs 
Although there are some changes, the number of IMFs remains 
relatively stable for the different sampling rates, and varies 
from 8 (for one case of the smallest sampling rate) to 12 for the 
highest sampling rate, for the 1-hour period. For the 3-hour 
period they go from 11 to 15 IMFs while for the 5-hour period 
they go from 11 to 16. In Table 2 we give the range of the 
number of IMFs for each sampling rate (depending on the 
starting point) and also the mode. 
As can be seen the most frequent value is 10 IMFs for the 1 
hour period, 12 for the 3-hour period and 13 for 5-hour one. 
Figure 2 gives the number of IMFs for each value of the 
sampling period and the regression line for the 3-hour period. 
Observe that a small noise has been added to the values to 
avoid superposition.  
 
 

 Sampling  
Period 

.2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 

Range 12 11 11 9-
11 

10-
11 

9-10 10 9-11 9-
10 

8-
11 1h

Mode 12 11 11 10 10 9-10 10 10 10 10 
Range 15 12-

13 
13 12-

13 
11-
13 

11-
13 

11-
12 

11-
12 

11-
12 

11-
12 3h Mode 15 12-

13 
13 12 12 12 12 12 11 11 

Range 16 13-
14 

13-
14 

13-
14 

13-
14 

13-
14 

12-
13 

12-
13 

12 11-
13 5h Mode 16 13-

14 
14 13-

14 
13 13 12 13 12 13 

 
Table 2. Number of IMFs in the EMD. 
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Figure 2. Number of IMFs for each sampling period and 

regression line, 3-hour period 
 
ENERGY 
The energy associated to an IMF clearly changes with the 
sampling frequency. Table 3 gives the amount of variance 
(energy) as a percentage of the total variance (energy) for each 
IMF for the 1-hour period. Figure 3 is the corresponding graph 
for the first 5 IMFs. 
 

IMF 

  1 2 3 4 5 6 7 8 9 10 11 12
0.2 0.22 5.05 56.61 30.9 4.83 0.93 0.69 0.40 0.24 0.10 0.02 0.03
0.4 3.74 64.44 27.10 2.72 0.78 0.51 0.23 0.12 0.12 0.16 0.08  

0.6 9.87 71.87 15.28 1.28 0.61 0.49 0.27 0.12 0.12 0.07 0.03  
0.8 26.24 62.54 8.63 1.19 0.53 0.32 0.18 0.08 0.20 0.03 0.07  
1 38.74 53.61 5.55 0.90 0.46 0.37 0.16 0.10 0.06 0.02   

1.2 53.75 40.67 3.16 0.92 0.58 0.41 0.25 0.12 0.06 0.07   
1.4 57.94 36.76 2.97 0.80 0.56 0.42 0.18 0.20 0.06 0.07   

1.6 66.02 29.30 2.21 0.82 0.61 0.51 0.23 0.15 0.11 0.04   
1.8 73.73 21.92 2.04 0.91 0.56 0.39 0.19 0.12 0.08 0.04   
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2 75.62 20.02 1.83 1.12 0.63 0.39 0.19 0.10 0.06 0.02   
 

Table 3. Energy associated to each IMF as a function of 
sampling rate, 1 hour period 

Subsampling 
Rate 1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10

Sampling 
Frequency 
(Hz.) 

5 2.5 1.66 1.25 1 0.83 0.714 0.625 0.55 0.5 

Sampling 
Period (s) .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 
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Figure 3. Contribution of IMFs 1-5 to the Total Variance,  

1 hour period. 
 

IMF 

  1 2 3 4 5 6 7 8 9 10 11 12
0.2 .05 .66 17.08 49.3 27.7 3.57 0.61 0.42 0.31 0.12 0.07 0.10
0.4 4.93 44.08 41.95 6.24 0.94 0.46 0.30 0.21 0.43 0.07 0.07 0.13

0.6 13.67 64.08 19.02 1.64 0.66 0.31 0.21 0.17 0.10 0.06 0.03 0.03
0.8 19.55 64.96 12.87 1.27 0.57 0.32 0.20 0.09 0.06 0.03 0.04 0.02
1 33.04 57.30 6.96 1.13 0.59 0.45 0.22 0.12 0.05 0.03 0.03 0.05

1.2 41.89 50.01 5.80 0.97 0.49 0.36 0.24 0.10 0.04 0.05 0.02 0.01
1.4 51.12 42.69 3.91 0.96 0.52 0.33 0.19 0.15 0.06 0.04 0.02 0.02

1.6 57.00 36.70 4.00 1.01 0.53 0.34 0.20 0.10 0.05 0.03 0.02 0.02
1.8 65.99 29.32 2.51 0.97 0.53 0.31 0.19 0.08 0.06 0.02 0.01 0.01

S
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g 
P
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2 74.21 21.37 2.17 0.98 0.54 0.34 0.19 0.10 0.04 0.03 0.02 0.00
 

Table 4. Energy associated to each IMF as a function of 
sampling rate, 3 hour period 

 
IMF 

  1 2 3 4 5 6 7 8 9 10 11 12
0.2 0.03 0.15 2.80 37.8 50.3 6.80 1.03 0.44 0.23 0.15 0.11 0.07
0.4 0.95 16.43 61.01 18.0 2.07 0.61 0.36 0.26 0.12 0.06 0.07 0.03

0.6 9.73 61.34 24.33 2.85 0.79 0.36 0.25 0.17 0.08 0.06 0.02 0.02
0.8 12.61 67.07 16.77 2.00 0.65 0.36 0.24 0.13 0.08 0.03 0.03 0.01
1 19.54 63.67 13.91 1.50 0.60 0.32 0.22 0.11 0.07 0.03 0.02 0.01

1.2 26.81 59.23 11.00 1.51 0.59 0.35 0.21 0.13 0.07 0.05 0.03 0.02
1.4 41.86 49.37 6.27 1.09 0.55 0.34 0.25 0.13 0.07 0.04 0.02 0.01

1.6 53.60 39.54 4.47 1.01 0.55 0.34 0.24 0.11 0.06 0.04 0.02 0.01
1.8 61.47 32.88 3.34 0.99 0.49 0.33 0.25 0.11 0.06 0.04 0.02 0.01

S
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2 69.69 25.06 2.87 0.97 0.55 0.35 0.23 0.13 0.07 0.04 0.02 0.01
 

Table 5. Energy associated to each IMF as a function of 
sampling rate, 5 hour period 

 

It can be seen that the energy increases with sampling period 
for IMF1, increases and then decreases for IMF2, and is 
decreasing (except for some values) for the rest of the IMFs. 
For the 3 and 5-hour periods the energy is increasing for IMF1, 
increasing and then decreasing for IMFs 2 and 3 and 
decreasing for the rest of the IMFs, as can be seen from tables 4 
and 5. 
 
AMPLITUDE AND FREQUENCY 
In this section we consider the frequency and amplitude 
distribution  for  the  different IMFs  and the different sampling  
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Figure 4. Boxplots for the frequency content of the IMFs,         
1 hour period. 
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periods.  Figure  4  gives  the  boxplots  for  the  frequency 
distribution. As can be seen the frequency content decreases 
with IMFs in all cases, but the range of frequencies varies, as 
one would expect, since a higher sampling rate allows for the 
detection of higher frequencies in the signal. 
Figure 5 shows the amplitude boxplots. They show that the 
IMF having the largest variation changes from number 3 for 
sampling period 0.2 s. to number 1 for sampling periods 1.4 s. 
to 2.0 s. This is consistent with the results presented in the 
previous section  
 

1 3 5 7 9 11 13

-6
-2

2
6

Sampling Period 0.2 s.
IMF

Am
pl

itu
de

 (m
.)

1 3 5 7 9 11

-6
-2

2
6

Sampling Period 0.4 s.
IMF

Am
pl

itu
de

 (m
.)

1 3 5 7 9 11

-6
-2

2
6

Sampling Period 0.6 s.
IMF

Am
pl

itu
de

 (m
.)

1 3 5 7 9 11

-6
-2

2
6

Sampling Period 0.8 s.
IMF

Am
pl

itu
de

 (m
.)

1 3 5 7 9 11

-6
-2

2
6

Sampling Period 1.0 s.
IMF

Am
pl

itu
de

 (m
.)

1 3 5 7 9 11

-6
-2

2
6

Sampling Period 1.2 s.
IMF

Am
pl

itu
de

 (m
.)

1 3 5 7 9 11

-6
-2

2
6

Sampling Period 1.4 s.
IMF

Am
pl

itu
de

 (m
.)

1 3 5 7 9 11

-6
-2

2
6

Sampling Period 1.6 s.
IMF

Am
pl

itu
de

 (m
.)

1 2 3 4 5 6 7 8 9

-6
-2

2
6

Sampling Period 1.8 s.
IMF

Am
pl

itu
de

 (m
.)

1 3 5 7 9 11

-6
-2

2
6

Sampling Period 2.0 s.
IMF

Am
pl

itu
de

 (m
.)

 
 

Figure 5. Boxplots for the amplitude content of the IMFs,         
1 hour period. 

Now we look at the joint distribution for the frequency and 
amplitude for IMFs 1, 2 and 3 and for the different sampling 
rates we explore. 
 
IMF1. 
There is a very significant change in the distribution as we go 
from a sampling period of .2 s. to 1.0 s.; this corresponds to the 
first five graphs in Figure 6, which shows the level curves for 
the joint density. From sampling period 1.2 s. up to 2.0 s. the 
joint density is more stable and changes are smaller. Observe 
that the scale for the x axis is different for the first graph. 
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Figure 6. Joint density of frequency and amplitude as a 
function of sampling frequency for IMF1, 1-hour period. 
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IMF2 
Again there is significant change in the joint density as the 
sampling period goes from .2 s. to 1.0 s. but although the range 
of frequencies is more or less stable thereafter, the joint 
distribution keeps changing, reducing the amplitude range. 
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Figure 7. Joint density of frequency and amplitude as a 
function of sampling frequency. IMF2 

 
IMF3  
This case is similar to IMF1: a significant change at first (.2 s. 
to 1.0 s.) but the distribution is stable thereafter. 
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Figure 8. Joint density of frequency and amplitude as a 
function of sampling frequency. IMF3 

 
EMD 
The sampling rate also affects the results of the Empirical 
Mode Decomposition. Figure 9 shows IMF1 for a 10-minute 
period in the central one-hour period. As can be seen the shape 
suffers important changes as the sampling period goes from 0.2 
s. to 1.0 s. After that, the shape is more or less stable. 
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Figure 9. IMF1 for the different sampling periods.                     
1-hour interval. 

 
Figures 10 and 11 give similar graphs for IMFs 2 and 3. Similar 
conclusion can be drawn from them. 
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Figure 10. IMF2 for the different sampling periods.                   
1-hour interval. 
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Figure 11. IMF3 for the different sampling periods.                  
1-hour interval. 

 
For the 3 and 5-hour intervals similar results were obtained, the 
shape of the IMF changes as the sampling period goes from 0.2 
s. to 2.0 s. Another interesting feature can be observed 
comparing figures 12 and 13, which show IMF1 for the 3 and 
5-hour intervals, with figure 9. For a given sampling period and 

keeping fixed the 10-minute period considered, the shape of 
IMF 1 changes as the length of record goes from 1 hour to 5 
hour. This points to the fact that record length may have an 
effect on the local shape of the IMFs, and hence on the EMD. 
This needs further exploration. 
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Figure 12. IMF1 for the different sampling periods.                   
3-hour interval. 
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Figure 13. IMF1 for the different sampling periods. 5-hour 
interval. 

 

CONCLUSIONS 
 
• Sampling frequency were found to have a small effect on 

the number of IMFs needed for the decomposition of a 

given signal. As the sampling period increases the number 
of IMFs decreases. Also, the number of IMFs seems to 
increase with record length, as table 2 shows.  

• The energy distribution is clearly dependent on the 
sampling frequency. The higher the sampling frequency, 
the higher the IMF having highest energy contribution to 
the total energy of the wave record (see tables 3, 4 and 5). 
Also, record length seems to have an effect on the energy 
distribution: as the record length increases, the ‘main’ IMF 
also increases. 

• The joint distribution of amplitude and frequency also 
changes with the sampling frequency, although the effect is 
not uniform: the change is more pronounced as the 
sampling period goes from 0.2 s. to 1 s. 

• Finally, the EMD also changes with sampling frequency. 
Figures 9 to 11 show the changes for a given IMF as the 
sampling period increases. On the other hand, figures 9, 12 
and 13 show the shape of IMF1 for a 10-minute period as a 
function of the sampling period for different record length. 
As can be seen the shape changes not only with sampling 
period but also with record length, which is somewhat 
unexpected. 

These results support the conclusion that the differences 
observed between the analysis of storm waves and the analysis 
of waves reported by other authors under different sea 
condition is partly due to the difference in sampling frequency. 
There is also evidence that record length may have an effect on 
the HHT analysis, but this requires a more thorough 
exploration.  

ACKNOWLEDGMENTS 
The authors would like to thank Total E&P UK for the wave 
data from the Alwyn North platform.  
The Hilbert-Huang Transform - Data Processing System is 
copyright United States Government as represented by the 
Administrator of the National Aeronautics and Space 
Administration and was used with permission.  
This work was partially supported by CONACYT, Mexico, 
Proyecto Análisis Estadístico de Olas Marinas. 

REFERENCES 
 [1] Huang, N.E., Shen Z., Long S.R., Wu M.C., Shin H.S., 

Zheng Q., Yuen Y., Tung C.C., Liu H.H. “The empirical 
mode decomposition and Hilbert spectrum for nonlinear 
and non-stationary time series analysis,” Proc R Soc 
Lond, 1998; 454: 903–95. 

[2] Huang, N.E., Shen Z., Long S.R. “A new view of 
nonlinear water waves: the Hilbert spectrum,” Ann Rev 
Fluid Mech 1999; 31: 417–57. 

[3] Huang, N.E., Wu M.L., Long S.R., Shen S.P., Per W.Q., 
Gloersen P., Fan K.L. “A confidence limit for the 
empirical mode decomposition and Hilbert spectral 
analysis,” Proc R Soc Lond 2003; 459: 2317–45. 

[4] Huang, N.E. “Introduction to Hilbert-Huang Transform 
and some recent developments,” In: Huang N., Attoh-



 10 Copyright © 2008 by ASME 

Okine N.O., editors. The Hilbert-Huang transform in 
Engineering. CRC Press, 2005; 1-23. 

[5] Huang, N.E. “Introduction to Hilbert-Huang Transform 
and its related mathematical problems,” In: Huang N.E., 
Shen S.S.P., editors. Hilbert-Huang Transform and Its 
Applications. World Scientific, 2005; 1-26.   

[6] Ortega, J., Smith, G. H. Hilbert-Huang Transform 
Analysis of Storm Waves. (In preparation). 

[7] Schlurmann, T. “The empirical mode decomposition and 
the Hilbert spectra to analyse embedded characteristic 
oscillations of extreme waves,” In: Rogue Waves, Edition 
Infremer, ISBN: 2-84433-063-0, 2000; 157-165. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 [8] Veltcheva, A.D., Guedes Soares, C. “Identification of the 
components of wave spectra by the Hilbert Huang 
transform method,” Applied Ocean Res. 2004; 26: 1-12. 

[9] Veltcheva, A.D. “An application of HHT method to the 
nearshore sea waves,” In: Huang N., Attoh-Okine N.O., 
editors. The Hilbert-Huang transform in Engineering. 
CRC Press, 2005; 97-119. 

[10] Wolfram, J., Feld, G., Allen, J. “A new approach to 
estimating environmental loading using joint 
probabilities,” 7th Int. Conf. on Behaviour of Offshore 
Structures, Pergamon, Boston, 1994; Vol. 2: 701-713.  

 


