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Motivation

Pairings were originally quite slow compared to other primitives, as a
consequence, pairing-based protocols have the fame of being slow.

Nevertheless both the pairing function is competitive, and the
pairing-based protocols are faster.

Some pairing-based protocols are impossible with some other
primitives, or they are not feasible.
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Cryptography basics

Cryptography supports symmetric encryption and asymmetric
encryption for cryptographic functions:

I Symmetric Encryption. The same key is used for both
encryption and decryption. The key has to be exchanged
between the parties in a secure way.

AIR MAIL AIR MAIL

Plaintext Ciphertext Plaintext

Symmetric Key
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Cryptography basics II

I Asymmetric Encryption. Two different, but mathematically
related keys are used to encrypt and decrypt the information.
Only the public key is needed for other parties. We can
broadcast it, there is no need for an exchange protocol.

AIR MAIL AIR MAIL

Plaintext Ciphertext Plaintext

Assymmetric Key

6/68



Asymetric Key

The public release of the public key cryptosystem by Diffie and
Hellman in 1976 not only created modern cryptography, but also
concentrated the Computational Number Theory efforts in this
direction.

Given a (g , g x , g y ) what is the value of g xy?

This is meant to be infeasible for sufficiently large values.
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The RSA model

In 1978, the RSA scheme was introduced as the first usable public
key cryptosystem. It was based on the problem of factoring large
integers.
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Secret and Public Key

AIR MAIL
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Protecting a message

I Protect the message with our private key so that, everybody
will know I sent the message.

I Use recipient’s public key so that, only the recipient (owning
that private key) reads the message.

AIR MAIL
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Signature of a message

I Sender: Gets the digest of our message

I Sender: Uses our private key on that, send both to the recipient.

I Recipient: Applies the public key of the sender on the message,
compare.

AIR MAIL

==
?

AIR MAIL AIR MAIL AIR MAIL
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Public Key Infrastructure

I but how do I know the recipient is actually she?

I what about the sender?

to solve this, we have Public Key Infrastructure...
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Public Key Infrastructure

Auth Server

CA Server

User
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Public Key Infrastructure

CA Server

CA Server CA Server

CA Hierarchy
Tree, Wood,
Jungle, Shire...

Even more servers...
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Public Key Infrastructure

I To encrypt a message for a user, we get her public key (along
with its certificate) in a quite similar process.

I Nice, we have the keys and the certificates stored, how they
look like?

They look like a really long sequence of numbers, letters and
encoded symbols... what do you mean with really long?
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Key size and attacks

The main concern about the security of a system, is how long does
an attacker need to break it, and how many resources are needed.

The cost of the attack should be balanced with respect to the value
of the treasure:
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Key size and attacks II

There are many attacks against the cryptosystems, and depending
on how long they will take to successfully break a system with a
given key size is the security associated to them.

For a symmetric key, the minimum recommended security level by
the NIST is to have a key of around 128 bits, however, for an RSA
asymmetric key to take as long as a symmetric key of 128 bits to be
broken is of around 3072 bits!!!
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Key size and attacks III

NIST states that an 80-bit symmetric key is equivalent to a 160-bit
one using discrete logs subgroups and elliptic curve groups. This is
defined as a 80-bit security level, and it is not recommended for use
after 2012. An 128-bit security level is recommended therefore after
that year.

Equivalent symmetric key size 80 112 128 192 256

NIST
RSA 1024 2048 3072 7680 15360
EC 160 224 256 384 512

ECRYPT
RSA 1248 2432 3248 7936 15424
EC 160 224 256 384 512
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More complains

I and what happens if the user is not explicitly in the system?

I or what about giving access to a group of users with the same
characteristics?

Wait! Why would someone would like to encrypt something for a
non-existant user?... That’s non-sense!

or is it?
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What’s next?

Are there anything we can do to solve all of this?

Yes! We can use the Pairing-Based Cryptography.
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How does it started?

In 1984, Shamir posed a challenge:

“create a cryptographic system that permits any two users to
comunicate securely and to verify each other’s signatures without
exchanging private or public keys, without keeping key directories,
and without using the services of a third party.”

This sounds impossible!
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How does it started? 2

However, in 2001, Boneh and Franklin, solved this challenge using
cryptographic pairings. They presented what it is now called
Identity-Based Encryption.

... also, in 2000, Antoine Joux presented a breaking-through paper
involving pairings, but we are focusing in this talk on Identity-Based
Encryption.
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Pairing-Based Cryptography

Identity-Based Encryption is a type of the Pairing-Based Encryption,
this is, we use some cryptographic function called the pairing.

In essence, a cryptographic pairing is a particular function of groups
over elliptic curves.

〈·, ·〉 : M ×M −→ R
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The bilinear pairing can be used as a primitive to build
cryptosystems with certain functionality. Examples of use:

I Short signatures schemes,

I Identity-Based Encryption,

I Attribute-Based Encryption,

I and other protocols already deployed.

Some protocols are impossible with currently deployed technology, in
other cases, they are faster.
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Example of PBC

Identity-Based Encryption case:

I Enables any pair of users to communicate securely and to verify
each others’ signatures without exchanging private or public
keys;

I Needs no key server repositories;

I Requires a trusted server for key generation only.

I No certificate required to bind the public key to the identity.
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Implementation issues...

Pairing-Based Cryptography has become relevant in industry.

Although there are plenty of applications, however efficiently
implementing the pairings function is often difficult as it requires
more knowledge than previous cryptographic primitives.

There are many implementation issues just with the primitive itself!
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... implementation issues

I Non-familiar technology;

I Lack of programming framework;

I More difficult to understand compared to the already
deployed technology;

I Unavailability of implementations with novel (faster)
computing methods;

I Complex area.

Depending on the scenario, a developer must choose from a
selection of parameters and apply the corresponding optimizations
for efficiency...
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What to do when... ?

I bandwidth use is expensive;

I low memory is available;

I a slow processor is used (old);

I a small processor (in bits) is the only option;

I we have a Desktop environment;

I we have a device with multiprocessors;

I a higher security is required;

Some basic operations that are cheap in some environments are
expensive in others!

29/68



Protocol primitives

The operations involved in a Pairing-Based protocol are:

I The pairing function

I Elliptic Curve point addition and point doubling

I Scalar-point multiplication

I exponentiation

I hash onto a curve

I hash into a subgroup

I matrix conversion

I boolean function analysis. . .

Many more!
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Some background

Let do a bit of maths...
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Scalar-point multiplication

Let P be a point in a curve E and n ∈ Z, n ≥ 0. Define [n]P = P
+P + · · · +P. The order of the point P is the smallest n such that
[n]P = O.

Denote < P > the group generated by P. In other words,

< P >= {O,P ,P +P ,P +P +P , . . .}

Let Q ∈< P >. Given Q, find n such that Q = [n]P is hard.
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Applying the algorithm

The traditional method for computing the scalar-point multiplication
is the Double-and-Add method.

Algorithm 1 Traditional scalar-point multiplication

Input: Positive integer k in base 2 representation, a point P.
Ouput: [k]P
1: Q ← 0
2: for i = l − 1 downto 0 do
3: Q ← [2]Q
4: if ki = 1 then
5: Q ← Q + P
6: end if
7: end for
8: return Q
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Speeding up

Generic method to speed up the exponentiation in this context:

I Precomputation

I Addition chains whenever the scalar is known

I Windowing techniques

I Simultaneous multiple exponentiation techniques.

Replacing the binary representation of the scalar into one with fewer
non-zero terms.
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Speeding up II

Curve specific methods:

I A field defined with a (pseudo-)Mersenne prime.

I Field construction using small irreducible polynomials

I Point representation with fast arithmetic

I EC with special properties.
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Pairing definition

A pairing is a map: G1 ×G2 → GT .

These groups are finite and cyclic. G1 and G2 are additively-written
and at least one is of prime order r . GT , is multiplicatively-written
and of order r .

Properties:

I Bilinearity

I Non-degeneracy

I Efficiently computable
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Pairing properties

Properties:

I Bilinearity
e(P + P′,Q) = e(P,Q)× e(P′,Q)

e(P,Q + Q′) = e(P,Q)× e(P,Q′)

I Non-degeneracy
∀P ∈ G1, P 6= O: ∃Q ∈ G2 s.t. e(P,Q) 6= 1

∀Q ∈ G2, Q 6= O: ∃P ∈ G1 s.t. e(P,Q) 6= 1 e(P,Q) 6= 1

I Efficiently computable
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(Ab)Using the pairing

The most important property of a pairing is:

e([a]Q, [b]P) = e([b]Q, [a]P) = e(Q, [ab]P) = e(Q,P)ab

where Q ∈ G2, P ∈ G1, and the result is in GT .

In our context, the G2 group is larger than G1. The group GT is
also larger and has a different set of operations.

38/68



(Ab)Using the pairing II

I Since G2 is larger than G1, it is wise to exchange operations
from one group to the other.

I GT is significantly larger and has a different set of operations,
we also try to avoid it, but we keep it handy, because...

I An operation in GT is cheaper than computing the pairing
itself.

In short, we use the groups at will.
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Using the pairing III

In each pairing-based protocol, we have to use the pairing function
in a different way.

In some cases, we have to compute several-to-many pairings, in
other cases, the pairings have the same parameters, in other cases,
we have to add the results.

For this, we design the pairing function to be a:

I Multipairing

I Known-point pairing

I or we mix-up several parameters into a single pairing.
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Scalar-point multiplication in G1

Gallant, Lambert and Vanstone find out a method to do the
scalar-point multiplication by breaking the scalar n into two smaller
scalars, under special situations, the operation is faster.

Let E be a curve defined over the field Fp with zero denoted by O.

An endomorphism of E is a rational map φ : E → E satisfying
φ(O) = O.

There exists an endomorphism such that the following holds:

[n]P = [n0]P + [n1]λP

where, |ni | ≈ |
√

n|.
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Scalar-point multiplication in G2

Galbraith and Scott, showed a technique for generalizing the GLV
method for higher powers of the endomorphism for the groups G2

and GT .

To get an m-dimensional expansion

n ≡ n0 + n1λ+ · · ·+ nm−1λ
m−1 (mod r)

of [n]P, one must decompose n with powers of λ sufficiently
different and modulo r , an associated prime number to the curve.
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Exponentiation in GT

In the case of exponentiation in GT , an efficiently computable
endomorphism is also available.

We decompose the operation as:

en = en0 · enp
1 · enp2

2 · · · enpm−1

1

where e ∈ GT , n ∈ Zr , m is the degree of the decomposition, and
the exponentiation to the p is done using the Frobenius
endomorphism method.
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LSSS matrix

A secret scheme Π over a set of parties P is called linear (over Zp)
if

I The shares of each party form a vector over Zp

I There exists a matrix A called the share generating matrix for
Π. The matrix A is an m × n matrix. For all i = 1, . . . ,m, the
i th row of A is labeled by a party ρ(i) (ρ is a function from
{i , . . . , } to P.
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LSSS example

The LSSS transformation algorithm takes the boolean formula F, a
user defined policy, into a LSSS matrix. For example if the user
wants to encypher data for: “a Mexican person, from the Cinvestav,
and with either a Doctoral or Master’s degree”, then the
corresponding formula would be:

F = “(Mexican,Cinvestav,(Doctor,Master,1),3)”

The transformation would be something like:

M =


1 1 1
1 2 4
1 3 9
1 3 9


Mexicano
Cinvestav
Doctor
Master
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Encryption for an identity

AIR MAIL

ldominguez@computacion
.cs.cinvestav.mx

KeyGen
Server
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Attribute-Based Encryption

Fuzzy Identity-Based Encryption. Also known as Attribute-based
encryption.

I An identity is a set of attributes

I An entity is valid if it presents a minimum number of attributes

I Better for sharing a small secret: a symmetric key.
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Attribute examples

G.P.

Nurses

Owner

Foreign
G.P.

"Curious" guy
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Attribute examples

G.P.

Nurse

G.P.in
Acapulco

Me

OK

BAD
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Water’s CPABE

Setup. In the CPABE protocol, we have the typical four
cryptographic protocol steps (setup, key generation, encryption, and
decryption), plus a fifth optional step: delegation.

Public Key

PK = ([α]P, [d ]P,Q, [d ]Q,êα), {H1 . . .Hi}) MK = ([α]P)

where P ∈ G1; Q ∈ G2;ê= e(Q,P); d , α ∈R Zr ; and Hi are the
known attributes represented in G1 and G2.
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Water’s CPABE 1/3

Encryption. The user defines his access policy by providing a
boolean formula F , then this string is transformed into a m×n LSSS
matrix S, we encrypt the Message K . The CypherText contains:

Ciphertext

CT = S,C ,Cd , (for i=1 . . . m): Ci ,Di

where d ∈R Zr , C = K êd , Cd = [d ]Q, and Ci = [λi ]Pα − [si ]Hρ(i),
Di = [si ]Q). In practice, the K is an AES key or another secret.
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Water’s CPABE 2/3

Key Generation. Take the MK, and the set of attributes S we
would like the key to generate.

Secret Key

SK = (K , L,Ki )

with K = Pα + [t]Pa, L = [t]Q, and ∀i ∈ S : Ki = [t]Hi .

Delegation. Here, we only take a subset of elements in S and
generate the key for that specific subset.
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Water’s CPABE 3/3

Decrypt.

I ∆← Det(S ′)
GCD(Det(S ′),ω̄)

I For i ∈ [1..m] Ci ← [ωi ]Ci , Ki ← [ωi ]Ki

I KAES = C ·

(
e(Cd ,−[∆]K ) · e(L,

∑
i∈A′

Ci ) ·
∏
i∈A′

e(Di ,Ki )

)∆−1

where A′ ← S ∪ SK , ωi is a random number resulting from
transforming the policy into the S matrix.
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Operations in Water’s CPABE

Step Operation count

Encrypt: 1 GT expo K + (n + 1) G2 S.M. K + (2n) G1 S.M. K
Keygen: (n + 1) G1 S.M. K + G2 S.M. K

Decrypt:
(∆ = 1) : 1 MultiPairing + (2n) G1 S.S.M. U
(∆ 6= 1) : 1 MultiPairing + (2n) G1 S.S.M. U + GT expo U

Table: Operation count of the steps in the protocol
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Boneh’s short signatures

Boneh’s short signatures are based on the mathematical problem:

Given (P , [a]P ,Q, [b]Q), it is hard to decide if a = b

The computational variant of this hard problem is:

Given (P ,Q, [n]Q), compute [n]P

Boneh, Lynn and Shacham constructed a short signature scheme
based on this problem as follows:
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... the steps

Key generation. Choose n ∈R Zr , set R ← [n]Q. The public key
is: Q,R. The secret key is n

Sign. Map to a point the message to sign as PM , set SM ← [n]PM .
The signature is the x-coordinate of SM .

Verify. Given the x-coordinate of SM , find ±S . Decide:

e(Q, S)
?
= e(R, h(M))
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e-voting system based on pairings

An e-voting system based on short and blind signatures by
Lopez-Garcia and Rodriguez-Henriquez.

Auth
Server
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e-voting system based on pairings

With a blind signature, we can cast our vote in the blank ballot.

Voting
Server

Verify
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Conclusions

I The fastest pairing function is not the panacea for some
protocols

I Efficient simultaneous pairing implementation is the key to
some protocols

I Scalar point multiplication is also a key primitive.

I Protocols with G1 6= G2 can also be implemented efficiently

I PBC is cheaper than other solutions

I We can do 5 S.M. in G1, 3 in G2, and less than 2 expo. in GT

at approximately the same cost of a pairing
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Future work

I More protocol/pairing implementations

I Evaluate the pairing function in a protocol context

I Evaluate the ancillary functions around the pairing

I Pairings with G1 6= G2 should be encouraged

I Encourage PBC

I Consider multicore environment (ongoing work)

I More optimizations on the ancillary functions.

I Lean modular reduction (a.k.a. Lazy reduction)
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Question time

I Thank you for your attention.

H
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Timings

Using a Intel Core i7 2600K, Sandy Bridge

Operation Clock cycles

RegularPairing 2108 Kclk
New Pairing 1550 Kclk

G1mul K 232.89Kclk
G1mul U 304.44Kclk

G2mul K 378.26Kclk
G2mul U 535.69Kclk

GTexpo K 617.32Kclk
GTexpo U 931.98Kclk
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Detailed timings

Operation Clock cycles

G1 Add JJA 1.92Kclk
G1 Add JJJ 2.44Kclk
G1 Dbl A 1.20Kclk
G1 Dbl J 1.44Kclk

G2 Add JJA 5.11Kclk
G2 Add JJJ 6.70Kclk
G2 Dbl A 3.03Kclk
G2 Dbl J 2.92Kclk

GT Sqr 3.78Kclk
GT Mul 9.55Kclk
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Timings of Water’s CPABE

LSSS ABE Protocole
CPU cycles

Theoretical Expected Measured

Encrypt 5 922 K 6 105 K 6 378 K
Keygen 1 989 K 2 014 K 2 114 K

Decrypt (∆ = 1) 8 716 K 9 101 K 9 489 K
Decrypt (∆ 6= 1) 9 612 K 10 051 K 10 438 K

Table: Cost of the protocol steps
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Timings of the e-voting protocol

Timings of the e-voting protocol

Scheme # Cryptographic operation # Cycles

Kharchineh 4 RSA-public 6,053,528
& Ettelace 6 RSA-private 253,251,894

4 DLP-exponentiations 87,135,920

Total 346,441,342
Li et al. 15 RSA-public 22,700,730

9 RSA-private 379,877,841

Total 402,578,571
Chung & Wu 5 RSA-public 7,566,910

4 RSA-private 168,834,596

Total 176,401,506
The proposed scheme 1 scalar multiplication in G2 380,000

6 scalar multiplications in G1 1,800,000
6 map-to-point functions H1 1,890,000
8 bilinear pairings 14,630,000

Total 18,700,000



Detailed e-voting system... 1/2

An e-voting system based on short and blind signatures by
Lopez-Garcia and Rodriguez-Henriquez.

Voter Authentication Server (AS)
Authentication phase

b, dt ∈ Zr

Vt = dtQ ∈ G2

m = m2s(Vt) ∈ {0, 1}1016

M̃ = bH1(m) ∈ G1

SM̃ = dV M̃ ∈ G1

{IDV , t, M̃, SM̃}
−→

e(Q, SM̃)
?
= e(VV , M̃)

{t, S̃} S̃ = dASM̃ ∈ G1

SVt = b−1S̃ ∈ G1 ←−
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... detailed e-voting system 2/2

Voting phase
Voting server (VS)

Sv = dtH1(v) ∈ G1

B = {Vt , SVt , v , Sv}
{B}−→ m = m2s(Vt)

e(Q, SVt )
?
= e(VAS , H1(m))

e(Q, Sv )
?
= e(Vt , H1(v))

a ∈ Zr

ACK = H(Vt ||SVt ||v ||Sv ||a)
SACK = dVSH1(ACK)

{ACK , SACK}
←−

e(Q, SACK )
?
= e(VVS , H1(ACK))
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