
Developing an automatic generation tool for
cryptographic pairing functions

Luis J. Dominguez Perez

Cinvestav. Departamento de Computación.
ldominguez.computing.dcu.ie.

“Seminario de Computación”
Mexico City.

February 28th 2011.

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Outline

1 Introduction

2 Motivation

3 Addition-chain

4 Final exponentiation

5 Hashing to G2

6 Code Generator

7 Conclusion

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 2/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Elliptic curves

Group

A group < G , ◦ > is a non-empty set G together with a binary
operation ◦ such that:

I It is closed

I it is associative

I has an identity and inverse element

A group G is Abelian (or commutative) if a ◦ b = b ◦ a,
∀a, b ∈ G .

A group is finite if G has a finite number of elements. This is
called the order of G and denoted as |G |.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 3/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Elliptic curves

Finite field

A field F is a group with +, × operations as (F ,+) and
(F\{0},×) which also satisfies:

I Additive identity and inverse

I Multiplicative identity and inverse

I Commutative

i.e. the set of integers modulo p-prime, also denoted as Fp, is a
finite field.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 4/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Elliptic curves

Elliptic curves over finite fields

Let p-prime > 3. The elliptic curve

y2 = x3 + ax + b, over Fp

denoted by E (Fp), is the set of solutions x , y ∈ Fp satisfying

y2 ≡ x3 + ax + b mod p

where a, b ∈ Fp and

4a3 + 27b2 6= 0 mod p

together with the point O

The order, or number of points on E (Fp) is denoted as
#E (Fp) = p + 1± t and t ≤ 2

√
p.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 5/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Elliptic curves

Types of elliptic curves (over C)

With 3 distinct real roots With 1 real and 2 complex roots

With a triple real root

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 6/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Elliptic curves

The group law on EC

Suppose P = (x1, y1) and Q = (x2, y2) with P,Q ∈ E(Fp) P + Q = (x3, y3),

where x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1

λ = y2−y1
x2−x1

λ =
3x2

1 +a

2y1

P + Q = O or Q = −P
“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 7/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Elliptic curves

Families of elliptic curves

Let the subgroup size be the large prime number r | #E . Let k be
the embedding degree, r | (pk − 1).

A pairing-friendly elliptic curve has a small embedding degree
and a large subgroup size1.

Random curves cannot meet these requirement. A family of
pairing-friendly elliptic curves use polynomials as parameters and
suit a required security level.

1k < 50, r 160-bits
“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 8/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Elliptic curves

KSS curves, k=18

Kachisa et al. [2008] presented a new method for constructing
pairing-friendly elliptic curves.

The parameters of these types of curves are:

I t(x) = (x4 + 16x + 7)/7

I p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 +
1763x + 2401)/21

I r(x) = (x6 + 37x3 + 343)/343

I Let ρ ≈ deg(p(x))
deg(r(x)) = 4/3.

p(x) and r(x) represent primes and t(x) represents integers when
x ≡ 14 mod 42

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 9/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Elliptic curves

More curves

Other families of pairing-friendly elliptic curves with different
embedding degrees:

I MNT curves

I Freeman curves

I BN curves

I KSS curves

For an extended description of these and other families of
pairing-friendly elliptic curves, refer to Freeman et al. [2006]

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 10/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Elliptic Curve Cryptography

Discrete logarithm problem

Let P = (x , y) ∈ E (Fp) and n ∈ Z, n ≥ 0. Define [n]P = P +P
+ · · · +P. The order of the point P is the smallest n such that
[n]P = O.

Denote < P > the group generated by P. In other words,

< P >= {O,P,P + P,P + P + P, ...}

Let Q ∈< P >. Given Q, find n such that Q = [n]P. This is
known as the Elliptic Curve Discrete Logarithm Problem
(ECDLP).

Known attacks affect some anomalous curves, P with a small
prime order and some weak combinations of parameters.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 11/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Elliptic Curve Cryptography

Security level

The security levels in ECC are defined to match the Advanced
Encryption Standard (AES), which are as follows. Freeman et al.
[2006]

Security level Subgroup size Extension field size Embedding degree k
(in bits) r (in bits) pk (in bits) ρ ≈ 1 ρ ≈ 2

80 160 960–1280 6–8 2*,3–4
112 224 2200–3600 10–16 5–8
128 256 3000–5000 12–20 6–10
192 384 8000–10000 20–26 10–13
256 512 14000–18000 28–36 14–18

Table: Bitsize comparison between levels of security

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 12/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Cryptographic Pairings

What is a Pairing?2

A Pairing is a bilinear map on an Abelian group M taking values
in some other Abelian group R,

〈·, ·〉 : M ×M −→ R

There are many Abelian groups we might consider

I Z, or more generally Zd

I Z/mZ, a cyclic group of order m, or generally (Z/mZ)d

I Fp with addition as the group law, or generally Fd
p

I F∗p with multiplication as the group law

I E (Fp), the group of Fp-points on an elliptic curve

I µm, the group of mth-roots of unity

I etc.

2
this slide is taken from J. H. Silverman’s talk in Pairing 2010

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 13/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Cryptographic Pairings

Definition

Here, we define a pairing as a map: G1 × G2 → GT .

These groups are finite and cyclic. G1 and G2 are additively-
written and at least one is of prime order r , G1,2 ⊆ E (Fpd).

GT , is multiplicati vely-written and of order r , GT ⊆ µr or just
E (F∗

pk)

Properties:

I Bilinearity
e(P + P′,Q) = e(P,Q)× e(P′,Q)

e(P,Q + Q′) = e(P,Q)× e(P,Q′)

I Non-degeneracy
∀P ∈ G1, P 6= O: ∃Q ∈ G2 s.t. e(P,Q) 6= 1

∀Q ∈ G2, Q 6= O: ∃P ∈ G1 s.t. e(P,Q) 6= 1

I Efficiently computable

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 14/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Cryptographic Pairings

Twist of a curve

To speed-up the pairing computation and to save bandwidth3,
use of the twist of a curve.

Let E/Fpk and E ′/Fpe , e = k/d , d ∈ [2, 3, 4, 6] and e minimal.
Then E ′ is said to be a twist of degree d if there exists an
isomorphism ψ : E ′ −→ E .

Let χ ∈ F∗
pk , then the short Weierstraß formulae for the twists of a

curve, corresponding to χ mod (F∗
pk) are given by:

d = 2 : y2 = x3 +
a

χ2
x +

b

χ3

d = 4 : y2 = x3 +
a

χ
x

d = 3, 6 : y2 = x3 + b/χ.

3
bandwidth means power consumption in hardware

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 15/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Cryptographic Pairings

Twist of a curve... cont

To use the twist of a curve:

I Define the point Q ∈ G2 over the twist curve E ′(Fpe)

I Choose χ ∈ Fpe such that W d − χ is irreducible over Fpe [W]

I If δ ∈ Fpk is a root of W d − χ , then there exists a
homomorphism from the twist to the original curve.

For example, KSS: k = 18 (d = 6)

ψ : E ′(Fp3)→ E (Fp18) defined by: (x , y)→ (x .δ
1
3 , y .δ

1
2)

with an isomorphism given by [.] : µd → Aut(E) : δ 7→ [δ] with
[δ](x , y) = (x .δ2, y .δ3)

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 16/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Cryptographic Pairings

The Tate pairing

Miller [1986] discovered a function to compute cryptographic
pairings. The Tate pairing requires one application of the Miller
loop.

Apply bLog2(r)c − 1 times the double-and-add, line-and- tangent
algorithm.

The Tate pairing is a map
E (Fp)[r]× E (Fpk)/rE (Fpk)→ F∗

pk/(F∗
pk)r defined as:

Definition

er : (P,Q) 7→ 〈P,Q〉r = fr ,P(Q)(pk−1)/r

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 17/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Cryptographic Pairings

The ate pairing

The ate pairing is particularly suitable for pairing-friendly curves
with small values of t. Hess et al. [2006]

Apply bLog2(t − 1)c − 1 times the double-and-add, line-and-
tangent algorithm.

Let T = t − 1, Q ∈ G2[r] and P ∈ G1[r], the ate pairing is defined
as:

Definition

eT : (Q,P) 7→ 〈Q,P〉T = fT ,Q(P)(pk−1)/r

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 18/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Cryptographic Pairings

The R-ate pairing

The R-ate pairing introduced by Lee, et al. [2007] takes three
(two) short Miller loops to calculate a shorter pairing than the ate.

Let A = aB + b as in Zhao [2007], m1,2 = max/min{a, b}.

Apply upto bLog2(m2)c+ bLog2([m1
m2

])c − 2 times the double-
and-add, line-and-tangent algorithm.

The R-ate pairing with P ∈ G2[r] and Q ∈ G1[r] is as follows:

Definition

eA,B : (P,Q) 7→ 〈P,Q〉A,B = fa,BP(Q)× fb,P(Q)× GaBP,bP(Q)

Needs a careful choice of non-trivial pairs A and B.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 19/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Cryptographic Pairings

The Pairing Lattice

The pairing lattice introduced by Hess, is a uniquely defined monic
function of low degree.

Given an integer s, and a vector h(s) =
∑d

i=0 hix
i ∈ Z[x], with

h(s) ≡ 0 mod r , and d = ϕ(k), then the pairing lattice is defined
as follows:

Definition

es,h : (Q,P) 7→ fs,h,Q(P)(pk−1)/r

where ϕ(.) is the Euler totient function.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 20/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Cryptographic Pairings

Constructing s and h(s)

From the definition, we sets = r , the subgroup size, but we prefer
to take s = T = t − 1, the trace of the Frobenius.

To construct h(s), we take a matrix m ×m, with m = ϕ(k):

M =


r 0 · · · 0
−T 1 0 · · · 0
−T 2 0 1 · · · 0

...
. . .

...
−Tm−1 0 · · · 1


Let w = (w0,w1, . . . ,wm−1) be the shortest Z-linear combination
of the rows of M, then we can construct h =

∑m−1
i=0 wix

i .

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 21/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Cryptographic Pairings

Reducing h(s)

To reduce the matrix M, which contrains the vector h(s), we
transform it into a Weak Popov form (polynomial-echelon form).
The shortest vector should be of low degree.

Then, we can construct the pairing lattice as:

(Q,P) 7→
(∏l

i=0 f pi

ci ,Q
(P) ·

∏l
i=0 G[si +1]Q,[ciqi]Q(P)

)(pk−1)/r

... and removing any repeated (unneccesary) operations whenever
possible.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 22/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Cryptographic Pairings

The Optimal Pairing

A pairing function e(·, ·) is called Optimal Pairing if it can be
computed in log2r/ϕ(k) + ε(k) basic Miller iterations, with
ε(k) ≤ log2k .

For some families of elliptic curves, the optimal pairing can be the
pairing lattice, the R-ate pairing, or even the ate pairing (for
families with small trace of the Frobenius, such is the case of the
BLS curves).

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 23/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

In essence

Implementing the pairing function

The Tate and ate pairing are straight forward to implement.

The R-ate pairing is a generalisation of the ate and atei pairing, we
form a set with all of the Ti = a.Tj + b, where Ti ≡ pi mod r , and
we choose the best.

For the pairing lattice, we construct a matrix m = ϕ(k)× ϕ(k)
with mi ≡ 0 mod T , and we transform it into a Weak Popov form
(polynomial-echelon form), to get a vector of low degree.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 24/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

In essence

The pairings.

Let Q ∈ G2[r] and P ∈ G1.

The pairing functions are defined as:

Tate er : (Q,P) 7−→ fr ,Q(P)(pk−1)/r

ate eT : (Q,P) 7−→ fT ,Q(P)(pk−1)/r

R-ate eA,B : (Q,P) 7−→ (fa,BQ(P)× fb,Q(P)× GaBQ,bQ(P))(pk−1)/r

Lattice es,h(s): (Q,P) 7−→
“Ql

i=0 f pi

hi ,Q
(P) ·

Ql
i=0 G[si +1]Q,[hi p

i]Q(P)
”(pk−1)/r

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 25/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

In essence

Comparison

The total Miller loop length can be used for a comparison
between the Tate, ate and R-ate pairings functions. Using a KSS
elliptic curve with k = 18 ,for ≈ AES-192, one has:

Miller-length in iterations

Tate er (P,Q) 376
ate et(P,Q) 253
R-ate eA,B(P,Q) 61
P.L. eA,B(P,Q) 62

Table: Comparison of the Miller loop length

Clearly the R-ate pairing, in this case, presents a shorter Miller
loop length, but it is not necessary the fastest to compute.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 26/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Automatic generation of pairing functions’ code

Motivation:

I Pairing based cryptography is more complex to understand
and to implement than, for example, the RSA.

I If a higher security level is desired, a different pairing friendly
curve should be selected. For optimisation, it will need a
different implementation.

I There are efforts to implement pairings, but only a selected set
of the interesting curves and parameters is actively researched.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 27/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Automatic generation of pairing functions’ code

... Motivation:

I The pairing function has two main parts: the Miller loop and
the final exponentiation:

I Depending on the pairing function, one or more Miller loops
are constructed. Some extra operations are required to link
them.

I The final exponentiation to be efficiently computed need extra
work.

I ... but there are a few more things around the pairing function
itself that needs to be implemented efficiently.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 28/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Automatic generation of pairing functions’ code

... motivation:

I The draft of the IEEE 1363 is now suggesting families of
elliptic curves:

I 80-bits security level: supersingulars and MNT curves
I 128-bits security level: BN curves.
I 192-bits security level: KSS k=18 curves.
I 256-bits security level: KSS k=36 and BLS k=24 curves.

... but nobody has implemented the top-levels, and some other
curves should be of interest too.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 29/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Pairing-Based Cryptography

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 30/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

The addition-chain

Definition: addition chain

An addition chain for a given number e is a sequence
U = (u0, u1, u2, . . . , u`) such that u0 = 1,u` = e and uk = ui + uj

for some i , j with 0 ≤ i ≤ j < k ≤ `.

Deciding if we have found the shortest addition chain for a given
positive integer e is an NP-complete problem.

Definition: addition sequence

Given a list of integers Γ = {v1, .., v`} where v` > vi

∀i = 1, .., `− 1, an addition sequence for Γ is an addition chain for
v` containing all elements of Γ.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 31/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Addition sequence

Definition: multi-addition chain

Given a list of integers Λ = {s1, .., s`} where s` > si
∀i = 1, .., `− 1, a multi addition chain for Λ is a set containing
multiple addition chains in which some si are common.

A multi addition-chain, also known as addition sequence, is a
sequence containing several addition chains sharing elements.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 32/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Solving an addition-sequence

To construct a multi-addition-chain we modify the Cruz-Cortéz et
al. method, which is designed to generate a simple addition-chain
for the RSA method using “Artificial Immune Systems”.

The method uses randomization to get a smaller sequence than
the supplied. If we are lucky, with the time the sequence will get
shorter.

Our code can generate better addition chains than the binary
method, however, some complex sequences take a lot of time to
get an optimized solution.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 33/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

The final exponentiation

One of the most expensive operations in the pairing computation is
the final exponentiation by (pk − 1)/r in the extension field F∗

pk .
This is required in the computation of the Tate family of pairing
functions on ordinary elliptic curves.

Usually one separates the exponent into 3 pieces:

(pk − 1)/r ⇒ (p
k
2 + 1) · (p

k
2 − 1)/Φk(p) · (Φk(p))/r . The first 2

parts can be easily computed using the Frobenius exponentiation.
The remaining, using the Scott et al.1 method.

where Φ(.) is the cyclotomic polynomial.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 34/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

The final exponentiation, II

At the end of the Scott et al.1 method, one uses the multi
addition-chain method and then generates the code using vector
chains with the Olivos method.

Exponentiation in RSA using addition chains usually requires the
shortest possible addition chain.

For the final exponentiation method, one may prefer a longer chain
if it contains a greater number of doublings and lower number of
additions, as it will generate code with more squarings and less
multiplications.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 35/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Hashing to G2[r].

Implementing identity-based protocols using ordinary
pairing-friendly elliptic curves requires two groups, at least one of
which is to be of order r .

If there is a requirement to hash to a point in G2 of order r , then
the operation becomes much more complex. Thanks to the use of
a twisted curve, the operation cost is not exorbitant, but still need
to be addressed.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 36/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Hashing to G2[r], II.

The Scott et al.2 method for fast hashing to G2 requires the use of
our addition chains method. In this case, the code will generate a
doubling or addition depending on the chain.

In the final exponentiation case, the operations are squarings and
multiplications in F∗

pk . Here the operations are doublings or
additions of a point in a large subgroup of points on a curve. A
proper chain selection may lead to shorter computation times.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 37/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Prefix, suffix, inffix...

To add flexibility on the way the code is constructed by different
programming languages or libraries, we added a definition for the
position of operators.

For an example operation there exists an examplePOS key in our
definition file:

I 0, prefix: -P

I 1, suffix: Pˆ(-1)

I 2, inffix: P+=Q

I 3, circumfix: inverse(P)

I etc.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 38/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

General code construction

To construct a scalar-point multiplication, we use the following
instruction:
GenericOperation("m1P", "c", "m2P",
language[targetRATE]["scalar-pointPOS"],
"scalar-pointMAP", "scalar-pointMAP2", targetRATE,
language);

I The MIRACL library, has the following language specification:

I A["scalar-pointPOS"]:=4;
I A["scalar-pointMAP"]:="=";
I A["scalar-pointMAP2"]:="*";

We can generate code as:
I m1P = c ∗m2P

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 39/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Code construction RELIC

I RELIC tool-kit has this language specification:
I A["scalar-pointPOS"]:=6;
I A["scalar-pointMAP"]:="epD mul(";
I A["scalar-pointMAP2"]:=")";

The output code is:
I epD mul(m1P, c ,m2P)

This library is unstable and some of its definitions are changing but
it is very promising. For example, an earlier version of the library
requires the 2nd and 3rd parameter to be swapped.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 40/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Final Exponentiation/Hashing to G2 code construction

This part of the code generator follow a code sequence
construction.

This sequence is a matrix with three columns: left-hand operand,
and two right-hand operands. The operator is implied by the set of
instructions used as a parameter.

There is one excemption, if there is a “set” flag on the first
column. This flag indicates the code generator to assign a variable
with a value from the context. This assignment is done
just-in-time to save memory.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 41/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

... FE/G2 specific code construction

For example, a matrix-code sequence:
[set xB x1]
[t0 t1 xB]
[set xB x0]
[t1 t1 xB]

will instruct to xB ← x1, then t0← t1 ◦ xB, and so on.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 42/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

More code construction

Any other code construction is done by rewriting the function
names: functions whose name is specific to the finite field they are
designed, or a construction using reversed polish notation.

At the end, the code is packed in a compressed directory. If the
user decided to compile it with the prescibed set of instruction,
then it is decompressed over the target directory: typically the one
containing the library, or the code for the arithmetic, and it is
compiled using an example testbed.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 43/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Sample code constructions

We will demonstrate the code for the following curves:

I BN (k = 12) using the pairing lattice, at 128-bit security level

I BN (k = 12) using the R-ate pairing, at 128-bit security level

I KSS: k = 18 using the pairing lattice, at 192-bit security level

I KSS: k = 18 using the R-ate pairing, at 192-bit security level

I KSS: k = 36 using the R-ate pairing, (partially). at 256-bit
security level.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 44/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Main outcomes (joint work)

I Faster final exponentiation

I Faster hashing to G2

I Automated generation of optimal pairing code

I A pairing implementation over higher security levels.

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 45/46

Introduction Motivation Addition-chain Final exponentiation Hashing to G2 Code Generator Conclusion

Final thoughts

We have adapted and created several construction methods for
automatically generate cryptographic pairing functions’ code to
ease the job of the protocol implementer.

Our tool shows that automatically generated code is nearly as fast
as carefully hand-crafted code. Extra tuning by hand can be done
to close the gap against the speed record.

For more information, please consult: (includes videos)
http://www.computing.dcu.ie/~ldominguez/phdproject.html

H

“Developing an automatic generation tool for cryptographic pairing functions”, Dominguez. 46/46

http://www.computing.dcu.ie/~ldominguez/phdproject.html

