

Defense Guided by Experience

Analyzing the MD5 collision in Flame

Alex Sotirov

Co-Founder and Chief Scientist Trail of Bits, Inc

Overview of Flame

- Discovered sometime in 2012
- Active since at least 2010
- Complex malware
 - o almost 20MB in size
 - multiple components
- Very limited targeted attacks

Source: Kaspersky Lab

Flame propagation

- Flame registers itself as a proxy server for update.microsoft.com and other domains
 - WPAD (Web Proxy Auto-Discovery Protocol)
 - \circ local network only
- Man-in-the-middle on Windows Update
 - SSL spoofing is not needed, Windows Update falls back to plaintext HTTP
 - serves a fake update signed with a Microsoft code-signing certificate

Wu	5etup¥.exe Proper	ties			?	×
G	eneral Compatibility	Digital Signatu	res Securi	ty Summar	y]	
	Signature list					
	Name of signer:	E-mail addr	Timestamp)		
	MS	Not available	Tuesday, I	December 28	3, 2010	
				Deta	ails	
		01		Cancel	Apply	

Certificate		<u>?</u> ×
General Details Certification Path Certification path Microsoft Root Authority Microsoft Enforced Licensing Intermedi Microsoft Enforced Licensing Regist Microsoft LSRA PA Microsoft LSRA PA	ate PCA tration Authority CA	
	View Certificate	
Certificate status:		
This certificate is OK.		
	0	<

Certificate hierarchy

Part II

Terminal Services Licensing

Terminal Services Licensing

- License management system for Terminal Services clients
- Based on X.509 certificates, signed by a Microsoft certificate authority
- The license server receives a signed certificate during the activation process
- Fully automated process

License Server activation

🐂 TS Licensing Manager	r			
Action View Help				
🕂 🔄 All servers	Name	Activation Status	Discovery Scope	Configuration
	WIN-CX52C6CZJQZ	Not activated	Workaroup	OK
		R	efresh	
		R	eview Configuration	
		In	istall Licenses	
		A	ctivate Server	
		A	dvanced	•
		c	reate Report	•
		D	elete Reports	
		P	operties	
		н	elp	

License Server activation

Activate Server Wizard		×
Connection Method Select the most approp	priate connection method.	
The connection metho the Microsoft Clearingh installed.	d selected for license server activation will also be used to contact ouse when Terminal Services client access licenses (TS CALs) are	
To change the connect the license server's Pro	tion method after activation, go to the Connection Method tab of operties dialog box.	
Connection method:		
Automatic connection	(recommended)	
Description:	This is the recommended method. The license server will automatically exchange the required information with the Microsoft Clearinghouse over the Internet.	
Requirements:	The computer must be able to connect to the Internet by using a Secure Sockets Layer (SSL) connection.	
	< Back Next >	Cancel

License Server activation

- 1. License Server generates a private key
- 2. License Server creates an X.509 Certificate Signing Request containing:
 - $_{\circ}$ $\,$ user information entered in the activation wizard
 - machine id ?
 - o public key
- 3. Microsoft activation server returns a certificate signed by the Microsoft LSRA PA certificate authority containing:
 - subject CN=Terminal Services LS
 - public key
 - MD5 signature
- 4. The certificate is stored in HKLM\SYSTEM\CurrentControlSet \Control\Terminal Server\RCM\X509 Certificate

Terminal Services Licensing

RDP client

- The Microsoft LSRA PA certificate authority was replaced after Flame became public
- New certificates are issued from a different PKI root and are signed with SHA-1
- Since the certificates are stored in the registry, we can find a few registry dumps containing certificates from 2010-2011 with a simple Google search

00	0 0 💦 "31 32 30	0 32 31 39 3	32 31 34 \$	0						
←	⇒ C' 🔇 www.	google.co	m/#hl=e	n&gs_r	nf=1&cp=40	&gs_id=	2&xhr=t	&q=%2231+32	2+30+32+3	1+39+3
	+You Search	Images	Maps	Play	YouTube	News	Gmail	Documents	Calendar	More -
	Google	-	"31 3	2 30 3	2 31 39 32	31 34 3	8 33 39	5a"		
	Search		3 result	ts (0.02	seconds)					
	Web Images		30:82 dev.bitr	: <u>1f:b0:(</u> adius.c	06:09:2a:80 om/key1.txt 20:41:75:74:6	6:48:86:	f7:0d:01	:07:02:a0:82	:1f:a1:30:8/	<u>2:1f</u>
	Maps		31:39:3	2:31:34	:38:33:39:5a	17:0d: 31:	32:30:32:	31:39:32:31:34:	38:33:39:5a:3	30:81
	Videos		<u>Windo</u> swirski	ows Re	egistry Edit	or Versi	on 5.00	[HKEY_LOC	CAL_MACH	IINE
	News		79,2 30,32,3	0,43,41, 1,39,32	,30,1e,17,0d, , 31,34,38,33 ,	31,30,30,3 39,5a ,30,	32,31,39,3 81,80,31,	32,31,34,38,33,3 13,30,11,06,0a,	39,5a,17,0d, 3 09,92,26,89,9	1,32, \ 33
	More		<u>Windo</u> swirski	ows Re .net/wts	egistry Edit fix.reg	or Versi	on 5.00	[HKEY_LOC	AL_MACH	<u> 11NE</u>
	New York, NY Change location		79,2 30,32,3	0,43,41, 1,39,32	,30,1e,17,0d, , 31,34,38,33 ,	31,30,30,3 39,5a ,30,	32,31,39,3 81,80,31,	32,31,34,38,33,3 13,30,11,06,0a,	39,5a,17,0d, 3 09,92,26,89,9	1 ,32, \)3

Certificate properties

- Subject is CN=Terminal Services LS
- All certificates issued by Microsoft LSRA PA were valid until Feb 19, 2012
- No other identifying information
- No Extended Key Usage restrictions
 - inherited from the CA certificate, which allows code signing
- Microsoft Hydra X.509 extension
 - not supported by Crypto API
 - certificate fails validation and cannot be used for code-signing on Vista and Windows 7

- Everybody with an activated Terminal Server could also sign code as Microsoft and spoof Windows Update on XP
- On Vista and Windows 7, the certificate fails to validate because of the Hydra extension
- MD5 collisions was necessary to remove the extension and allow the attack to work on all versions of Windows

Part III

Background on MD5 collisions

MD5 hash algorithm

- Hash function designed in 1991
- Known to have weaknesses since 1993
- First demonstrated collisions in 2004
- Despite demonstrated attacks, remained in wide use until recently

MD5 collisions

- Classical collisions
 - insert specially computed blocks in a file to produce two files with different contents and matching MD5 hashes
 - limited control over the collisions blocks
- Chosen-prefix collisions
 - first demonstrated by Marc Stevens at Technische Universiteit Eindhoven in 2006
 - append specially computed blocks to two different files to make their hashes match
 - arbitrary prefixes before the collisions block

Chosen-prefix MD5 collisions

RapidSSL attack in 2008

- Collaboration of hackers and academics led by Alex Sotirov and Marc Stevens
- Demonstrated a practical MD5 collision attack against the RapidSSL CA:
 - resulted in a rogue SSL certificate authority trusted by all browsers
 - allows man-in-the-middle attacks on SSL
- Presented at the CCC in 2008
- Authors worked with CAs to discontinue all use of MD5 signatures

RapidSSL collision generation

- About 2 days on a cluster of 200 PS3s
- Equivalent to about \$20k on Amazon EC2

Generating a rogue certificate

- 1. Predict the contents of the real certificate that will be issued by the CA
 - most fields have fixed values or are controlled by us
 - we need to predict the serial number and validity period, which are set by the CA
- 2. Build a rogue certificate with arbitrary contents
- 3. Generate RSA public key containing collision blocks that make the MD5 hashes of the two certificates match
- 4. Get signed certificate for a domain we own from the certificate authority
- 5. Copy signature to the rogue certificate

Colliding SSL certificates

serial number		serial number
validity period	chosen prefix	validity period
real cert domain name	(difference)	rogue cert domain name
real cert RSA key	collision bits (computed)	real cert RSA key
X.509 extensions	identical bytes	X.509 extensions
signature	(copied from real cert)	signature

Challenges

- The contents of the real certificate must be known before we can generate the collision blocks
- Collision generation takes about 2 days
- How do we predict the serial number and validity period of our certificate two days before it is issued?

Part IV

MD5 collision in Flame

Flame certificate properties

- Fields entirely controlled by the attacker:
 - serial number 7038
 - \circ validity from Feb 19, 2010 to Feb 19, 2012
 - subject CN=MS
 - o 2048-bit RSA key
- Non-standard issuerUniqueID field:
 - ignored by Crypto API on Windows
 - contains the birthday bits and near collision blocks generated by the attacker
 - the length of the field also covers the X.509 extensions from the real certificate, thus hiding them from Crypto API

Colliding certificates

Flame certificate

Certificate signed by Microsoft

	Serial number, validity		Serial number, validity	
. 220	CN=MS		CN-Terminal Services IS	
7223	2048-bit RSA key (271 bytes)	Chosen prefix (difference)		+250
		(
+500		-		504
+504		birthday bits		+504
+312 ·			RSA key (509 bytes?)	1 +312
	issuerUniqueID data	4 near collisions blocks (computed)		
+768				+768
+1392		Identical bytes (copied from signed cert)	X509 extensions	+786
	MD5 signature		MD5 signature	+1292

- 64 birthday bits, 4 near collision blocks
- Similar complexity to the RapidSSL attack for a single collision attempt
- About \$20k on Amazon EC2 in 2008, or cheaper if you have a large cluster

Challenges

- Predicting the validity period
 - fully automated CA operation
 - validity period determined by time of request
 - attacker need to get the certificate issued in a 1-second window
- Predicting the serial number
 - serial number based on a sequential certificate number and the current time
 - attacker needs to get the certificate issued in a 1-millisecond window
 - significantly more difficult

• Sample serial numbers from the Microsoft LSRA PA certificate authority:

Feb	23	19:21:36	2010	GMT	14:51:5b:02:00:00:00:00:00:08
Jul	19	13:41:52	2010	GMT	33:f3:59:ca:00:00:00:05:25:e0
Jan	9	20:48:22	2011	GMT	47:67:04:39:00:00:00:0e:a2:e3

- Serial number format:
 - number of milliseconds since boot (4 bytes)
 - CA index (fixed 2 byte value)
 - sequential certificate number (4 bytes)

- Sequential certificate number
 - each certificate gives the attacker its current value and increments it by one
 - attacker can increment it to an arbitrary number by getting more certificates
- Number of milliseconds since boot
 - each certificate discloses its current value
 - incremented each millisecond until the system is rebooted
 - attacker needs to get certificate at the right time to match the predicted serial number

- Sources of timing variability
 - \circ system load
 - o packet jitter
- Large number of attempts required to get the certificate issued at the right moment
 - significantly more costly than the RapidSSL attack, likely 10-100x
 - did the attackers have a much faster collision generation algorithm or a larger cluster?
 - were they located close to the target server to minimize packet jitter?

Cryptographic forensics

- The tool used for the RapidSSL attack was open-sourced in 2009
- Did the Flame authors use it?

Cryptographic forensics

The bit differences in the near collision blocks can be used to determine what technique produced them:

Using our forensic tool, we have indeed verified that a chosen-prefix collision attack against MD5 has been used for Flame. More interestingly, the results have shown that not our published chosen-prefix collision attack was used, but an entirely new and unknown variant. This has led to our conclusion that the design of Flame is partly based on world-class cryptanalysis.

Marc Stevens, CWI.nl

Remaining Questions

• Was the collision generated with the opensource HashClash tool or developed independently?

References

- Flame Authenticode Dumps <u>http://blog.didierstevens.com/2012/06/06/flame-authenticode-dumps-kb2718704/</u>
- RapidSSL attack <u>http://www.win.tue.nl/hashclash/rogue-ca/</u>
- Flame malware collision attack explained <u>http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx</u>
- Marc Stevens' PhD thesis <u>http://marc-stevens.nl/research/papers/PhD%20Thesis%20Marc%20Stevens%20-</u> <u>%20Attacks%20on%20Hash%20Functions%20and%20Applications.pdf</u>
- CWI cryptanalyst discovers new cryptographic attack variant in Flame spy malware <u>http://www.cwi.nl/news/2012/cwi-cryptanalist-discovers-new-cryptographic-</u> <u>attack-variant-in-flame-spy-malware</u>
- MSRC 2718704 and Nested EKU enforcement <u>http://rmhrisk.wpengine.com/?p=57</u>
- Analyzing Flame's replication pattern <u>http://threatpost.com/en_us/blogs/snack-attack-analyzing-flames-replication-pattern-060712</u>
- Microsoft Certificate Services serial numbers <u>http://blacktip.wordpress.com/2010/06/24/serial-killer/</u>