
Some ancillary functions and other tricks for
implementing Attribute-Base Encryption.

Luis J. Dominguez Perez

Cinvestav. Departamento de Computación.
ldominguez.computing.dcu.ie.

From a joint-work with Eric Zavattoni, Ana Helena Sanchez

Ramirez and Francisco Rodriguez-Henriquez

“Crypto Seminar”

Mexico City.

February 3rd 2012.

(refurbished)

Introduction Preliminars G1 G2 GT Multipairing Timings

Outline

1 Introduction

2 Preliminars

3 G1

4 G2

5 GT

6 Multipairing

7 Timings

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 2/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Notation

Let p-prime > 3. Let E (Fp) be an elliptic curve and r | #E (Fp).

Let k be the embedding degree of E with respect to r .

Let e be a divisor of k . Let d be the minimal k
e with e ∈ [2, 3, 4, 6].

A twist curve E ′ defined over Fpd is another elliptic curve

isomorphic to E defined over Fpk .

... and let t be the trace of the Frobenius.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 3/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Discrete logarithm problem

Let P = (x , y) ∈ E (Fp) and n ∈ Z, n > 0. Define [n]P = P +P

+ · · · +P. The order of the point P is the smallest n such that

[n]P = O.

Denote < P > the group generated by P. In other words,

< P >= {O, P, P + P, P + P + P, . . .}

Let Q ∈< P >. Given Q, find n such that Q = [n]P. This is

known as the Elliptic Curve Discrete Logarithm Problem

(ECDLP).

Known attacks affect some anomalous curves, P with a small

prime order and some weak combinations of parameters.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 4/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Discrete logarithm problem II

Let α ∈ F∗pn and n ∈ Z, n > 0. Define αn = α · α . . .α. The order

of the element α is the smallest n such that αn = 1.

Denote < α > the group generated by α. In other words,

< α >= {1,α,α · α,α · α · α, . . .}

Let β ∈< α >. Given β, find n modulo |α| such that β = αn. This

is known as the The Finite Field Discrete Logarithm Problem

(DLP).

The most efficient methods in the finite field are based on Index

Calculus. The most efficient methods in elliptic curves are based

on the Pollard’s Rho attack.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 5/47

Introduction Preliminars G1 G2 GT Multipairing Timings

What is a Pairing?1

A Pairing is a bilinear map on an Abelian group M taking values

in some other Abelian group R,

〈·, ·〉 : M ×M −→ R

There are many Abelian groups we might consider

I Z, or more generally Zd

I Z/mZ, a cyclic group of order m, or generally (Z/mZ)d

I Fp with addition as the group law, or generally Fd
p

I F∗p with multiplication as the group law

I E (Fp), the group of Fp-points on an elliptic curve

I µm, the group of mth-roots of unity

I etc.
1

this slide is taken from J. H. Silverman’s talk in Pairing 2010

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 6/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Definition of a pairing

Here, we define a pairing as a map: G2 ×G1 → GT .

These groups are finite and cyclic. G1 and G2 are additively-

written and at least one is of prime order r , G1 ⊆ E (Fp), and

G2 ⊆ E ′(Fpd).

GT , is multiplicatively-written and of order r , GT ⊆ µr or just F∗
pk

Properties:

I Bilinearity

I Non-degeneracy

I Efficiently computable

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 7/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Jacobian Coordinate System

An elliptic curve point if represented with two coordinates (x , y) is

called to be in Affine coordinates. The group law of a point in

such representation requires the use of inversion of elements in a

finite field, which are expensive.

Instead, a point can be represented as (X , Y , Z), where

(X , Y , Z) = (x/zc , y/zd). There is an effort when converting

between representations of the same point. (see the

”Explicit-Formulas Database”)

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 8/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Jacobian Coordinate System II

The traditional form of the curve is:

E : y2 = x3 + ax + b

In a projective coordinate system, the equation changes. In the

case of the Jacobian coordinates (c = 2, d = 3), the equation of

the curve is now:

E : Y 2 = X 3 + axZ 4 + bZ 6.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 9/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Pairing function

We skip the details about the Miller function...

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 10/47

Introduction Preliminars G1 G2 GT Multipairing Timings

The operations

Scalar-point multiplication and exponentiation in pairings

We recall that the most important property of a pairing is the

bilinearity, denoted as:

e([a]Q, [b]P) = e([b]Q, [a]P) = e(Q, [ab]P) = e(Q, P)ab

where Q ∈ G2, P ∈ G1, and the result is in GT .

A scalar-point multiplication in G2 is much more expensive than in

G1, it is wise to place such operation in the smaller group,

whenever possible.

It is also know that an exponentiation in GT is cheaper than a

pairing computation, some protocol designers try to exploit this

too.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 11/47

The scalar-point multiplication

The traditional method for computing the scalar-point

multiplication is the Double-and-Add method.

Algorithm 1 Traditional scalar-point multiplication

Input: Positive integer k , P ∈ E (Fpm)

Ouput: kP

1: Q ← O

2: l ← blog2(k)c
3: for i = l − 1 downto 0 do

4: Q ← [2]Q

5: if ki = 1 then

6: Q ← Q + P

7: end if

8: end for

9: return Q

Introduction Preliminars G1 G2 GT Multipairing Timings

The operations

Speeding up

Generic method to speed up the exponentiation in any finite

Abelian group.

I Precomputation

I Addition chains whenever the scalar is known

I Windowing techniques

I Simultaneous multiple exponentiation techniques.

Replacing the binary representation of the scalar into one with

fewer non-zero terms.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 13/47

Introduction Preliminars G1 G2 GT Multipairing Timings

The operations

Speeding up II

Elliptic curve specific methods:

I A field defined with a (pseudo-)Mersenne prime.

I Field construction using small irreducible polynomials

I Point representation with fast arithmetic

I EC with special properties.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 14/47

Introduction Preliminars G1 G2 GT Multipairing Timings

The operations

Multinormalization

In a pairing-based protocol, the most used cryptographic primitive

is the scalar-point multiplication. After a scalar-point

multiplication, the output point is usually left in Jacobian

coordinates.

A bunch of multiplications are performed in a typical protocol, and

eventually they are used as inputs for one or several pairing

functions.

If the points are expected to be in Affine coordinates, a

normalization procedure is required. This operation is expensive.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 15/47

Introduction Preliminars G1 G2 GT Multipairing Timings

The operations

Multipairing

In some Pairing-Based protocols a significant number of pairing

functions need to be performed.

I If the point in G2 is known in advance, one can precompute

the values of the line function in the pairing.

I If we have several pairings to be performed AND multiplied,

one can share the Squaring and the Final Exponentiation

steps.

I If we have several pairings to be performed BUT used

separately, we still can optimize the operations IFF they share

one of the inputs of the pairing.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 16/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Speeding up the scalar-point multiplication

w -NAF representation

A non-adjacent form (NAF) of a positive integer k is an

expression: k =
∑l−1

i=0 ki2
i , where ki ∈ 0,±1, kl−1 = 0, and no two

consecutive digits ki are nonzero. The length of the NAF is l.

Let w > 2 be a positive integer. A width-w NAF of a positive

integer k is also an expression k =
∑l−1

i=0 ki2
i , but where each

nonzero coefficient ki is odd, |ki | < 2w−1, kl−1 = 0, and at most

one of any w consecutive digits is nonzero. The length of the

width-w NAF is l .

Example:

ki+ = 100000300T001003000T00T0000T00T

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 17/47

w -NAF representation II

Algorithm 2 Getting the w -NAF representation of a scalar

Input: Window width w , positive integer k

Ouput: NAFw(k)

1: i ← 0

2: while k > 1 do

3: if k is odd then

4: ki ← kmods2w , k ← k − ki

5: else

6: ki ← 0

7: end if

8: k ← k/2, i ← i + 1

9: end while

10: return (ki−1, ki−2, . . . , k1, k0)

Applying the algorithm

Scalar-point multiplication using the w -NAF expansion.

Algorithm 3 w -NAF multiplication

Input: Window width w , positive integer k, P ∈ E (Fpm)

Ouput: kP

1: Compute the w -NAF expansion of k

2: Compute Pi = iP for i ∈ {1, 3, 5, . . . 2w−1 − 1}

3: Q ← O

4: l ← blog2(k)c
5: for i = l − 1 downto 0 do
6: Q ← [2]Q

7: if ki 6= 0 then
8: if ki > 0 then
9: Q ← Q + Pki

10: else
11: Q ← Q − Pki

12: end if
13: end if
14: end for
15: return Q

Introduction Preliminars G1 G2 GT Multipairing Timings

Speeding up the scalar-point multiplication

A note in the algorithm

Please note that, if the point P is well-known in advance, and if

there are plenty of memory available, a larger w -NAF value can be

chosen to speed up the multiplication by precomputing in advance

the step 2.

Even if the point is only known at running time, but used several

times, it may be worth the cost of a large precomputation.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 20/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Point multiplication on EC w/ efficient endomorphisms

Paper:Faster Point Multiplication on Elliptic Curves by Gallant,

Lambert and Vanstone.

The scalar-point multiplication is the additive analogue of the

exponentiation operation αk in a general (multiplicatively-written)

finite group.

In other words, we can apply the same concepts in groups defined

with different operations, and referring the operation simply as

exponentiation in a group.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 21/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Endomorphism

Let E be an elliptic curve defined over the finite field Fp with the

point at infinity denoted by O.

An endomorphism of E is a rational map φ : E → E satisfying

φ(O) = O. If the rational map is defined over Fp, then the

endomorphism φ is also said to be defined over Fp. In this case, φ

is a group homomorphism of E (Fp), and also of E (Fpm), for all

m > 1.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 22/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Examples

Example 1. For each m ∈ Z, the multiplication by m map

[m] : E → E defined by P 7→ mP is an endomorphism defined over

Fp.

Another case is the negation map: P 7→ −P.

Example 2. The pth power map φ : E → E defined by

(x , y) 7→ (xp, yp) and O 7→ O is an endomorphism defined over Fp,

called the Frobenius endomorphism.

This endomorphism is usually denoted as π, and it is normally

quite fast since it is composed by a few multiplications.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 23/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Examples II

Example 3. Let p ≡ 1 (mod 4) be a prime, and consider the

following elliptic curve

E1 : y2 = x3 + ax .

defined over Fp. Let α ∈ Fp. Then, the map φ : E1 → E1 defined

by (x , y) 7→ (−x ,αy) and O 7→ O is an endomorphism defined over

Fp.

If P ∈ E (Fp) is a point of prime order r , then φ acts on 〈P〉 as a

multiplication map [λ], in essence: φ(Q) = λQ, ∀Q ∈ 〈P〉, with

λ2 ≡ −1 (mod r)

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 24/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Examples III

Example 3. Let p ≡ 1 (mod 3) be a prime, and consider the

following elliptic curve

E2 : y2 = x3 + b.

defined over Fp. Let β ∈ Fp. Then, the map φ : E2 → E2 defined

by (x , y) 7→ (βx , y) and O 7→ O is an endomorphism defined over

Fp.

If P ∈ E (Fp) is a point of prime order r , then φ acts on 〈P〉 as a

multiplication map [λ], in essence: φ(Q) = λQ, ∀Q ∈ 〈P〉, with

λ2 + λ ≡ −1 (mod r)

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 25/47

Introduction Preliminars G1 G2 GT Multipairing Timings

The method

In esence, there exists β such that:

[k]P = [k0]P + [k1]λP,

for some k0, k1, and λP = (βx , y)

where β = −(18x3 + 18x2 + 9x + 2) for the BN curves, and x is

the parameter of the curve. For the Beuchat et al. curve, β is

negative, for the Aranha et al. curve, β is positive.

To get the scalar expansion, one can use the extended Euclidean

algorithm.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 26/47

Applying the algorithm

Simultaneous scalar-point multiplication + w -NAF.

Algorithm 4 Simultaneous w -NAF multiplication

Input: Window width w , k, l ∈ Z, P, Q ∈ E(Fpm)
Ouput: R ← kP + lQ
1: Compute the w -NAF expansion of k
2: Compute (Pi = iP), (Qi = iQ) for i ∈ {1, 3, 5, . . . 2w−1 − 1}
3: R ← O
4: n← sup(blog2(k)c, blog2(l)c)
5: for i = n − 1 downto 0 do
6: R ← [2]R

7: if ki 6= 0 then
8: if ki > 0 then
9: R ← R + Pki

10: else
11: R ← R − Pki

12: end if
13: end if

14: if li 6= 0 then
15: if li > 0 then
16: R ← R + Qli
17: else
18: R ← R − Qli
19: end if
20: end if

21: end for
22: return Q

Introduction Preliminars G1 G2 GT Multipairing Timings

GS method

Introduction

Paper:Exponentiation in pairing-friendly groups using

homomorphisms by Galbraith and Scott.

Galbraith and Scott, showed a technique for generalizing the GLV

method for higher powers of the endomorphism for the groups G2

and GT .

To get an m-dimensional expansion

n ≡ n0 + n1λ+ · · ·+ nm−1λ
m−1 (mod r)

of [n]P, one must decompose n with powers of λ sufficiently

different and modulo r .

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 28/47

Introduction Preliminars G1 G2 GT Multipairing Timings

GS method

Decomposition

The method solves a closest vector problem in a lattice using

Babai’s rounding off method. A reduced lattice basis, however,

must be precomputed in order to get an efficient implementation.

For a pairing friendly elliptic curve family, it is possible to get a

“natural” m-dimensional expansion with m = ϕ(k), where ϕ(k) is

the Euler totient function on k , the embedding degree of the

family 2.

2For the BN cuvres, m = 4
“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 29/47

Introduction Preliminars G1 G2 GT Multipairing Timings

GS method

Decomposition II

The modular lattice basis is defined as, by:

L =

{
x ∈ Zm :

m−1∑
i=0

xiλ
i ≡ 0 (mod r)

}

where λ = T = t − 1. This m-dimensional modular lattice L will

be used to construct a m×m matrix. Then, one can fill the matrix

with any linear combination of λ : Li ,j ≡ 0 (mod r).

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 30/47

Introduction Preliminars G1 G2 GT Multipairing Timings

GS method

The lattice

One way to get the lattice, is with the use of the LLL function, on

the another hand, one can use the Weak Popov transformation of

the matrice.

The matrice, however, can be represented in polynomial form,

hence, one only needs to compute it once:

L =

2x 1 + x −x x

1 + x −1 − 3x −1 + x 1

−1 2 + 6x 2 −1

2 + 6x 1 −1 1

This matrix is for the BN curves only.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 31/47

Introduction Preliminars G1 G2 GT Multipairing Timings

GS method

Applying the decomposition

To apply de decomposition, we perform:

Algorithm 5 Decomposition

Input: The L matrix, the scalar n ∈ Zr

Ouput: Vector u = (n0, n1, n2, n3)

w ← (n, 0, 0, 0)

l ← wL−1

m← (0, 0, 0, 0)

for i ← 1 to 4 do

mi = blic
end for

u ← w − mL

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 32/47

Applying the decomposition II

Another way to perform the decomposition is as follows:

Algorithm 6 Decomposition

Input: The L matrix, the W vector, the scalar n ∈ Zr

Ouput: Vector u = (n0, n1, n2, n3)
v ← (0, 0, 0, 0)
u← (0, 0, 0, 0)
for i ← 0 to 4 do

v ← nW [i]/r
end for
u0 ← n
for i ← 1 to 4 do

for j ← 1 to 4 do
ui = ui − vjLj ,i

end for
end for

return u

where the vector for the BN cuves is:

W = (−(6x2 + 6x + 2), −1, x , 1 + 3x + 6x2 + 6x3).

Introduction Preliminars G1 G2 GT Multipairing Timings

GS method

The endomorphism

In the case of this method, the efficiently computable

endomorphism is:

ψi = φπiψ−1 (1)

where φ : E ′ → E is the endomorphism used to take a point from

the elliptic curve of the twist to a curve defined over an extension

field (and viceversa), and πi is the p-power Frobenius map.

In essence, the cost of ψ is about 2 multiplications in Fp2 by a

constant element in Fp, and two cheap Frobenius map applications.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 34/47

More about the endomorphism

From Hess, Smart and Vercauteren, if p > 5, and j(E) ∈ [0, 1728]

then:

φ : Aut(E) : ξ 7→ [ξ]with[ξ](x , y) = (ξ2x , ξ3y)

Let πp the p-power Frobenius map on E.

Then ψ = φ−1πpφ is an endomorphism of E ′ s.t. ψ : G2 → G2.

For Q ∈ G2, ψk(Q) = Q, ψ(Q) = pQ, and Φk(ψ)(Q) = O, where

Φk(x) is the k-th cyclotomic polynomial.

even more about the endomorphism

ψ is an endomorphism from E ′ → E ′ which fixes the point at

infinity. Hence, ψ is an endomorphism on E ′.

Let Q ∈ E ′(Fpd)[r]. Then, φ(Q) ∈ E (Fpk) and, since the image of

E ′(Fpd)[r] under φ does lie in the eigenspace of the p-power

Frobenius map on E (Fpk) with eigenvalue p (the characteristic of

the base field), πp(φ(Q)) = pφ(Q). Hence, Q ′ = π(φ(Q)) does

lies in the image of E ′(Fpd) under φ, and so

Q ′′ = φ−1(Q ′) ∈ E ′(Fpd).

Then, ψk = φ−1πk
pφ = φ−1πpkφ. Since πk

p = 1 on E (Fpk) it

follows that ψk(Q) = Q. Recalling πp(φ(Q)) = pφ(Q), so...

Introduction Preliminars G1 G2 GT Multipairing Timings

GS method

yes, even more about the endomorphism

ψ = φ−1πpφ(Q) = φ−1pφ(Q) = pQ.

Since Q[r], and r |Φk(p), it follows that Φ(ψ)(Q) = Φk(p)Q = O.

Now, we proceed to show the scalar-point multiplication algorithm.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 37/47

The algorithm

Algorithm 7 Multi w -NAF multiplication

Input: Window width w , positive integer matrix k of dimmension n×l (n vectors

of l-bits), P ∈ E (Fpm)

Ouput: kP

1: Compute the w -NAF expansion of each scalar in k

2: Compute Pn
i = iPn for i ∈ {1, 3, 5, . . . 2w−1 − 1}

3: Q ← O

4: for i = l − 1 downto 0 do
5: Q ← [2]Q

6: for j = 0→ n − 1 do
7: if k j

i > 0 then
8: Q ← Q + P j

kn
i

9: else
10: Q ← Q − P j

kn
i

11: end if
12: end for
13: end for

14: return Q

Introduction Preliminars G1 G2 GT Multipairing Timings

GS on GT

In the case of this group, the efficiently computable endomorphism

is the Frobenius endomorphism, this is because:

ep ≡ et−1 ≡ er

Hence,

ek = ek0 · ekp
1 · ekp2

2 · · · ekpm−1

1

where e ∈ GT , k ∈ Zr , m is the degree of the decomposition, and

the exponentiation to the p is done using the Frobenius

endomorphism.

We can use the same method for decomposing the exponent (using

square-and-multiply for this case), and applying the corresponding

endomorphism (the Frobenius exponentiation).

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 39/47

Introduction Preliminars G1 G2 GT Multipairing Timings

GS decomposition in G1

The decomposition method can also be applied to the GLV

method.

The corresponding matrices are:

LGLV =

(
2x + 6x2 −1 − 2x

−1 − 2x 1 + 4x + 6x2

)

And WGLV = (2 + 4x + 6x2, −1 − 2x). Obviously, algorithms 5 and

6 would need to be adapted to match the matrix and vector

dimension.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 40/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Multipairing

As it was the case of the scalar-point multiplication and

exponentiation, we can share the squaring part. This is the only

part that needs to be computed regardless of the input values.

In the case of a negative x-parameter, there is an inversion in Fp12 ,

which again is independent of the input points.

First, let’s analize the basic pairing function.

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 41/47

Pairing algorithm/Multipairing

Basic Miller loop + final exponentiation

Input: P ∈ G1, Q ∈ G2

Ouput: f ∈ GT

f ← 1, T ← P, i ← bLog2(r)c− 1

while i > 0 do

f ← f 2 ·LT ,T (Q)

T ← 2T

if si [i + 1] = 1 then

f ← f · LT ,P(Q)

T ← T + P

end if

i ← i − 1

end while

f (pk−1)/r

return f

Pairing algorithm/Multipairing

Basic Miller loop + final exponentiation

Input: P ∈ G1, Q ∈ G2

Ouput: f ∈ GT

f ← 1, T ← P, i ← bLog2(r)c− 1

while i > 0 do

f ← f 2 ·LT ,T (Q)

T ← 2T

if si [i + 1] = 1 then

f ← f · LT ,P(Q)

T ← T + P

end if

i ← i − 1

end while

f (pk−1)/r

return f

Pairing algorithm/Multipairing

Basic Miller loop + final exponentiation

Input: [P1 . . . Pn] with Pj ∈ G1, [Q1 . . . Qn] with Qj ∈ G2

Ouput: f ∈ GT

f ← 1, Tj ←Pj , i ← bLog2(r)c− 1

while i > 0 do

f ← f 2· LTj ,Tj
(Q)

Tj ← 2Tj

if si [i + 1] = 1 then

f ← f · LTj ,Pj
(Q)

Tj ←Tj + Pj

end if

i ← i − 1

end while

f (pk−1)/r

return f

Pairing algorithm/Multipairing II

The used Miller loop + final exponentiation
Input: [P1 . . .Pn] with Pj ∈ G1, [Q1 . . .Qn] with Qj ∈ G2

Ouput: f ∈ GT

f ← 1, Tj ← Qj , s ← |6x + 2|

for i ← 2 to ← bLog2(s)c do
f ← f 2 ·LTj ,Tj

(P)

Tj ← 2Tj

if si [i] = 1 then
f ← f · LTj ,Qj

(Pj)

Tj ← Tj + Pj

end if
i ← i − 1

end for
f ← f p6

R ← φ(Qj) f ← f · L−Tj ,Rj
(Pj)

R ← φ2(Qj) f ← f · L−Tj ,−Rj
(Pj)

f (pk−1)/r

return f

Pairing algorithm/Multipairing II

The used Miller loop + final exponentiation
Input: [P1 . . .Pn] with Pj ∈ G1, [Q1 . . .Qn] with Qj ∈ G2

Ouput: f ∈ GT

f ← 1, Tj ← Qj , s ← |6x + 2|

for i ← 2 to ← bLog2(s)c do
f ← f 2 ·LTj ,Tj

(P)

Tj ← 2Tj

if si [i] = 1 then
f ← f · LTj ,Qj

(Pj)

Tj ← Tj + Pj

end if
i ← i − 1

end for
f ← f p6

R ← φ(Qj) f ← f · L−Tj ,Rj
(Pj)

R ← φ2(Qj) f ← f · L−Tj ,−Rj
(Pj)

f (pk−1)/r

return f

Pairing algorithm/Multipairing II

The used Miller loop + final exponentiation
Input: [P1 . . .Pn] with Pj ∈ G1, [Q1 . . .Qn] with Qj ∈ G2

Ouput: f ∈ GT

f ← 1, Tj ← Qj , s ← |6x + 2|

for i ← 2 to ← bLog2(s)c do
f ← f 2 ·LTj ,Tj

(P)

Tj ← 2Tj

if si [i] = 1 then
f ← f · LTj ,Qj

(Pj)

Tj ← Tj + Pj

end if
i ← i − 1

end for
f ← f p6

R ← φ(Qj) f ← f · L−Tj ,Rj
(Pj)

R ← φ2(Qj) f ← f · L−Tj ,−Rj
(Pj)

f (pk−1)/r

return f

Introduction Preliminars G1 G2 GT Multipairing Timings

Multinormalize

In a multipairing, a lot of set of points are used as the input, must

of them, come after a Scalar-point multiplication, which means,

they are in Jacobian coordinates.

Converting from Jacobian coordinates to Affine, implies a division

(one for each coordinate).

We can optimize this by converting the whole set of coordinates at

once, using simultaneous Montgomery inversion, which uses the

following “trick”:

bc/abc = 1/a ac/abc = 1/b ab/abc = 1/c

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 44/47

Introduction Preliminars G1 G2 GT Multipairing Timings

Using a Intel Core i7 2600K, Sandy Bridge.

Using LSSS U repository

Operation Clock cycles

RegularPairing 2108 Kclk

Multipairing 8 8410 Kclk

Pairing w/Precom. 1790 Kclk

G1mul K 232.89Kclk

G1mul U 304.44Kclk

G2mul K 378.26Kclk

G2mul U 535.69Kclk

GTexpo K 617.32Kclk

GTexpo U 931.98Kclk

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 45/47

Introduction Preliminars G1 G2 GT Multipairing Timings

More timings

Using LSSS U repository

Operation Clock cycles

G1 Add JJA 1.92Kclk

G1 Add JJJ 2.44Kclk

G1 Dbl A 1.20Kclk

G1 Dbl J 1.44Kclk

G2 Add JJA 5.11Kclk

G2 Add JJJ 6.70Kclk

G2 Dbl A 3.03Kclk

G2 Dbl J 2.92Kclk

GT Sqr 3.78Kclk

GT Mul 9.55Kclk

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 46/47

Introduction Preliminars G1 G2 GT Multipairing Timings

More to come...

The Karabina’s compressed squaring is only useful when the

exponent has not only a low-Hamming weight, but also has plenty

of zeros in a row between the poles of the scalar.

In our scenario, we need one exponentiation in GT with a known

base. Since it is a known value, we precomputed it with

w -NAF=7, hence, we expect to have a significant speed up by

using the Karabina’s exponentiation against the Granger-Scott

method, although we have not yet designed the algorithm.

H

“Some ancillary functions and other tricks for implementing Attribute-Base Encryption.”, Dominguez. 47/47

