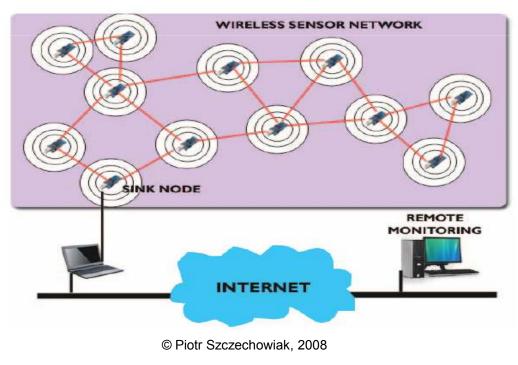

Piotr Szczechowiak

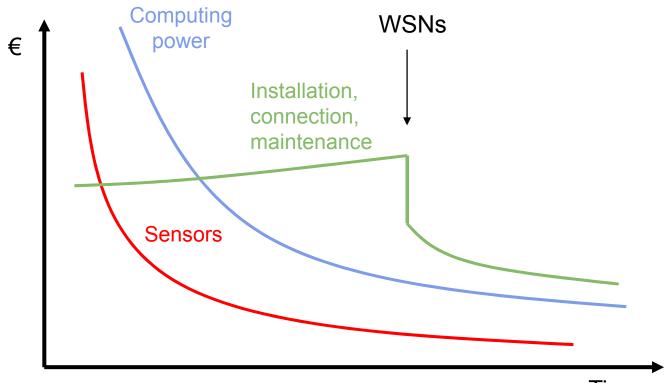
Efficient Implementation of ECC and PBC on Wireless Sensor Networks

Overview

- Introduction
- Security in WSN
- WSN applications
- WSN motes
- Implementing ECC
- Pairing based protocols on motes
- Conclusions



 WSN is a wireless network of spatially distributed autonomous devices that uses sensors to cooperatively monitor physical/environmental conditions (temp, sound humidity, vibration, motion, etc.) at different locations



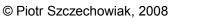
Why wireless sensors?

Barriers for WSN widespread

- 1) Reliability (RF nature, software, security)
- 2) Standards (IEEE 802.15.4, Zigbee, Wireless HEART, ISA SP100)
- 3) Ease of use
- 4) **Power consumption**
- 5) Development cycle
- 6) Node size

Motivation

- Security is one of the major problems in WSNs
- Future WSN applications ("internet of things") will need new lightweight and reliable security mechanisms
- Broad range of hardware platforms makes it difficult to design a universal security architecture
- Various applications require different security techniques and security levels


Present WSN security

- Security solutions in already deployed networks are insufficient (only symmetric cryptography solutions)
- Most of deployed networks uses 128-bit AES symmetric key encryption for end-to-end data confidentiality
- One common key for the whole network
- Network is compromised when the secret key of any of the nodes is revealed

Limited security comparing to PKC

PKC for WSNs

- PKI can solve the problems of symmetric cryptography solutions
- No practical PKI scheme was developed for WSNs so far
- Traditional Public-key systems are too expensive and too complex for WSNs
- PKC based on ECC and pairings may become a security solution for the more demanding WSN applications

WSN application classes

Building automation

- Sensors plus inteligent control
- HVAC, security, lightning control, access control, building energy usage reduction


© Piotr Szczechowiak, 2008

Health care

- Security and privacy biggest problem
- Patient monitoring, fitness monitoring, diseases detection in open air

Industrial monitoring

- Asset & energy management, process control
- Oil & gas refineries, remote measuring systems,

assembly lines, infrastructures monitoring

Residential/commercial control

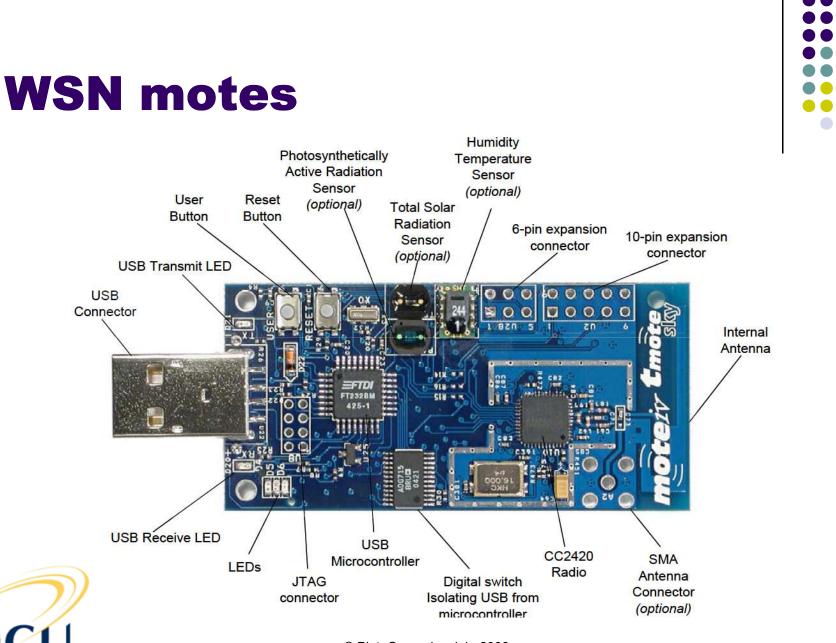
 Parking monitoring, energy management in supermarkets, traffic monitoring and control

Military

- Security has the highest priority
- Intruder detection, perimeter security, national security, equipment monitoring

© Piotr Szczechowiak, 2008

Enivronmental monitoring


- Deployments in open areas
- Wildfire detection, habitat monitoring,

precision agriculture, µclimate monitoring



© Piotr Szczechowiak, 2008

Dublin City University Ollscoil Chathair Bhaile Átha Cliath

Motes 2000-2009

WSN motes

• MICA2: most popular research

platform in Wireless Sensor Networks

- Key features:
- > 38.4kbps, 868/916 MHz radio
- > 8bit, 7.38MHz, ATMEL ATmega128L
- > 4kB RAM, 128kB ROM, 512kB external
- > Low current consumption

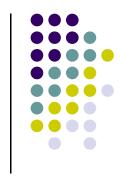
WSN motes

- Tmote sky: IEEE 802.15.4 module
- Key features:
- > 250kbps, 2.4Ghz Wireless Transceiver
- > 16bit, 8MHz, TI MSP430 microcontroller
- > 10kB RAM, 48kB ROM, 1MB external
- > Ultra low current consumption

> Hardware multiplier unit on MSP430

WSN motes

- Imote2: high spec WSN module
- Key features:
- > 250kbps, 2.4Ghz Wireless Transceiver
- > 32bit, 13-416MHz, Intel PXA271 CPU
- > 256kB SRAM, 32MB SDRAM, 32MB flash
- > DSP coprocessor for multimedia data

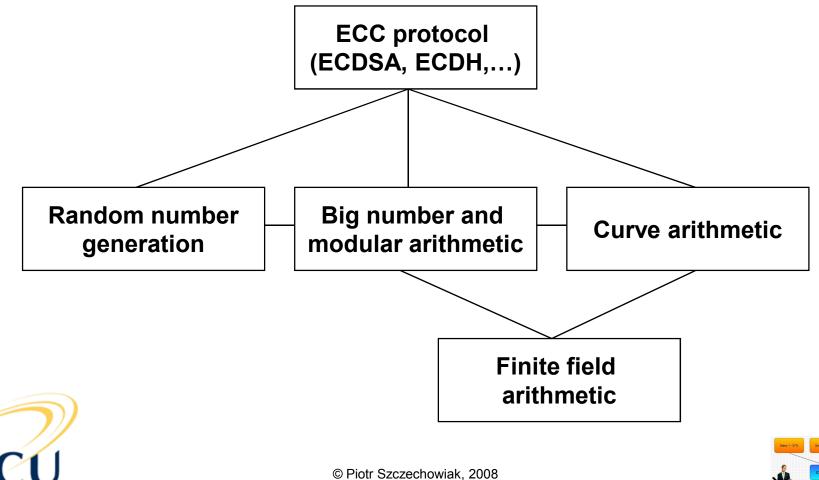

Moderate current consumption

Programming WSNs

- TinyOs operating system and nesC language
- No IDEs available, make-file programming
- Debugging difficult (JTAG, LEDs)
- Tendency to move to JAVA programming
- Limited memory stack overflows
- Simulating environments for processors exist and allow cycle accurate simulation

Implementation challenges

- Efficient implementation of complex cryptographic functions
- Very small amount of memory ROM/RAM
- Portability for various WSN platforms
- Limited CPU capabilities
- Low battery capacity: 1 Month 1 Year
- Computation time should be as short as possible



Implementing ECC

Dublin City University Ollscoil Chathair Bhaile Átha Cliath

Finite field arithmetic

- Arithmetics over *GF(p)* and *GF(2^m)*
- For *GF(p)* multiplication, reduction,

squaring, addition and subtraction implemented in assembly language

- Assembly routines generated automatically from user defined macros (MIRACL utility program)
- Memory allocation for big numbers exclusively

from the stack

Hybrid multiplication

- Standard methods have redundant memory reads/writes for calculation of partial products
- Combines row-wise and column-wise multiplication methods
- Takes advantage of additional registers to store the temporary result
- Unnecessary memory operations are avoided

Efficiency rises with no. of registers used

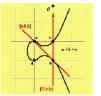
Finite field arithmetic

Timings in instruction cycles for basic

arithmetic operations using 160-bit integers

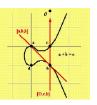
	ATmega	MSP430	
hybrid multiplication	2654 (d=4)	1746 (d=2)	
squaring	2193 (d=4)	1373 (d=2)	
modular reduction	1228	990	
modular addition	340-470	105-235	
modular subtraction	340-470	105 - 235	

*modular reduction algorithm takes advantage of special form of the modulus


Elliptic curve operations

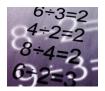
- Point representation coordinates systems
- Point addition and doubling
- Scalar point multiplication sP
- This is the time critical operation that requires optimization
- If P is fixed we can use precomputation to

speed up the calculations


ECC implementations

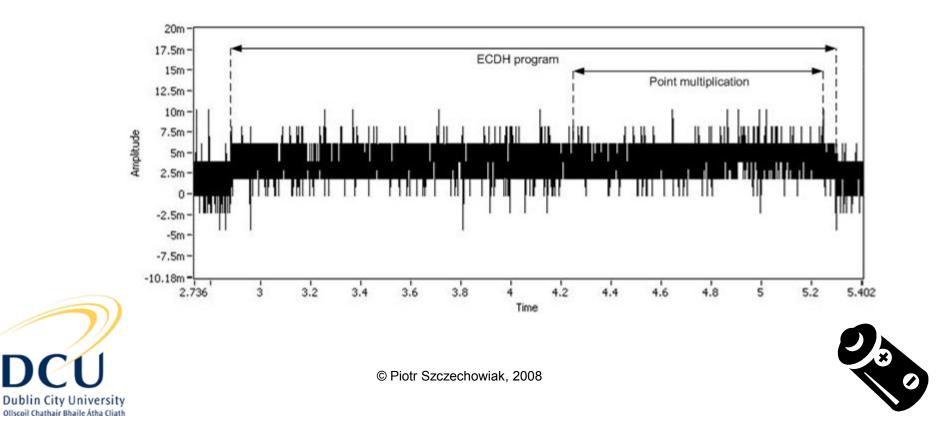
- NIST k-163 Koblitz curve over *GF(2¹⁶³) -* no expensive point doublings required for point mul.
- y²=x³-3x+157, p=2¹⁶⁰-2¹¹²+2⁶⁴+1 Solinas prime
- -3 coefficient set to reduce the number of operations in point doubling routine
- NAFs and projective coordinates

Precomputation with window width 4



Point multiplication results

Performance of point multiplication using 160bit curve over the prime field and 163bit curve over the binary field


	MIC	CA2	Tmote Sky		
	Binary field	Prime field	Binary field	Prime field	
Computation time	2.16s	1.27s	1.04s	0.72s	
Current draw	7.86mA	7.88mA	3.45mA	$3.68 \mathrm{mA}$	
Energy consumption	50.93mJ	$30.02 \mathrm{mJ}$	10.76mJ	$7.95 \mathrm{mJ}$	
ROM	32.4KB	46.1KB	32.1KB	31.3KB	
RAM	1.7KB	1.8KB	2.8KB	$2.9 \mathrm{KB}$	

Energy consumption

Current levels on Tmote Sky during example ECDH program execution

Pairing-based crypto

- A new idea in Public Key Cryptography
- Traditional Public-key systems like RSA are too expensive for WSNs
- Pairing-based crypto is more flexible than methods based on integer factorisation and discrete logarithm
- Pairings facilitates creation of novel protocols (IBE)
- To calculate pairings we need efficient algorithms and suitable elliptic curves

Pairing-based crypto

- Pairing is denoted as ê(P,Q) where P and Q are points on an elliptic curve
- It has the property of bilinearity

 $\hat{e}(aP,bQ) = \hat{e}(bP,aQ) = \hat{e}(P,Q)^{ab}$

- Given aP and P it is hard to find a
- Given $\hat{e}(P,Q)^a$ and $\hat{e}(P,Q)$ it is hard to find a

Application to WSN security

- Simple protocol (Sakai-Oghishi-Kasahara)
- Original network deployer has a secret s and issues node A with sA, where A is node's ID hashed to a curve point
- Node B is issued with secret key sB
- Both nodes share a common key now:

ê(A,sB)=ê(B,sA)

No interaction required!

Advantages

- Nodes communication limited to minimum energy savings on expensive radio transmission
- Simplified key infrastructure
- Scalability to large numbers of nodes in the network
- Simple addition of new nodes
- Resistance against physical node capture
- High complexity implementation challenge,

performance issues

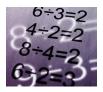
Pairings implementation

- In the binary field η_T is one of the fastest known pairings (trunkated Miller's loop)
- In our implementation, y²+y=x³+x supersingular curve over GF(2²⁷¹), k=4
- In the prime field we implemented the Tate pairing over a non-supersingular MNT curve y²=x³-3x+B, k=4, GF(p), p - 160 bit prime
- Type 3 pairing application in more demanding WSNs

Pairings implementation

- Implementation based on the MIRACL library
- Large integers and binary polynomials multiplication – the most time-critical arithmetic routines
- The efficiency of these operations has a crucial influence on the overall pairing performance
- Multiplication implementation in assembly language gives 50%-70% decrease in pairing execution time

Pairing results



Results for pairing implementation over prime and binary fields on MICA2 Tmote Sky and Imote2 platforms

	MICA2		Tmote Sky		Imote2 (13MHz)		Imote2 (104MHz)	
	$\eta_T(P,Q)$	e(P,Q)	$\eta_T(P,Q)$	e(P,Q)	$\eta_T(P,Q)$	e(P,Q)	$\eta_T(P,Q)$	e(P,Q)
Timing	2.66s	7.43s	1.71s	4.61s	0.46s	0.62s	0.06s	0.08s
ROM	47.41KB	60.91KB	23.66KB	34.88KB	29.55KB	44.40KB	29.55KB	44.40KB
STACK	3.17KB	3.39KB	4.17KB	3.39KB	4.12KB	3.75KB	4.12KB	3.75KB
Current draw	7.86mA	7.88mA	3.45mA	3.68mA	31mA*	31mA*	66mA*	66mA*
Energy usage	62.73mJ	175.65mJ	17.70mJ	50.89mJ	12.12mJ	16.34mJ	3.76mJ	5.02mJ

* - manufacturer data

Conclusions

- In WSNs CPU capabilities, memory and energy resources are very limited (lightweight cryptosystem needed)
- Most of the WSN applications require high level of security existing solutions are insufficient
- With pairings now viable on mote platforms new cryptographic schemes are possible
- Security parameters should be set just beyond current published broken records to achieve a secure system

Conclusions


beneficial

Ollscoil Chathair Rhaile Átha Cliath

- ECC and PBC can help provide appropriate security levels in sensor networks
- We have tested the viability of software implementation of basic ECC and PBC primitives on different 8, 16 and 32 bit platforms
- Pairings can be calculated in as fast as 2.66s on a tiny
 8-bit WSN mote (time comperable with point mul.)

Thank you for your attention

