Magma Tutorial for-pairing-cryptographers.

Part | - Introduction

Luis J Dominguez Perez

Cinvestav, Mexico

September, 2011

Table of contents

@ Introduction
© Matrices
e Functions, Procedures, and Package.

@ Prime numbers

The Magma shell

4/ 30

Luis J
Dominguez The typical way of running magma is using its interactive

e shell, which behaves similarly to those of Python, Perl or
Introduction Sage,

@ Magma does not provides a graphical interface, however,
it is possible to integrate it into Sage to produce graphics.

@ The command shell symbol is >, and the command
delimiter is ;.

@ Since we are using a delimiter, we can have several
commands in the same line.

The Magma program

We can have several Magma copies of the program at the
same time.

Introduction

@ Magma uses one and only one core per copy of the
program.

@ Each copy of Magma runs in a non-intrusive environment.
(We can run 3 copies of Magma in a Quad core and still
have a responsible system, which is useful for running a
test with several set of inputs).

Operators

Arithmetic Operators
@ Assignment :=
Introduction

e +,—,%,/; mod, div, cat, etc.

@ + =,— = =

Boolean operators

@ eq, ne, not, and, or, in

For the Binary Operations, | convert the number into a string
sequence of the bits.

Hands-on

Open magma and do the following exercise:

@ X «— 2

Introduction
o y —X
@ X <—Z

ZHX2

°
@ a—1/2
°

b—al

Use “variable”; to display its value.

More printing
o printf "A=%o\n" x; //as in ¢/c++

Introduction
e Sprintf(" A=%o0\n" x);

e PrintFile(” MyFile" ,Sprintf(" %o0,%0\n",3,5));

Use “%h" to display values in hexadecimal.

For
@ for i:=1 to 10 do ... end for;
e foriin [1..9] do ... end for;
@ fori:=10to 1 by -1 do ... end for;

Introduction

While
@ while i It 10 do ... end while;

Repeat until
@ repeat ... until i It 10;

Conditionals

if
introduction o ifi eq 10 then ... end if:
@ if i eq true then ... else ... end if;

@ ifieqlthen... elifieq0then...else...endif;

switch

@ case a: when: ... else: ... end case;

L:=Open("NOTICE" " r");
Introduction (] Wh||e true dO
o s:=Gets(L);
o if IsEof(s) then break; end if;
e prints;
end while;
Flush(L);

Magma will do the cleaning, but it is always better to explicitly
close a file (specially when writing in it).

Hands-on

Introduction

Exercise:

o Create a file with the multiplication tables.

Sets and Sequences

The difference:

i:={IntegerRing() | 1,2
i:={IntegerRing() | 1,3,
Matrices

i:=[IntegerRing() | 1,5,3];

Autofilling it:

T := [Integers() | x"2+x+1 :
xin { -3 .. 2 by 1} 1;

Accessing elements:
e a[1][2];
e a[l,2];

both are OK

More on sets and sequences

New operators:
@ join
@ meet

Matrices @ cat

Modifying the set
@ Append, Insert, Include, Exclude
@ Prune, Remove

@ Sort, Reverse, Rotate

Getting information

@ Maximum, Minimum, #, Random, Index, Parent,
Universe, Category, etc.

Matrices

Generating a matrix:

Matrices Matrix(IntegerRing(), 2, 2, [0,0,0,0]);

Matrix(RationalField(), 5, 10, [<1,2,23>,
<3,7,11>, <5,10,-1>1);

Matrix(IntegerRing(), 10, 10, [<2%i-1, 2%j-1, i*xj>:
i, j in [1..5]11);

Matrices |l

Generation shorcuts:

ZeroMatrix(Ring,m,n)
Matrices

DiagonalMatrix(Ring,n,Sequence)
ScalarMatrix(n,value)

SymmetricMatrix(Sequence)

Operators:
@ NumberOfRows

@ NumberOfColumns

Hands-on

Matrices

Exercise:

o Create a file with the multiplication tables. (using
matrices)

Functions

Two ways to declare a function:
@ £ := function
@ function f

Functions, Both end with end function;

Procedures,
and Package.

There's a difference though, one may need to use $$ to write a
recursive function.

Actually, there's a third one:

o f := func< x| x"2>

Procedure

The same principle applies for the procedure, exempt that:

@ It does not return statements

Functions,
Procedures,
and Package.

@ It supports parameters as reference (~a)

Optionally, we can forward a definition of a procedure with
forward f;

Hands-on

Exercise:

Functions,
Procedures,

and Package. @ Create a function and a procedure to get the
multiplication tables.

Package |

A package, is a function or procedure which will be compiled by
Magma at loading time.

Functions,

P d 5 . .

and Package. A package is much more faster than a regular function or
procedure, since it requires the user to specify the data-types of

the arguments.

We “Attach” or “Detach” at runtime the file containing our
package.

Package I

The syntaxis is as follows:

intrinsic NAME(ARG-LIST) [-> RET-LIST]
{ COMMENT-TEXT }

statements

Functions, end intrinsic;

Procedures,
and Package.

For example:

intrinsic myGCD(x::RngIntElt, y::RngIntElt)
-> RngIntElt
{ Return the GCD of x and y 1}
return ...;
end intrinsic;

Please note that the documentation is mandatory

Associative Array

An associative array is a type of array with a named index.
Useful for look up tables.

Functions,

Procedures, H H
i @ AssociativeArray
@ Remove
o Keys

@ IsDefined

Hands-on

Functions, Exercise:

Procedures,
and Package.
* o Create a package with the multiplication tables as a lookup

Prime numbers

Generating a prime number
@ NextPrime
@ PreviousPrime
@ NthPrime

@ RandomPrime

Prime
numbers

Primality test:
@ IsPrime
@ IsProbablePrime
@ IsPrimePower

@ Factorisation

Hands-on

Exercises:

(write down a function to)
@ Determine if a number is almost prime

Prime
numbers

@ Compute the MCM of two numbers
e Compute the mcm of two numbers
°

Compute the Euler totient function

More hands-on

Exercises:

@ Toy-example of RSA

Prime
numbers

Verify:

(a®)¢ = amod n, (a?)¢ = amod n, and a°@ = a mod n.
for any random a.

Solution

RandomPrime(100)

Setup e

d1 «InverseMod(e,p-1)

d2 «—InverseMod(e,q-1)
GCD(p-1,9-1)

TrialDivision(p-1) for common factors

Prime
numbers

d1 mod common factor
d := CRT([d1,d2],[p-1,(g-1) div common factor]) or
d := InverseMod(e,LCM(p-1,9-1));

Error Support

29/ 30

" When magma encounters a runtime error, it stops the
+ execution of the program; if the program was running for a
’“ long period of time, then this is catastrophic.

procedure always_fails(x)
error Error(x);

end procedure;

try
always_fails(1);

catch e

Prime
numbers

error "Error",e‘Object;
end try;

After catching a runtime error, Magma continues the execution
of the program.

End of Part |

Prime
numbers

There's part |l

	Introduction
	Matrices
	Functions, Procedures, and Package.
	Prime numbers

