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Exponentiation

• Research to speed up RSA, and the computing of elements in
other cyclic groups of very large size -such as elliptic curves,
and Fibonacci, or Lucas sequences- is usually pointed towards
improving the multiplication.

• We aim to reduce the number of multiplications for a given
fixed power, and series of powers.

In particular, we aim to optimise the final exponentiation in the
pairing: (pk − 1)/r ∈ F∗pk
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Intro

A fast method to compute f e ∈ F∗pk is the square-and-multiply in
which we can reuse intermediate values in the computation

Require: Positive integer e, f ∈ F∗pk

Ensure: f e ∈ F∗pk

1: g ← 1
2: ℓ← ⌊log2(e)⌋
3: for i = ℓ− 1 downto 0 do
4: g ← g2

5: if ℓi = 1 then
6: g ← g · f
7: end if
8: end for
9: return g
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Addition chains

A probably better approach is the use of addition chains:

Definición
An addition chain for a given integer e is a sequence
U = (u0, u1, u2, . . . , ul) such that u0 = 1, ul = e y uk = ui + uj

for k ≤ l, and some i, j with 0 ≤ i ≤ j.
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Chain examples - 1

• Consider the following Fibonacci sequence: {1, 2, 3, 5, 8, 13,
21}. This is a addition chain for e = 21 which contains 7
elements. Each element is obtained from the addition of the
previous two elements.

• An alternative chain is: { 1, 2, 4, 8, 16, 20, 21 }. In this case,
the element e = 21 can be constructed using 4 doubling
operations and 2 addition operations, but has the same length.
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Chain examples - 2

• Now, consider e = 34, the Fibonacci sequence grows by one
element: { 1, 2, 3, 5, 8, 13, 21, 34 }. We can also construct the
following addition chain to reach 34: { 1, 2, 4, 8, 16, 32, 34 }.
This is a shorter chain and makes use of addition and doubling
operations instead of only addition operations.
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Chain examples - 3

• For the previous e examples, it is trivial to find a short addition
chain with exhaustive search

• As e grows, the dificulty to determine if we have the shortest
addition chain grows significantly (in deed, determining if we
have the shortest chain is a NP-complete problem)
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Addition Sequence

Addition Sequence
Given a list of integers Γ = {v1, .., vl} where vl ≥ vi for all
i = 1, .., l − 1, an Addition Sequence for Γ is an addition chain for
vl containing all elements of Γ. The last element of the sequence
is the exponent e = vl.

Addition sequences, otherwise known as multi-addition-chains, are
used to speed up the final exponentiation and for fast hashing to a
point in G2. To use these implementation improvements it is
necessary to have code to generate the multi-addition chains for a
given list of integers.
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Note
• We refer to the set of integers which we wish to incorporate
into an addition sequence as a “proto-sequence”.

• Some of its elements cannot be constructed by the addition of
any other member of the set.
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Solution methods

Different methods exist to construct addition chains
• Bos and Coster presented a set of algorithms to construct
addition chains.

• Bernstein presented a method for multi-scalar multiplication
which constructs short addition sequences without the use of
the Bos and Coster heuristic methods.

• Cruz-Cortés et al. presented a new approach to find short
addition chains using Artificial Immune Systems

• Dominguez Perez y Scott extended Cruz-Cortez et al. method
to addition sequences.
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Bos and Coster

• Bos and Coster, suggested that an addition chain computation
for an RSA exponent has to be fast to be useful, as one needs a
different chain every time. In Pairing-Based Cryptography, this
is not always true;

• They proposed a “Makesequence” algorithm. This algorithm
starts with a proto-sequence 1, 2 and e, which we complete
with at least one of the following methods:
◦ Approximation
◦ Division
◦ Halving
◦ Lucas.
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Bernstein

• Another similar approach to the Bos and Coster method is to
subtract elements from e. Bernstein presented a method for
optimizing linear maps modulo 2, which incidentally, can be
used to find a short addition chain. This is an example of the
binary method.

• Instead of using subtractions it uses an in-place XOR with the
two largest values in the chain (or a substraction), and
repeating the operation until all of the elements are zero.
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Artificial Intelligence (Heuristic)

• To automate the multi-addition chain code generation, we can
use Artificial Intelligence to select which integers must remain
in the sequence, and which can be discarded, this will
continuously improve the sequence.
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A new method

• The rationale behind Algorithm is to maximise the number of
doubling steps associated to the output addition-subtraction
sequence O to be produced, by processing separately the even
and odd elements of the input set U in a backward fashion, i.e.,
from the largest to the smallest element.

Essentially:
• Clasify even and odd elements
• Initialise with largest elements
• Main loop: Valid, and invalid elements
◦ If invalid: include the half (or the difference with the closest

element), and check for this element
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Require: An ordered set of positive integers
U := {e1, e2, · · · , es−1, es}

Ensure: A valid addition-subtraction chain O
for the input set U

1: Ue := {∀ ei ∈ U |ei mod 2 = 0}
2: Uo := {∀ ei ∈ U |ei mod 2 = 1}
3: O := ∅; Te := Max(Ue); To :=

Max(Uo);
4: while Te ∪ To ̸= ∅ do
5: ∆ = ∅; at := Max(Te, To);
6: if IsNotValid(at, Ue ∪ Uo ∪O) then
7: if IsEven(at) then
8: L := Ue ∪ {∀ ei ∈

O|ei mod 2 = 0};
9: else
10: L := Uo;
11: end if
12: for each s ∈ L do
13: ∆ := ∆ ∪ {|at − s|};
14: end for
15: Lowest:=GetLowest(∆);

16: while IsEven(Lowest) and
IsNotValid(Lowest,Ue ∪Uo ∪O) do

17: O := O ∪ {Lowest};
18: Lowest := Lowest/2;
19: end while
20: if IsOdd(Lowest) then
21: Uo := Uo ∪ {Lowest};
22: else
23: O := O ∪ {Lowest};
24: end if
25: end if
26: if IsOdd(at) then
27: Uo := Uo − {at};
28: else
29: Ue := Ue − {at};
30: end if
31: O := O ∪ {at};
32: Te := Max(Ue); To := Max(Uo);
33: end while
34: O :=Sort(O);
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Example

U = {62, 87, 112, 248, 298}
at Ue Uo Lowest Te To O

- {62, 112, 248, 298} {87} - 298 87 ∅
298 {62, 112, 248} {25, 87} 50 248 87 {50, 298}
248 {62, 112} {17, 25, 87} 136 112 87 {34, 50, 68, 136, 248, 298}
112 {62} {17, 25, 87} - 62 87 {34, 50, 68, 112, 136, 248, 298}
87 {62} {17, 25} - 62 25 {34, 50, 68, 87, 112,

136, 248, 298}
62 {∅} {3, 17, 25} 6 6 25 {6, 34, 50, 62, 68, 87,

112, 136, 248, 298}
25 {∅} {1, 3, 17} 8 ∅ 25 {2, 4, 6, 8, 25, 34, 50, 62,

68, 87, 112, 136, 248, 298}
17 {∅} {1, 3} 16 ∅ 17 {2, 4, 6, 8, 16, 17, 25, 34, 50, 62,

68, 87, 112, 136, 248, 298}
3 {∅} {1} 2 ∅ 3 {2, 3, 4, 6, 8, 16, 17, 25, 34, 50, 62,

68, 87, 112, 136, 248, 298}
1 {∅} {∅} - ∅ 1 {1, 2, 3, 4, 6, 8, 16, 17, 25, 34, 50, 62,

68, 87, 112, 136, 248, 298}
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Comparison - 1
The Crypto’89 by Bos and Coster solution to {47, 117, 343, 499,
933, 5689}, is

{1,2,4,8, 10, 11, 18,36, 47, 55, 91, 109, 117, 226, (1)

343, 434, 489, 499, 933, 1422,2844,5688, 5689},

whereas our Algorithm has the following solution:

{1,2,4,8, 7,16,32, 39, 47, 63,64,78, 117,126,128, (2)

156,256, 217, 343,434, 499, 933, 1189,2378,4756,

5689}.

If M = 3S, the cost of Eq. (1) would be 16M + 6S = 54S,
whereas the cost of Eq. (2) would be 11M + 14S = 45S.
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Comparison - 2

• We used our algorithm to improve the final exponentiation in
the KSS families of elliptic curves.

• Our results show a lower number of operations for the hard
part of the final exponentiation in the Fuentes-Castaneda et al.
method.

Curve Benger Fuentes-Castaneda et al. This work

KSS-16 83M 20S - 70M 14S
KSS-18 62M 14S 52M 8S 52M 6S
KSS-36 - - 178M 68S
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Vector Addition Chains

Definición
A Vector Addition Chain is the shortest possible list of vectors
where each vector is the addition of two previous vectors. The
last vector contains the final exponent e.

Let V be a vector chain, and m be the dimension of every vector.
The vector addition chain starts with Vi,i = 1 for i = 0 . . . m− 1:
[1, 0, 0, . . . , 0],[0, 1, 0, . . . , 0],. . .,[0, . . . , 0, 1]; we then proceed
adding any two previous vectors to form a new vector in the
chain, and continue until Vj,1 = e with j typically > m.
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Olivos method

Given an addition chain Γ = {1, 2, 6, 12, 18, 30} and its
corresponding addition sequence s = {1, 2, 3, 6, 12, 18, 30, 36},
we construct a vector chain: v = {[1, 0], [0, 1], [1, 1], [2, 2], [3, 2],
[6, 4], [12, 8], [18, 12], [30, 20], [36, 24]}.
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c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13
t0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 ←
t1 2 2 0 1 0 0 0 0 0 0 0 0 0 0 ←

t2 3 2 1 1 1 0 0 0 0 0 0 0 0 0

t3 6 4 2 2 2 2 1 0 1 0 0 0 0 0 ←

t4 12 8 4 4 4 4 2 2 0 1 1 0 0 0 ←

t5 18 12 6 6 6 6 3 2 1 1 0 1 1 0 ←

t6 30 20 10 10 10 10 5 4 1 2 1 1 0 0 ←

t7 36 24 12 12 12 12 6 4 2 2 0 2 2 2 ←
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• To construct the vector chain matrix shown, we start with
[1, 0] and [2, 2].

• To compute row t2 = [3, 2], we set (t0, c0) = 1 and (t1, c1) = 1
by induction (prioritizing a doubling over an addition).

• This means that t2 = t0 + t1, which, translated into vector
operations is equivalent to [3, 2] = [1, 0] + [2, 2].

• The type of operation is expressed in (t2, c2), (t2, c3) 1 denotes
an addition, 2 denotes a doubling.
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• The remaining cells of the column, if any, are the summation
the corresponding cells in the column.

• For example, in (t5, c6−to−c7) = [3, 2] since t5 = t4 + t3,
hence [3, 2] = [1, 0] + [2, 2].

• The arrows at the right of the table denote the rows containing
the elements in Γ.
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Conclusion

• 15
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