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Group

A group < G, ◦ > is a non-empty set G together with a binary
operation ◦ such that:
• It is closed

• it is associative

• has an identity and inverse element

A group G is Abelian (or commutative) if a ◦ b = b ◦ a,
∀a, b ∈ G.

A group is finite if G has a finite number of elements. This is
called the order of G and denoted as |G|.
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Finite field

A field F is a group with +, × operations as (F, +) and
(F\{0},×) which also satisfies:
• Additive identity and inverse

• Multiplicative identity and inverse

• Commutative

i.e. the set of integers modulo p-prime, also denoted as Fp, is a
finite field.
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Elliptic curves over finite fields

Let p-prime > 3. The elliptic curve

y2 = x3 + ax + b, over Fp

denoted by E(Fp), is the set of solutions x, y ∈ Fp satisfying

y2 ≡ x3 + ax + b mod p

where a, b ∈ Fp and

4a3 + 27b2 ̸= 0 mod p

together with the point O

The order, or number of points on E(Fp) is denoted as
#E(Fp) = p + 1± t and t ≤ 2√p.
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Types of elliptic curves (over C)

With 3 distinct real roots With 1 real and 2 complex roots

With a triple real root
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The group law on EC
Suppose P = (x1, y1) and Q = (x2, y2) with P, Q ∈ E(Fp) P + Q = (x3, y3),
where x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1

λ = y2−y1
x2−x1

λ = 3x2
1+a

2y1

P + Q = O or Q = −P
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Families of elliptic curves

Let the subgroup size be the large prime number r | #E. Let k
be the embedding degree, r | (pk − 1).

A pairing-friendly elliptic curve has a small embedding
degree and a large subgroup size1.

Random curves cannot meet these requirement. A family of
pairing-friendly elliptic curves use polynomials as parameters and
suit a required security level.

1k < 50, r 160-bits
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KSS curves, k=18

Kachisa et al. [2008] presented a new method for constructing
pairing-friendly elliptic curves.

The parameters of these types of curves are:
• t(x) = (x4 + 16x + 7)/7
• p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 +

1763x + 2401)/21
• r(x) = (x6 + 37x3 + 343)/343

• Let ρ ≈ deg(p(x))
deg(r(x)) = 4/3.

p(x) and r(x) represent primes and t(x) represents integers
when x ≡ 14 mod 42
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More curves

Other families of pairing-friendly elliptic curves with different
embedding degrees:
• MNT curves
• Freeman curves
• BN curves
• KSS curves

For an extended description of these and other families of
pairing-friendly elliptic curves, refer to Freeman et al. [2006]
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How does it started?

In 1984, Shamir posed a challenge:

“create a cryptographic system that permits any two users to
comunicate securely and to verify each other’s signatures without
exchanging private or public keys, without keeping key
directories, and without using the services of a third party.”

This sounds impossible!
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How does it started? 2

However, in 2001, Boneh and Franklin, solved this challenge using
cryptographic pairings. They presented what it is now called
Identity-Based Encryption.

... also, in 2000, Antoine Joux presented a breaking-through paper
involving pairings, but we are focusing in this talk on
Identity-Based Encryption.
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Pairing-Based Cryptography

Identity-Based Encryption is a type of the Pairing-Based
Encryption, this is, we use some cryptographic function called the
pairing.

In essence, a cryptographic pairing is a particular function of
groups over elliptic curves.

⟨·, ·⟩ : M ×M −→ R
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The bilinear pairing can be used as a primitive to build
cryptosystems with certain functionality. Examples of use:

• Short signatures schemes,
• Identity-Based Encryption,
• Attribute-Based Encryption,
• and other protocols already deployed.

Some protocols are impossible with currently deployed
technology, in other cases, they are faster.
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Example of PBC

Identity-Based Encryption case:

• Enables any pair of users to communicate securely and to verify
each others’ signatures without exchanging private or
public keys;

• Needs no key server repositories;
• Requires a trusted server for key generation only.
• No certificate required to bind the public key to the
identity.
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Implementation issues...

Pairing-Based Cryptography has become relevant in
industry.

Although there are plenty of applications, however efficiently
implementing the pairings function is often difficult as it requires
more knowledge than previous cryptographic primitives.

There are many implementation issues just with the primitive
itself!
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... implementation issues

• Non-familiar technology;
• Lack of programming framework;
• More difficult to understand compared to the already
deployed technology;

• Unavailability of implementations with novel (faster)
computing methods;

• Complex area.

Depending on the scenario, a developer must choose from a
selection of parameters and apply the corresponding
optimizations for efficiency...
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What to do when... ?

• bandwidth use is expensive;
• low memory is available;
• a slow processor is used (old);
• a small processor (in bits) is the only option;
• we have a Desktop environment;
• we have a device with multiprocessors;
• a higher security is required;

Some basic operations that are cheap in some environments are
expensive in others!
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Protocol primitives

The operations involved in a Pairing-Based protocol are:
• The pairing function
• Elliptic Curve point addition and point doubling
• Scalar-point multiplication
• exponentiation
• hash onto a curve
• hash into a subgroup
• matrix conversion
• boolean function analysis. . .

Many more!
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Some background

Let do a bit of maths...
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Scalar-point multiplication

Let P be a point in a curve E and n ∈ Z, n ≥ 0. Define [n]P = P
+P + · · · +P . The order of the point P is the smallest n such
that [n]P = O.

Denote < P > the group generated by P . In other words,

< P >= {O, P, P + P, P + P + P, . . .}

Let Q ∈< P >. Given Q, find n such that Q = [n]P is
hard.
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Applying the algorithm
The traditional method for computing the scalar-point
multiplication is the Double-and-Add method.

Algorithm 1 Traditional scalar-point multiplication

Require: Positive integer k in base 2 representation, a point P .
Ensure: [k]P
1: Q← 0
2: for i = l − 1 downto 0 do
3: Q← [2]Q
4: if ki = 1 then
5: Q← Q + P
6: end if
7: end for
8: return Q
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Speeding up

Generic method to speed up the exponentiation in this context:
• Precomputation
• Addition chains whenever the scalar is known
• Windowing techniques
• Simultaneous multiple exponentiation techniques.

Replacing the binary representation of the scalar into one with
fewer non-zero terms.
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Speeding up II

Curve specific methods:
• A field defined with a (pseudo-)Mersenne prime.
• Field construction using small irreducible polynomials
• Point representation with fast arithmetic
• EC with special properties.
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Pairing definition

A pairing is a map: G1 ×G2 → GT .

These groups are finite and cyclic. G1 and G2 are
additively-written and at least one is of prime order r. GT , is
multiplicatively-written and of order r.

Properties:
• Bilinearity
• Non-degeneracy
• Efficiently computable
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Pairing properties

Properties:
• Bilinearity

e(P + P ′, Q) = e(P, Q) × e(P ′, Q)

e(P, Q + Q′) = e(P, Q) × e(P, Q′)

• Non-degeneracy
∀P ∈ G1, P ̸= O: ∃Q ∈ G2 s.t. e(P, Q) ̸= 1

∀Q ∈ G2, Q ̸= O: ∃P ∈ G1 s.t. e(P, Q) ̸= 1 e(P, Q) ̸= 1

• Efficiently computable
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(Ab)Using the pairing

The most important property of a pairing is:

e([a]Q, [b]P ) = e([b]Q, [a]P ) = e(Q, [ab]P ) = e(Q, P )ab

where Q ∈ G2, P ∈ G1, and the result is in GT .

In our context, the G2 group is larger than G1. The group GT is
also larger and has a different set of operations.
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(Ab)Using the pairing II

• Since G2 is larger than G1, it is wise to exchange operations
from one group to the other.

• GT is significantly larger and has a different set of operations,
we also try to avoid it, but we keep it handy, because...

• An operation in GT is cheaper than computing the pairing itself.

In short, we use the groups at will.
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Using the pairing III

In each pairing-based protocol, we have to use the pairing
function in a different way.

In some cases, we have to compute several-to-many pairings, in
other cases, the pairings have the same parameters, in other
cases, we have to add the results.

For this, we design the pairing function to be a:
• Multipairing
• Known-point pairing
• or we mix-up several parameters into a single pairing.

Luis Dominguez luis.dominguez@cimat.mx Introduction 30/48
30/48



Contenido, sección 3

Introduction

Pairings in cryptography

Pairing protocols

Appendix

Luis Dominguez luis.dominguez@cimat.mx Introduction 31/48
31/48



Encryption for an identity

AIR MAIL

ldominguez@computacion
.cs.cinvestav.mx

KeyGen
Server
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Attribute-Based Encryption

Fuzzy Identity-Based Encryption. Also known as
Attribute-based encryption.
• An identity is a set of attributes
• An entity is valid if it presents a minimum number of attributes
• Better for sharing a small secret: a symmetric key.
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Attribute examples

G.P.

Nurses

Owner

Foreign
G.P.

"Curious" guy
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Attribute examples

G.P.

Nurse

G.P.in
Acapulco

Me

OK

BAD
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Boneh’s short signatures

Boneh’s short signatures are based on the mathematical problem:

Given (P, [a]P, Q, [b]Q), it is hard to decide if a = b

The computational variant of this hard problem is:

Given (P, Q, [n]Q), compute [n]P

Boneh, Lynn and Shacham constructed a short signature scheme
based on this problem as follows:
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... the steps

Key generation. Choose n ∈R Zr, set R← [n]Q. The public
key is: Q, R. The secret key is n

Sign. Map to a point the message to sign as PM , set
SM ← [n]PM . The signature is the x-coordinate of SM .

Verify. Given the x-coordinate of SM , find ±S. Decide:
e(Q, S) ?= e(R, h(M))
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e-voting system based on pairings

An e-voting system based on short and blind signatures by
Lopez-Garcia and Rodriguez-Henriquez.

Auth
Server
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e-voting system based on pairings

With a blind signature, we can cast our vote in the blank ballot.

Voting
Server

Verify
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Conclusions

• The fastest pairing function is not the panacea for some
protocols

• Efficient simultaneous pairing implementation is the key to
some protocols

• Scalar point multiplication is also a key primitive.
• Protocols with G1 ̸= G2 can also be implemented efficiently
• PBC is cheaper than other solutions
• We can do 5 S.M. in G1, 3 in G2, and less than 2 expo. in GT at
approximately the same cost of a pairing
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Future work

• More protocol/pairing implementations
• Evaluate the pairing function in a protocol context
• Evaluate the ancillary functions around the pairing
• Pairings with G1 ̸= G2 should be encouraged
• Encourage PBC
• Consider multicore environment (ongoing work)
• More optimizations on the ancillary functions.
• Lean modular reduction (a.k.a. Lazy reduction)
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Question time

• Thank you for your attention.

▼
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Timings

Using a Intel Core i7 2600K, Sandy Bridge

Operation Clock cycles

RegularPairing 2108 Kclk
New Pairing 1550 Kclk

G1mul K 232.89Kclk
G1mul U 304.44Kclk

G2mul K 378.26Kclk
G2mul U 535.69Kclk

GTexpo K 617.32Kclk
GTexpo U 931.98Kclk
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Detailed timings

Operation Clock cycles

G1 Add JJA 1.92Kclk
G1 Add JJJ 2.44Kclk
G1 Dbl A 1.20Kclk
G1 Dbl J 1.44Kclk

G2 Add JJA 5.11Kclk
G2 Add JJJ 6.70Kclk
G2 Dbl A 3.03Kclk
G2 Dbl J 2.92Kclk

GT Sqr 3.78Kclk
GT Mul 9.55Kclk
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Timings of Water’s CPABE

LSSS ABE Protocole
CPU cycles

Theoretical Expected Measured

Encrypt 5 922 K 6 105 K 6 378 K
Keygen 1 989 K 2 014 K 2 114 K

Decrypt (∆ = 1) 8 716 K 9 101 K 9 489 K
Decrypt (∆ ̸= 1) 9 612 K 10 051 K 10 438 K

Table : Cost of the protocol steps
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Timings of the e-voting protocol

Scheme # Cryptographic operation # Cycles

Kharchineh 4 RSA-public 6,053,528
& Ettelace 6 RSA-private 253,251,894

4 DLP-exponentiations 87,135,920
Total 346,441,342

Li et al. 15 RSA-public 22,700,730
9 RSA-private 379,877,841

Total 402,578,571
Chung & Wu 5 RSA-public 7,566,910

4 RSA-private 168,834,596
Total 176,401,506

The proposed scheme 1 scalar multiplication in G2 380,000
6 scalar multiplications in G1 1,800,000
6 map-to-point functions H1 1,890,000
8 bilinear pairings 14,630,000

Total 18,700,000



Detailed e-voting system... 1/2

An e-voting system based on short and blind signatures by
Lopez-Garcia and Rodriguez-Henriquez.

Voter Authentication Server (AS)
Authentication phase

b, dt ∈ Zr

Vt = dtQ ∈ G2
m = m2s(Vt) ∈ {0, 1}1016

M̃ = bH1(m) ∈ G1
SM̃ = dV M̃ ∈ G1

{IDV , t, M̃ , SM̃}
−→

e(Q, SM̃ ) ?= e(VV , M̃)
{t, S̃} S̃ = dASM̃ ∈ G1

SVt = b−1S̃ ∈ G1 ←−
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... detailed e-voting system 2/2

Voting phase
Voting server (VS)

Sv = dtH1(v) ∈ G1

B = {Vt, SVt , v, Sv}
{B}−→ m = m2s(Vt)

e(Q, SVt)
?= e(VAS , H1(m))

e(Q, Sv) ?= e(Vt, H1(v))
a ∈ Zr

ACK = H(Vt||SVt ||v||Sv||a)
SACK = dV SH1(ACK)

{ACK, SACK}
←−

e(Q, SACK) ?= e(VV S , H1(ACK))
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