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Software implementations

There are already some libraries and software frameworks to
efficiently compute the cryptographic pairings and the ancillary
functions.
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RELIC-toolkit

• RELIC is a modern cryptographic meta-toolkit with emphasis
on efficiency and flexibility, and can be used to build efficient
and usable cryptographic toolkits tailored for specific security
levels and algorithmic choices.

• In terms of pairing-based cryptographic, RELIC implements
several types of pairings and pairing-based protocols

• This is a stable, and mature library
• The main author made the OpenSSL implementation

https://github.com/relic-toolkit/relic

Luis Dominguez luis.dominguez@cimat.mx Introduction 4/48
4/48

https://github.com/relic-toolkit/relic


Panda
• PandA is a framework for pairing computations and arithmetic
in the related groups.

• Provides the definition of an API together with tests and
benchmarks.

• It follows the eBats API specification

https://www.microsoft.com/en-us/research/
publication/panda-pairings-and-arithmetic/
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MIRACL

• The MIRACL Crypto SDK – is a C software library, it is the
gold standard open source SDK for elliptic curve cryptography
(ECC). Besides PC, MIRACL enables developers to build
security into highly constrained environments, including
embedded, mobile apps and SCADA.

http://www.miracl.com/miracl-sdk
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Sage math software

• Sage is a mathematical open-source software with GPL license.
It combines the power of many open-source packages in a
single Python interface.

• It tries to be a viable alternative to Magma, Maple,
Mathematica, and Mathlab.

http://www.sagemath.org
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Sage Installation

• The installation is easy, and there exists installers ready for
OSX, Windows, Linux, and others.

• The installer is self-contained, contains any tool required for
itself.

• However, it requires too many disc space: ∼580 MB from the
installer, and a bit more that 2.3GB on disc.

• In the case of Windows, the installer is just a Linux virtual disk
with Sage already installed.

This means, you cannot use it for commercial products... but you
can convert your code to pure Python/Cython
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Magma

Magma is a large, well-supported software package designed for
computations in algebra, number theory, algebraic geometry and
algebraic combinatorics.
• Has support for cryptographically large numbers
• Is fairly fast enough to do some computations
• It has exclusivity of some really hard to implement algorithms
• It’s costly unless you are in a developing country

http://magma.maths.usyd.edu.au/magma/
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Plan B

• Hand-code in C/C++/ASM the finite field arithmetic
• ... and the rest of the functions (it’s fun, you should it, specially
if you don’t trust third parties)
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Family of curves

The Barreto-Naehrig (BN) family of elliptic curves is ideal for
implementation. These family of curves permits the use of small
parameters, while achieving large security levels.

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1;
r(x) = 36x4 + 36x3 + 18x2 + 6x + 1;
t(x) = 6x2 + 1.

This family of curves has an embedding degree k = 12 and
ρ = deg p(x)/ deg r(x) = 1.
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BLS curves

Barreto-Lynn-Scott, and Brezing-Weng presented a family of
cyclotomic families of pairing-friendly elliptic curves, that permits
the choice of the embedding degree, to generate the polynomials
defining the family. The BLS family of curves with k = 12 is as
follows:

p(x) = (x6 − 2x5 + 2x3 + x + 1)//3;
r(x) = x4 − x2 + 1;
t(x) = x + 1.

This family of curves has ρ = deg p(x)/ deg r(x) = 1.5.

See A taxonomy of pairing-friendly elliptic curves - Freeman,
Scott, and Teske http://eprint.iacr.org/2006/372

Luis Dominguez luis.dominguez@cimat.mx Introduction 15/48
15/48

http://eprint.iacr.org/2006/372


Contenido, sección 4

Software

Implementation overview

Curves

Security level

Finite field arithmetic

Elliptic Curve arithmetic

Miller loop

Exponentiation in pairing groups

Luis Dominguez luis.dominguez@cimat.mx Introduction 16/48
16/48



Key size and attacks

NIST states that an 80-bit symmetric key is equivalent to a 160-bit
one using discrete logs subgroups and elliptic curve groups. This
is defined as a 80-bit security level, and it is not recommended for
use after 2012. An 128-bit security level is recommended
therefore after that year.

Equivalent symmetric key size 80 112 128 192 256

NIST
RSA 1024 2048 3072 7680 15360
EC 160 224 256 384 512

ECRYPT
RSA 1248 2432 3248 7936 15424
EC 160 224 256 384 512
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Recent Attacks

Barbulescu et al. has made public a new powerful attack
Implications:
• Key sizes for pairings has to be larger
• Alternative families of pairing friendly curves may be the new
better option

• New variations on the pairing function could become
interesting

• Some protocol implementation could change

However, this is work in progress
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Finite field arithmetic

We have a talk about efficient implementation of cryptographic
primitives; however:

• Basic finite field arithmetic over Fp, is the basic unit of
operations; hence, improving this part gives acceleration to all
of the protocol.
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Finite field arithmetic - 2

Things to consider:
• Processor word size (integers): 8-bits to 64-bits number
• Number of CPU cores
• Arithmetic extensions available, and the number of units
available

• Many core versus multi-core vs single-core
• Space to precompute values
• Desired security level
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Multiprecision arithmetic

Depending on the computer, the internal word size varies. We
need to:
• Hand-code our program for specific number size
• Let a library to adjust once, offline, the number size to use
• Use a software package that uses an infinite precision
computation

Luis Dominguez luis.dominguez@cimat.mx Introduction 23/48
23/48



Number representation

For a low-level implementation the integer representation uses
the small words used by the processor:
• Let W be our target’s processor word size, and let α ∈ Fp,
with |α| ∼ |p|, and αi ≤ W :

α = (α0, . . . , αn)

where α = α0W
0 + α1W

1 + . . . + αn−1W
n−1, with

n = ⌈(⌊Log2(p)⌋ + 1)/W ⌉, and |αi| < W .

Such a number could be implemented with using a computer
array, as a C struct including the number of WORDS.
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References

These are the two main sources for finite field arithmetic
implementation for Pairings:
• High-Speed Software Implementation of the Optimal Ate
Pairing over Barreto-Naehrig Curves - Beuchat, Gonzalez-Diaz,
Mitsunari, Okamoto, Rodriguez-Henriquez, and Teruya
http://eprint.iacr.org/2010/354

• Faster Explicit Formulas for Computing Pairings over Ordinary
Curves - Aranha, Karabina, Longa, Gebotys, and López
http://eprint.iacr.org/2010/526
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Basic operations

Once we have defined how to implement the basic arithmetic, we
need to implement the basic operations:
• Addition
• Subtraction
• Multiplication
• Division (a.k.a. multiplication by the inverse)
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Basic operations - 2

• Addition, and subtraction can be implemented component by
component.

• For the multiplication we use the Montgomery multiplication
• Modular division is multiplication by the multiplicative inverse.

For the square root, we refer to Gora Adj work:
https://eprint.iacr.org/2012/685
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Towers

• An element α ∈ Fpk can be represented as a polynomial up to
degree k − 1 with coefficients in Fp modulo an irreducible
polynomial ∈ Fp[X].

• For efficiency purposes, this irreducible polynomial should be
simple.

See Constructing Tower Extensions for the implementation of
Pairing-Based Cryptography - Benger, and Scott.
https://eprint.iacr.org/2009/556
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Construction

• These fields are constructed using a tower of sub-extensions
using binomials as irreducible polynomials.

k Construction Tower

8 KSS 1-2-4-8
12 6.8 1-2-4-12
18 6.12 1-3-6-18
24 6.6 1-2-4-8-24
36 6.14 1-2-6-12-36
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Other operations in the Tower

• In certain elliptic curve families there are special optimizations
• In the cyclotomic subgroups, the squaring of a number in this
field extension could be dramatically improved, some
optimizations depends on the x-parameter defining the p-prime
in Fp, where others just rely on the tower construction choice.
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EC arithmetic

To optimize the arithmetic of the elliptic curve, we usually
• change the point representation from affine coordinates to
projective coordinates

Sometimes the basic version of the algorithms expect points in
projective coordinates, or with mixed representation.
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Twist of a curve

Definition
A twist curve E ′ defined over Fpe , with e = k

d
, is another elliptic

curve isomorphic to E defined over Fpk .
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Form of the twisted curve

The formulae for an elliptic curve E is y2 = x3 + a.x + b, defined
over Fp, whereas the formulae for the twisted curve E ′ depends
on the degree of the twist, and are as follows:

E ′ : y2 = x3 + ax

D2 + b

D3 b for d = 2

E ′ : y2 = x3 + ax

D
for d = 4

E ′ : y2 = x3 + b

D
for d = 6

where D ∈ Fpe such that W d − D is irreducible over Fpe [W ].
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Hashing to E

To hash into ordinary elliptic curves, you use two methods:
• Non-determinic method: try-and-increment
• Deterministic method: Indifferentiable Deterministic Hashing
to Elliptic and Hyperelliptic Curves - Farashahi, Fouque,
Shparlinski, Tibouchi, and Voloch
http://eprint.iacr.org/2010/539

The deterministic method can be easily extended to G2.
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Hashing to Pairing groups

Once we have a point in the curve, then we need to map this
point to the corresponding group.
• Hashing to G1 is cheap, we get the cofactor of the group
• Hashing to G2 is more elaborate since the field is substantially
larger than the subgroup size

Faster Hashing to G2 - Fuentes-Castañeda, Knapp,
Rodríguez-Henríquez. http://cacr.uwaterloo.ca/
techreports/2011/cacr2011-26.pdf
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The Tate pairing

Miller [1986] discovered a function to compute cryptographic
pairings. The Tate pairing requires one application of the Miller
loop.

Apply ⌊Log2(r)⌋ − 1 times the double-and-add, line-and- tangent
algorithm.

The Tate pairing is a map
E(Fp)[r] × E(Fpk)/rE(Fpk) → F∗

pk/(F∗
pk)r defined as:

Definition
er : (P, Q) 7→ ⟨P, Q⟩r = fr,P (Q)(pk−1)/r
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The Optimal Pairing

The pairing lattice introduced by Hess, is a uniquely defined monic
function of low degree.

A pairing function e(·, ·) is called Optimal Pairing if it can be
computed in log2r/φ(k) + ε(k) basic Miller iterations, with
ε(k) ≤ log2k.

For some families of elliptic curves, the optimal pairing can be the
pairing lattice, the R-ate pairing, or even the ate pairing (for
families with small trace of the Frobenius, such is the case of the
BLS curves).
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The final exponentiation

One of the most expensive operations in the pairing computation
is the final exponentiation by (pk − 1)/r in the extension field
F∗

pk . This is required in the computation of the Tate family of
pairing functions on ordinary elliptic curves.

The method uses multi addition-chain method, and then
generates the code using vector chains with the Olivos method.

Faster Hashing to G2 - Fuentes-Castañeda, Knapp,
Rodríguez-Henríquez. http://cacr.uwaterloo.ca/
techreports/2011/cacr2011-26.pdf
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Scalar-point multiplication in G1

Gallant, Lambert and Vanstone find out a method to do the
scalar-point multiplication by breaking the scalar n into two
smaller scalars, under special situations, the operation is faster.

Let E be a curve defined over the field Fp with zero denoted by
O.

An endomorphism of E is a rational map ϕ : E → E satisfying
ϕ(O) = O.

There exists an endomorphism such that the following holds:

[n]P = [n0]P + [n1]λP

where, |ni| ≈ |
√

n|.
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Scalar-point multiplication in G2

Galbraith and Scott, showed a technique for generalizing the GLV
method for higher powers of the endomorphism for the groups
G2 and GT .

To get an m-dimensional expansion

n ≡ n0 + n1λ + · · · + nm−1λ
m−1 (mod r)

of [n]P , one must decompose n with powers of λ sufficiently
different and modulo r, an associated prime number to the curve.
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Exponentiation in GT

In the case of exponentiation in GT , an efficiently computable
endomorphism is also available.

We decompose the operation as:

en = en0 · enp
1 · enp2

2 · · · enpm−1
1

where e ∈ GT , n ∈ Zr, m is the degree of the decomposition,
and the exponentiation to the p is done using the Frobenius
endomorphism method.

See Exponentiation in pairing-friendly groups using
homomorphisms - Galbrait, and Scott.
http://eprint.iacr.org/2008/117
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SAGE implementation

• For a sample SAGE implementation, visit:
https://bitbucket.org/luisjdominguezp/bn-sage

You can convert this implementation to C/C++, but it needs the
specific multiprecision arithmetic.

• Questions?
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