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Abstract

Differential and algebraic stacks are generalizations of differential mani-
folds and algebraic varieties and schemes, and have found increasing use in
modern differential and algebraic geometry. They have also found applications
in mathematical physics.

These notes are designed to introduce a beginner to the basics of differential
stacks. They are to be read along with the notes of my KIAS, Seoul lectures
(2005) which give an introduction to algebraic stacks. The material will be pre-
sented in a series of lectures at CIMAT, Guanajuato in November 2008. The
final version of the notes, which will contain some more material and more
details, will be prepared after taking into account the suggestions/corrections
received from the audience and the readers.
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1 Functor of Points

Differential stacks (respectively, holomorphic stacks or algebraic stacks) are a gener-
alization of manifolds (respectively, holomorphic manifolds or schemes). Manifolds
or schemes are usually defined as certain topological spaces equipped with sheaves of
rings. But following Grothendieck, these can also be thought of via their ‘functors of
points’, which are certain set-valued functors. The basic new idea of Grothendieck
in the invention of stacks (in early 1960’s) is to go from set-valued functors to
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groupoid-valued functors, in order to take into account vital information about ‘au-
tomorphisms’ of the valued points. This section explains the approach to manifolds
via their functors of points.

The simplest differential manifolds are R
n and its open subsets. Let S be the

category formed by all open subsets U of R
n (for all n ≥ 0) as the objects of the

category, and with C∞-maps f : V → U as the morphisms in the category. This is
a full subcategory of the category of all C∞ manifolds. Then corresponding to any
arbitrary C∞ manifold X, we can define a set-valued contravariant functor on S,
denoted by

hX : Sop → Sets

as follows. For any object U in S, we put

hX(U) = HomS(U,X)

which is the set of all C∞-maps from U to X. Given any C∞-map f : V → U , we
get a set-map

hX(f) : hX(U)→ hX(V )

by composing with f . It can be seen that hX is indeed a functor. It is called the
functor of points of X. Elements of hX(U) are called U-valued points of X,
and U is called the level of definition of these. We also say that any f ∈ hX(U)
is a point of X defined over U .

Given any two manifolds X and Y and a C∞ map ϕ : X → Y , we get a natural
transformation (that is, a morphism of functors)

hϕ : hX → hY

defined by composing with ϕ. Thus, we obtain a functor

h : C∞-manifolds→ Fun(Sop, Sets)

under which X 7→ hX and ϕ 7→ hϕ, where Fun(Sop, Sets) is the category whose
objects are all set-valued contravariant functors from S, and whose morphisms are
natural transformations between these.

Exercise Show that the functor h : C∞-manifolds→ Fun(Sop, Sets) is fully faith-
ful. As a consequence, the category C∞-manifolds is equivalent to a full subcategory
of Fun(Sop, Sets).

Similarly, we can take S to be the category whose objects are all open subsets U of
C
n, for n ≥ 0, and whose morphisms are all holomorphic maps f : V → U between

such. This is a full subcategory of the category C-manifolds of all holomorphic
manifolds and holomorphic maps between them. Then as above, for each holomor-
phic manifold X we will get a functor of points hX , and for each holomorphic map
ϕ : X → Y we will get a natural transformation hϕ : hX → hY . Thus, again we will
get a functor

h : C-manifolds→ Fun(Sop, Sets).
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Once again, the reader may verify as an exercise that this functor is fully faithful.

Similarly, let S = Aff/S be the category of affine schemes over a base scheme S,
which is a full subcategory of the category Sch/S of S-schemes. Once again, we get
a fully faithful functor

h : Sch/S → Fun(Sop, Sets).

In the special case where S = Spec k for a commutative ring k, the opposite category
of Aff/S is equivalent to the category Alg/k of commutative k-algebras. In this
case, the functor h imbeds k-schemes as a full subcategory of the functor category
Fun(Alg/k, Sets).

The above constructions mean that an arbitrary C∞-manifold (respectively, a holo-
morphic manifold or an S-scheme) can be regarded as a set-valued functor on the
category S of particularly simple C∞-manifolds (or holomorphic manifold or S-
schemes).

Representability and strong representability

Let S be the base category of opens subsets of R
n with C∞ maps. A set-valued

contra-functor X on S is said to be representable by a manifold, or strongly
representable, if there exists a pair (X, η) consisting of a C∞ manifold X together
with a natural isomorphism of functors η : hX → X. It would be useful to call X as
a fine moduli space for the functor X, and η a universal family (or a Poincaré
family) on X.

We similarly define the notion of (strong) representability for the base category S
of open subsets of C

n with holomorphic maps. In the differential or holomorphic
category, the word ‘strong’ is often dropped for short.

In the algebraic set-up, where the base category S is Aff/S, the corresponding
notion is expressed by saying that X is schematic or strongly representable. A
weaker condition, where the fine moduli space X is allowed to be an algebraic space
over S (in the sense of Artin) which is not necessarily a scheme, is usually meant
when one says that X is representable.

Exercise 1.1 (Yoneda Lemma) Let U be any object of S and let hU : Sop →
Sets be the corresponding strongly representable functor. Then for any functor
F : Sop → Sets, the natural map

Hom(hU , F )→ F (U)

is a bijection.

Exercise 1.2 If X : Sop → Sets is strongly representable (or just representable
when working in the algebraic category), show that the pair (X, η) which represents
it is unique up to a unique isomorphism. Note that this statement is stronger than
the Yoneda lemma, as X need not be in the base category S.
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The following descent property of Grothendieck is necessary (but not sufficient) for
a functor X : Sop → Sets to be representable.

Descent property: C∞ or holomorphic case. Let U be any object of S. Let X|U
denote the pre-sheaf of sets defined on U which associates to any open subset V ⊂ U
the set X(V ), with restriction maps as defined by the functor X. If X : Sop → Sets
is strongly representable, then X|U is a sheaf of sets on U .

Descent property: algebraic case. When we are working in the algebraic cat-
egory, the scheme U can be given the so called fpqc topology, which is finer than
the Zariski topology. Then it is a basic theorem of Grothendieck’s ‘Theory of De-
scent’ (see, for example the article of Vistoli in [FGA-E]) that if X is schematic
then X|U is a sheaf in the fpqc topology. Similarly, it can be shown (see Laumon
and Moret-Bailly [L-MB]) that if X is representable then X|U is a sheaf in the fpqc
topology.

Some representable examples

1.3 For any U in S, let O(U) be the set of regular functions on U . With pull-
back of a regular function under any S-morphism f : V → U defined as usual, this
gives a functor Sop → Sets. This functor is represented by the pair (A1, x) where
A1 is the affine line (means the manifold R

1 in C∞ category, the manifold C
1 in

the holomorphic category, and SpecOS OS[x] in S-schemes), and x is the standard
coordinate function on it.

1.4 Let n ≥ 1 be fixed. For any U in S, let G(U) be the set of all invertible
n × n-matrices in the ring O(U). With pull-back of a regular function under any
S-morphism f : V → U defined as usual, this gives a functor Sop → Sets. This
functor is represented by the pair (GLn, x) where x is the coordinate matrix (xi,j).
(Here, GLn stands for the real Lie group GLn(R) or complex Lie group GLn(C) or
the S-scheme GLn,S = SpecOS OS[xi,j, y]/(det(xi,j)y − 1) as the case may be.)

1.5 Let n ≥ 0 be fixed. For any U in S, consider surjective OU -linear homomor-
phisms x : On+1

U → L where L is a rank 1 locally free sheaf of OU -modules. Two
such homomorphisms x : On+1

U → L and x′ : On+1
U → L′ will be called equivalent if

there exists an OU -linear isomorphism φ : L→ L′ such that x′ = φ◦x. Let X(U) be
the set of all equivalence classes. Given any f : V → U , let f ∗(x) : On+1

V → f ∗(L)
be the pull-back of x. The association x 7→ f ∗(x) preserves equivalences, so defines
a map X(f) : X(U) → X(V ). This defines a contra-functor X from S to Sets. The
most basic fact of projective geometry is that this functor is (strongly) represented
by (Pn, q : On+1

Pn
→ OPn(1)) where q is the tautological quotient homomorphism.

(Here, Pn stands for the real or complex projective space or the S-scheme Pn
S as the

case may be.)

Some non-representable examples
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1.6 For any U in S, let Ωn(U) be the set of all n-forms on U . These are the C∞

or holomorphic differential n-forms, or regular kahler differentials Ω1
U/S, as the case

may be. Pull-backs under any S-morphism f : V → U are defined as usual.

We now that this functor is not representable if n ≥ 1. If possible, let a manifold
Xn together with an n-form αn ∈ Ωn(X) represent this functor, so that given any
manifold U in S and a n-form β ∈ Ωn(U), there exists a unique map f : U → X such
that f ∗(αn) = β. Taking β = 0, as by assumption n ≥ 1, we see that any constant
f will do. So if f is unique, this forces X to be a point. But then αn = 0. On the
other hand, a non-zero n-form β exists on some U (e.g. U = R

n). Contradiction.

1.7 In fact, there is no finite dimensional versal family (Xn, αn) for n-forms when
n ≥ 1. Such a family would have the property that given any manifold U in S and a
n-form β ∈ Ωn(U), and a point P ∈ U , there exists a neighbourhood V of P in U and
a (possibly non-unique) map f : V → X such that f ∗(αn) = β|V . The case where
n ≥ 2 follows from linear algebra alone, while we can prove the case n = 1 using the
fact that f ∗ commutes with exterior differentials, as follows. Consider the 1-form
β =

∑

1≤i≤n x2i−1dx2i on U = R
2m. If β|V = f ∗(α1) in a non-empty neighbourhood

V , then dβ|V = f ∗(dα1) in V . As the skew-symmetric bilinear form dβ has rank
2m (it is non-degenerate), it follows that dα1 must have rank ≥ 2m in the image
of f , and so dim(X) ≥ 2m for each m. This contradicts finite-dimensionality of X.
(Of course, we could have a situation where X is a disjoint union of connected open
manifolds whose dimensions are not bounded).

Exercise 1.8 For any U in S, consider a 2-sheeted covering projection p : U → U
(note that p is surjective proper map which is a local diffeomorphism or a local
holomorphic isomorphism or an étale morphism as the case may be). A covering

p : V → U is defined to be equivalent to another covering p′ : U
′
→ U if there

exists an isomorphism ϕ : U → U
′
such that p′ ◦ ϕ = p. Under any f : V → U ,

the usual pull-back of any 2-sheeted covering projection of U is a 2-sheeted covering
projection of V , and this preserves equivalences, so we get a functor which attaches
to U the set of equivalence classes of all 2-sheeted covering projections p : U → U .
Show that this functor is not representable.

2 Preliminaries on fibered groupoids

Moduli problems are usually formulated as groupoid-valued pseudo-functors on the
category of holomorphic manifolds (or on schemes, etc.), and these give rise to stacks.
We begin with two examples of moduli problems to motivate the definition of a
groupoid-valued pseudo-functor on a base category, working over the base category
of holomorphic manifolds.
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Example 2.1 Moduli problem for vector bundles Let X be a given compact
Riemann surface. For any complex manifold U , let BunX(U) be the category whose
objects are all holomorphic vector bundles EU on X × U . We can regard such
a vector bundle as a family of bundles on X parameterized by U . A morphism
in BunX(U) from EU to FU is a holomorphic isomorphism of vector bundles on
X × U . Given any holomorphic map ϕ : V → U , from the family EU we get a
family denoted by ϕ∗(EU) over V , which is defined as the pullback of the bundle
EU on X × U under the map idX ×ϕ : X × U → X × V . This defines a functor
ϕ∗ : BunX(U) → BunX(V ). If 1U : U → U is the identity map, we have a

natural isomorphism ǫU(EU) : (1U)∗EU → EU . If W
ψ
→ V

ϕ
→ U are holomorphic

maps, then we have a certain natural isomorphism cϕ,ψ : ψ∗ ◦ ϕ∗ → (ϕ ◦ ψ)∗. The
natural isomorphisms ǫU and cϕ,ψ satisfy certain obvious properties (made explicit
in Definition 2.3) which allows us to identify (1U)∗EU with EU and ψ∗ ◦ϕ∗(EU) with
(ϕ◦ψ)∗(EU) for simplicity of notation, when there is no danger of confusion. (These
identifications are justified by the Lemma 2.10.)

Example 2.2 Moduli problem for elliptic curves For any complex manifold
U , let M1,1(U) (or for simplicity of notation, M(U)) denote the category whose
objects are all families of elliptic curves EU parameterized by U . Note that EU is a
holomorphic manifold with a proper holomorphic submersion EU → U whose fibers
are connected genus 1 curves, together with a given holomorphic section U → EU
called the zero section (which defines the zero element of the group structure on
each fiber). A morphism inM(U) from EU to FU is an isomorphism of holomorphic
manifolds which commutes with the projections to U and carries the zero section to
the zero section. Given any holomorphic map ϕ : V → U , again we can define the
pull-back family ϕ∗(EU) over V as the fiber product

ϕ∗(EU) = V ×U EU

and this defines a functor ϕ∗ : M(U) → M(V ). We again have a natural isomor-

phism ǫU(EU) : (1U)∗EU → EU . If W
ψ
→ V

ϕ
→ U are holomorphic maps, then again

we have a certain natural isomorphism cϕ,ψ : (ϕ ◦ ψ)∗ → ψ∗ ◦ ϕ∗, which satisfies the
good properties which allows us to identify (1U)∗EU with EU and ψ∗ ◦ ϕ∗(EU) with
(ϕ ◦ ψ)∗(EU) for simplicity of notation, when there is no danger of confusion.

The common features and properties we have describes in the above two examples
are typical of moduli problems, and motivate the following definition. While reading
the definition, one should keep in mind the above examples X = BunX or X =M. In
both these examples, the base category S is the category of holomorphic manifolds.

Recall that a category in which each arrow is an isomorphism is called a groupoid.

Definition 2.3 A groupoid-valued pseudo-functor on a base category S,
also called a groupoid-valued lax 2-functor on S, consists of the following.

(1) For each object U of S, we are given a groupoid X(U) (also denoted by XU).
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(2) For each arrow ϕ : V → U in S, we are given a functor ϕ∗ : X(U)→ X(V ).

(3) For each U in S we are given a natural isomorphism ǫU : (1U)∗ → 1X(U).

(4) For any pair of arrows W
ψ
→ V

ϕ
→ U in S, we are given a natural isomorphism

cψ,ϕ : ψ∗ ◦ ϕ∗ → (ϕ ◦ ψ)∗.

The above data is required to satisfy the following compatibility conditions, where ⋆
denotes the horizontal composition and • denotes the vertical composition of natural
transformations.

(a) If ϕ : V → U is any arrow in S, we have

cϕ, 1U = ϕ∗ ⋆ ǫU and c1V , ϕ = ǫV ⋆ ϕ
∗.

(b) If X
η
→ W

ψ
→ V

ϕ
→ U are arrows in S, then

cψη, ϕ • (cη, ψ ⋆ 1ϕ∗) = cη, ϕψ • (1η∗ ⋆ cψ,ϕ).

The condition (a) says that for any object u of X(U) we have cϕ, 1U (u) = ϕ∗(ǫU(u)) :
ϕ∗(1U)∗u → ϕ∗u and c1V , ϕ = ǫV (ϕ∗u) : (1V )∗ϕ∗u → ϕ∗u. The condition (b) says
that for any object u of X(U) the following diagram commutes.

η∗ψ∗ϕ∗u
η∗(cψ, ϕ(u))
→ η∗(ϕψ)∗u

cη, ψ(ϕ∗u) ↓ ↓ cη, ϕψ(u)

(ψη)∗ϕ∗u
cψη, ϕ(u)
→ (ϕψη)∗u

Definition 2.4 A fibered groupoid (X, a) over a base category S, also known
as an S-groupoid, consists of a category X together with a functor a : X→ S, such
that the following conditions are satisfied.

(1) For each morphism ϕ : V → U in S and each object u in X such that a(u) = U ,
there exists at least one object v in X and a morphism f : v → u in X such that
a(v) = V and a(f) = ϕ.

(2) Let f : v → u and h : w → u be a pair of morphisms in X, with common target
u. Let a(u) = U , a(v) = V and a(w) = W . Then for any ψ : W → V in S such
that a(f) ◦ ψ = a(h), there exists a unique g : w → v in X such that a(g) = ψ and
h = f ◦ g.

The category X is called the total category, the category S is called the base
category, and the functor a is called the structure functor.

Definition 2.5 The 2-category of all S-groupoids is defined as follows. The
objects (0-cells) of this 2-category are all S-groupoids (X, a). A 1-morphism (1-cell)
F : (X, a) → (Y, b) is a functor F : X → Y which commutes with the projections
a and b, that is, b ◦ F = a. A 2-isomorphism (2-cell) α from F : (X, a) → (Y, b)
to G : (X, a) → (Y, b) is a natural isomorphism α : F ⇒ G of functors. The
composition ◦ of 1-morphisms and the vertical composition • and the horizontal
composition ⋆ of 2-morphisms is defined in the obvious way.
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2.6 From a groupoid-valued pseudo-functor on S to an S-groupoid. Let
((X(U)), (ǫU), (cψ,ϕ)) be a groupoid-valued pseudo-functor on S. We associate to it
an S-groupoid a : X→ S. The total category X is defined as follows. An object of
X is a pair (U, u) where U is an object of S and u is an object of X(U). Symbolically,

Ob(X) =
∐

U∈Ob(S)

Ob(X(U)).

A morphism in X from (U, u) to (V, v) is a pair (ϕ, h) where ϕ : U → V is a
morphism in S, and h : u→ ϕ∗v is an isomorphism in X(U). The structure functor
a : X→ S is defined by (U, u) 7→ U and (ϕ, α) 7→ ϕ.

2.7 From an S-groupoid to a groupoid-valued pseudo-functor on S. Let
(X, a) be an S-groupoid. For each object U of S, there is a (in general non-full)
subcategory X(U) of X defined as follows. The objects of X(U) are all objects u of
X for which a(u) = U , and the morphisms of X(U) are all morphisms f : u1 → u2 of
X for which a(f) = idU . As a consequence of the above conditions, each such X(U)
is a groupoid (all morphisms in X(U) are isomorphisms).

Consider any morphism ϕ : V → U in S and an object u in X such that a(u) = U .
By condition (1), there exists a morphism f : v → u in X such that a(v) = V and
a(f) = ϕ. Once and for all, we will make a choice of such an f for each ϕ (which
will be possible subject to overcoming set-theoretic obstacles). Having made such a
choice f : v → u, we will denote v by ϕ∗(u), and f by ϕu : ϕ∗(u)→ u.

Given any pair of morphisms f : v → u and h : w → u with a(f) = a(h) = ϕ, by
condition (2) applied by taking W = V and ψ = 1V , there exists a unique g : w → v
with h = f ◦ g. Therefore given any morphism k : u1 → u2 in X(U), by taking
u = u2, f = ϕ2 and h = k ◦ ϕ1 in the above, it follows that there exists a unique
morphism g : ϕ∗(u1)→ ϕ∗(u2) in X(U) such that

ϕu2
◦ g = k ◦ ϕu1

We denote g by φ∗(k). With the above definitions of ϕ∗ on objects and morphisms
in X(U), it can be seen that for each ϕ : V → U in S we have defined a functor
ϕ∗ : X(U)→ X(V ).

For each u in X(U), we define the morphism ǫU(u) : (1U)∗(u)→ u to be equal to the
chosen lift (1U)u with target u of the identity 1U : U → U . As u varies over X(U),
this can be seen to define a natural transformation

ǫU : (1U)∗ → 1X(U)

for each object U in S.

For any composable pair of arrows W
ψ
→ V

ϕ
→ U in S, and any object u in X(U),

reasoning as above we get a unique isomorphism cψ,ϕ(u) : ψ∗ ◦ ϕ∗(u)→ (ϕ ◦ ψ)∗(u)
in X(W ) such that

ϕu ◦ ψϕ∗(u) = ϕ ◦ ψu ◦ cψ,ϕ(u).
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This can be seen to define a natural isomorphism

cψ,ϕ : ψ∗ ◦ ϕ∗ → (ϕ ◦ ψ)∗.

It is clear from their constructions that the groupoids X(U) with the functors ϕ∗

and the natural isomorphisms ǫU and cψ,ϕ form a groupoid-valued pseudo-functor
on S.

Definition 2.8 Given an S-groupoid (X, a), any data ((ϕ∗), (ǫU), (cψ,ϕ)) which
makes ((X(U)), (ϕ∗), (ǫU), (cψ,ϕ)) a groupoid-valued pseudo-functor on S is called a
cleavage of (X, a). By the above (modulo set-theoretic difficulties), any S-groupoid
admits at least one cleavage. Suppose a particular cleavage is chosen for an S-
groupoid (X, a). If for all U , we have (1U)∗ = 1X(U) with ǫU the identity natural
transformation, and if moreover for each pair of composable morphisms we have
ψ∗ ◦ ϕ∗ = (ϕ ◦ ψ)∗ with cψ,ϕ the identity natural transformation, then we say that
the chosen cleavage is a splitting, and (X, a) – equipped with this cleavage – is a
split groupoid.

Remark 2.9 We can choose the lifts ϕu : ϕ∗(u) → u so that (1U)∗ = 1X(U)

with ǫU the identity natural transformation (such a choice – though artificial – is
always possible). One may ask whether moreover it is possible to choose the lifts
ϕu : ϕ∗(u)→ u so that we will always have an equality ψ∗ ◦ϕ∗ = (ϕ ◦ψ)∗, with cψ,ϕ
the identity natural transformation. This is not always possible: for an elementary
counter-example, the reader can see [Vistoli] Example 3.14. However, the following
elementary result holds: see [Vistoli] Theorem 3.45.

Lemma 2.10 If a : X → S is any fibered groupoid, then there exists a fibered
groupoid b : Y→ S such that

(i) X is equivalent to Y as an S-groupoid and

(ii) There exists a cleavage of b : Y→ S which is a splitting.

The groupoid (Y, b) together with its splitting can be chosen to be functorial in (X, a)
in a suitable sense.

Remark 2.11 Because of the above lemma, we will be able to pretend for simplic-
ity of notation that the various stacks we will deal with are equipped with cleavages
that are splittings. In the rest of these notes, provided there is no danger of confu-
sion, we will simply write (1U)∗ = 1X(U) and ψ∗ ◦ ϕ∗ = (ϕ ◦ ψ)∗, and moreover we
will suppress any reference to ǫU and cψ,ϕ.

3 Stacks

The concept of a holomorphic stack (or an algebraic stack) may be regarded as an
abstraction of some of the common features of different moduli problems. The two
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examples of moduli problems discussed above (namely, for vector bundles on X and
elliptic curves) share certain important properties, known as the descent property
and the effective descent property.

These properties make sense for any fibered groupoid X over the base category S of
holomorphic manifolds. For the sake of the following definition, we choose a cleavage
of the stack, which we pretend to be a splitting for simplicity of notation. If u is
an object of X(U) and V ⊂ U is an open subset, by the restriction u|V of u to V
we will mean the object j∗u of X(V ), where j : V →֒ U is the inclusion map. Given
any morphism f : u1 → u2 in X(U), by the restriction f |V of f to V we will mean
the morphism j∗(f) : u1|V → u2|V . It can be verified that the definition below is
independent of the choice of the cleavage.

Definition 3.1 A stack over the base category S of holomorphic manifolds is an
S-groupoid (X, a) which satisfies the following descent property and effective descent
property (with respect to some – hence, every – choice of a cleavage).

Descent property. Let u and u′ be objects of X(U), and let f, g : u → u′ be
isomorphisms. Let Ui be an open cover of U such that the restrictions fi, gi :
u|Ui → u′|Ui to each Ui are equal to each other, that is, fi = gi for each i. Then
f = g. Moreover, if u and u′ are objects of X(U), if Ui is an open cover of U and
if fi : u|Ui → u′|Ui are isomorphisms such that fi|Ui∩Uj = fj|Ui∩Uj for each pair of
indices i, j, then there exists an isomorphism f : u→ u′ such that fi = f |Ui for each
i (such an f is unique by the previous statement).

Effective descent property. Let Ui be an open cover of U and let for each i there
be given an object ui of X(Ui). For each pair of indices i, j let there be given an
isomorphism fi,j : uj|Ui∩Uj → ui|Ui∩Uj over Ui ∩Uj such that when further restricted
over Ui ∩ Uj ∩ Uk we have the identity fi,j ◦ fj,k = fi,k. Then there exist an object
u of X(U) together with isomorphisms hi : u|Ui → ui such that when restricted to
Ui ∩ Uj we have fi,j = hi ◦ h

−1
j .

Note. The descent property implies that the pair (u, (hi)) is unique up to a unique
isomorphism.

Remark 3.2 The role of a Grothendieck topology on the base category.
Note that the above definition of a stack on the base category S of holomorphic
manifolds made use of the notion of an open cover (Ui) of an object U of S. The
above definition will make sense for any base category S which is equipped with a
Grothendieck topology, when (Ui) is replaced by an open cover (Ui → U) in the
Grothendieck topology, and Ui∩Uj is replaced by the fibered product Ui×U Uj with
its projections to Ui and Uj.

3.3 For example, a stack over the base category S of C∞ manifolds is defined
exactly as in Definition 3.1 except that holomorphic manifolds and holomorphic
maps are replaced by C∞ manifolds and C∞ maps, and open covers are taken in
the usual Euclidean topology. If S is a given scheme, a stack over the base
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category S of S-schemes is defined by taking the Grothendieck topology on S to
be the étale topology, in which an open cover of an S-scheme U is a collection of
étale morphisms (Ui → U) such that U is the union of the images of the Ui.

Example 3.4 The classifying stack BG. Let G be a Lie group. We can
associate to it a stack BG over the base category of C∞ manifolds, defined as follows.
For any manifold U , let BGU be the category whose objects are all C∞ principal G
bundles over U and whose arrows are all isomorphisms of principal bundles. Given
any morphism ϕ : V → U , a principal G-bundle P over U can be pulled back to
define a principal G-bundle ϕ∗P over V . This defines BG as a fibered category. The
descent conditions are clearly satisfied.

Example 3.5 The classifying stack BG – holomorphic version. Let G be
a complex Lie group. We can associate to it a stack BG over the base category
of holomorphic manifolds, defined exactly as above, except that complex manifolds
and holomorphic maps are replaced by C∞ manifolds and C∞ maps. The same
notation BG is to be interpreted as C∞ or holomorphic (or, for later use, algebraic)
depending on the context.

The following material works equally well for all base categories S equipped with
a Grothendieck topology (that is to say, all sites S), such as C∞-manifolds or
holomorphic manifolds or the étale site of schemes.

3.6 Spaces as stacks. Any C∞-manifold X can be regarded as a stack over
the base category S of C∞-manifold as follows. First note that to any set A we
can associate a groupoid A′ whose objects are elements of A and only morphisms
are identities. Any set map f : A → B defines a unique morphism f ′ : A′ → B′

of groupoids, whose underlying map on objects is f : A → B. This association
defines fully faithful functor Φ : Sets → Grpds from the category of sets to the
category of groupoids. Now given any C∞-manifold X, consider its ‘functor of
points’ hX = Hom(−, X) which is a contravariant functor from the base category S
of C∞-manifold to Sets. Composing with Φ, we get a contra-functor ΦX = Φ ◦ hX :
S → Grpds. It can be verified easily (exercise) that ΦX is a stack over S.

A similar construction works in the holomorphic or algebraic categories, with the
analogous properties.

Lemma 3.7 Yoneda Lemma for stacks Let S be a site (a category equipped with
a Grothendieck topology). Let X be a stack over the base category S. Let U be any
object of S, and let ΦU be the corresponding stack over S. Let HOM(ΦU ,X) be the
category whose objects are all 1-morphisms F : ΦU → X of S-stacks, and whose
morphisms α : F → G (where F,G : ΦU → X are 1-morphisms of S-groupoids) are
2-morphism α : F ⇒ G in the 2-category of S-groupoids. We associate to F : ΦU →
X the object F (U)(idU) of X(U) which is the image of the object idU of ΦU(U) under
the functor F (U) : ΦU(U) → X(U). We associate to α : F ⇒ G the 1-morphism
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α(U)(idU) : F (U)(idU) → G(U)(idU) in X(U), where α(U) : F (U) → G(U) is the
natural transformation defined by α.

Then the above defines an equivalence of categories

HOM(ΦU ,X)→ X(U).

This equivalence is functorial X and contra-functorial in U .

3.8 In particular, if X = ΦX where X is a manifold, then

HOM(ΦU ,ΦX) = HomS(U,X).

This is called the weak Yoneda lemma, and it shows that Φ is a fully faithful
functor from S to S-stacks. Hence we identify X with the stack ΦX , and write the
stack ΦX simply as X.

Stackfication of an S-groupoid

Given an S-groupoid X, we can canonically associate to it a pair (X, i) consisting
of a stack X over S and a 1-morphism of S-groupoids i : X→ X with the following
property. For any stack Y over S, the induced functor

i∗ : HOM(X,Y)→ HOM(X,Y)

is an equivalence of categories.

The above can be done in two steps.

Step 1. To any S-groupoid X, we canonically associate a pair (X′, i′) consisting of a
pre-stack X′ over S and a 1-morphism of S-groupoids i′ : X→ X′ with the following
property. For any pre-stack Y′ over S, the induced functor

(i′)∗ : HOM(X′,Y′)→ HOM(X,Y′)

is an equivalence of categories. The pre-stack X′ is defined by taking Ob(X′(U)) =
Ob(X(U)) for each object U in S. Given any x, y ∈ Ob(X′(U)), we define the sheaf
HomX′(U)(x, y) to be the sheafification of the pre-sheaf HomX(U)(x, y).

Step 2. To any pre-stack X over S, we canonically associate a pair (X, i) consisting
of a stack X and a 1-morphism of S-groupoids i : X→ X with the following property.
For any stack Y over S, the induced functor

i∗ : HOM(X,Y)→ HOM(X,Y)

is an equivalence of categories. Objects of X(U) are the triples ((Ui), (xi), (gi,j))
consisting of an open cover (Ui) of U , a family of objects xi in X(Ui) and descent
data (gi,j) which consists of isomorphisms gi,j : xj|Ui∩Uj → xi|Ui∩Uj which satisfy the
co-cycle condition gi,j ◦ gj,k = gi,k on Ui ∩Uj ∩Uk. Isomorphisms between objects of
X(U) defined over two (possibly different) open covers are defined by passing to the
common refinement given by intersecting the open covers. In the algebraic category
(with étale topology), intersections are replaced by fiber products as usual.
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3.9 Exercise Let S be the C∞ base category, and let G be a Lie group. Let
P be the S-groupoid defined by taking PU to be the groupoid which has a unique
object with automorphism group G(U) (the set of all C∞ maps U → G together
with point-wise multiplication). Show that the stackification of this is isomorphic
to BG.

4 Lie groupoids and their quotient stacks

The material in this section equally applies to the C∞ category and the holomorphic
category. Depending on what category we choose, the term ‘manifold’ will mean
one of these. The word ‘morphism’ between manifolds will mean a C∞ map or a
holomorphic map accordingly. A submersion is a morphism of manifolds f : X →
Y such that at each x ∈ X the tangent map dfx : TxX → Tf(x)Y is surjective.

All this material also applies in the algebraic category after making suitable modi-
fications. The main modification is to have smooth morphisms (see Hartshorne
[AG]) in the sense of algebraic geometry (means flat of finite presentation, such
that the sheaf of relative differentials is locally free of the correct rank) in place of
submersions. Another important modification is to shift to étale topology whenever
the implicit function theorem needs to be invoked.

4.1 If X → Y is a submersion of manifolds, then for any morphism Z → Y of
manifolds, the fibered product X ×Y Z exists as a manifold, and the projection
p2 : X ×Y Z → Z is again a submersion.

Definition 4.2 A Lie groupoid is a tuple (X0, X1, e, s, t,m, i) where

(a) X0 and X1 are hausdorff manifolds.

(b) e : X0 → X1, s, t : X1
→
→ X0 and i : X1 → X1 are morphisms, such that s

and t are submersions. (In particular, the fibered product X1 ×t,X0,s X1 exists as a
manifold.)

(c) m : X1 ×t,X0,s X1 → X1 is a morphism.

We require this data to satisfies the condition that it defines a category C in which
the points of X0 are the objects of C, points of X1 are the arrows of C, the map e
attaches to each object its identity arrow, the maps s and t attach to each arrow its
source object and its target object, the map m defines the composition of arrows in
this category, and the map i associates to each arrow its inverse (in particular, each
arrow is invertible).

Exercise 4.3 Express the above condition on the morphisms e, s, t,m, i in terms
of commutativity of certain diagrams of manifolds and morphisms.
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Example 4.4 Let G be a Lie group together with a right action s : X ×G→ X
on a manifold X. We put X0 = X and X1 = X × G. Let t = p1 : X × G → X
be the projection. Let e : X → X × G be the map x 7→ (x, eG) where eG ∈ G is
the identity element of G. Note that X1 ×t,X0,s X1 = X × G × G, and we define
m : X1 ×t,X0,s X1 → X1 by (x, g, h) 7→ (x, gh). Let i : X1 → X1 be the map
(x, g) 7→ (xg, g−1). The above data defines a Lie groupoid.

4.5 For any x ∈ X0, the inverse image Gx ⊂ X1 of (x, x) ∈ X0 × X0 under
(s, t) : X1 → X0 × X0 has the structure of a group under composition of arrows.
This is called the inertia group of x. The orbit of x is the subset O(x) ⊂ X0 which
is the image of the map t|s−1(x) : s−1(x) → X0. In categorical terms, this is the
isomorphism class of x in X0.

Example 4.6 To see how the above looks in a particularly bad case, take the
Lie groupoid associated to the action of the additive Lie group R on the torus
T 2 = R

2/Z2, given by (x, y) · t = (x+ t, y+ ct) where c ∈ R is irrational. The orbits
are the ‘winding lines’ on the torus with slope c.

Proposition 4.7 Let X. be a Lie groupoid. Then for any x ∈ X0, the subset Gx is
is a closed submanifold of X1, and this differential structure makes Gx a Lie group.

Proof Note that as x ∈ X0 is closed, Gx is a closed subset of X1, and as the
multiplication on Gx is the restriction to Gx × Gx ⊂ X1 ×t,X0,s X1 of the map
m : X1 ×t,X0,s X1 → X1, the multiplication is continuous. Similarly, the inverse
operation on G is continuous. Hence Gx becomes a topological group.

As s is a submersion hence of maximal rank everywhere, for any x ∈ X0 the subset
s−1(x) ⊂ X1 is a closed submanifold. (Caution: This need not be connected or
even equidimensional.) The topological group Gx acts on it by the continuous map
s−1(x)×Gx → s−1(x) : (a, g) 7→ a◦g, which is the restriction of m : X1×t,X0,sX1 →
X1 to s−1(x) × Gx ⊂ X1 ×t,X0,s X1. This action is C∞ in the first factor s−1(x),
that is, for any given g ∈ Gx the induced map a 7→ a ◦ g is a C∞-automorphism
of s−1(x). The map t|s−1(x) : s−1(x) → X0 is set-theoretically the quotient map for
the Gx-action on s−1(x), in particular, it is constant on Gx-orbits. Hence rank of
d(t|s−1(x)) is constant on each fiber of t|s−1(x) : s−1(x) → X0. Also note that the
dimension of s−1(x) is constant along Gx-orbits.

Now let a ∈ s−1(x), such that rank of d(t|s−1(x)) is locally maximum at a. Let y =
t(a). Then by the above, the rank of d(t|s−1(x)) is locally maximum all along the fiber
of t|s−1(x) over y, Hence Hom(x, y) = (s, t)−1(x, y) ⊂ X1 is a closed submanifold of
s−1(x) hence of X1. As already noted, the dimension of s−1(x) is constant along each
Gx-orbits. Hence Hom(x, y) is a constant dimensional manifold, with a constant
codimension in s−1(x).

If b ∈ s−1(x) with z = t(b), then consider the injective map ϕ : Hom(x, y)→ s−1(x)
defined by f 7→ b◦a−1 ◦f . This is a C∞-map of manifolds, being induced by compo-
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sition. Its image is the closed set Hom(x, z), and the map gives a homeomorphism
ϕ′ : Hom(x, y)→ Hom(x, z) (with inverse given by composition with a◦b−1). More-
over, both sides have right Gx-actions, and the above map is Gx-equivariant. As Gx

acts transitively on Hom(x, y), the rank of dϕ is constant. As ϕ is injective, dϕ is
injective. Hence the image of ϕ, which equals Hom(x, z), is a closed submanifold of
s−1(x), diffeomorphic to Hom(x, y).

This shows that each fiber Hom(x, z) of t|s−1(x) : s−1(x) → X0 is a closed subman-
ifold of s−1(x). In particular, Hom(x, x) = Gx is a closed submanifold of s−1(x)
hence of X1. As the group multiplication on Gx and the inverse on G are restric-
tions of certain C∞ maps, this shows Gx with its submanifold structure and group
structure is a Lie group as claimed.

Lemma 4.8 Consider the following sequence of properties for a given morphism
f : X.→ Y of Lie groupoids.

(a) The map f0 : X0 → Y0 is a submersion.

(b) The map t ◦ p2 : X0 ×f0,Y0,s Y1 → Y0 is a submersion.

(c) For any morphism g : Z.→ Y. of Lie groupoids, the fibered product

X0 ×f0,Y0,s Y1 ×t,Y0,g0 Z0

is a manifold.

(d) For any morphism g : Z.→ Y. of Lie groupoids, the fibered product

X1 ×f0s,Y0,s Y1 ×t,Y0,g0s Z1

is a manifold.

Then we have the implications (a) ⇒ (b) ⇒ (c) ⇒ (d).

Proof (a)⇒ (b) As pull-back of any submersion is a submersion, and by assump-
tion f0 is a submersion, its pull-back p2 : X0 ×f0,Y0,s Y1 → Y1 is a submersion. As
composite of submersions is a submersion, it follows t ◦ p2 : X0 ×f0,Y0,s Y1 → Y0 is a
submersion.

(b) ⇒ (c) As t ◦ p2 : X0 ×f0,Y0,s Y1 → Y0 is a submersion,the fibered product

X0 ×f0,Y0,s Y1 ×t,Y0,g0 Z0 = (X0 ×f0,Y0,s Y1)×t◦p2,Y0,g0 Z0

is again a manifold.

(c) ⇒ (d) This follows from the equality

X1 ×f0s,Y0,s Y1 ×t,Y0,g0s Z1 = (X1 × Z1)×s×s,X0×Z0,p1,3 (X0 ×f0,Y0,s Y1 ×t,Y0,g0 Z0)

The right-hand-side is a manifold as s× s : X1×Z1 → X0×Z0 is a submersion and
X0 ×f0,Y0,s Y1 ×t,Y0,g0 Z0 is a manifold.
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Definition 4.9 Let f : X. → Y. and g : Z. → Y. be morphisms of Lie groupoids.
A fibered product of f and g is a 4-tuple (P., F,G, α) where P. is a Lie groupoid,
F : P. → Z. and G : P. → X. are 1-morphisms of Lie groupoids, and α : g ◦ F ⇒
G ◦ f is a 2-isomorphism, which is a universal attracting object in the 2-category
formed by all such 4-tuples. This means given any other such 4-tuple (P ′., F ′, G′, α′),
there exists a 1-morphism h : P ′. → P. and 2-isomorphisms β : F ◦ h ⇒ F ′ and
γ : G ◦ h⇒ G′ such that

α′ = γ • (α ⋆ idh) • β
−1

and such that h is unique up to a 2-isomorphism. (Here, • denotes the vertical
composition and ⋆ denotes the horizontal composition of 2-morphisms.)

We will denote the fibered product simply by X.×Y. Z., and suppress the notations
F,G, α, when there is no danger of confusion.

Remark 4.10 The above definition of fibered product in fact makes sense in any
2-category.

Proposition 4.11 Let f : X.→ Y. and g : Z.→ Y. be morphisms of Lie groupoids.
Suppose that the fibered product X0 ×f0,Y0,s Y1 ×t,Y0,g0 Z0 exists as a manifold (some
sufficient conditions for this are given by Lemma 4.8 (a) and (b)). Then a fibered
product Lie groupoid X.×Y. Z. exists.

Proof We define a fibered product (P., F,G, α) by putting

P0 = X0 ×f0,Y0,s Y1 ×t,Y0,g0 Z0 and P1 = X1 ×f0s,Y0,s Y1 ×t,Y0,g0s Z1.

By assumption, P0 is a manifold, and by (c) ⇒ (d) part of Lemma 4.8, this implies
that P1 is a manifold.

We define e : P0 → P1 by (x, b, z) 7→ (e(x), b, e(z)).

We define s, t : P1
→
→ P0 to be the maps

X1 ×f0s,Y0,s Y1 ×t,Y0,g0s Z1
→
→ X0 ×f0,Y0,s Y1 ×t,Y0,g0 Z0

respectively defined by

(a, b, c) 7→ (s(a), b, s(c)) and (a, b, c) 7→ (t(a), g1(c) ◦ b ◦ f1(a
−1), t(c)).

A point of P1 ×s,P0,t P1 therefore has the form ((a, b, c), (a′, b′, c′)) where a, a′ ∈ X1,
b, b′ ∈ Y1, and c, c′ ∈ Z1 with f0sa = sb, f0sa

′ = sb′, tb = g0sc, tb
′ = g0sc

′ and
(s(a), b, s(c)) = (t(a′), g1(c

′) ◦ b′ ◦ f1(a
′−1), t(c′)).

We define the composition m on P by

(a, b, c) ◦ (a′, b′, c′) = (a ◦ a′, b′, c ◦ c′).

We define i : P1 → P1 by

(a, b, c)−1 = (a−1, g1(c) ◦ b ◦ f1(a
−1), c−1).
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This data indeed defines a Lie groupoid P , as can be verified.

The morphisms F0 : P0 → Z0 and G0 : P0 → X0 are defined to be the respective
projections from P0 = X0 ×f0,Y0,s Y1 ×t,Y0,g0 Z0. The morphisms G1 : P1 → X1 and
F1 : P1 → Z1 are defined to be the respective projections from P1 = X1 ×f0s,Y0,s

Y1 ×t,Y0,g0s Z1 on its first and third factors.

Definition 4.12 Let X. be a Lie groupoid. We associate to it a stack [X.] defined
as the stackification of the pre-stack P defined as follows. For any U in the base
category S, the objects of the groupoid PU are all the morphisms U → X0, and the
morphisms of PU are all the morphisms U → X1.

4.13 Quotient manifolds. In the category of C∞ or holomorphic manifolds,
finite étale equivalence relations admit quotients. This is the assertion of the follow-
ing important proposition. We have phrased it in the C∞ case, and the analogous
statement holds in the holomorphic case.

Proposition 4.14 Let X. be a Lie groupoid where X0 and X1 are hausdorff C∞

manifolds, such that the following holds.

(1) The map (s, t) : X1 → X0 ×X0 is a closed imbedding.

(2) The maps s, t : X1 → X0 are proper local diffeomorphisms (means s and t are
finite-sheeted covering projections).

Then the quotient stack [X.] can be represented by a pair (Y, q) consisting of hausdorff
C∞ manifold Y , with the quotient map q : X0 → Y a proper local diffeomorphism.

Proof We define the underlying topological space of Y as the quotient space of X0

by the equivalence relation whose graph is the image of (s, t) : X1 → X0 ×X0, and
define q to be the quotient map. We define the structure sheaf OY of C∞ functions
as follows. Given any y ∈ Y , choose any x ∈ X0 such that y = q(x). From the
assumptions, x has a connected open neighbourhood U ⊂ X0 such that

(i) U is evenly covered by s, that is, s−1(U) is a disjoint union ∪jVj of open sets
Vj ⊂ X1 where each Vj maps isomorphically on to U under s,

(ii) the images t(Vj) are pair-wise disjoint in X0, and each Vj maps isomorphically
on to t(Vj) under t.

Note that such a U maps homeomorphically on to its image q(U), which is open in
Y . Moreover, such subsets q(U) form a basis of open sets for Y . Now to define the
sheaf OY , we take a C∞ function on q(U) to be any φ : q(U) → R such that φ ◦ q
is a C∞ function on U . We leave it to the reader to verify that this makes (Y,OY )
a C∞ manifold with q a C∞ map, and the pair (Y, q) satisfies the conclusion of the
theorem.

Remark 4.15 However, the corresponding proposition does not hold for schemes.
The above proof fails because a finite étale map s : X1 → X0 of schemes is not
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necessarily locally trivial in the Zariski topology. This is the motivation for the
introduction of algebraic spaces by Artin. A famous counter-example to the above
proposition in the algebraic category is due to Hironaka, where X0 is a non-singular
proper complex variety with a proper free action by Z/(2), and X1 = X0 × Z/(2)
(disjoint union of two copies of X0) with s and t the projection and the action map.

Example 4.16 The classifying stack BG is isomorphic to the stack associated to
the Lie groupoid X. defined as follows. We take X0 to be the one-point manifold,
denoted by ∗. We takeX1 to be the underlying manifold of G. The map e : X0 → X1

is the map ∗ → G whose image is the identity element of G (again denoted by e).
The maps s, t : X1

→
→ X0 are the constant maps, while m is the multiplication

map G × G → G and i is the inverse map G → G. This groupoid is often briefly
written as G →

→ ∗, and its quotient stack is written as [∗/G]. We now define a 1-
morphism [∗/G]→ BG. For this, it is enough to define a 1-morphism of pre-stacks
F : P → BG where P is the pre-stack associated to G →

→ ∗. By definition, for any U
in S, the groupoid PU has a single object (which we denote by ∗) with automorphism
group G(U), the group of U -valued points of G. We associate to ∗ the trivial G-
bundle U×G over U with right G-action by translation, and to any element of G(U)
we associate the G-equivariant automorphism (gauge transformation) of the bundle
U × G → U defined by left translation. This defines a functor FU : PU → (BG)U .
These functors, as U varies over S, define the 1-morphism of pre-stacks F : P → BG.
As BG is already a stack, it defines (uniquely up to a unique 2-isomorphism) a 1-
morphism of stacks F ′ : [∗/G] → BG. In the reverse direction, for all principal
G-bundles E on objects U of S, choose once for all an open cover (Ui) of U and
transition functions (gi,j) for E. Define BG→ [∗/G] by sending E to be the object
of [∗/G]U which corresponds to the pair (f0, f1) consisting of the constant map
f0 :

∐

Ui → ∗ and the map f1 = (gi,j) :
∐

Ui ∩ Uj → G.

Exercise 4.17 Show that the 1-morphism F ′ : [∗/G]→ BG is an isomorphism of
stacks, with an inverse defined as above.

Proposition 4.18 For any Morita equivalence f : X. → Y. the associated mor-
phism of stacks [f ] : [X.]→ [Y.] is a 1-isomorphism.

Proposition 4.19 Let X. and Y. be Lie groupoids, and let F : [X.] → [Y.] be a
1-morphism between their quotient stacks. Then there exists a Morita equivalence
f : Z.→ X. and a morphism g : Z.→ Y. such that the composite [g] ◦ [f ]−1 : [X.]→
[Y.] is 2-equivalent to F : [X.]→ [Y.].

Example 4.20 Let S1 be the unit circle in C, with complex coordinate z. Let
λ ∈ S1 be a point of infinite order (that is, λ is not a root of unity – such a λ exists
as S1 is uncountable while points of order n form a subset of S1 of cardinality n).
Let Z act on S1 by multiplication by λ. This defines a groupoid, with X0 = S1,
X1 = S1 × Z, s : X1 → X0 the map (z, n) 7→ z, and t : X1 → X0 the map
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(z, n) 7→ zλn. Note that both s and t are étale (in fact, they are covering projections),
so we have an étale groupoid. As the automorphism group (s, t)−1(x, x) of any point
x ∈ X0 is trivial, the quotient stack X is equivalent to a sheaf of sets on the base
category S. But X cannot be represented by a differential manifold (exercise).

Example 4.21 The group Z acts by translation on the affine line Spec C[x]. The
quotient stack of the corresponding Lie groupoid in the algebraic category of complex
schemes cannot be represented by a complex scheme or algebraic space (exercise).

5 Differential stacks and analytic stacks

Let S be either the category of C∞ manifolds or the category of holomorphic man-
ifolds. The material in this section is valid in either case.

Any manifold X (that is, an object of S) defines a stack over the base category S,
as follows. For any U in S, we take the set of objects of X(U) to be the set of
all morphisms HomS(U,X). In algebro-geometric terms, objects of X(U) are the
U -valued points of X. We make this into a category, in which the only morphisms
are the identities of the objects. Given any ϕ : V → U , an object x : U → X of
X(U) pulls back to the object x ◦ ϕ : V → X of X(V ). This defines X as a fibered
category in groupoids over the base S. The descent and effective descent conditions
are clearly satisfied, so X is indeed a stack over S.

Exercise 5.1 Show that the above defines a functor from S into the category of
stacks over S, and this functor is fully faithful. Moreover, for any stack X and a
manifold U , a 1-morphism of stacks x : U → X is the same as an object x ∈ XU ,
and pull-backs correspond to composites.

Definition 5.2 A stack X over S is called a representable stack if there exists
a manifold X and an isomorphism of stacks F : X → X. By the above exercise,
such a pair (X,F ), if it exists, is unique up to unique isomorphism.

Definition 5.3 Let F : X→ Y be a 1-morphism of stacks over the base category
S. We say that F is a representable submersion (respectively, a surjective rep-
resentable submersion) if the following condition is satisfied. For each manifold
U and morphism φ : U → Y, the fibered product of stacks X×F,Y,φU is representable
by a manifold and under any such a representation, the projection X×F,Y,φ U → U
is a submersion of manifolds (respectively, a surjective submersion of manifolds).

Definition 5.4 Let F : X→ Y be a 1-morphism of stacks over the base category
S. We say that F is a representable 1-morphism if the following condition is
satisfied. For each manifold U and a representable submersion φ : U → Y (as
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defined in Definition 5.3), the fibered product of stacks X×F,Y,φ U is representable
by a manifold.

5.5 Note in particular that any representable submersion φ : U → Y as defined in
Definition 5.3 is also a representable 1-morphism as defined in Definition 5.4.

5.6 Caution! The definition of a representable 1-morphism given above, where
we work in the C∞ or holomorphic categories, is weaker than the notion of a rep-
resentable 1-morphism in the algebraic category. In the algebraic category, we call
a 1-morphism F : X → Y if for an arbitrary 1-morphism φ : U → Y where U
is in S = Aff/S, the fibered product of stacks X ×F,Y,φ U is representable by an
algebraic space. The difference comes from the fact that arbitrary fibered products
do not exist in the category of C∞ or holomorphic manifolds.

5.7 In the C∞ or holomorphic categories, any 1-morphism φ : U → Y, where U
is in S, is necessarily representable. The situation is quite different in the algebraic
category.

Definition 5.8 Let P stand for any property of a morphism in S which is invari-
ant under a submersive base-change. (The properties of being a surjection or being
submersion or being proper are important such examples to keep in mind.) A rep-
resentable 1-morphism F : X→ Y of stacks over base S is said to have the property
P if for each manifold U and representable submersion φ : U → Y, the projection
morphism p2 : X×F,Y,φ U → U (which is a morphism in S as by assumption F is a
representable) has the property P.

Definition 5.9 A stack X over the base category S of C∞ manifolds (respectively,
over the the base category S of holomorphic manifolds) is called a differential
stack (respectively, a holomorphic stack) if there exists a manifold X in S and
a surjective representable submersion x : X → X as defined in Definition 5.3. Any
such surjective representable submersion x : X → X is called an atlas for X, or a
versal family, or a presentation of X.

Lemma 5.10 Let F : X → Y be a 1-morphism of stacks, where Y is a manifold.
Suppose that φ : Z → Y is a surjective submersion of manifolds, such that the fibered
product stack P = X×F,Y,φ Z is representable by a manifold. Then the stack X is a
manifold.

Proof As φ : Z → Y is a surjective submersion, it admits local sections by the
implicit function theorem. Hence there is a manifold W with a surjective étale map
ψ : W → Y which factors as W → Z → Y . The further base change P ×Z W is
representable. Now X is obtained by effective descent under W → Y .

As a consequence of this lemma, we have the following.
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Proposition 5.11 Let Y be a differential stack with an atlas y : Y → Y. Let
F : X→ Y be any 1-morphism. If the pull-back X×F,Y,y Y is a manifold, then F is
a representable 1-morphism.

5.12 The diagonal 1-morphism ∆ : X → X × X of any differential stack X is a
representable 1-morphism. To see this, let x : X → X be an atlas for a stack X. We
have an isomorphism of stacks

X×∆,X×X,(x,x) (X ×X) ≃ X ×x,X,x X,

while X ×x,X,xX is a manifold. Now the desired conclusion follows as a corollary to
Proposition 5.11.

5.13 In constant, the representability of the diagonal has to be made as an explicit
assumption in the definition of an algebraic stack.

Proposition 5.14 A stack over the base category S of C∞ manifolds (respectively,
over the the base category S of holomorphic manifolds) is a differential stack (re-
spectively, a holomorphic stack) if and only if it is isomorphic to the quotient stack
of a Lie groupoid in S.

Proof If X. is a Lie groupoid, then the quotient map X0 → [X.] is an atlas for the
quotient stack. Conversely, if x : X → X is an atlas for a stack X, let X0 = X, let
X1 = X0 ×XX0, and let s, t : X1

→
→ X0 be the two projections. Let e : X0 → X1 be

the diagonal map, let i : X1 → X1 interchange the two factors in X0×XX0. We leave
the definition of µ : X1×s,X0,tX1 → X1 to the reader. Then X. = (X0, X1, e, s, t, µ, i)
is a Lie groupoid, and x : X0 → X is isomorphic to its quotient stack.

5.15 A differential stack X is said to be hausdorff (or separated) if it satisfies
any of the following three equivalent conditions.

(1) The diagonal 1-morphism ∆ : X→ X× X is proper.

(2) There exists a versal family X0 → X for which the map (s, t) : X1 → X0×X0 is
proper (where X1 = X0 ×XX0, with projections s and t).

(3) For any versal family the map (s, t) : X1 → X0 ×X0 is proper.

The equivalence is left as as exercise, using the following cartesian diagram.

X ← X1

∆ ↓ ↓ (s,t)

X× X ← X0 ×X0

6 Sheaves and cohomology

General theory over arbitrary sites
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6.1 A pre-topology T on a category C consists of a class TU of indexed sets U
of morphisms U = (ui : Ui → U)i∈I for each object U of C such that the following
conditions are satisfied.

(1) If U is any object and f : V → U is an isomorphism, then (f) is in TU .

(2) If U = (ui : Ui → U)i∈I is in TU and if for each i, if Vi = (vi,j : Vi,j → Ui)Ji is in
TUi , then the indexed set of all composites (ui ◦ vi,j : Vi,j → U)K , where K =

∐

I Ji,
is in TU .

(3) If U = (ui : Ui → U)i∈I is in TU and if f : V → U is any morphism in C, then the
fibered products V ×f,U,ui Ui exist, and the set of indexed set of all first projections
(pi : V ×f,U,ui Ui → V )i∈I is in TV .

A site consists of a category C together with a pre-topology T on it.

6.2 If (C, T ) and (C′, T ′) are sites, a continuous functor f−1 : (C, T ) → (C′, T ′)
is a functor f−1 : C → C′ such that for any T -cover U = (ui : Ui → U)i∈I of an
object U in C, f−1U = (f−1ui : f−1Ui → f−1U)i∈I is a T ′-cover of f−1U in C′.

Remark on notation: The notation f−1 : (C, T ) → (C′, T ′) for a continuous
functor between sites involves an inverse for the following reason. In the simplest
example where we have a continuous map f : X ′ → X between topological spaces,
we get a functor f−1 : Open(X) → Open(X ′) – in the opposite direction to that of
f – between their categories of open sets, sending any object U ⊂ X of Open(X) to
the object f−1(U) ⊂ X ′ of Open(X ′).

6.3 A composite of continuous functors is continuous. Thus, we get a category
whose objects are sites and morphisms are continuous functors.

Sheaves on differential stacks

6.4 Let X be an algebraic (or differential or ...) stack. We associate a site Xlis-et
with X called the ‘lisse-étale site’ of X. The underlying category of the site Xlis-et
has as objects all pairs (U, u) where U is in the base category S and u : U → X

is a smooth 1-morphisms (respectively, submersive 1-morphisms in the holomorphic
or differential category). The morphisms (U, u) → (V, v) in Xlis-et are pairs (f, α)
consisting of a morphism f : U → V together with a 2-morphism α : u⇒ v◦f . (Note
that the morphisms f : U → V are not required to be smooth, only the morphisms
u : U → X are required to be smooth.) Next we put a topology on this category.
For any object u : U → X in Xlis-et, an open cover in the lisse-étale topology is a
family of morphisms (fi, αi) : (Ui, ui)→ (U, u) in Xlis-et, such that the family of the
underlying morphisms fi : Ui → U is an étale open cover of U (respectively, an open
cover in the Euclidean topology in the holomorphic or differential category).

Remark 6.5 Note that we can regard X as a category, which has a functor to
the base category S of manifolds. Any morphism u : U → X is an object of
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this category (without the condition that u is lisse). In these terms, a morphism
(f, α) : (U, u) → (V, v) in Xlis-et is exactly the same as a morphism in the category
X. Thus, the underlying category of the site Xlis-et is a strictly full subcategory of
X.

6.6 Direct product in Xlis-et. Let (U, u), and (V, v) be objects of Xlis-et. We
show that their direct product (U, u)× (V, v) exists in Xlis-et. Let

(U ×u,X,v V, v : U ×u,X,v V → U, u : U ×u,X,v V → V, α : v ◦ u⇒ u ◦ v)

be the fibered product of u : U → X and v : V → X as stacks. As by assumption u
is lisse, its base-change u is lisse. As by assumption v is lisse, the composite v ◦ u is
lisse, which shows that

(U ×u,X,v V, v ◦ u) ∈ Ob(Xlis-et).

We have the following morphisms in Xlis-et:

(v, α) : (U ×u,X,v V, v ◦ u)→ (U, u) and (u, 1v◦u) : (U ×u,X,v V, v ◦ u)→ (V, v).

It is clear that the resulting triple

((U ×u,X,v V, v ◦ u), (v, α), (u, 1v◦u))

is the direct product of (U, u) and (V, v) in Xlis-et.

6.7 Fibered product in Xlis-et when the first morphism is a submersion.
Let (U, u), (V, v) and (W,w) be objects of Xlis-et, and let (f, α) : (V, v) → (U, u)
and (g, β) : (W,w) → (U, u) be morphisms in Xlis-et, such that f : V → U is a
submersion. Then the fibered product V ×UW exists as a manifold, with projections
g : V ×U W → V and f : V ×U W → W . The morphism f : V ×U W → W is again
a submersion, being base-change of f . As by definition of Xlis-et the morphism
w : W → X is a submersion, the composite w ◦ f : V ×U W → X is again a
submersion, which shows that

(V ×U W,w ◦ f) ∈ Ob(Xlis-et).

We have 2-morphisms

α ∗ 1g : v ◦ g ⇒ u ◦ f ◦ g = u ◦ g ◦ f

and
β ∗ 1f : w ◦ f ⇒ u ◦ g ◦ f

where ∗ denotes the horizontal composition of 2-morphisms. As all 2-morphisms are
invertible, this defines a 2-morphism

γ = (β ∗ 1f ) · (α
−1 ∗ 1g) : w ◦ f ⇒ v ◦ g
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where · denotes the vertical composition of 2-morphisms. We thus have the following
morphisms in Xlis-et:

(g, γ) : (V ×U W,w ◦ f)→ (V, v) and (f, 1w◦f ) : (V ×U W,w ◦ f)→ (W,w).

It is clear that the resulting triple

((V ×U W,w ◦ f), (g, γ), (f, 1w◦f ))

is the fibered product of (f, α) : (V, v) → (U, u) and (g, β) : (W,w) → (U, u) in
Xlis-et.

6.8 CAUTION: Xlis-et lacks fibered products in general. The category of
manifolds does not admit fiber products in general, so if X is a differential stack,
the category X does not admit products or fiber products. As algebraic spaces
admit fiber products, if X is an algebraic stack, the category X admits products as
well as fiber products. The underlying category of Xlis-et admits products in both
differential and algebraic case, but does not admit fiber products in either of them.

Fortunately, this does not affect the definition of the site Xlis-et, for one of the
conditions defining a site in SGA4 is that the pull-back of an open cover of an
object should exist and be an open cover. In the case of the lisse-étale site, as the
open covers are étale, the requisite fibered products do exist by 6.7. (The older
Artin 1962 seminar notes required the underlying category to have arbitrary fibered
products, which was excessive.)

The unfortunate consequence of the lack of arbitrary fibered products is that given
a 1-morphism F : X → Y of algebraic or differential stacks, as Ylis-et does not
have fibered products, the inverse image functor on sheaves (of sets or ...) F−1 :
Shv(Ylis-et) → Shv(Xlis-et) is not in general exact (but is only right-exact) so we
do not necessarily get a geometric morphism of topoi (F−1, F∗) : Shv(Xlis-et) →
Shv(Ylis-et).

So, in particular, we cannot conclude that on sheaves of abelian groups, the direct
image functor functor F∗ preserves injectives. This adversely affects the theory of
derived functors RF∗.

Definition 6.9 Let X be a stack. A pre-sheaf P on X in the lisse-étale topology
(that is, a pre-sheaf on the site Xlis-et) is a contra-functor from Xlis-et to sets (or
abelian groups, or ...). This means for each lisse u : U → X we are given an
P(U, u), and for each (f, α) : (U, u) → (V, v) we are given a restriction map r(f,α) :
P(V, v) → P(U, u), which respects compositions. In particular, note that for any
lisse u : U → X, the group Aut(u) (where u is regarded as an object of the groupoid
XU) acts on P(U, u). A pre-sheaf F is a sheaf if given any object (U, u) of Xlis-et
and its étale open cover ((fi, αi) : (Ui, ui) → (U, u))i∈I , the following diagram is
exact

F(U, u)→
∏

i∈I

F(Ui, ui)
→
→

∏

(i,j)∈I×I

F(Ui ×U Uj, uj ◦ fi)
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where the map F(U, u)→
∏

i∈I F(Ui, ui) is induced by the restriction maps r(fi,αi) :
F(U, u)→ F(Ui, ui), while the two maps

∏

i∈I F(Ui, ui)
→
→

∏

(i,j)∈I×I F(Ui×UUj, uj◦

fi) are induced by the restriction maps r(fj ,αi,j) : F(Ui, ui) → F(Ui ×U Uj, uj ◦ fi)

and r(fi,1) : F(Uj, uj)→ F(Ui ×U Uj, uj ◦ fi). In the above, αi,j : uj ◦ fi ⇒ ui ◦ fj is

part of the projection morphism (fj, αi,j) : (Ui ×U Uj, uj ◦ fi) → (Ui, ui) in Xlis-et,
and is induced by αi and αj as described in detail above in Statement 6.7.

Definition 6.10 The 0 th Cech cohomology set of a presheaf. If P is
a presheaf of sets (or groups or ...) on Xlis-et, (U, u) is an object of Xlis-et, and
U = ((fi, αi) : (Ui, ui) → (U, u))i∈I is an étale open cover of (U, u), then the 0 th
Cech cohomology set (or group or ...) of P on U w.r.t. U is a set Ȟ0(U ,P) together
with an injective map Ȟ0(U ,P) → P(U, u) which makes the following diagram
exact.

Ȟ0(U ,P)→
∏

i∈I

P(Ui, ui)
→
→

∏

(i,j)∈I×I

P(Ui ×U Uj, uj ◦ fi)

6.11 Question If X is a manifold, then what is the relationship between the usual
sheaves on X and sheaves on the site Xlis-et? How to recover the former from the
latter? Answer A usual sheaf F on X give rise to sheaf F on Xlis-et by putting
F(U, u) to be F (u(U)) (note that u(U) is open in X). The sheaves on Xlis-et which
arise this way are exactly the Cartesian sheaves.

Definition 6.12 Given a sheaf of sets F on Xlis-et, and a lisse u : U → X, we get
a sheaf on U in the étale topology, which we denote by FU,u. A sheaf F on Xlis-et is
called a Cartesian sheaf if for any morphism (f, α) : (U, u)→ (V, v) in Xlis-et, the
restriction maps induce an isomorphism of sheaves f−1FV,v → FU,u on U .

6.13 We have the sheaf of rings OX defined by putting OX(U, u) = O(U) the ring
of global regular functions on U . We can now define sheaves of O-modules in the
usual way. We will say that a sheaf F of O-modules on Xlis-et is a Cartesian sheaf
of O-modules if for any morphism (f, α) : (U, u)→ (V, v) in Xlis-et, the restriction
maps induce an isomorphism of sheaves of OU -modules f ∗FV,v → FU,u on U , where
we use the notation f ∗FV,v = OU ⊗f−1OV f

−1FV,v as in algebraic geometry.

Example 6.14 The sheaf of O-modules Ωr on Xlis-et is defined by (U, u) 7→ Ωr(U),
the O(U)-module of r-forms on U . If r ≥ 1 then this is not a Cartesian sheaf of
O-modules. Only Ω0 = O is a Cartesian sheaf of O-modules.

6.15 Cartesian sheaves via descent from an atlas We can ask whether any
sheaf F on Xlis-et admits a descent-theoretic description in terms of an atlas (X, x).
The obvious candidate for such a description is a pair (F, ϕ) where F is a sheaf on
X, and ϕ : s−1F → t−1F is an isomorphism over X1 = X ×s,X,t X which satisfies
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the cocycle condition over X2 = X ×s,X,t X ×s,X,t X. This works for F if and only
if F is a Cartesian sheaf on Xlis-et.

Lemma 6.16 Let F be a sheaf on Xlis-et, and let (f, α) : (V, v) → (U, u) be a
morphism in Xlis-et such that f : V → U is a surjective submersion (not necessarily
étale). Then the following diagram of sets is exact.

F(U, u)
r(f,α)
→ F(V, v) →→ F(V ×U V, v ◦ p2)

Proof. If f : V → U is a surjective étale map, then by definition of a sheaf in
Xlis-et-topology, the above sequence is exact. More generally, if f : V → U is a
surjective submersion, then there exists an étale cover f ′ : V ′ → U which factors via
f . Let v′ = u ◦ f ′, so that we have the ‘commutative’ diagram

F(U, u) → F(V, v) →
→ F(V ×U V, v ◦ p2)

↓ ↓
F(U, u) → F(V ′, v′) →

→ F(V ′ ×U V
′, v′ ◦ p2)

in which the bottom row is exact. Moreover, in the top row the two compositions
coincide. It follows by diagram chasing that the top row is also exact. This proves
the assertion.

Remark 6.17 The above shows that we will get the same sheaves on the lisse-lisse
site Xlis-lis (which is defined by taking open covers to be submersions, not necessarily
étale) as on the lisse-étale site Xlis-et.

Global sections of sheaves

Definition 6.18 Global sections as inverse limit. If F is a (pre-)sheaf on a
site (C, T ), we get an inverse system of sets F(x) where x varies over objects of C,
and restriction maps rf : F(y) → F(x) where f : x → y varies over morphisms of
C. The set of global sections of F is by definition the inverse limit

Γ(C,F) = lim
←

(F(x), (r(f)).

Being the inverse limit, note that Γ(C,F) comes equipped with restriction maps
ρx,F : Γ(C,F)→ F(x), which commute with the restriction maps rf : F(y)→ F(x).
Note that the above definition depends just on the pre-sheaf F and is independent
of the Grothendieck topology T .

6.19 If the site has a final object X, then the set of global sections of F is just
F(X), with the usual restriction maps making it the inverse limit.
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6.20 Let (C, T ) be a site. If S is any set (or group, or ...) then the constant pre-
sheaf SpreshC on C is the constant contra-functor S on C. The constant sheaf S(C,T )

on C is its sheafification a(SpreshC ).

Lemma 6.21 Let (C, T ) be a site, let Z
presh
C and Z(C,T ) be the constant pre-sheaf

and the constant sheaf Z on it. For pre-sheaf P of abelian groups on C and for any
sheaf F of abelian groups on (C, T ) and any object U in C, let

rpreshP,U : HomPresh(C)(Z
presh
C ,P)→ P(U)

and
rF ,U : HomSh(C,T )(ZC,T ,F)→ F(U)

be the maps which send a homomorphism to its evaluation on the section 1. Then
for any pre-sheaf P of abelian groups on C and for any sheaf F of abelian groups on
(C, T ), we have functorial isomorphisms

φpreshP : HomPresh(C)(Z
presh
C ,P)→ Γ(C,P)

and
φF : HomSh(C,T )(ZC,T ,F)→ Γ(C,F)

as inverse limits (that is, the maps r go to the corresponding maps ρ of statement
6.18).

6.22 Global sections over Xlis-et as the 0 th Cech cohomology for an atlas.
We next describe global sections of a sheaf F on Xlis-et in terms of the 0 th Cech
cohomology Ȟ0((x : X → X),F) for an atlas x : X → X (here X is a manifold and
x a surjective submersion). Note that this description works only for sheaves, not
for pre-sheaves.

LetX1 = X×XX be the fibered product, which comes with projections s, t : X1
→
→ X0

and a 2-arrow α : x ◦ s⇒ x ◦ t. Note that (X, x) and (X1, x ◦ s) are objects of the
site Xlis-et. Consider the Xlis-et-morphisms

(s,1x◦s) : (X1, x ◦ s)→ (X, x) and (t, α) : (X1, x ◦ s)→ (X, x)

where 1x◦s denotes the identity 2-arrow of the 1-arrow x ◦ s. Hence for any sheaf F
on Xlis-et, we have the corresponding restriction maps

r(s,1x◦s) : F(X, x)→ F(X1, x ◦ s) and r(t,α) : F(X, x)→ F(X1, x ◦ s).

Let Ȟ0((x : X → X),F), together with an injection ρ(X,x) : Ȟ0((x : X → X),F)→
F(X), be the equalizer for the above two restriction maps, so that we have an exact
diagram of sets

Ȟ0((x : X → X),F)
ρ(X,x)
→ F(X, x) →→ F(X1, x ◦ s).
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6.23 Refinement of atlas. With notation X, F and x : X → X as above, let
f : Y → X be a surjective submersion of manifolds. Let y = x ◦ f : Y → X, and
consider the corresponding exact diagram of sets

Ȟ0((y : Y → X),F)
ρ(Y,y)
→ F(Y, y) →→ F(Y1, y ◦ s)

made from (Y, y) in place of (X, x). Let z = y ◦ p1 : Y ×X Y → X. We have a map
of manifolds i : Y ×X Y → Y ×XY = Y1 under which a point (P,Q) ∈ Y ×X Y (note
that f(P ) = f(Q) ∈ X, so y(P ) = y(Q) as an object of X(pt)) is mapped to the
triple (P, 1y(P ), Q) in Y ×XY . This gives a morphism (i,1z) : (Y ×XY, z)→ (Y1, y◦s)
in Xlis-et, and therefore a restriction map r(i,1z) : F(Y1, y ◦ s)→ F(Y ×X Y, z).

With the above maps, we have the following ‘commutative’ diagram.

Ȟ0((x : X → X),F) → F(X, x) →
→ F(X1, x ◦ s)

↓ ↓
Ȟ0((y : Y → X),F) → F(Y, y) →

→ F(Y1, y ◦ s)
↓↓ ւ

F(Y ×X Y, z)

The two rows and the middle column are exact diagrams of sets. The vertical map
in the right column is injective as it is the restriction map for a morphism in Xlis-et
whose underlying map Y1 → X1 is a submersive surjection. It follows by diagram
chasing that we get an induced bijection

Ȟ0((x : X → X),F)
∼
→ Ȟ0((y : Y → X),F)

which makes the left upper rectangle in the above diagram commute.

6.24 Generalizing the above, if (U, u) is any object of Xlis-et, we next define a
restriction map ρ(U,u) : Ȟ0((x : X → X),F)→ F(U, u). Let

V = X ×x,X,u U

and let v = u ◦ pU , so that we have the ‘commutative’ diagram with exact rows

Ȟ0((x : X → X),F) → F(X, x) →
→ F(X1, x ◦ s)

↓ ↓
F(U, u) → F(V, v) →

→ F(V ×U V, v ◦ p2)

Hence we get an induced map ρ(U,u) : Ȟ0((x : X → X),F) → F(U, u). Recall that
the sets F(U, u) and the restriction maps r for F define a filtered inverse system of
sets indexed by the category Xlis-et, and the set of global sections is defined as the
inverse limit. We leave it to the reader to verify that the set Ȟ0((x : X → X),F)
together with maps ρ(U,u) has the requisite universal property which makes it the
inverse limit

(Ȟ0((x : X → X),F), (ρ(U,u))) = lim
←

(F(U, u), (r)).
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The above shows that for any sheaf on the site Xlis-et, we have an alternative de-
scription of the global sections and their restrictions in terms of any chosen atlas
(so in terms of any Lie groupoid whose quotient stack is the given stack).

Direct image and inverse image under F : X→ Y

6.25 Direct image for a representable 1-morphism. Let F : X → Y be a
1-morphism of differential stacks, such that F is representable. Let F be a sheaf
on Xlis-et. For any object (V, v) of Ylis-et, the fibered product stack XF,Y,vV is
then representable by a manifold U . Let u : U → X be the projection, which is
smooth being the base change of v : V → Y. Hence F(U, u) is defined, and we put
F∗(F)(V, v) = F(U, u).

6.26 Direct image for a not-necessarily representable 1-morphism. Let
F : X → Y be a 1-morphism of differential stacks, not necessarily representable.
Let F be a sheaf on Xlis-et. We define the sheaf F∗(F) on Ylis-et as follows. For any
object (V, v) of Ylis-et, consider all tuples (U, u : U → X, φ : U → V, α) where (U, u)
is in Xlis-et, φ : U → V is any morphism, and α is a 2-commutator for the resulting
square. Such tuples form a category, in which a morphism (f, β, γ) : (U, u : U →
X, φ : U → V, α) → (U ′, u′ : U ′ → X, φ′ : U ′ → V, α′) consisting of a morphism
f : U → U ′ and 2-morphisms β : u ⇒ u′ ◦ f and γ : φ → φ′ ◦ f . Then we define
F∗(F)(V, v) to be the inverse limit of F(U, u) over all such tuples.

6.27 If we expand the category Xlis-et to have as objects any smooth 1-morphisms
of differential stacks u : U → X (where U as well as u is not necessarily repre-
sentable), then the above gets simplified: we can define F∗(F)(V, v) to be the value
of F on the pull-back of (V, v) under F . This would be equivalent to the above
definition, as global sections over the base-change would be given exactly by the
above inverse limit. Such an expansion of Xlis-et is possible, and the categories of
sheaves will be equivalent to the earlier notion.

Sheaf cohomology

6.28 (Grothendieck: Tohoku paper) An abelian category is said to satisfy
(AB3) if direct sums parameterized by arbitrary sets exist (equivalently, direct limits
parameterized by arbitrary small categories exist), and (AB5) if moreover direct
limit over filtered sets is exact (means if I is a filtered set and each Ai → Bi →
Ci is exact then colimIAi → colimIBi → colimICi is exact. A generator for an
abelian category is an object A such that if f : B → C is any morphism for
which the composite f ◦ g : A → C is zero for each g : A → B, then f = 0.
Theorem If an abelian category satisfies (AB5) and has a generating set, then it
has enough injectives, and it admits direct products parameterized by arbitrary sets
(equivalently, inverse limits parameterized by arbitrary small categories).
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6.29 (See for example Artin: Grothendieck topologies) The categories P and S of
presheaves and sheaves of abelian groups on any site are abelian categories. The
inclusion functor i : S →֒ P is left-exact and fully faithful, and it admits a left
adjoint a : P → S (called the sheafification functor, made from applying a certain
functor + : P → P twice, so that + ◦ + = i ◦ a). The functor a is exact. The
category of presheaves P satisfies (AB5) (actually, even (AB4), (AB4*) and more)
and has a generator. The category of sheaves S satisfies (AB5) and has a generating
set. (These statements require some set-theoretic qualifications, which we will ignore
here. In the context of differential manifolds and stacks where we need them, simple
ad-hoc arguments can be given to take care of the set-theoretic requirements. In
the general context, Grothendieck does it via universes.)

6.30 Let C be a category, an let U be any object. We define the presheaf Z
presh
U

on C as follows. For any object V of C, we put

Z
presh
U (V ) =

⊕

HomC(V,U)

Z

If C is given a Grothendieck topology T , then the sheafification of Z
presh
U on the site

(C, T ) is denoted by ZU . This is the sheaf which represents the left-exact functor
F 7→ F(U) from the category S = Shv(C, T ) to the category of abelian groups. As
U varies over an appropriate set of objects of C (which we may assume to exist), the
ZU form a set of generators for S, and hence the direct sum of these is a generator
for S.

Definition 6.31 The functor Γ(X,−) from the abelian category of sheaves of
abelian groups on the site Xlis-et to the category of abelian groups is left-exact. Its
right derived functors H i(X,−) are the cohomology group functors.

Example 6.32 Let V be a finite-dimensional real vector space. Consider the stack
BV . Then H1(BV,O) = V ∗, if this can be computed by Cech cohomology for any
atlas, in view of O being a fine sheaf. Consider the atlas p : ∗ → BV , and let
U = U(∗, p) be the nerve of this cover. Then the Cech complex is

0→ O(∗)
∂0

→ O(V )
∂1

→ O(V × V )→ . . .

where ∂0 = 0, and for any f ∈ O(V ), the coboundary ∂1f is defined by

(∂1f)(x, y) = f(x)− f(x+ y) + f(y)

Hence 1-cocycles f are just the C∞ homomorphisms f : V → R, and they form the
dual vector space V ∗, while 1-coboundaries are zero. This shows Ȟ1(U(V, p),O) =
V ∗.
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6.33 Continuous map from the lisse-étale site to the étale site. Let X
be a manifold, and consider the associated sites Xlis-et and Xet. As any étale open
u : U → X is a submersion, we have a continuous functor ǫ−1 : Xet → Xlis-et under
which any étale open u : U → X goes to u : U → X regarded as a lisse morphism.
We have a pair of adjoint functors (ǫ−1, ǫ∗) where ǫ∗ : Shv(Xlis-et) → Shv(Xet) is
defined by ǫ∗(F)(U, u) = F(U, u), and ǫ−1 : Shv(Xet) → Shv(Xlis-et) is defined
as the sheafification of the presheaf P for which for any (V, v) in Xlis-et, we put
P(V, v) = F(v(V ), j) where j : v(V ) →֒ X is the inclusion.

Proposition 6.34 Comparison of lisse-étale and étale cohomologies. For
any manifold X, the following properties hold.

(1) The functor ǫ∗ : Shv(Xlis-et)→ Shv(Xet) is exact (not merely left-exact like all
right-adjoints).

(2) The functor ǫ−1 : Shv(Xet) → Shv(Xlis-et) is exact (not merely right-exact like
all left-adjoints).

(3) The functor ǫ∗ : Shv(Xlis-et) → Shv(Xet) takes injective objects to injective
objects.

(4) If F is a sheaf of abelian groups on Xlis-et, then H i(Xlis-et,F) is functorially
isomorphic to H i(Xet, ǫ∗F).

Proof. (1) Let 0 → F ′ → F → F ′′ → 0 be exact in Shv(Xlis-et). We know that
0 → ǫ∗F

′ → ǫ∗F → ǫ∗F
′′ is exact. It remains to show ǫ∗F → ǫ∗F

′′ is epic, that is,
given any s′′ ∈ (ǫ∗F

′′)(U, u) where (U, u) is an object ofXet, there exists an étale open
cover (V, v) → (U, u) such that s′′|(V,v) is in the image of ǫ∗F(V, v). But note that
for any G in Shv(Xlis-et) and any (U, u) in Xet, by definition (ǫ∗G)(U, u) = G(U, u),
and so the result follows.

(2) More generally, if a continuous functor C → C′ on sites is such that C has finite
limits, then the ‘pull-back’ functor from Shv(C) to Shv(C ′) is given by sheafification
of a filtered direct limit, so is exact. In the present case, ǫ−1 : Xet → Xlis-et is a
continuous functor and Xet has finite limits.

(3) As ǫ−1 is exact, its right adjoint ǫ∗ preserves injectives.

(4) This is immediate from (1) and (3).

Lemma 6.35 Let x : X → X be a smooth atlas of a differential stack, and let (Xn)
be the corresponding simplicial object in Xlis-et. Then the complex of sheaves

ZX0 ← ZX1 ← ZX2 ← . . .

is exact. Consequently, if I is an injective sheaf on Xlis-et then the complex

I(X0)→ I(X1)→ . . .

is an exact complex of abelian groups.
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Proof. As sheafification is exact, it is enough to show that the complex of presheaves

Z
presh
X0

← Z
presh
X1

← Z
presh
X2

← . . .

is exact. In other words, for any object (U, u) of Xlis-et, the sequence

Z
presh
X0

(U, u)← Z
presh
X1

(U, u)← Z
presh
X2

(U, u)← . . .

is exact. Let S be the set defined as

S = HomXlis-et((U, u), (X, x)).

Then the above is the chain complex
⊕

S

Z←
⊕

S2

Z←
⊕

S3

Z← . . .

This is exact by a standard contracting homotopy (see e.g. Milne [M]), defined as
follows. If S is empty, the exactness is clear as each term is zero. So assume S is
non-zero, and choose an element s0 ∈ S. For each n ≥ 1, we define a map Sn → Sn+1

by (s1, . . . , sn) 7→ (s0, s1, . . . , sn). This induces a map kn :
⊕

Sn Z→
⊕

Sn+1 Z, and
(kn) is the desired contracting homotopy. �

Theorem 6.36 Let X be a differential stack, and let F be any sheaf on Xlis-et such
that for every (U, u) in Xlis-et and p ≥ 1, we have Hp(Uet,FU,u) = 0. Then for any
atlas x : X → X, the natural map

Hp(Xlis-et,F)→ Ȟp((x : X → X),F)

is an isomorphism for all p ≥ 0.

Proof. Let F → I0 δ
→ I1 → . . . be an injective resolution. Then we get a double

complex
(Cq,r = Iq(Xr), δ : Cq,r → Cq+1,r, ∂ : Cq,r → Cq,r+1)

in which ∂ is the Cech differential. The complex

0→ Γ(X, I0)
δ
→ Γ(X, I1)→ . . .

has an augmentation map to the double complex. Similarly, the Cech complex

0→ F(X0)
∂
→ F(X1)→ . . .

has an augmentation map to the double complex. The r th row of this augmented
double complex is the complex

0→ F(Xr)→ I0(Xr)→ I1(Xr)→ . . .

which is exact as by assumption Hp((Uet,FU,u) = 0 for (U, u) = Xr. The q th
column of the augmented double complex is the complex

0→ Γ(X, Iq)→ Γ(X0, I
q)→ . . .

which is exact by Lemma 6.35. Hence the theorem follows. �
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7 Differential forms and de Rham cohomology

7.1 Let X be a differential stack. The structure sheaf OX is a sheaf of rings on
the site Xlis-et defined by OX(U, u) = O(U) (the ring of global regular functions on
U) for every (U, u) in Xlis-et. For any map (f, α) : (V, v) → (U, u) in Xlis-et, the
restriction map rf,α : O(U) → O(V ) defined by φ 7→ φ ◦ f for any φ : U → R in
O(U). This is actually a sheaf of commutative R-algebras.

7.2 Let X be a differential stack. The sheaf of differential p-forms Ωp
X is the

sheaf of OX-modules on the site Xlis-et defined by Ωp
X(U, u) = Ωp(U) (global differ-

ential p-forms on U) for every (U, u) in Xlis-et. For any map (f, α) : (V, v)→ (U, u)
in Xlis-et, the restriction map rf,α : Ωp(U)→ Ωp(V ) is defined by pull-back of forms
under f : V → U .

7.3 An R-linear homomorphism of sheaves dpX : Ωp
X → Ωp+1

X is defined by the
exterior differentials d : Ωp(U) → Ωp+1(U) on all objects (U, u) in Xlis-et. By its
definition, dp+1

X ◦ dpX = 0. The resulting complex (ΩX, dX) is called the de Rham
complex of X. Its hypercohomology H

p(ΩX, dX) is called the de Rham cohomol-
ogy of X, and denoted by Hp

dR(Xlis-et).

7.4 De Rham’s Theorem. For any differential stack X, the sequence

0→ RX →֒ Ω0
X

d
→ Ω1

X

d
→ . . .

is an exact sequence of sheaves. Consequently, the map RX→ (ΩX, dX) induces an
isomorphism

Hp(Xlis-et,RX)
∼
→ H

p(ΩX, dX).

7.5 Hodge to de Rham spectral sequence. One of the two hypercohomology
spectral sequences is of the form

Ep,q
2 = Hp(Xlis-et,Ω

q
X)⇒ Hp+q

dR (Xlis-et).

The main result

Theorem 7.6 Let X be a differential stack, and let x : X → X be an atlas. Let
(Xn) be the simplicial nerve of the atlas. Then the de Rham cohomology of X is
naturally isomorphic to the cohomology of the total complex of the resulting double
complex Ωp(Xr).
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Proof Let (Ip,q, d : Ip,q → Ip+1,q, δ : Ip,q → Ip,q+1), where p ≥ −1 and q ≥ 0,
be a Cartan-Eilenberg injective resolution of the augmented de Rham complex 0→

RX→ Ω0 d
→ Ω1 d

→ . . .. In particular, we have an injective resolution

0→ RX→ I−1,0 δ
→ I−1,1 δ

→ . . .

and an injective resolution

0→ Ωp → Ip,0
δ
→ Ip,1

δ
→ . . .

for each p. The maps d : Ip,q → Ip+1,q are induced by the inclusion RX → Ω0 and
by the de Rham differential d : Ωp → Ωp+1. As the augmented de Rham complex is
exact, the complexes

0→ I−1,q d
→ I0,q d

→ I1,q d
→ . . .

are exact.

Let x : X → X be a smooth atlas, and let (Xn) be the simplicial nerve of it. Then
we get a triple complex of abelian groups

(T p,qr , d : T p,qr → T p+1,q
r , δ : T p,qr → T p,q+1

r , ∂ : T p,qr → T p,qr+1)

defined as follows. We put

T p,qr =

{

Ip,q(Xr) for p, q, r ≥ 0, and
0 otherwise.

The differential ∂ : T p,qr → T p,qr+1 is the Cech differential ∂ : Ip,q(Xr) → Ip,q(Xr+1),
the differential d : T p,qr → T p+1,q

r is induced by d : Ip,q → Ip+1,q and the differential
δ : T p,qr → T p,q+1

r is induced by δ : Ip,q → Ip,q+1.

Now consider the double complex (Apr, d : Apr → Ap+1
r , ∂ : Apr → Apr+1) where

Apr =

{

Ωp(Xr) for p, r ≥ 0, and
0 otherwise.

with d induced by the differential d : Ωp → Ωp+1 and ∂ induced by the Cech
differential. We have an augmentation map

α : A→ T

induced by the inclusions Ωp → Ip,0. Note that Ω is an acyclic sheaf on Xr, so the
complexes

0→ Ωp(Xr)→ Ip,0(Xr)→ Ip,1(Xr)→ . . .

are exact. Hence the augmentation induces a quasi-isomorphism

Tot(α) : Tot(A)→ Tot(T )

of the total complexes.
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Similarly, consider the double complex (Bp,q, d : Bp,q → Bp+1,q, δ : Bp,q → Bp,q+1)
where

Bp,q =

{

Γ(X, Ip,q) for p, q ≥ 0, and
0 otherwise.

with d induced by the differential d : Ωp → Ωp+1 and δ induced by δ : Ip,q → Ip,q+1).
We have an augmentation map

β : B → T

induced by the inclusions Γ(X, Ip,q)→ Ip,q(X0).

As each Ip,q is an injective sheaf, each of the complexes

0→ Γ(X, Ip,q)→ Ip,q(X0)
∂
→ Ip,q(X1)

∂
→ Ip,q(X2)

∂
→ . . .

is exact by the description of global sections via an atlas together with the Lemma
6.35. Therefore the augmentation β induces a quasi-isomorphism

Tot(β) : Tot(B)→ Tot(T )

of the total complexes.

Hence we get an isomorphism in the derived category

Tot(β)−1 ◦ Tot(α) : Tot(A)→ Tot(B)

By definition, the cohomology of Tot(B) is the de Rham cohomology of X. This
proves the theorem.

A Appendix: 2-categories

Recall that a groupoid is a category in which all morphisms are isomorphisms.

Next we define what is a 2-category. While reading the definition, it will be useful
to keep a basic example in mind: there is a 2-category C called ‘the category of all
categories’, in which 0-cells are all categories, 1-cells are all functors, and 2-cells are
natural isomorphisms between functors.

Definition A.1 A 2-category C is given by the following data, which satisfies
the following conditions.

We are given some 0-cells or ‘objects’, which we denote by x, y, z etc. We are
given some 1-cells or ‘arrows’, denoted by f, g, h etc. We are given some 2-cells
or ‘equivalences’, denoted by α, β, γ etc.

Each 1-cell f has a given source and a target, which are 0-cells. The notation
f : x → y will mean f has source x and target y. We also write s(f) = x and
t(f) = y. A composite 1-cell g ◦ f : x → z is defined for any f : x → y and
g : y → z.
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The 0-cells as objects, and 1-cells as morphisms with the given composition, are
supposed to form a category C(1) called the 1-skeleton of C. Unlike usual categories
in mathematics, this category C(1) may not be locally small, that is, all 1-cells x→ y
may not form a set. For any 0-cell x, we denote by 1x the 1-cell which is the identity
automorphism of x in C(1).

Each 2-cell α has a given source and a target, which are 1-cells. The notation
α : f ⇒ g will mean α has source f and target g. We also write s(α) = f and
t(α) = g. It is assumed that if α : f ⇒ g is any 2-cell, then the 1-cells f and g have
a common source 0-cell x and a common target 0-cell y (in other words, s ◦ s = s ◦ t
and t ◦ s = t ◦ t as maps from the collection of all 2-cells to the collection of all
0-cells).

A composite of 2-cell β •α : f ⇒ h is defined for any α : f ⇒ g and β : g ⇒ h. This
is called as the vertical composition of 2-cells.

For any 0-cells x and y, we require that all 1-cells f : x→ y as objects and all 2-cells
α between such 1-cells as morphisms form a category. This category is denoted by
HOM(x, y).

It is required that the category HOM(x, y) should be a groupoid. All the 2-cells
are by assumption invertible, and α−1 will denote the inverse of α. The identity
automorphism (which is a 2-cell of C) of any object f of HOM(x, y) (which is a
1-cell of C) will be denoted by 1f . For any 0-cell x, The identity automorphism
11x of the object 1x of HOM(x, x) will be denoted by Ix. This will be called the
identity 2-cell of the 0-cell x.

If x, y, z are 0-cells, f, f ′ : x → y and g, g′ : y → z are 1-cells, and α : f ⇒ f ′ and
β : g ⇒ g′ are 2-cells in C, then a 2-cell β ⋆ α : g ◦ f ⇒ g′ ◦ f ′ is defined, called the
horizontal composite of the 2-cells α followed by β.

We require that horizontal composition be associative, and the identity 2-cells Ix of
all the 0-cells x should be both left and right identities for horizontal composition.

Moreover, we require that vertical and horizontal compositions should commute.
This means if x, y, z are 0-cells, f, f ′, f ′′ : x→ y and g, g′, g′′ : y → z are 1-cells, and
α : f ⇒ f ′, α′ : f ′ ⇒ f ′′ and β : g ⇒ g′, β′ : g′ ⇒ g′′ are 2-cells in C, then we should
have

(β′ ⋆ α′) • (β ⋆ α) = (β′ • β) ⋆ (α′ • α)

Remark A.2 In the ‘small’ case, all 0-cells, 1-cells and 2-cells in a 2-category C
form sets which we denote by C0, C1, and C2. The sources and targets are given
by maps s1, t1 : C1 → C0 and s2, t2 : C2 → C1, with s1s2 = s1t2 and t1s2 = t1t2.
Composite of 1-cells is a map

m1 : C1 ×s1,C0,t1 C1 → C1

There is a map e0 : C0 → C1 which attaches to any 0-cell its identity 1-cell, and a
map e1 : C1 → C2 which attaches to any 1-cell its identity 2-cell. In these terms,
the composite map e1e0 : C0 → C2 associates to any 0-cell its identity 2-cell.
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Vertical composition of 2-cells is given by a map

mver
2 : C2 ×s2,C1,t2 C2 → C2

Horizontal composition is given by a map

mhor
2 : C2 ×s1s2,C0,t1t2 C2 → C2

The inverse of a 2-cell is given by a map i2 : C2 → C2.

Thus, a small 2-category is given by data

(C0, C1, C2, s1, t1, s2, t2, e0, e1,m1,m
ver
2 ,mhor

2 , i2)

The conditions which this data is required to satisfy can be expressed by the re-
quirement of the commutativity of certain diagrams, which we leave to the reader.

Remark A.3 To any 2-category C we can associate a 1-category (means usual
category) D (which we can call as the homotopy category of C in view of the next
example) defined as follows. The objects of D are the same as the objects (0-cells)
of C, while the morphisms x→ y are equivalence classes of 1-cells f : x→ y where
two such f and g are regarded as equivalent if there exists a 2-cell α : f ⇒ g in C.
Note however that D need not in general be locally small.

Example A.4 Let Top be the 2-category defined as follows. The 0-cells of Top
are topological spaces denoted by X, Y , Z, etc. The 1-cells are continuous maps
f : X → Y , and their composition is defined as usual.

We now define 2-cells. Let f, g : X → Y be continuous maps, and letH : X×[0, 1]→
Y and H ′ : X × [0, 1] → Y be homotopies from f to g. We will say that H ′ is a
re-parameterization of H if there exists a continuous map r : [0, 1] → [0, 1] with
r(0) = 0 and r(1) = 1 such that H ′(x, t) = H(x, r(t)) for all (x, t) ∈ X × [0, 1].
Consider the equivalence relation generated by such re-parameterizations. A two
cell α : f ⇒ g is an equivalence class [H] of homotopies H : X × [0, 1]→ Y from f
to g under the above equivalence relation.

The vertical composition of 2-cells is defined by juxtaposing the time intervals of
representing homotopies, which is well defined and associative at the level of the
equivalence classes [H]. The horizontal composition of homotopies is defined in the
obvious way, and it is well-defined on classes [H]. By going modulo 2-cells, we get
from the 2-category Top the homotopy category Hot of topological spaces.

Remark A.5 Let X be any contractible space (for example, X = R
2) regarded as

an object in the 2-category Top. Note that a continuous map f : Y → X is unique
up to homotopy, but need not be unique. Moreover, if f, g : Y → X, then there
could be more then one equivalence class of homotopies from f to g. This example
motivates the definition of a terminal object in a 2-category.
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Definition A.6 In any 2-category C, a terminal object is any 0-cell x with the
properties that given any other 0-cell y, there exists a 1-cell f : y → x, and for any
two such 1-cells f, g : y → x, there exists a 2-cell α : f ⇒ g. (Such a 2-cell α need
not be unique.)

Fibered products

Let C be a 2-category. Let f : x → y and g : z → y be 1-cells in C. We consider
4-tuples (w,F,G, α) in which w is a 0-cell, F : w → y and G : w → x are 1-cells,
and α : f ◦ G ⇒ g ◦ F is a 2-cell. We now construct a category T in which the
objects are all such 4-tuples. A morphisms in this category from (w′, F ′, G′, α′) to
(w,F,G, α) is a 3-tuple (h, β, γ) where h : w′ → w is a 1-cell, and β : G′ ⇒ G ◦ h
and γ : F ′ ⇒ F ◦ h are 2-cells, such that the resulting polyhedron commutes, that
is, we have

α′ = (1g ⋆ γ
−1) • α • (1f ⋆ β)

where 1f and 1g respectively denote the identity 2-cells of the 1-cells f and g, ⋆
and • respectively denote the horizontal and the vertical composition of 2-cells in
C, and γ−1 denotes the inverse 2-cell of γ. As horizontal composition of 2-cells is
by assumption associative, the product notation is unambiguous.

If (h′, β′, γ′) : (w′′, F ′′, G′′, α′′) → (w′, F ′, G′, α′) and (h, β, γ) : (w′, F ′, G′, α′) →
(w,F,G, α) are two such morphisms, we define their composite by putting

(h, β, γ)(h′, β′, γ′) = (h ◦ h′, β • β′, γ • γ′)

This indeed makes sense as vertical and horizontal compositions of 2-cells commute.
It can be verified that this composition law makes T into a category.

Let (h1, β1, γ1) : (w′, F ′, G′, α′) → (w,F,G, α) and (h2, β2, γ2) : (w′, F ′, G′, α′) →
(w,F,G, α) be morphisms in T with common source (w′, F ′, G′, α′) and common tar-
get (w,F,G, α). We now make T into a 2-category by defining a 2-cell (h1, β1, γ1)⇒
(h2, β2, γ2) to be a 2-cell δ : h1 ⇒ h2 in C such that

(1G ⋆ δ) • β1 = β2 and (1F ⋆ δ) • γ1 = γ2

We denote this 2-cell by δ(h1,β1,γ1)⇒(h2,β2,γ2). We define the vertical composition • in
T by putting

δ′(h2,β2,γ2)⇒(h3,β3,γ3) • δ(h1,β1,γ1)⇒(h2,β2,γ2) = (δ′ • δ)(h1,β1,γ1)⇒(h3,β3,γ3)

We now define the horizontal composition ⋆ in T . Let (h′1, β
′
1, γ
′
1) and (h′2, β

′
2, γ
′
2) be

1-cells in T from (w′′, F ′′, G′′, α′′) to (w′, F ′, G′, α′) and let (h1, β1, γ1) and (h2, β2, γ2)
be 1-cells in T from (w′, F ′, G′, α′) to (w,F,G, α). Let δ′ : (h′1, β

′
1, γ
′
1)⇒ (h′2, β

′
2, γ
′
2)

and δ : (h1, β1, γ1)⇒ (h2, β2, γ2) be 2-cells in T . We define their horizontal compo-
sition ⋆ in T by putting

δ(h1,β1,γ1)⇒(h2,β2,γ2) ⋆ δ
′
(h′1,β

′
1,γ

′
1)⇒(h′2,β

′
2,γ

′
2) = (δ ⋆ δ′)(h1◦h′1,β1•β1,γ1•γ′1)⇒(h2◦h′2,β2•β2,γ2•γ′2)

The reader can verify that the above data makes T a 2-category.
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Definition A.7 Given any 1-cells f : x→ y and g : z → y in a 2-category, consider
the associated 2-category T of 4-tuples (w,F,G, α) which we described above. A
terminal 0-cell (w,F,G, α) in T is called as the fibered product of f and g. A
choice of such a tuple (if it exists) is denoted by (x ×f,y,g z, py, px, α), or simply by
x×f,y,g z or even x×y z if the other data is understood.
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