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1 Functor of points

All rings will be commutative with unity, unless otherwise indicated.

Let Sets, Rings and Schemes denote the categories of sets, rings, and schemes. If
S is a chosen base scheme, by definition RingsS is the category whose objects are
all pairs (R, f : Spec R → S) where R is a ring and f is a morphism of schemes,
and morphisms φ : (R, f) → (R′, f ′) are ring homomorphisms φ : R → R′ such that
the resulting morphism Spec φ : Spec R′ → Spec R is over S.

To any scheme X, we associate a functor

hX : Rings → Sets

by putting
hX(R) = HomSchemes(Spec R,X)

To any ring homomorphism φ : A → B we associate the map hX(φ) : hX(A) →
hX(B) under which any f ∈ hX(A) = HomSchemes(Spec A,X) is mapped to the
composite f ◦ Spec φ : Spec B → X.

Similarly, for any S-scheme X we have a functor hX : RingsS → Sets, under which

hX(R) = HomSchemesS
(Spec R,X)

for any S-ring R.

The functor hX is called the functor of points of the scheme X, and the set hX(R)
is called the set of R-valued points of X.

If f : X → Y is a morphism of schemes, then we get a morphism of functors (natural
transformation)

hf : hX → hY

If g : Spec R → X is in hX(R), then hf (g) ∈ hY (R) is by definition the composite
f ◦ g : Spec R → Y . This defines a functor

h : Schemes → Fun(Rings,Sets)

where Fun(Rings,Sets) is the ‘functor category’ whose objects are all functors
X : Rings → Sets and morphisms are natural transformations.

The above can be similarly defined relative to a given base-schem S, to get a functor
h : SchemesS → Fun(RingsS,Sets). If we take S = Spec Z, then we get the
absolute case, showing the relative case to be more general.

Theorem 1.1 (Grothendieck) The functor h : SchemesS → Fun(RingsS,Sets)
is fully faithful.

As a consequence, the category SchemesS is equivalent to a full subcategory of
Fun(RingsS,Sets).
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2 Examples of functor of points

We say that a functor X : RingsS → Sets is representable if X is naturally
isomorphic to the functor of points hX of some scheme X over S. If X is a scheme
over S and α : hX → X is a natural isomorphism, then we say that the pair
(X,α) represents the functor X. The scheme X is called a representing scheme
or moduli scheme for X, and the natural isomorphism α is called a universal
family or a Poincaré family over X.

Some representable functors

Example 2.1 Let X(R) = R (the set of elements the ring R). This functor is
representable: it is the functor hX where X = A1

Z
= Spec Z[t] is the affine line over

Z.

Example 2.2 Let X(R) = R× the set of invertible elements of the ring R. This
functor is representable by X = Gm,Z = Spec Z[t, t−1].

Example 2.3 More generally, for n ≥ 1, let Xn(R) = GLn(R) the set of n × n
invertible matrices over R. This functor is represented by the group-scheme GLn,Z =
Spec Z[xi,j, 1/ det(xi,j)].

Example 2.4 Let n ≥ 0 and let Xn(R) be the set of all equivalence classes of pairs
(L, u) where L is a rank 1 projective module over R (a line bundle over Spec R),
and u : Rn+1 → L is a surjective R-linear homomorphism. We say that two pairs
(L, u) and (L′, u′) are equivalent if ker(u) = ker(u′) ⊂ Rn+1. Then X is represented
by Pn

Z
.

Some non-representable functors

It is easy to give examples of non-representable functors which are ‘very bad’ in the
sense that they do not satisfy the fpqc sheaf property (which we will study in lecture
2). The following examples are fpqc sheaves, but still they are not representable.

Example 2.5 Let S = Spec k where k is a field, and define X : Ringsk → Sets
by putting X(R) to be the set of all Zariski-open subsets of SpecR. This is not
representable (simple exercise).

Example 2.6 Let X(R) = (R/2R)× the set of invertible elements of the ring
R/2R. This functor is not representable. (See arXiv.org/abs/math.AG/0204047)

Example 2.7 Let S be a noetherian scheme, and E a coherent sheaf on S which
is not locally free. For any object (R, f : Spec R → S) in RingsS, define X(R) to
be H0(Spec R, f ∗E). This functor is not representable.
(see arXiv.org/abs/math.AG/0308036)
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3 Proof of Theorem 1.1

The theorem says that for any S-schemes X and Y , the set map HomS(X,Y ) →
HomFun(hX , hY ) is bijective.

h is faithful We want to show that for any S-schemes X and Y , the set map

HomS(X,Y ) → HomFun(hX , hY )

is injective. Let f, g ∈ HomS(X,Y ) with hf = hg. Let Ui = Spec Ri be affine
open subschemes of X that cover X, with inclusion map θi : UitoX. Then hf (θi) =
f ◦ θi = f |Ui

: Ui → Y and hg(θi) = g ◦ θi = g|Ui
: Ui → Y , so from hf = hg we get

f |Ui
= |Ui

: Ui → Y for each Ui. As these cover X, we have f = g.

h is full We want to show that for any S-schemes X and Y , the set map

HomS(X,Y ) → HomFun(hX , hY )

is surjective. If ϕ : hX → hY is in HomFun(hX , hY ), then we get a set map ϕ(Ui) :
hX(Ui) → hY (Ui). Hence we get a morphism ϕ(Ui)(θi) : Ui → Y .

If V ⊂ U ⊂ X are affine open subschemes with inclusions θV : V → X, θU : U → X,
then we have

ϕ(V )(θV ) = (ϕ(U)(θU))|V

We can cover the intersections Ui

⋂
Uj with affine open subschemes of X (if X

is separated over S then these intersections are already affine). Hence from the
above, the morphisms ϕ(Ui)(θi) : Ui → Y agree in the intersections Ui

⋂
Uj, hence

they glue together to define a morphism f : X → Y . ¿From its construction,
f |Ui

= ϕ(Ui)(θi), and hence we have hf = ϕ, showing surjectivity of HomS(X,Y ) →
HomFun(hX , hY ).

This completes the proof of the Theorem 1.1. �

Remark 3.1 As h is fully faithful, it gives an equivalence of the category of
schemes over S with a full subcategory of Fun(Rings,Sets). Hence, we can regard
any scheme X over S as the corresponding functor hX from S-rings to sets. Out
of all possible functors X from S-rings to sets, those of the form hX where X is
an S-scheme are rather special: Grothendieck proved that they necessarily satisfy
faithfully flat quasi-compact descent, that is, they are fpqc sheaves, which is
the subject of Lecture 2 (April 1, 2005).

The fpqc sheaf condition is necessary but not sufficient for representability of a
functor X.
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4 Coverings

Zariski coverings of schemes

Let S be a chosen base scheme. For simplicity, all schemes are assumed to be locally
noetherian unless otherwise indicated.

Definition 4.1 Let X be an S-scheme. A Zariski covering of X is a family of
S-morphisms (fi : Vi → X)i∈I such that

(1) Each fi is an open embedding, and

(2) X =
⋃

i∈I im(fi)

Remark 4.2 If instead of open embeddings fi : Vi → X we only take open
subschemes Vi ⊂ X, then the above gives the usual definition of a Zariski open
cover of X.

Definition 4.3 Let A be a ring over S (that is, we are given a structure morphism
Spec A → S). A Zariski covering of A in the category RingsS is a family of
S-morphisms (fi : Spec Bi → Spec A)i∈I such that

(1) Each fi is an open embedding, and

(2) Spec A =
⋃

i∈I im(fi).

Flatness recalled

If M is a module over a ring A, then M is called a flat module if the functor
−⊗A M is exact, that is, if 0 → N ′ → N → N ′′ → 0 is exact then 0 → N ′ ⊗A M →
N ⊗A M → N ′′⊗A M → 0 is exact. If M is flat and moreover if the functor −⊗A M
is faithful (that is, HomA(N1, N2) → HomA(N1⊗A M,N2⊗A M) is always injective)
then M is called a faithfully flat module.

If A → B is a ring homomorphism then B is faithfully flat over A (means, as an
A-module) if and only if the following two conditions are satisfied:

(1) B is flat as a module over A, and

(2) The morphism Spec B → Spec A is surjective.

If A → B is a ring homomorphism such that B is faithfully flat over A, then A → B
is automatically injective.

Étale coverings of schemes

Recall that a morphism f : Y → X of locally noetherian schemes is called étale if
f is locally finite-type, flat, and unramified (means the sheaf of relative differentials
Ω1

f is zero).

Definition 4.4 Let X be an S-scheme. An étale covering of X is a family of
S-morphisms (fi : Vi → X)i∈I such that
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(1) Each fi is étale, and

(2) X =
⋃

i∈I im(fi).

Definition 4.5 Let A be a ring over S (that is, we are given a structure morphism
Spec A → S). An étale covering of A is a family of S-morphisms (fi : Spec Bi →
Spec R)i∈I such that

(1) Each fi is étale.

(2) Spec R =
⋃

i∈I im(fi).

fppf coverings of schemes

Definition 4.6 Let X be an S-scheme, locally noetherian. An fppf covering of
X is a family of S-morphisms (fi : Vi → X)i∈I such that

(1) Each fi is finite type and flat, and

(2) X =
⋃

i∈I im(fi).

Definition 4.7 Let A be a ring over S (that is, we are given a structure morphism
Spec A → S). A fppf covering of A is a family of S-morphisms (fi : Spec Bi →
Spec R)i∈I such that

(1) Each fi is finite type and flat, and

(2) Spec R =
⋃

i∈I im(fi)

fpqc coverings of schemes

A morphism f : Y → X of schemes is called a quasi-compact morphism if X
has an open covering by affine open subschemes Ui such that each f−1(Ui) is a finite
union of affine open subschemes of Y .

A morphism f : Y → X of schemes is called an fpqc morphism if f is faithfully
flat, and satisfies the following condition: every quasi-compact open subset U ⊂ X
is the image of some quasi-compact open subset V ⊂ Y . Equivalently, f is faithfully
flat, and any point y ∈ Y has an open neighbourhood y ∈ V ⊂ Y such that f(V ) is
open in X and the morphism f |V : V → f(V ) is a quasi-compact morphism.

Definition 4.8 Let X be an S-scheme. An fpqc covering of X is a family of
S-morphisms (fi : Vi → X)i∈I such that the resulting morphism

∐

i∈I

Vi → X

is an fpqc morphism.

If X and each Vi are affine, then the above specialises to the following.
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Definition 4.9 Let A be a ring over S (that is, we are given a structure morphism
Spec A → S). A fpqc covering of A is a family of S-morphisms (fi : Spec Bi →
Spec R)i∈I such that

(1) Each fi is flat, and

(2) There exists a finite subset J ⊂ I such that Spec R =
⋃

j∈J im(fj)

5 Sheaf conditions

Exact diagram of sets

Let f : X → Y and g, h : Y →
→ Z be maps of sets. The diagram X → Y →

→ Z is called
an exact diagram of sets, or f is called an equaliser of g and h if the following
two conditions are satisfied:

(1) f is injective, and

(2) im(f) = {y ∈ Y |g(y) = h(y)}.

Small Zariski sheaf on X/S

Let X be an S-scheme. Let CZar
X/S denote the category whose objects are open

embeddings f : U → X over S, and morphisms are S-morphisms. A small Zariski
presheaf of sets on X/S is a functor X : (CZar

X/S)op → Sets such that for any Zariski

cover (fi : Vi → U)i∈I where U ∈ Ob(CZar
X/S), the following diagram of sets is exact.

X(U) →
∏

i∈I

X(Vi)
→
→

∏

(j,k)∈I×I

X(Vj ×U Vk)

In the above, the map X(U) →
∏

i∈I X(Vi) is induced by the component maps
X(fi) : X(U) → X(Vi), which the two maps X(Vi)

→
→

∏
(j,k)∈I×I X(Vj ×U Vk) are

respectively induced by the component maps X(pj) : X(Vj) → X(Vj ×U Vk) and
X(pk) : X(Vk) → X(Vj ×U Vk) where pj : Vj ×U Vk → Vj and pk : Vj ×U Vk → Vk are
the two projections.

Small étale sheaf on X/S

Let Cet
X/S denote the category whose objects are étale S-morphisms f : U → X

and morphisms are S-morphisms. A small etale presheaf of sets on X/S is a
functor X : (Cet

X/S)op → Sets such that for any étale cover (fi : Vi → U)i∈I where

U ∈ Ob(Cet
X/S), the following diagram of sets is exact.

X(U) →
∏

i∈I

X(Vi)
→
→

∏

(j,k)∈I×I

X(Vj ×U Vk)

Big fppf sheaf on SchemesS

This is a functor (SchemesS)op → Sets such that for any S-scheme U and any fppf
cover (fi : Vi → U)i∈I over S, the following diagram of sets is exact.
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X(U) →
∏

i∈I

X(Vi)
→
→

∏

(j,k)∈I×I

X(Vj ×U Vk)

Big fppf sheaf on RingsS

This is a functor RingsS → Sets such that for any S-ring A and any fppf cover
(fi : Spec Bi → Spec A)i∈I over S, the following diagram of sets is exact.

X(A) →
∏

i∈I

X(Bi)
→
→

∏

(j,k)∈I×I

X(Bj ⊗A Bk)

Big fpqc sheaf on SchemesS

This is a functor (SchemesS)op → Sets such that for any S-scheme U and any fpqc
cover (fi : Vi → U)i∈I over S, the following diagram of sets is exact.

X(U) →
∏

i∈I

X(Vi)
→
→

∏

(j,k)∈I×I

X(Vj ×U Vk)

Big fpqc sheaf on RingsS

This is a functor RingsS → Sets such that for any S-ring A and any fpqc cover
(fi : Spec Bi → Spec A)i∈I over S, the following diagram of sets is exact.

X(A) →
∏

i∈I

X(Bi)
→
→

∏

(j,k)∈I×I

X(Bj ⊗A Bk)

We will prove the following fundamental theorem in the next talk.

Theorem 5.1 (Grothendieck) If X is a scheme over S, then the corresponding
functor hX : SchemesS → Sets is a big fpqc sheaf on SchemesS.
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6 Amitsur’s theorem

Let A → B be a ring homomorphism. We have ring homomorphisms p∗1 : B →
B ⊗A B : b 7→ b ⊗ 1 and p∗2 : B → B ⊗A B : b 7→ 1 ⊗ b. These give the pullback of
regular functions on Spec B under the two projections from Spec B×Spec A Spec B =
Spec(B ⊗A B) to Spec A.

Theorem 6.1 Let A → B be a faithfully flat ring homomorphism. Then the fol-
lowing sequence of A-modules (the Amitsur sequence) is exact.

0 → A → B
p∗
1
−p∗

2→ B ⊗A B

More generally, if M is any A-module, then the following sequence of A-modules
(which is obtained by applying −⊗AM to the above sequence, and called the Amitsur
sequence for M) is again exact.

0 → M
1⊗idM→ B ⊗A M

(p∗
1
−p∗

2
)⊗idM

→ B ⊗A B ⊗A M

Proof Let X = Spec B, S = Spec A and π : X → S the induced morphism. First
consider the special case where there exists a section s : S → X for the projection
π : X → S, so that π ◦ s = idS. In other words, we have a ring homomorphism
s∗ : B → A with s∗|A = idA. Then the homomorphism s∗ ⊗ idM : B ⊗A M →
A ⊗A M = M has the property that the composite

M
1⊗idM→ B ⊗A M

s∗⊗idM→ M

is idM , showing that the first map is injective. Clearly, the composite M
1⊗idM→

B⊗A M
(p∗

1
−p∗

2
)⊗idM

→ B⊗A B⊗A M is zero. Now suppose that
∑

bi⊗mi is an element
of ker((p∗1 − p∗2) ⊗ idM), that is,

∑
bi ⊗ 1 ⊗ mi =

∑
1 ⊗ bi ⊗ mi

Applying (s∗, idB) ⊗ idM : B ⊗A B ⊗A M → B ⊗A M to the two sides, we get

∑
s∗(bi) ⊗ mi =

∑
bi ⊗ mi

But
∑

s∗(bi) ⊗ mi =
∑

s∗(bi)mi in A ⊗A M = M . Hence
∑

bi ⊗ mi = (1 ⊗
idM)(

∑
s∗(bi)mi) showing exactness at B ⊗A M .

Next, we treat the general case. Applying the functor B ⊗A − to the complex

0 → M
1⊗idM→ B ⊗A M

(p∗
1
−p∗

2
)⊗idM

→ B ⊗A B ⊗A M

we get the complex

0 → B ⊗A M
idB ⊗(1⊗idM )

→ B ⊗A B ⊗A M
idB ⊗(p∗

1
−p∗

2
)⊗idM

→ B ⊗A B ⊗A B ⊗A M
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Note that we have a functorial isomorphism

(X ×S X) ×p1,X,p1
(X ×S X) = X ×S X ×S X

In algebraic terms, we have a ring isomorphism

(B ⊗A B) ⊗p∗
1
,B,p∗

1
(B ⊗A B) = B ⊗A B ⊗A B

Hence, putting B → C to be the ring homomorphism p∗1 : B → B ⊗A B, and N to
be the B-module B ⊗A M , the above complex becomes

0 → N → C ⊗B N → C ⊗B C ⊗B N

which is the Amitsur complex for N . As p1 : X ×S X → X admits a section,
namely, the diagonal ∆ : X → X ×S X, by the special case proved above, the
Amitsur sequence for N is exact.

It is a basic property of faithful flatness that if a sequence becomes exact after
tensoring by a faithfully flat module then it is originally exact. Hence, by faithful
flatness of B over A, the Amitsur sequence for M is exact. �

Corollary 6.2 Let O = id : Rings → Rings be the functor which associates to
any ring A the ring A itself, and to any A → B the same homomorphism. Then O
is a big fpqc sheaf of rings on Rings.

Proof Let (fi : Spec Bi → Spec A)i∈I be an fpqc cover of A. By assumption, there
exists a finite subset J ⊂ I such that

⋃
j∈J im(fj) = Spec A. Let B =

∏
j∈J Bj be

the direct product ring, so that SpecB =
∐

j∈J Spec Bi is the disjoint union. This
has a morphism f = (fj)j∈J : Spec B → Spec A which is faithfully flat, being both
flat and surjective. It is clear that the functor O preserves direct products. Hence
it just remains to show that the diagram

O(A) → O(B) →
→ O(B ⊗A B)

is exact. But this is just the exactness of the Amitsur sequence for A → B. �

The above corollary is a special case of the following corollary by taking T = A1.

Corollary 6.3 For any affine scheme T = Spec R, consider the corresponding
functor of points hT : Rings → Sets which associates to any ring A the set
HomRings(R,A) and to any homomorphism φ : A → B the set map φ ◦ − :
HomRings(R,A) → HomRings(R,B) obtained by composing with φ. This functor
is a big fpqc sheaf of sets on Rings.

10



Proof Clearly, hT preserves direct products of rings. Hence it remains to prove
that if A → B is faithfully flat, then the following diagram of sets isexact:

HomRings(R,A) → HomRings(R,B) →
→ HomRings(R,B ⊗A B)

Let Abgrps denote the category of abelian groups. By applying the left-exact
functor HomAbgrps(R,−) to the Amitsur sequence for A → B, we get the exact
sequence of abelian groups

0 → HomAbgrps(R,A) → HomAbgrps(R,B)
p∗
1
−p∗

2→ HomAbgrps(R,B ⊗A B)

Hence the conclusion follows by considering the inclusion of functors

HomRings(R,−) →֒ HomAbgrps(R,−)

�

7 Examples

If π : X → S is a map of sets, then any point of X ×S X is a pair (x, y) of points of
X such that π(x) = π(y). We have p1(x, y) = x and p2(x, y) = y. If f : S → T is
any map, then g = f ◦π : X → T has the property that g◦p1 = g◦p2 : X×S X → T ,
that is, g is constant along fibers of π : X → S. If π is surjective, then any map
g : X → T which is constant along fibers of π factors uniquely through S, defining
a map f : S → T with g = f ◦ π.

In topological spaces, the above is true if and only if π is surjective and the topology
on S is the quotient topology.

The Corollary 6.2 of the theorem of Amitsur shows that if S = Spec A, X = Spec B,
and π is faithfully flat, then any regular function b ∈ B = Hom(X,A1) with b◦p1 =
b ◦ p2 factors uniquely through a regular function a ∈ A = Hom(S,A1).

We now give two examples of A → B where Spec B → Spec A is surjective but not
flat, where the above conclusion of Amitsur’s theorem fails.

Example 7.1 Let A = C[t3, t5] ⊂ C[t] = B. Then in B ⊗A B we have

t7 ⊗A 1 = t2t5 ⊗A 1 = t2 ⊗A t5 = t2 ⊗A t3t2 = t5 ⊗A t2 = 1 ⊗ t7

However, t7 does not lie in A.

Example 7.2 Let A = C[x, xy, y3] ⊂ C[x, y] = B. Then

xy2 ⊗A 1 = y · (xy) ⊗A 1 = y ⊗A xy = xy ⊗A y = 1 ⊗A xy2

but xy2 does not lie in A.
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8 Effective descent for closed subschemes

Theorem 8.1 Let π : X → S be a faithfully flat quasi-compact morphism of
schemes. Let Y ⊂ X be a closed subscheme such that the schematic inverse im-
ages p−1

1 Y and p−1
2 (Y ) are identical in X ×S X. Then there exists a unique closed

subscheme Z ⊂ S such that Y = π−1(Z).

Proof The question is clearly local over S. Consider any affine open cover (Ui)
of S. By quasi-compactness of π : X → S, each π−1(Ui) has a finite affine open
cover (Vi,j). Let Vi =

∐
j Vi,j, which is affine and faithfully flat over Ui. Hence the

theorem follows from the following purely algebraic lemma. �

Lemma 8.2 Let A → B be a faithfully flat ring homomorphism, and let J ⊂ B be
an ideal such that J ⊗A B = B ⊗A J ⊂ B ⊗A B. Then there exists a unique ideal
I ⊂ A such that J = BI.

Proof If I1 ⊂ I2 ⊂ A are two such ideals then B⊗AI1 = BI1 = J = BI2 = B⊗AI2,
in particular, B ⊗A (I1/I2) = 0, and so I1/I2 = 0 by faithful flatness of B, showing
uniqueness of I. Next we show existence. Let

I = {b ∈ J |b ⊗ 1 = 1 ⊗ b}

By Amitsur’s theorem, we indeed have I ⊂ A, and in fact, I = A∩J . Let i : I →֒ J
denote the inclusion. By definition of I, the following sequence is exact:

0 → I
i
→ J

p∗
1
−p∗

2→ B ⊗A J

(note that p∗1 maps J to J ⊗A B, but by assumption J ⊗A B = B ⊗A J ⊂ B ⊗A B
so we can regard p∗1 as defining a map J → B ⊗A J .) Hence tensoring with B and
using flatness of B, we get an exact sequence

0 → I ⊗A B
i⊗idB→ J ⊗A B

(p∗
1
−p∗

2
)⊗idB

→ B ⊗A J ⊗A B

By Amitsur’s theorem applied to the A-module J , we have an exact sequence

0 → J
1⊗idJ→ B ⊗A J

(p∗
1
−p∗

2
)⊗idJ

→ B ⊗A B ⊗A J

The above two exact sequences fit in a commutative diagram

0 → I ⊗A B
i⊗idB→ J ⊗A B

(p∗
1
−p∗

2
)⊗idB

→ B ⊗A J ⊗A B
u ↓ ‖ ‖

0 → J
1⊗idJ→ B ⊗A J

(p∗
1
−p∗

2
)⊗idJ

→ B ⊗A B ⊗A J

where the map u : I ⊗A B → J sends x ⊗ b 7→ xb for x ∈ I and b ∈ B.

By five-lemma, the map u is an isomorphism. �

The above can be phrased as follows in the language of sheaves.
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Theorem 8.3 Let C : Schemesop → Sets be the functor which associates to any
scheme X the set C(X) consisting of all its closed subschemes, and to any morphism
f : Y → X the set map C(X) → C(Y ) which sends a subscheme of X to its
schematic inverse image in Y . Then C is a big fpqc sheaf on Schemes.

Remark 8.4 Similar results are also true for open subschemes instead of closed
subschemes: they amount to the statement that if Y → X is faithfully flat quasi-
compact then the topology on X is the quotient topology from Y , that is, a subset
of X is open if and only if its inverse image in Y is open.

13



9 Topology of flat morphisms

Exercise 9.1 (see Hartshorne ‘Algebraic Geometry’, Chapter 3 Exercise 9.1) If
f : Y → X is a locally finite type morphism of locally noetherian schemes, then f
is an open map. In particular, X has the quotient topology induced by f : Y → X.

Example 9.2 Spec Q is flat over Spec Z but not open. This shows that quasi-
compact flat morphisms need not be open in general.

Theorem 9.3 (Grothendieck) If f : Y → X is a faithfully flat quasi-compact
morphism, then a subset U ⊂ X is open if and only if its inverse image f−1(U) ⊂ Y
is open. Consequently, X has the quotient topology induced by f : Y → X.

Proof The question is local over X, so we can assume that X = Spec A is affine.
By quasi-compactness of f , Y admits a finite affine open cover (Vi). Then replacing
Y by V =

∐
Vi, we can assume that Y = Spec B is also affine. Let U ⊂ X be a

subset such that f−1(U) is open in Y . Let Z ⊂ Y be the closed subset Y − f−1(U),
so that by assumption

Z = f−1f(Z)

We are required to show that f(Z) is closed in X. Let Z be given the reduced
induced subscheme structure from Y , and let X ′ ⊂ X be the closed subscheme
which is the schematic image of f |Z : Z → X. In algebraic terms, if Z is defined
by the ideal J ⊂ B then X ′ is defined by the ideal I = (f ∗)−1(J) ⊂ A (so that
X ′ = Spec A/I). In particular, f ∗ induces an injective homomorphism

A/I →֒ B/J

Let f ′ : Y ′ → X ′ be the base-change of f under X ′ →֒ X, which is therefore again
faithfully flat quasi-compact. As B⊗A(A/I) = B/IB, we have Y ′ = Spec B/IB and
f ′ is induced by the ring homomorphism A/I → B/IB. As f ∗(I) ⊂ J , the quotient
homomorphism B → B/J factors via B → B/IB, giving us a closed subscheme

Z →֒ Y ′

Hence, we can replace the original morphism f : Y → X by its base-change f ′ : Y ′ →
X ′, and replace Z ⊂ Y by Z ⊂ Y ′, and thereby assume that the schematic image
of Z in X is all of X (in algebraic terms, this means A → B/J is injective). Let
T = Y ×XZ, with projection p1 : T → Y . In algebraic terms, T = Spec(B⊗A(B/J)),
with homomorphism

p∗1 : B → B ⊗A (B/J) : b 7→ b ⊗ 1

As A → B is faithfully flat, base-change preserves the injectivity of A → B/J , so
that p∗1 is again injective. Hence the image p1(T ) is dense in Y . Let t ∈ T be any
point and let k denote the residue field at t. A k-valued point of T is a pair (y, z)
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where y ∈ Y (k) and z ∈ Z(k) such that f(y) = f(z) ∈ X(k). This shows that
p1(t) = y ∈ f−1f(Z). Hence p1(T ) ⊂ f−1f(Z), and as by assumption f−1f(Z) = Z,
we get following inclusion of sets:

p1(T ) ⊂ Z

As p1(T ) is dense in Y and Z is closed in Y , this shows that Z = Y . Hence
f(Z) = X, which is closed in X as we wished to show. �

Example 9.4 If f : Y → X is faithfully flat but not quasi-compact, then the
topology on X is not necessarily the quotient topology from Y . For example, let
X = Spec Z. For each prime number p, let Yp = Spec Z(p), which is flat over X. Let
Y denote the disjoint union

∐
p Yp. Then Y is faithfully flat over X. The inverse

image of Spec Q ⊂ X in Y is open, but Spec Q is not open in X.

Remark 9.5 The above theorem can be interpreted as saying that the functor C
which associates to any scheme the set of all its closed (or open) subsets is a big
fpqc sheaf on Schemes.

10 fpqc descent for schemes

Theorem 10.1 (Grothendieck) For any scheme X over a base S, the functor of
points hX : SchemesS → Sets is a big fpqc sheaf of sets on SchemesS.

Proof The functor hX is clearly a Zariski sheaf, in particular converts coproducts
into products. Hence it just remains to show that if f : V → U is a faithfully flat
quasi-compact morphism over S, then the following sequence of sets is exact:

hX(U) → hX(V ) →
→ hX(V ×U V )

Clearly, the first map is injective. Let φ ∈ hX(V ) with p∗1(φ) = p∗2(φ) ∈ hX(V ×U V ).
Let X be covered by affine open subschemes Wi = Spec Ri, and let Vi = φ−1(Wi) ⊂
V . Then it follows from the equality of morphisms

φ ◦ p1 = φ ◦ p2 : V ×U V → X

that we have the following equality of open subsets:

p−1
1 (Vi) = p−1

2 (Vi) ⊂ V ×U V

This shows that Vi = f−1f(Vi), that is, Vi is a saturated open subset of V under
f : V → U , and hence from the Theorem 9.3 which tells us the the topology on
U is a quotient topology under the faithfully flat quasi-compact morphism f , it
follows that the set-theoretic image f(Vi) is an open subset Ui of U . We give Ui the
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structure of an open subscheme of U . Then replacing U by the disjoint union of the
Ui and V by the disjoint union of Vi = f−1(Ui), we can assume that the scheme X
is affine. We have already proved the desired exactness in that case during the last
lecture. This completes the proof of the theorem. �

Corollary 10.2 Let X and Y be any two schemes over a base S, and let

hom(X,Y ) : SchemesS → Sets

be the functor which associates to any U → S the set of all U-morphisms

hom(X,Y )(U) = HomU(X ×S U, Y ×S U)

Then hom(X,Y ) is a big fpqc sheaf of sets on SchemesS.

Proof Given any fpqc cover (fi : Vi → U), we get an fpqc cover (idX ×fi : X ×S

Vi → X ×S U). Note that (X ×S Vj)×(X×SU) (X ×S Vk) = X ×S (Vj ×U Vk). As hY

is an fpqc sheaf by the above theorem, we get an exact sequence

hY (X ×S U) →
∏

hY (X ×S Vi)
→
→

∏
hY (X ×S (Vj ×U Vk))

We have the following equalities:

hom(X,Y )(U) = HomU(X ×S U, Y ×S U) = HomS(X ×S U, Y ) = hY (X ×S U)

Therefore the above exact sequence becomes

hom(X,Y )(U) →
∏

hom(X,Y )(Vi)
→
→

∏
hom(X,Y )(Vj ×U Vk)

This completes the proof. �

Remark 10.3 In summary, we have proved fpqc descent for schemes, fpqc descent
for morphisms between schemes, effective fpqc descent for closed subschemes, and
effective fpqc descent for open subschemes (which is the same as effective descent
for open subsets or for closed subsets).

In the next lecture, we will consider the problem of effective fpqc descent for schemes
and for quasi-coherent sheaves.
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11 Fibered categories

We begin with a naive definition of a fibered category.

Definition 11.1 A fibered category C over SchemesS consists of the following
data, satisfying the given conditions.

(1) For each S-scheme U we are given a category CU , called the fiber of C over U .

(2) For each S-morphism f : V → U , we are given a functor f ∗ : CU → CV called
the pull-back functor, such that for the identity morphism idU : U → U , we have

(idU)∗ = idCU

(3) For any S-morphisms f : U → V and g : V → W , we have an equality of
functors

(g ◦ f)∗ = f ∗ ◦ g∗

Remark 11.2 (Comparision with the correct definition) The above naive
situation rarely arises. What is more realistic is that instead of the equality (idU)∗ =
idCU

in (2), we have a natural isomorphism

ǫU : (idU)∗ → idCU

as a part of the defining data, and instead of the equality (g ◦ f)∗ = f ∗ ◦ g∗ in (3),
we have a natural isomorphism

cg,f : (g ◦ f)∗ → f ∗ ◦ g∗

as a part of the defining data, such that ǫU and cg,f satisfy certain conditions. These
conditions are exactly such as to allow us to make a natural identification of (idU)∗

with idCU
using ǫU and a natural identification of (g ◦ f)∗ with f ∗ ◦ g∗ using cg,f , so

that these can be treated as equalities, and it can safely be pretended that we are
in the naive situation!

In these lectures, we will pretend for simplicity that the naive conditions of equality
(conditions (2) and (3) above) are already fulfilled in our examples. (It is an exercise
for the reader to supply suitable isomorphisms ǫU and cg,f in our various examples.)

We now give some examples of fibered categories over SchemesS.

Example 11.3 Let QcohU be the category of all quasi-coherent sheaves over U ,
and let f ∗F denote the pull-back of a quasi-coherent sheaf F on U under f : V → U ,
which defines a functor f ∗ : QcohU → QcohV .

Example 11.4 Let X → S be a chosen scheme, and let for any S-scheme U ,
Bunn(X/S)U be the category whose objects are all rank n locally free sheaves on
X ×S U and morphisms are O-linear maps.
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Example 11.5 Let SchemesU denote as usual the category of schemes over U ,
and for any f : V → U let f ∗ : SchemesU → SchemesV be the functor defined by
fibered product.

Note that in all the above examples, it is customary to assume the naive equalities
(2) and (3) for simplicity. (For example, in algebraic terms it is customary and
harmless to assume an equality between A⊗A M and M for any A-module M , and
the equality in condition (2) above arises from this.)

12 Descent data

Definition 12.1 Let C be a fibered category over Schemes. Let f : V → U be
a morphism of schemes. We define a category D(CV , f), called the category of
objects of CV equipped with descent data under f , as follows:

An objects of D(CV , f) is any pair (E, φ) where E is an object of CV and

φ : p∗1(E) → p∗2(E)

is an isomorphism (called the descent datum or the transition functions) in the
category CV ×UV such that the following equality of morphisms in CV ×UV ×UV (called
the cocycle condition) is satisfied:

p∗2,3(φ) ◦ p∗1,2(φ) = p∗1,3(φ) : π∗
1(E) → π∗

3(E)

where pi,j : V ×U V ×U V → V ×U V and πi : V ×U V ×U V → V are the projections
on the respective factors.

A morphism in D(CV , f) from an object (E, φ) to an object (E ′, φ′) is a morphism
θ : E → E ′ in the category CV such that the following square commutes.

p∗1(E)
φ
→ p∗2(E)

p∗
1
(θ) ↓ ↓ p∗

2
(θ)

p∗1(E
′)

φ′

→ p∗2(E
′)

For any morphism of schemes f : V → U , we now define a functor

Pull(f) : CU → D(CV , f)

called the pull-back functor, as follows. For any object E of CU , we put Pull(f)E =
(f ∗E, φ), where φ : p∗1(f

∗E) → p∗2(f
∗E) is just the identity isomorphism of the object

q∗E of CV ×UV where q = f ◦ p1 = f ◦ p2 : V ×U V → U , under the identifications

p∗1(f
∗E) = (f ◦ p1)

∗E = (f ◦ p2)
∗E = p∗2(f

∗E)

Given any morphism u : E → E ′ in CU , we get a morphism

Pull(f)u : Pull(f)E → Pull(f)E ′

in D(CV , f) defined by the morphism f ∗u : f ∗E → f ∗E ′ in CV . It is clear that
Pull(f) so defined is a functor.
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Definition 12.2 (Effectivness of descent) We say that a given descent datum
(F, φ) in D(CV , f) is effective is there exists an object E of CU such that (F, φ)
is isomorphic in D(CV , f) to the pull-back Pull(f)E. We say that such an E is
obtained by descending the object F under the morphism f : V → U using descent
datum φ.

Definition 12.3 Let C be a fibered category over Schemes. A morphism of
schemes f : V → U is called an effective epimorphism for C if the corresponding
pull-back functor Pull(f) : CU → D(CV , f) is an equivalence of categories.

Example 12.4 (Zariski gluing) Let U be any scheme, let U =
⋃

Vi be an open
covering in the Zariski topology, let V =

∐
Vi be the disjoint union of the open

subschemes Vi, and let f : V → U be the morphism induced by the individual
inclusions Vi →֒ U . Then f is an effective epimorphism for C when C is any of the
fibered categories in Examples 11.3, 11.4, 11.5 above.

Exercise 12.5 (Vector bundles and transition functions) Let the notation
be as in the above example. Show that any descent data φ on a trivial vector
bundle On

V on V is the same as a family of group elements gj,k ∈ GLn,Z(Vj,k) (where
Vj,k = Vj ∩ Vk) such that restricted to Vi,j,k = Vi ∩ Vj ∩ Vk, we have the equality
gi,jgj,k = gi,k in GLn,Z(Vi,j,k).

13 Effective descent for quasi-coherent sheaves

Theorem 13.1 (Grothendieck) Let Qcoh denote the fibered category of quasi-
coherent sheaves over Schemes. Then any faithfully flat quasi-compact morphism
f : V → U is an effective epimorphism for Qcoh.

Proof Let Ui be an affine open cover of U . By quasi-compactness of f : V → U ,
each f−1(Ui) has an open cover by finitely many affine opens Vi,j. By Zariski gluing
(Example 12.4), we can replace U by the disjoint union

∐
Ui and V by the disjoint

union
∐

Vi,j, and thereby assume without loss of generality that both U = Spec A
and V = Spec B are affine. Then note that quasi-coherent sheaves on U and V are
respectively the same as modules over the rings A and B.

We now show that the functor Pull(f) is fully faithful. For this, consider any two
A-modules M and M ′. Let D(B, f) denote for short the category of descent data
on B-modules under f . We wish to show that the induced map

Pull(f) : HomA(M,M ′) → HomD(B,f)(B ⊗A M,B ⊗A M ′)

is a bijection.

Let H = HomA(M,M ′) be regarded as as an A-module. Then the B-module
HomB(B ⊗A M,B ⊗A M ′) can be identified with B ⊗A H as B is faithfully flat over
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A. Moreover, HomD(B,f)(B⊗AM,B⊗A M ′) ⊂ HomB(B⊗AM,B⊗AM ′) = B⊗AH
is exactly the equaliser for the maps

p∗1 ⊗ idH , p∗2 ⊗ idH : B ⊗A H →
→ B ⊗A B ⊗A H

We have already proved the above as the theorem of Amitsur that the sequence

0 → H → B ⊗A H
(p∗

1
−p∗

2
)⊗idH

→ B ⊗A B ⊗A H

is exact. This shows that Pull(f) is fully faithful.

Next, we show that the functor Pull(f) is essentially surjective. This amounts to
showing the effectivity of descent, that is, showing that given any (N,φ) in D(B, f),
there exists some A-module M with Pull(f)M isomorphic to (N,φ).

Candidate for M We define the A-module M as a sub-A-module of N as follows:

M = {m ∈ N |φ(m ⊗A 1) = 1 ⊗A m ∈ N ⊗A N}

This comes with an inclusion i : M →֒ N which is A-linear. Hence we have an exact
sequence

0 → M
i
→ N

φ◦p∗
1
−p∗

2→ B ⊗A N

Tensoring with the faithfully flat A-module B, we get an exact sequence

0 → M ⊗A B
i⊗idB→ N ⊗A B

(φ◦p∗
1
−p∗

2
)⊗idB

→ B ⊗A N ⊗A B

Now we have the following commutative diagram with exact rows, which is similar
to the diagram we had while proving effective descent for closed subschemes, with
use of the extra data φ in place of the earlier equalities of ideals. The exactness of
the second row is a consequence of Amitsur’s theorem applied to the B-module N
and the faithfully flat morphism p1.

0 → M ⊗A B
i⊗idB→ N ⊗A B

(φ◦p∗
1
−p∗

2
)⊗idB

→ B ⊗A N ⊗A B
u ↓ φ ↓ idB ⊗φ ↓

0 → N
1⊗idN→ B ⊗A N

(p∗
1
−p∗

2
)⊗idN

→ B ⊗A B ⊗A N

Here, the map u : M ⊗A B → N is defined by m ⊗ b 7→ bm.

It is a straight-forward consequence of the co-cycle condition on φ that the above
diagram commutes. The second and third vertical maps are isomorphisms. Hence
by five-lemma, the first vertical map u : M ⊗A B → N which maps m ⊗ b 7→ bm is
an isomorphism.

It is clear that under the isomorphism u : f ∗M → N , the given descent datum
φ corresponds to the identity descent datum on q∗M where q = f ◦ p1 = f ◦ p2 :
V ×U V → U . Hence Pull(f)M is isomorphic to (N,φ) in D(B, f).

This completes the proof of the theorem. �
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Remark 13.2 Unlike the above theorem for the fibered category of quasi-coherent
sheaves, effective fpqc descent does not hold good for the fibered category of schemes.
We leave it as an exercise to the reader to begin with the famous example of Hiron-
aka of the failure of taking quotients (within schemes) of actions by finite groups
(see Hartshorne ‘Algebraic Geometry’), and manufacture from it an example of the
failure of effective descent for the fibered category of schemes. However, effective
descent holds for pairs (X,L) consisting of projective schemes equipped with very
ample line bundles. This follows by converting this into an algebra problem by
taking the homogeneous coordinate rings which are quasi-coherent sheaves with ad-
ditional structure, and applying the theorem on effective descent for quasi-coherent
sheaves.
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14 Algebraic spaces

We have already seen that to each scheme X over a base scheme S, we can associate
a functor hX : RingsS → Sets, and this gives a fully faithful functor h from
SchemesS to the category of all functors RingsS → Sets. Moreover, hX is an fpqc
sheaf, in particular, it is an étale sheaf on RingsS. We will in future identify hX

with X itself, and therefore say that X is an étale sheaf on RingsS.

Definition 14.1 An S-space X is an étale sheaf of sets on RingsS.

Definition 14.2 A morphism f : X → Y of S-spaces is called a schematic
morphism if for any affine scheme U over S and an S-morphism g : U → Y , the
fibered product U ×g,Y,f X is isomorphic to a scheme. Given any property P which
makes sense for morphisms of S-schemes and is stable under base-change (such
as separatedness, properness, quasi-compactness, etc.), we say that a schematic
morphism f : X → Y of S-spaces has property P if for every scheme U over S and
every S-morphism g : U → Y , the projection morphism p1 : U ×g,Y,f X → U (which
is a morphism of S-schemes) has property P .

Definition 14.3 An algebraic space X over S is an étale sheaf of sets on RingsS,
such that (1) the diagonal morphism ∆ : X → X ×S X is schematic and quasi-
compact, and (2) there exists an étale surjection U → X where U is a scheme over
S.

Remark 14.4 The diagonal morphism of an S-space X is schematic if and only
if the following property is satisfied: for any x ∈ X(A) and y ∈ Y (B) (that is,
x : hA → F and y : hB → F where A and B are in RingsS), the fibre product
hA ×X hB is a scheme.

Remark 14.5 Unlike differential manifolds or complex manifolds or schemes, al-
gebraic spaces do not necessarily come from locally ringed spaces. See Knutson for
examples.

Remark 14.6 Algebraic spaces can be regarded as quotients of schemes by étale
equivalence relations. Such quotients are not necessarily possible within Schemes.
However, if we have an étale equivalence relation on an algebraic space, the quotient
always exists as an algebraic space.

Theorem 14.7 Every algebraic space over S is an fpqc sheaf of sets on RingsS.

Proof See [L-M] (Laumon and Moret-Bailly, ‘Champs algébriques’), Theorem A.4.
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15 Sheaves of groupoids

Definition 15.1 A groupoid is a category in which every morphism is an iso-
morphism.

Example 15.2 Each set (or class) X can be regarded as a category in which
objects are elements of X and the only morphisms are identities. In this way, we
can regard each set (or class) to be a groupoid.

Example 15.3 More generally, a groupoid in which each object has only one
automorphism (namely, its identity) is categorically equivalent to a class.

Example 15.4 Each group G can be regarded as a groupoid in which there is only
one object ∗, and the automorphisms of this object form the group G.

Remark 15.5 There is a basic change of a catgorical nature when we go from
algebraic spaces to stacks: instead of sheaves of sets, we have sheaves of groupoids.
The reason is that groupoids arise more naturally, while sets often arise by going
modulo isomorphisms, thereby losing vital data.

Definition 15.6 An S-groupoid X is a fibered category over RingsS such that
each category XA is a groupoid.

16 Sheaf conditions : pre-stacks and stacks

Let X be an S-groupoid. For any ring A over S and objects ξ, η ∈ XA, let

Isom(ξ, η) : RingsA → Sets

be the functor defined by putting

Isom(ξ, η)(B) = HomXB
(ξ|B, η|B)

for any A-algebra B. Given any A-algebra homomorphism B → C, we have an
obvious induced map Isom(ξ, η)(B) → Isom(ξ, η)(C).

Definition 16.1 An S-groupoid X is called a pre-stack over S if for any ring A
over S and objects ξ, η ∈ XA, the functor Isom(ξ, η) : RingsA → Sets is an étale
sheaf on RingsA. An S-pre-stack X is called a stack over S if effective descent
holds for the fibered category X, that is, given any étale cover (A → Bi) over S,
objects ξi ∈ XBi

, and co-cycle (gi,j) of isomorphisms in XBi⊗ABj
, there exists ξ ∈ XA

which gives (ξi, gi,j).
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Definition 16.2 A morphism f : X → Y of S-stacks is an indexed collection
(fA) of functors fA : XA → YA, well-behaved under ring homomorphisms A → B.

Definition 16.3 (Fibre product of S-stacks) If f : X → Z and g : Y → Z are
morphisms of S-stacks, the fibered product S-stack X ×Z Y is defined as follows:

Objects of the category (X ×Z Y)A are triples

(ξ, η, ϕ)

where ξ is an object in XA, η is an object in YA, and ϕ : fA(ξ) → gA(η) is a
morphism in ZA.

Morphisms from (ξ, η, ϕ) to (ξ′, η′, ϕ′) are pairs (u, v) where u : ξ → ξ′, v : η → η′

are morphisms in XA and YA such that the following square commutes:

fA(ξ)
ϕ
→ gA(η)

fA(u) ↓ ↓ gA(v)

fA(ξ′)
ϕ′

→ gA(η′)

It can be verified that this data indeed defines an S-stack.

Definition 16.4 A morphism f : X → Z of S-stacks is called representable if
for any g : Y → Z where Y is a scheme, the fibered product S-stack X ×Z Y is
equivalent to an algebraic space.

Remark 16.5 Properties of morphisms of algebraic spaces which are stable under
base change make sense also for representable morphisms of stacks.

17 Algebraic stacks: definition

A stack X over S is called an algebraic stack if the diagonal morphism ∆ : X →
X×S X is representable, separated and quasi-compact, and moreover at least one of
the following two conditions holds:

Deligne-Mumford stack There exists a morphism f : X → X from a scheme X
such that f (which is representable as by assumption ∆ is representable) is étale.

Artin stack There exists a morphism f : X → X from a scheme X such that f
(which is representable as by assumption ∆ is representable) is smooth and surjec-
tive.

Note that a Deligne-Mumford stack is also an Artin stack. The converse is not true.

We therefore have the following inclusions of categories of ‘spaces’:

Schemes ⊂ Algebraic Spaces ⊂ D-M stacks ⊂ Artin stacks.

Three Basic Examples
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Example 17.1 n-pointed projective curves of genus g form a Deligne-Mumford
stack Mg,n. This was historically the first example, due to Deligne and Mumford.

Example 17.2 Flat families of coherent sheaves on a projective scheme X form
an Artin stack. This uses Grothendieck’s theory of quot schemes but does not need
GIT stability.

Example 17.3 Let G be a smooth group-scheme over S, acting on another S-
scheme X. Then a quotient [X/G] exists as an Artin stack. For any S-ring A,
objects of the groupoid [X/G]A are pairs (E, f) where E is a G-torsor over Spec A,
locally trivial in étale topology, and f : E → X is a G-equivaraint morphism.

Now that we have defined algebraic stacks, what about the following?

• Local properties of morphisms.

• Dimension theory.

• Sheaves of O-modules. Cohomology.

• Differentials. Tangents.

• Étale and ℓ-adic sheaves and cohomology.

• Algebraic fundamental group.

• K-theory. Algebraic cycles.

• When of finite-type over complex numbers: singular homology, cohomology, ...

And so on. By now a large body of literature exists, which uses (and sometimes also
explains!) the above.

Guide to study A student can go through the basic book ‘Champs algébriques’
by Laumon and Moret-Bailly. Various lecture notes are available (see Google.) The
notes by Tomas Gomez are a good starting point (Proc. Indian Acad. Sci.). One
should also start using the language, not waiting to finish learning the grammar.

Next Lecture: We will do in the modern language of stacks the famous 1963
calculation of Mumford, which shows that Pic(M1,1) = Z/(12) where M1,1 is the
moduli stack of elliptic curves over C.
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18 Elliptic curves and their families

We fix a base field k, with characteristic 6= 2, 3.

Definition 18.1 An elliptic curve over k is a pair (X,P ) where X a smooth
irreducible projective curve over k of genus 1, and P a chosen k-valued point on X.

Definition 18.2 A family of elliptic curves over a base S, where S is a k-
scheme, consists of a smooth projective morphism of k-schemes X → S together
with a global section s : S → X of X → S, such that for each t ∈ S, the base
change to κ(t) is an elliptic curve over κ(t).

Remark 18.3 There exists a unique group-scheme structure on X over S with
identity section s.

Example 18.4 Let S = Spec k[λ, λ−1, (1 − λ)−1] = A1 − {0, 1}. Let X ⊂ P2
S

defined by
y2z = x(x − z)(x − λz)

Let s = the constant section (0, 1, 0). This is a family of elliptic curves over the
above base.

Example 18.5 Let S = A2
k = Spec k[a, b] the affine plane over k with coordi-

nates a, b. Let the divisor D ⊂ A2 be defined by ∆ = 4a3 + 27b2. Let S =
Spec k[a, b, ∆−1] = A2 − D. Let X ⊂ P2

S defined by y2z = x3 + axz2 − bz3. Again,
let s = the constant section (0, 1, 0) as in the earlier examples.

Notation In the above examples, let the fiber over the k-valued point (a, b) or over
the k-valued point λ will be denoted by Xa,b or Xλ.

Fact: Every elliptic curve over k (or over k = k) is isomorphic to some Xa,b (to
some Xλ). Neither (a, b) (or λ), nor the isomorphism, are unique.

19 Moduli scheme

We first define a set-valued moduli functor M for elliptic curves.

Let M : Schemesk → Sets be defined by putting M(S) = the set of all isomorphism
classes of families (X, s) of elliptic curves over S. To any k-morphism f : S → T ,
we attach a map f ∗ : M(T ) → M(S), defined by f ∗(X, s) = (XT , sT ) where XT =
X ×S T and sT = (s ◦ f, idT ) : T → XT .

Exercise 19.1 Every elliptic curve has an automorphism of order 2, which in
terms of a defining equation y2 = x(x − 1)(x − λ) sends (x, y) 7→ (x,−y). Use this
to construct a non-constant family parametrized by A1 − {0} all whose fibers are
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isomorphic to a given elliptic curve, imitating the construction of the ‘Mobius band’.
Conclude that the functor M : Schemesk → Sets is not an étale sheaf.

Question Is the étale sheafification of the functor M representable by a scheme?

Answer No!

Reason In general Aut(X) = {±1}, but some elliptic curves have more automor-
phisms. For example, if X is defined by y2 = x3 − x then Aut(X) = µ4, and if X is
defined by y2 = x3 − 1, Aut(X) = µ6.

Ways out (1) Kill these inconvenient automorphisms.

(2) Take proper cognisance of the automorphisms. They are important and have a
positive role!

Coarse Moduli Scheme for Elliptic Curves

Assume k = k. Then each isomorphism class is represented in the family Xλ over
A1−{0, 1} above. The group S3 acts on A1−{0, 1} = P1−{0, 1,∞} by permuting
0, 1,∞. Orbits are isomorphism classes.

The quotient is the spectrum of the subring of invariants. This is the k-algebra
k[j] ⊂ k[λ, λ−1, (1 − λ)−1], where

j =
(λ2 − λ + 1)3

λ2(1 − λ)2

The coarse moduli scheme for elliptic curves is the schematic quotient

(A1 − {0, 1})/S3 = Spec k[j] = A1

Fact There is no family on A1 which has the correct j invariant at each point. This
can be seen in many ways (exercise!).

Therefore, A1 does not represent the set-valued moduli functor for elliptic curves.
However, as known to the reader, it has a weaker property called the ‘coarse moduli
property’.

20 Moduli Stack M1,1 of Elliptic Curves

To any k-scheme S, we associate the groupoid M1,1(S), defined as follows.

Objects Families (X, s) of elliptic curves over S.

Morphisms Isomorphisms of families.

Pull-back functor f ∗ : M1,1(T ) → M1,1(S) corresponding to f : S → T as before.

This shows M1,1 is a fibered category in groupoids over k-schemes.

Pre-stack property Isom((X, s), (X ′, s′)) is an fpqc sheaf on Schemes/k for any
two families over S. This follows from fpqc descent for schemes.

Stack property Flat descent of elliptic curves is effective, using the very ample
line bundles OX [3s].
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Algebraicity of the stack

Representability and quasi-compactness of the diagonal ∆ : M1,1 → M1,1×
M1,1

Proof OX [3s] is very ample relative to S. Its direct image is a rank 3 vector
bundle on S, with distinguished subbundle OS. Well behaved under base-change
and isomorphisms.

Given two families, linear isomorphisms between the associated rank 3 vector bun-
dles form a scheme finite-type and affine over S, of which the functor of isomorphisms
of elliptic curves is a closed subscheme.

Étale cover The family y2 = x(x − 1)(x − λ) with section s = (0, 1, 0) defines an
étale cover
A1 − {0, 1} → M1,1.

(Degree of this cover is twelve. Bad curves have fewer copies but proportionally
more automorphisms, making up the correct number!)

Therefore M1,1 is a Deligne-Mumford stack.

21 Line bundles on M1,1

Line bundles on an algebraic stack X

A line bundle on X means a line bundle Lξ on S for each object ξ of XS, an isomor-
phism Lξ → Lη for each ξ → η in XS, and an isomorphism f ∗Lξ → Lf∗ξ on T for
each f : S → T , well-behaved under composition.

Example The trivial line bundle OX is defined by associating OS to each ξ in XS

and id : OS → OS to each ξ → η in XS.

The Picard group Pic(X) of a stack

We can take tensor product of line bundles L⊗M on X by (L⊗M)ξ = Lξ ⊗OS
Mξ,

etc. This defines a group Pic(X) with identity OX.

Some candidate line bundles on M1,1

Any line bundle on M1,1 will in particular associates to each (X,P ) a 1-dimensional
vector space, in a functorial manner. Here are some candidates for such associations
(which indeed come from line bundles on M1,1):

(0) H0(X,OX) corresponds to OM1,1
.

(1) H0(X, Ω1
X)

(2) H1(X,OX) (dual line bundle to (1))

(3) TX,P (isomorphic to (2)).

(4) det H0(X,OX(mP )) for m ≥ 0

(5) det H1(X,OX(mP )) for m < 0.
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Proposition 21.1 (Cohomological flatness) For any smooth proper family of
curves X → S with geometrically irreducible fibers, the natural map OS → π∗OX

is an isomorphism. Also, the sheaves π∗OX , R1π∗OX , π∗Ω
1
X/S and R1π∗Ω

1
X/S are

locally free, and base-change correctly.

This proposition shows, for example, that there exists a line bundle L on M1,1 which
associates to any elliptic family X over S the line bundle π∗Ω

1
X/S on S.

Theorem 21.2 The line bundle L on M1,1, which associates to any elliptic family
X over S the line bundle π∗Ω

1
X/S on S, has order 12 and generates Pic(M1,1).

Therefore,
Pic(M1,1) = Z/(12)

Rigidified elliptic curves

(X,P, ω) where (X,P ) is an elliptic curve, and ω ∈ H0(X, Ω1) is non-zero.

Family over S : (X, s, ω) where ω generates the line bundle π∗ΩX/S.

Example: Xa,b defined by y2 = x3 + ax − b, with P = (0, 1, 0) and ω = dx/y (over
the open set z = 1).

This in fact gives a rigidified family over A2 − D where divisor D is defined by
∆ = 4a3 + 27b2.

Proposition 21.3 The above is a universal family, showing A2 −D is fine moduli
for rigidified elliptic curves.

Proof The line bundle OX [3s] has section z defined by the rational function 1.

The schematic kernel of 2 : X → X is a disjoint union of s with a divisor E of
degree 3. Upto invertible scalar multiple, there is a unique rational function y with
div(y) = E − 3s.

y is unique when we moreover require that the section it defines of I3
s /I4

s equals ω⊗3

where Is ⊂ OX is ideal sheaf.

Finally, let x be the rational function on X for which

(i) dx/y = ω (this determines x upto an additive scalar from H0(X,OX)), and

(ii) the values of x at the points of E add to zero (this fixes the additive scalar, and
makes x unique).

E → S is finite étale of degree 3. Even when E is not split, the condition makes
sense using trace.

This gives basis (x, y, z) of the rank 3 vector bundle π∗OX [3s] on S, and an embed-
ding X →֒ P2

S.

Define a, b ∈ H0(S,OS) where b = norm of y on E/S and a = the degree 1 coefficient
of the characteristic polynomial of y on E/S.

Then it can be seen that (X, s, ω) is the pull-back under (a, b) : S → A2 − D.

This completes the proof. �
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22 M1,1 as the quotient stack [(A2 − D)/Gm]

Theorem 22.1 The moduli stack M1,1 of elliptic curves is isomorphic to the quo-
tient stack [(A2 − D)/Gm] where the action of Gm is given in terms of coordinates
by

(a, b) · t = (at4, bt6)

Proof We have an isomorphism of elliptic curves Xa,b → Xat4,bt6 defined by

(x, y, z) 7→ (xt2, yt3, z)

Note that (0, 1, 0) 7→ (0, 1, 0), as required. The form dx/y changes to dx/yt. The
theorem follows. �

Calculation of Pic[(A2 − D)/Gm]

Let U = A2−D. The morphism U → [U/Gm] is a Gm-torsor. All line bundles on U
are trivial as U is the spectrum of k[a, b, (4a3 +27b2)−1] which is unique factorisation
domain as it is a localisation of the unique factorisation domain k[a, b]. Therefore,
all line bundles on the quotient stack [U/Gm] are descended from the trivial line
bundle on U . By the general description of descent under a torsor, these form the
cohomology group

Pic[U/Gm] = H1(Gm, Gm(U)) =
Z1(Gm, Gm(U))

B1(Gm, Gm(U))

In the above, Z1(Gm, Gm(U)) (the group of 1-cocyles) is by definition the abelian
group of consisting of all morphisms ϕ : U × Gm → Gm such that

ϕ(u, t)ϕ(u · t, s) = ϕ(u, ts)

The group structure is given by point-wise multipliction of the images in Gm. Ele-
ments of Z1 are traditionally called factors of automorphy.

Its subgroup B1(Gm, Gm(U)) (the group of 1-coboundaries) by definition consists
of all morphisms ∂(f) : U × Gm → Gm, where f : U → Gm is any morphism, and

∂(f)(u, t) = f(u)/f(u · t)

is its coboundary.

Any invertible function on U is of the form f(a, b, t) = tm · (4a3 + 27b2)n. Therefore
Z1 consists of all powers tm.

As ∂(f) = t12n, the subgroup B1 ⊂ Z1 consists of all powers of t12.

Hence it follows that H1 = Z1/B1 = Z/(12).

The line bundle L defined by X 7→ H0(X, Ω1) corresponds to the factor of auto-
morphy 1/t ∈ Z1, as dx/y gets multiplied by 1/t under the action of t. Therefore L
generates Pic(M1,1), as claimed.

This completes the proof of the theorem. �
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