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Abstract The research presented in this paper addresses the problem of fitting a math-
ematical model to epidemic data. We propose an implementation of the Landweber it-
eration to solve locally the arising parameter estimation problem. The epidemic models
considered consist of suitable systems of ordinary differential equations. The results pre-
sented suggest that the inverse problem approach is a reliable method to solve the fitting
problem. The predictive capabilities of this approach are demonstrated by comparing sim-
ulations based on estimation of parameters against real data sets for the case of recurrent
epidemics caused by the respiratory syncytial virus in children.
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1. Introduction

In this paper, we are concerned with the problem of parameter estimation in ordinary dif-
ferential equations (ODE). We shall focus on susceptible-infected-recovered-susceptible
epidemic models (generally known as SIRS models). These mathematical models, among
others, have been intensively studied aiming to understand spread and control of infec-
tious diseases. It is known that the qualitative model behavior is strongly influenced by
the way in which the model embodies infection incidence rate. Both forced and non-
forced SIRS models with nonlinear incidence rate have rich dynamics and are adequate
to model seasonal epidemics.

Qualitative analysis of dynamical systems is a well established and active research
area. And the mathematical modeling of key features of epidemics, such as infection
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transmission, has a growing importance as a tool to gain insight into the dynamics of epi-
demics. To complement this analysis, our aim is to provide a tool for prediction and sim-
ulation of epidemics. Consequently, estimation of the parameters in the epidemic models
is required. Thus, our purpose is to develop a method to estimate parameters in ODE from
incomplete knowledge of the solution. We shall test our method by recovering parameters
of the incidence rate (4), (6) from seasonal epidemic data caused by respiratory syncytial
virus (RSV) in children from Gambia and Finland. The data that we use is provided in
Weber et al. (2001).

There is plenty of research on qualitative analysis of dynamical systems model-
ing infectious diseases. In the context of incidence rate, Capasso and Serio (1978),
Gomes et al. (2005), Hethcote et al. (1989), Hethcote and van den Driessche (1991),
Kyrychko and Blyuss (2005), Li and Muldowney (1995), Ruan and Wang (2003), van
den Driessche and Watmough (2000), Wang (2006) and Xiao and Ruan (2007) among oth-
ers, have studied and biologically interpreted epidemic models with nonlinear incidence
rates departing from standard incidence rate. Korobeinikov and Maini (2005) established
stability theorems for generalized incidence rates under standard biological hypotheses.
Alexander and Moghadas (2004, 2006) studied SIRS models for a class of generalized
incidence rates and showed analytically that these models undergo several types of Hopf
bifurcations.

Other efforts to model recurrent epidemics used forced SIR or SIRS models to take
into account the seasonality of transmission. Weber et al. (2001) added a sinusoidal term
to the contact rate, while Greenhalgh and Moneim (2003) studied a model with a general
periodic function that forces the contact rate. It has been established that these models
undergo a period-doubling bifurcation as the amplitude of the oscillating term in the con-
tact rate increases. The problem is far from settled, research is active on both forced and
non-forced epidemic models in order to describe the complex dynamics of recurrent epi-
demics.

Recently, the problem of parameter estimation in mathematical models of biologi-
cal systems has received a great deal of attention. In the context of infectious diseases,
Alioum et al. (2005) have estimated the incidence rate for the human immunodeficiency
virus. Closely related to our work, Pourabbas et al. (2001) estimated the incidence of
communicable diseases under seasonal fluctuations. The work presented by Brunet and
Struchiner (1996) also addresses the problem of rate estimation in epidemic models. It
is apparent that the parameter estimation problem is relevant in other biological systems;
noteworthy is the work of Banks et al. (2007). Therein, a methodology for estimating
dynamic rate parameters in insect populations is presented.

Parameter estimation problems are ubiquitous in science. A common approach is to
formulate an appropriate constrained optimization problem. The objective function is a
least squares like functional. See Biegler and Grossmann (2004) for a review on numerical
methods applied to problems of this sort.

In this paper, we use some of the SIRS models mentioned above as a framework to
solve the problem of estimating the parameters of the generalized incidence rate from
seasonal epidemic data. The formulation is classical; we pose an optimization problem
constrained to a system of ordinary differential equations. It will become apparent that
our method is applicable to other physical systems modeled by ODE.

Some general approaches to deal with the problem of parameter estimation in ODE are
also the works of Ramsay et al. (2007) and Li et al. (2005). In the former, a method that
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uses noisy measurements of a subset of variables is described. The method is based on a
data fitting functional complemented with a smoothing technique. The method requires
the selection of a parameter regulating the smoothing term; this selection is heuristic.
In the latter, the method of least squares is used to define the objective function. The
constraint is a difference equation associated to the ODE. An important feature is the nu-
merical technique developed for implementation. We remark that our method also handles
incomplete and noisy data, and unlike the method in Li et al. (2005), it works with the
continuous ODE as a constraint. We initialize the method with an efficient global search
for local minima.

The paper is organized as follows. In Section 2, we gather appropriate models to solve
the parameter estimation problem. First, in Section 2.1, we use some results of Alexander
and Moghadas (2006) to contextualize a nonforced model with a generalized incidence
rate that admits periodic solutions. In Section 2.2, we write an autonomous model which is
equivalent to the forced SIRS model used by Weber et al. (2001). In Section 3, we discuss
the inverse problem of recovering the parameters of the incidence rate from seasonal
epidemic data, and propose in Section 3.1 a general implementation of the Landweber
iteration aimed at solving the inverse problem. Numerical results are shown in Section 4.
The numerical experiments are conducted using data from Weber et al. (2001). We use
MATCONT of Dhooge et al. (2003) to numerically find and examine bifurcation points
near the estimated parameters. Finally, in Section 5, we summarize this paper.

2. Mathematical modeling of seasonal epidemics

The following standard assumptions are made in order to define the epidemic models. In-
dividuals are either susceptible S(t), infective I (t), or recovered R(t). It is assumed that
the population is uniformly mixed and there is deterministic transfer between epidemio-
logical classes with exponentially distributed waiting time. Since the annual infection rate
is considerably bigger than the population growth, birth and mortality rates are assumed
equal. Dimensionless state variables are used by dividing the number of individuals in
each class by the total population s(t) = S(t)/N , i(t) = I (t)/N, and r(t) = R(t)/N .
μ is the combined birth and mortality rate, γ is the rate of loss of immunity, and ν is the
rate of loss of infectiousness. Clinical values of μ, γ , ν, and N are available for RSV; see,
for instance, Weber et al. (2001) and references therein.

2.1. Nonforced model

We consider the SIRS model

ds

dt
= μ − μs − β(1 + αi)is + γ r, (1)

di

dt
= β(1 + αi)is − (ν + μ)i, (2)

dr

dt
= νi − (μ + γ )r. (3)

Here, β and α are constant. The incidence rate

β(1 + αi)is, (4)
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models simple and double contacts between susceptible and infective individuals over a
short period of time, new infective individuals arise from double exposures at a rate βαi2s,
while single contacts lead to infection at rate βis; see van den Driessche and Watmough
(2000). Incidence rate (4) is an example of the class of generalized incidence rates studied
by Alexander and Moghadas. Therefore, their stability, threshold, and bifurcation results
hold for models (1)–(3). This model admits periodic solutions.

The basic reproductive number R0 defined according to van den Driessche and Wat-
mough (2002)

R0 = β

μ + γ
(5)

is independent of the functional form of β(1 + αi)is. According to Alexander and
Moghadas (2006), model (1)–(3) has a unique and asymptotically stable endemic equi-
librium if R0 > 1, and there is none, one, or two endemic equilibria, otherwise. Also,
they established that varying α near the endemic equilibrium leads to a point of Hopf
bifurcation. If the first Lyapunov coefficient of the normal form of (1)–(3) is not zero,
a supercritical (backward supercritical) Hopf bifurcation leads to the appearance (disap-
pearance) of a stable or unstable limit cycle when α passes through a critical value αc .

In Section 4, the first Lyapunov coefficient of (1)–(3) is computed numerically to inves-
tigate the behavior of the ensuing bifurcation points near the parameters that correspond
to real data of RSV epidemics. Bifurcation diagrams around the system equilibria are nu-
merically constructed with MATCONT of Dhooge et al. (2003) in order to formulate our
conclusions.

2.2. Forced model

Other approaches to modeling recurrent epidemics take into account the seasonal nature
of transmission through an oscillating contact rate. Weber et al. (2001) and Greenhalgh
and Moneim (2003) used a SIRS model with incidence rate

b0

(
1 + b1 cos(2πt + b3)

)
is (6)

which models annual forcing of the contact rate. It is natural to take b1 as the bifurcation
parameter. It is known that both the SIR and SIRS models with incidence rate (6) undergo
period doubling bifurcations as b1 increases. Also, it is known that the model has solutions
of period 1, 2, 3, and 4 years.

For the sake of using the Landweber iteration, as described in Section 3, to estimate
the model parameters, we use the equivalent autonomous model

ds

dt
= μ − μs − b0(1 + b1x)is + γ r, (7)

di

dt
= b0(1 + b1x)is − (ν + μ)i, (8)

dr

dt
= νi − (μ + γ )r, (9)

dx

dt
= −My, (10)
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dy

dt
= Mx. (11)

Model (7)–(11) is a classical SIRS model coupled with an undamped harmonic oscil-
lator. If we introduce the variable τ = Mt , it follows that the model approaches a classical
SIRS model as M → 0 and approaches an undamped harmonic oscillator in the variable
τ when 1 � M . It is common to fix M = 2π beforehand to model annual forcing of
the contact rate. It is interesting to study the coupling of the SIRS model with various
oscillators in order to study recurrent epidemics; see Greenhalgh and Moneim (2003).

3. Parameter estimation of the epidemic model

There is no a priori information about how accurately can models (1)–(3) or (7)–(11)
predict given seasonal epidemic data. Moreover, even for the correct set of parameters
there may be discrepancy between the model prediction and data due to measurement
errors or model errors. For a model error, we understand an error due to the fact that the
assumptions which led to the model are not fulfilled. For instance, the subpopulations are
likely not uniformly mixed.

In this paper, we use classical theory of inverse problems for the parameter esti-
mation problem and propose an iterative method to solve this problem locally. Writ-
ing x(t) = (s(t), i(t), r(t))t ∈ (L2([0, T ]))3 and p = (β,α) ∈ R

2 in model (1)–(3) or
p = (b0, b1, b2) ∈ R

3 in model (7)–(11) we have

ẋ = ϕ(x,p), (12)

x(0) = x0, (13)

where ϕ is the right-hand side of the SIRS model. Problem (12)–(13) define a mapping
	(p) = x from parameters p to state variables x, where 	 : R

m → (L2([0, T ]))n. In
this paper, we assume that 	 is Fréchet differentiable and injective, thus the direct prob-
lem (12)–(13) has a unique solution x for a given p. The Fréchet derivative of 	 is a
mapping 	

′
(p) : R

m → (L2([0, T ]))n.
Usually the data consists of measurements of the state variables at a discrete set of

points t1, . . . , tk , and only a subset of the state variables are measurable, e.g., data of
the RSV epidemics consists of monthly measurements of the number of infected in-
dividuals. This defines a linear observation mapping from state variables to data 
 :
(L2([0, T ]))n :→ R

s×k , where s ≤ n is the number of observed variables and k is the
number of sample points. In the case of RSV epidemics, 
(x) = (i(t1), . . . , i(tk)) ∈ R

1×k .
Let F : R

m → R
s×k be defined by F(p) = 
(	(p)). The inverse problem is formulated

as a standard optimization problem

min
p∈Rm

1

2

∥
∥F(p) − zδ

∥
∥2

(14)

where zδ ∈ R
s×k is the data and has error measurements of size δ. Equivalently, the inverse

problem can be formulated as

min
p∈Rm

1

2

∥
∥
(x) − zδ

∥
∥2

(15)
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such that

ẋ = ϕ(x,p), (16)

x(0) = x0. (17)

In the following subsection, we propose an implementation of the Landweber iteration
with an a posteriori stopping criterion to solve problem (15)–(17).

3.1. Implementation of the Landweber iteration

Let us consider the Lagrangian

L(x,p,λ) = 1

2

∥∥
(x) − iδ
∥∥2

Rm + 〈
ẋ − ϕ(x,p),λ

〉
(L2([0,T ]))n . (18)

Integrating by parts 〈ẋ, λ〉(L2([0,T ]))n in the second term of (18) and letting λ(T ) = 0, we
obtain

L(x,p,λ) = 1

2

∥
∥
(x) − iδ

∥
∥2

Rm − 〈
x, λ̇

〉
(L2([0,T ]))n − 〈

ϕ(x,p),λ
〉
(L2([0,T ]))n . (19)

The derivative of (19) with respect to x and p is, respectively,

Lx(x,p,λ)ξ = 〈

(ξ),
(x) − iδ

〉
Rm − 〈

ξ, λ̇
〉
(L2([0,T ]))n

− 〈
ϕx(x,p)ξ,λ

〉
(L2([0,T ]))n , (20)

Lp(x,p,λ)η = −〈
ϕp(x,p)η,λ

〉
(L2([0,T ]))n

= −〈
η,ϕp(x,p)∗λ

〉
Rm, (21)

where ϕp(x,p)∗λ = ∫ T

0 ϕp(x(t),p)∗λ(t) dt in (21).
Let x = 	(p) be solution of the initial value problem (12)–(13). Consequently,

L(x(p),p,λ) = 1
2 ‖F(p) − iδ‖2

Rm . Let us denote y = 	′(p)q and L′(x(p),p,λ) the
Fréchet derivative with respect to p. Using identities (20) and (21), and the chain rule,
we obtain

L′(x(p),p,λ
)
(q) = 〈


(y),
(x) − iδ
〉
Rm − 〈

y, λ̇
〉
(L2([0,T ]))n

− 〈
ϕx(x,p)y,λ

〉
(L2([0,T ]))n − 〈

ϕp(x,p)q,λ
〉
(L2([0,T ]))n . (22)

Equivalently,

L′(x(p),p,λ
)
(q) = 〈


∗(
(x) − iδ
) − ϕx(x,p)∗λ − λ̇, y

〉
(L2([0,T ]))n

− 〈
ϕp(x,p)∗λ,q

〉
Rm. (23)

The following theorem holds.
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Theorem 1. The Landweber iteration

pk+1 = pk + F ′(pk)
∗(F(pk) − iδ

)
(24)

can be written

pk+1 = pk −
∫ T

0
ϕp

(
xk(t),pk

)∗
λ(t) dt (25)

where xk = 	(pk) and λ ∈ (L2([0, T ]))n is solution of the adjoint problem

λ̇ = −ϕx(xk,pk)
∗λ + 
∗(
(xk) − iδ

)
, (26)

λ(T ) = 0. (27)

Remark 1. An approximate solution pk can be refined evaluating 	(pk), F(pk), solving
the adjoint problem (26)–(27) and updating the approximate solution according to (25).

The least squares functional (14) does not depend continuously on the parameters p.
The data is polluted with noise. Therefore, early iterations of the Landweber iteration
improve the approximate solution but it leads to an unstable solution if it is arbitrarily
continued. The Landweber iteration yields a regularized solution of problem (15)–(17) if
it is stopped at an appropriate step kfinal. In Section 4, we use the following a posteriori
stopping condition, known as the discrepancy principle, to select kfinal

∥
∥F(pkfinal) − iδ

∥
∥ ≤ τδ ≤ ∥

∥F(pk) − iδ
∥
∥, 0 ≤ k ≤ kfinal, τ > 2. (28)

The discrepancy principle (28) was introduced by Hanke et al. (1995).

4. Numerical results

In the examples shown below, the initial guess p0 for the Landweber iteration is con-
structed starting the Nelder–Mead algorithm simultaneously at an array of random points
p for the objective function (14). This gives rise to an array of local solutions. We choose
p0 such that it minimizes the objective function over the array of local solutions. The ini-
tial value for the unknown state variables is estimated similarly. We choose the Nelder–
Mead algorithm since it is well suited for low dimensional problems. See Lagarias et al.
(1998) for convergence results of the Nelder–Mead algorithm in low dimensional prob-
lems. To stop the iteration, we use the discrepancy principle (28) with τ = 2.5, although τ

should be chosen as described in detail in Hanke et al. (1995). We remark that the compu-
tation of τ with the theory described in Hanke et al. (1995) is not simple and constitutes
the subject of further research. We guess the noise size δ = 0.1. We show the parame-
ter estimation for two different cases. Data corresponds to epidemics caused by syncytial
respiratory virus (RSV) in children under 5 years old from Gambia and Finland. The data
sets are taken from Weber et al. (2001).
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4.1. Gambia

Figures 1a and 1b show the results of fitting the nonforced and forced models, respec-
tively, to the data set from Gambia.

Starting at the estimated parameter values β = 59.614152 and α = 5.266016 for the
nonforced model (1)–(3) and the data set from Gambia, we explore numerically the bi-
furcation behavior around stationary points. Taking α as the parameter of bifurcation, we
find that the system has Hopf bifurcations at α1 = 4.565891 and α2 = 223.606757. The
continuation of stationary points for α ∈ [0,230] is shown in Fig. 2. The Hopf points
are denoted by H . The numerical computation of the first Lyapunov coefficient yields
λ1 = −7.957588 and λ2 = −1493.439 at α1 and α2, respectively. Therefore, a family of
stable limit cycles bifurcates from the stationary points that correspond to α1 and α2. We
conduct continuation of the limit cycles that bifurcate from the Hopf points taking β and
α as free parameters. Plots of the arising limit cycles are shown in Fig. 2 for selected
values of α. This bifurcation diagram is in agreement with the analysis of Alexander and
Moghadas (2006).

The forced model (7)–(11) has no stationary points for b1 �= 0. The estimated parame-
ters b0 = 55.3645, b1 = 0.3942 correspond to a limit cycle.

4.2. Finland

Figure 3a and 3b show the results of fitting the nonforced and forced models to the data set
from Finland. We examine numerically the bifurcation behavior of the nonforced model
in a neighborhood of the parameters corresponding to Fig. 3a. Similarly to Section 4.1, the

Fig. 1 Part (a) shows the fitting of the nonforced model to the data set from Gambia. The blue line with
dots is the clinical data. The continuous red line is the simulation based on parameter estimation. The time
is scaled in years. Part (b) shows the corresponding fitting of the forced model to the data set. (Color figure
online.)
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Fig. 2 The green line is the numerical continuation of the stationary points of the nonforced model. The
system undergoes two supercritical Hopf bifurcations, which are denoted by H in this figure. A family of
stable limit cycles bifurcates from these points. Limit cycles in the susceptible-infected plane are plotted
in blue for selected values of α. The red line is the simulation with the estimated parameters. (Color figure
online.)

Fig. 3 Part (a) shows the fitting of the nonforced model to the data set from Finland. The blue line with
dots is the clinical data. The continuous red line is the simulation based on parameter estimation. The
time is scaled in years. Part (b) shows the corresponding fitting of the forced model to the data set. The
nonforced model fails to predict the data accurately. (Color figure online.)
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Fig. 4 Some plots in the susceptible-infected plane are plotted in blue at selected values of b1. It is
numerically exhibited that the limit cycle undergoes a period doubling bifurcation as the amplitude of the
forcing term increases. The red line is the simulation with the estimated parameters. (Color figure online.)

model has Hopf bifurcations at α1 = 6.135971 and α2 = 327.717954. The computation of
the first Lyapunov coefficient yields λ1 = −5.588314 and λ2 = −1600.410, respectively.
Therefore, a family of stable limit cycles bifurcates from the Hopf points. This is an
interpretation of why the nonforced model fails to predict the smaller peak in the number
of infected individuals seen every other year in the data set from Finland.

Simulations of the forced model at selected values of the parameter b1 are shown in
Fig. 4. This figure shows the occurrence of the period doubling bifurcation of a limit cycle.
The red line is the simulation with the forced model and the estimated parameters.

Apparently (7)–(11) is a better model to estimate the underlying transmission model
structure from data. Further research is necessary in order to gain insight on how the
seasonal pattern of transmission varies between host populations and climates. However,
we consider that the parameter estimation technique described in this paper may represent
a useful tool for this task.

5. Conclusions

In this paper, we propose an implementation of the Landweber iteration together with a
standard stopping condition as a method to solve locally the problem of estimating the pa-
rameters in a system of ODE. The proposed method is capable of handling incomplete and
noisy data, although an estimate of the noise level is required in order to stop the iterations
in a timely manner. The predictive capabilities of the proposed method are demonstrated
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by comparing simulations based on estimation of parameters against real data sets for the
case of recurrent epidemics caused by respiratory syncytial virus in children. In particu-
lar, our results suggest that among the two models considered, the forced model is more
appropriate to explain recurrent epidemics.

The method proposed in this paper is a suitable choice to conduct parameter estimation
in ODE. For the sake of comparison, let us comment further on some other methods. For
noisy data, a successful method is that of Ramsay et al. (2005). As pointed out before,
the method of Ramsay is a combination of estimation and smoothing. The latter requires
the choice of a smoothing parameter. The authors apply their method to two examples,
the FitzHugh–Nagumo equations and the tank reactor equations. The necessary smooth-
ing parameter for their algorithm is chosen based on numerical and visual heuristics. This
parameter selection method poses the risk of not always choosing the best value of the
regularization parameter. It is interesting to study the method of Ramsay under the theory
of regularization of inverse problems. From the numerical point of view, the method intro-
duced in Li et al. (2005) is appealing. Therein, the ODE is discretized, and consequently
a constrained optimization problem is posed. A nontrivial algorithm is developed for the
optimization, which might be a challenge to implement. We take the continuous version
of the optimization as a better solution to the problem, where the mathematical analysis
can be carried out leaving discretization as a final step.

One weakness of the proposed method is that it requires many iterations to reach a
regularized solution. The results of this paper may be generalized to an improved version
of the Landweber iteration, or another method of higher order of convergence, but that
constitutes the subject of further research.
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