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This paper addresses the problemofmodeling and controlling a planar biped robot with six degrees of freedom,which are generated
by the interaction of seven links including feet. The biped is modeled as a hybrid dynamical system with a fully actuated single-
support phase and an instantaneous double-support phase. The mathematical modeling is detailed in the first part of the paper.
In the second part, we present the synthesis of a controller based on virtual constraints, which are codified in an output function
that allows defining a local diffeomorphism to linearize the robot dynamics. Finite-time convergence of the output to the origin
ensures a collision between the swing foot and the ground with an appropriate configuration for the robot to give a step forward.
The components of the output track adequate references that encode a walking pattern. Finite-time convergence of the tracking
errors is enforced by using second-order slidingmode control.Themain contribution of the paper is an evaluation and comparison
of discontinuous and continuous sliding mode control in the presence of parametric uncertainty and external disturbances. The
robot model and the synthesized controller are evaluated through numerical simulations.

1. Introduction

The study of walking robots is a research area of great
scientific and technological interest [1]. A particular class of
walking robots are bipeds, which are characterized for their
mobility from two legs. The kinematics and dynamics of this
kind of robots are complex, and the synthesis of efficient and
robust controllers to achieve stable walking is a challenging
task [2]. This paper studies a planar biped robot that consists
of seven links: two femurs, two tibias, two feet, and one torso.
This structure of biped robot is the simplest that approxi-
mately reproduces the mechanism of human walking [2, 3].

The modeling of biped robots as a system of multiple
pendulums has been addressed from the simplest case in [4],
where the robot is represented by only 3 links, with no knees
nor feet. In order to analyze a model more similar to the
human anatomy, the biped robot of 5 links has been one of
the most studied ones in the literature, for instance, in [5, 6].
In such case, the robot has knees but not feet.

In the literature, several models of planar bipeds have
been considered without feet, which means that the contact

with the ground is assumed to be punctual; see, for instance,
[5, 6]. However, feet play an important role in the whole
walking process. Feet allow the robot to improve balance
providing a supporting surface to distribute its weight.
Examples of bipeds with feet can be found in [2, 3, 6]. In
the aforementioned references the modeled robots are bipeds
whose motion is constrained to the sagitttal plane. This is a
valid assumption in a biped robot, since the dynamics in the
sagittal plane is basically decoupled from the dynamics in the
frontal plane [2]. Besides, essential components of the bipedal
walking can be observed in the sagittal plane.

Different control techniques have been used for the
walking control of biped robots. High gain linear control is
proposed in [7], where the authors prove that exponential
convergence of the closed-loop system is achieved. However,
a high gain proportional-derivative control is not feasible
due to the large magnitude of the generated control inputs.
Extensive research on passivity-based control of biped robots
is summarized in [8], where energetic functions are exploited
to formulate a walking controller robust to some external
disturbances but not to parametric uncertainty. It is well
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known that classical sliding mode control is a robust control
technique [9], able to stabilize electromechanical systems
subject to external matched disturbances and parametric
uncertainty. Such properties have been exploited for the
robust control of biped robots in [6, 10, 11]. In [6], a first-order
sliding mode control is proposed for an underactuated biped
and its performance is evaluated for external disturbances.
The authors of [10] compare a classical sliding mode con-
troller with a pure computed torque controller, concluding
the superiority of the first one. The robot model of [11]
includes a double-support phase, in which a sliding mode
controller regulates the robot’s motion.

The previously referred to walking controllers using
sliding mode control present the problem of the classical
approach, the undesirable effect of chattering [9]. Second-
order sliding mode control has been proposed in order to
reduce the chattering effect of the classical approach [12].
This kind of sliding mode control has been studied for robust
control of second-order systems to achieve stabilization in
finite-time, in particular for double integrator systems [13,
14]. Finite-time control of the biped’s state variables is an
important feature in order to achieve a stable walking cycle;
all biped’s state variables must converge to desired values
before the occurrence of an impact between the swing foot
and the ground at each step. In [15], the authors propose a
nonlinear control with finite-time convergence, which has
been applied for biped robots in [4, 5]. Second-order sliding
modes can be achieved by using a discontinuous [13] or
a continuous [14] control law. Both approaches have been
proposed for the walking control of biped robots [16, 17];
however, a comparison and robustness evaluation of both
approaches have not been carried out.

In this paper, we detail the mathematical model of a 7-
link biped robot including feet. The biped is modeled as
a hybrid system with a continuous fully actuated single-
support phase and an instantaneous double-support phase
modeled as a discontinuous transition of the velocities when
the swing foot collides with the ground. The validity of the
model is verified from the dynamic constraint given by the
center of pressure. We propose a particular set of outputs
to be controlled, which allows us to design a controller that
transforms themodel of the biped into a linear form. Second-
order sliding mode control is then used over the linearized
system to ensure robust reference tracking in finite-time.
The main contribution of the paper is an evaluation and
comparison of both discontinuous and continuous second-
order slidingmode approaches in terms of robustness against
parametric uncertainty and external disturbances. To this
end, the complete model of the biped and the proposed
walking control have been implemented in simulation using
Python.

The paper is organized as follows. Section 2 summarizes
the modeling hypotheses and states the addressed problem.
Section 3 details the mathematical model of the 7-link biped
robot. In Section 4, we describe the synthesis of a walking
control for the 7-link biped. Section 5 shows results of
the closed-loop system’s performance through simulations
using the derived mathematical model. In Section 6, we give
conclusions and discuss some future work.
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2. Modeling Hypotheses and
Problem Statement

In this section we enlist a set of modeling hypotheses and
we describe the main problem addressed in the paper. The
following hypotheses regarding the robot are assumed:

(HR1) It consists of 7 links of cylindrical geometry and
homogeneous density distributed in a torso and two
identical legs; each leg is composed of two links and
one foot (see Figure 1).
(HR2) It is planar and its motion is constrained to the
sagittal plane, which is identified with a vertical 𝑥𝑦-
plane.
(HR3) The 6 joints (2 ankles, 2 knees, and 2 hips) are
one-degree-of-freedom rotational frictionless joints.

Additionally, we assume that the bipedal walking satisfies
the following hypotheses:

(HW1) It consists of two successive phases: a fully
actuated single-support phase (robot standing on
one leg) and an instantaneous double-support phase
(both feet on the ground).
(HW2) During the single-support phase, the stance leg
remains planar on the ground and without slipping.
(HW3) In each step the swing leg moves forward from
behind the stance leg to the front.
(HW4) The walking is performed from left to right on
a horizontal straight line representing the ground.

In this paper, we address the problem of deriving a model
of a biped robot accomplishing the aforementioned hypothe-
ses. From this model, we design a walking controller robust
against parametric uncertainty and external disturbances,
able to achieve convergence of a set of selected outputs in
finite-time, before the occurrence of an impact of the swing
foot with the ground for each step of the robot.
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Figure 2: Scheme of the 7-link biped robot showing the joints’
positions (P

1
, . . . ,P

5
), angles of configuration (𝑞
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, . . . , 𝑞

6
), and fixed

reference frameF
0
with origin 𝑂

0
.

3. Model of a 7-Link Biped Robot

In this section, we detail the aspects related to the model
of the biped robot under the assumptions described in the
previous section. The model is developed in two parts. First,
the robot dynamics in the single-support phase ismodeled by
a set of differential equations with inputs, which are obtained
from the Euler-Lagrange formulation. Second, a model of
the collision of the swing foot and the ground is presented
as a set of algebraic constraints [2, 5]. The two-phase model
representing the walking cycle of the 7-link biped is then
written as a hybrid nonlinear system with impulsive effects
[4, 5].

3.1. LagrangianDynamics of the Robot. Each joint of the robot
has a torque 𝜏

𝑖
associated as shown in Figure 1. Then, the

vector of input torques can be written as 𝜏 := (𝜏
1
, . . . , 𝜏

6
).

Let us define a vector of generalized coordinates q :=

(𝑞
1
, . . . , 𝑞

6
), which represents the robot’s configuration.Thus,

the robot has 6 degrees of freedom and is fully actuated.
The angular positions 𝑞

𝑖
are measured as shown in Figure 2,

with positive angles in a counterclockwise sense. The Euler-
Lagrange equations can be written as follows:

𝑑

𝑑𝑡

𝜕L

𝜕q̇𝑖
−

𝜕L

𝜕q𝑖
= 𝜇
𝑖

for 𝑖 = 1, . . . , 6, (1)

where L(q, q̇) := K(q, q̇) − P(q) is the difference
between the kinetic energy K and the potential energy
P due to the gravity force; 𝜇

𝑖
is the generalized force

for each B
𝑖
. The kinetic energy is given by K(q, q̇) :=

∑

6

𝑖=1
((1/2)𝑚

𝑖
̇Q𝑇
𝑖
̇Q
𝑖
+ (1/2)𝑗

𝑖
̇𝑞

2

𝑖
), where Q

𝑖
is the center of

mass and 𝑗
𝑖
= (1/12)𝑚

𝑖
(2𝑙
𝑖
)

2 is the moment of inertia of
each B

𝑖
(see Appendix A). The potential energy is given by

P(q) := −∑

6

𝑖=1
(𝑚
𝑖
g𝑇Q
𝑖
), where g = (0, −𝑔

𝑦
, 0), with 𝑔

𝑦

the gravitational constant. Euler-Lagrange equations (1) for

the studied robotic system can be expressed in the second-
order form [18]

B (q) q̈ + C (q, q̇) q̇ + G (q) = A𝜏, (2)

where B(q) is a positive definite symmetric matrix of 6 × 6,
known as matrix of inertia, the vector fields C(q, q̇) andG(q)
include the centrifugal, Coriolis, and gravitational effects on
the robot, 𝜏 is the vector of input torques, and the matrixA ∈
𝑀
6×6
(R) relates 𝜏with the vector of generalized forces 𝜇.The

matrixA is invertible given that the robot is fully actuated. See
Appendix B for details of the terms involved in (2). Model (2)
can be expressed in a state-space form as the following system
of 12 first-order differential equations:

𝑑

𝑑𝑡

x = [
q̇

B−1 (q) (u − C (q, q̇) q̇ − G (q))
] ,

=: f (x) + g (x) u,

(3)

where x := (q, q̇) is the state vector and u := A𝜏 = 𝜇 is the
control variable. The state-space of the system is defined as
X := {x ∈ R12 | q ∈ (−𝜋, 𝜋)6, q̇ ∈ R6 and ‖q̇‖ < 𝑀 < ∞},
with𝑀 a positive scalar. Since we will introduce conditions
for collision of the swing foot with the ground, the state-space
is actually reduced to a subset of X of physically admissible
configurations.

3.2. Collision Model. The instantaneous double-support
phase is modeled as a collision between the swing foot and
the ground. To obtain a collision model, we consider the
following hypotheses [19]:

(HC1)The impact ismodeled as a contact between two
rigid bodies.
(HC2) The contact takes an infinitesimal time period.
(HC3) The swing foot makes a strictly parallel contact
with the ground and there is no rebound and no
slipping of the foot.
(HC4) The stance leg lifts from the ground without
interaction.
(HC5) The external forces (e.g., ground reaction)
during the collision can be modeled as impulses.
(HC6) The actuators (joint motors) cannot generate
impulses; hence they can be neglected in the collision
model.
(HC7) Due to the impulsive forces, the joint velocities
might present a discontinuous change, not so in the
configuration.

Since we consider a robot with feet, the contact of the
swing foot with the ground implies the application of a
distribution of forces in the sole of the foot. However, a
valid simplification is to consider one resultant force and an
external torque both acting in the swing foot’s ankle at the
instant of contact [2]. Let us define P

5
(q) as the position

of the swing foot’s ankle with respect to the frame F
0
and
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P
𝜃
(q) = (0, 0, 0, 0, 𝑞

5
, 0) as the absolute angle of the swing foot

measured as shown in Figure 2. We can introduce the effect
of the impulsive external forces due to the collision in (2) as
follows [20]:

B (q) q̈ + C (q, q̇) q̇ + G (q) = A𝜏 + J𝑇
𝑃
5

𝛿F
𝑒
+ J𝑇
𝑃
𝜃

𝛿𝜏
𝑒
, (4)

where J
𝑃
5

:= 𝜕P
5
(q)/𝜕q is a 2 × 6 full rank matrix and

J
𝑃
𝜃

:= 𝜕P
𝜃
(q)/𝜕q is a vector inR6 (these matrices are given in

Appendix A). 𝛿F
𝑒
and 𝛿𝜏

𝑒
are vector-valued functions in R2

andR, respectively, which denote the resultant external force
and torque acting in the swing foot’s ankle at the moment of
impact (in form of Dirac delta functions). Considering (HC2),
the integral of (4) during the infinitesimal time of the collision
is given by

B (q) (q̇+ − q̇−) = J𝑇
𝑃
5

F
𝑒
+ J𝑇
𝑃
𝜃

𝜏
𝑒
, (5)

where F
𝑒
:= ∫

𝑡
+

𝑡
−
𝛿F
𝑒
(𝜏) 𝑑𝜏, 𝜏

𝑒
:= ∫

𝑡
+

𝑡
−
𝛿𝜏
𝑒
(𝜏) 𝑑𝜏, and q̇± :=

q̇(𝑡±), 𝑡− and 𝑡+ being the instants before and after impact,
which satisfy 𝑡+ − 𝑡− → 0. Recall that by (HC7) the robot
configuration does not change during the collision; thus q+ :=
q(𝑡−) = q(𝑡+). From (5), the goal is to compute q̇+ knowing q
and q̇−. However, F

𝑒
and 𝜏
𝑒
are also unknown. Since in 𝑡+ the

swing leg becomes the stance leg, hypothesis (HW2) implies
that the translational and rotational velocities of the stance
foot are null. Thus, after the impact, it is satisfied that

̇P
5
(𝑡

+
) := J
𝑃
5

q̇+ = 0,

̇P
𝜃
(𝑡

+
) := J
𝑃
𝜃

q̇+ = 0.
(6)

Using (5) and (6), we can write a linear system to solve for q̇+,
F
𝑒
, and 𝜏

𝑒
, which can be expressed as follows:

Π

[

[

[

[

q̇+

F
𝑒

𝜏
𝑒

]

]

]

]

= [

B (q) q̇−

0
3×6

] , (7)

where

Π :=

[

[

[

[

B (q) −J𝑇
𝑃
5

−J𝑇
𝑃
𝜃

J
𝑃
5

0
2×2

0
2×1

J
𝑃
𝜃

0
1×2

0
1×1

]

]

]

]

. (8)

Proposition 1. Linear system (7) has a single solution.

This proposition, whose proof is given in Appendix C,
establishes that we can always compute a solution of (7)
in terms of q̇−. The following lemma specifies the explicit
solution of system (7).

Lemma2. Theclosed-form of the solution of system (7) is given
by

F
𝑒
= −M−1

1
J
𝑃
5

q̇−,

𝜏
𝑒
= −M−1

2
J
𝑃
𝜃

q̇−,

q̇+ = −B−1 (q) J𝑇
𝑃
5

M−1
1
J
𝑃
5

q̇−

− (B−1 (q) J𝑇
𝑃
𝜃

M−1
2
J
𝑃
𝜃

− I
6×6
) q̇−

=: Δ
2
q̇−,

(9)

where M
1
:= J
𝑃
5

B−1(q)J𝑇
𝑃
5

and M
2
:= J
𝑃
𝜃

B−1(q)J𝑇
𝑃
𝜃

are
nonsingular matrices.

Proof. Solving for q̇+ in (5), we have

q̇+ = B−1 (q) (J𝑇
𝑃
5

F
𝑒
+ J𝑇
𝑃
𝜃

𝜏
𝑒
) + q̇−. (10)

Premultiplying (10) by J
𝑃
5

and by J
𝑃
𝜃

, we obtain

J
𝑃
5

q̇+ = J
𝑃
5

B−1 (q) (J𝑇
𝑃
5

F
𝑒
+ J𝑇
𝑃
𝜃

𝜏
𝑒
) + J
𝑃
5

q̇−,

J
𝑃
𝜃

q̇+ = J
𝑃
𝜃

B−1 (q) (J𝑇
𝑃
5

F
𝑒
+ J𝑇
𝑃
𝜃

𝜏
𝑒
) + J
𝑃
𝜃

q̇−,
(11)

respectively. Using (6), the left-hand sides of (11) become null.
Besides, due to the form of J

𝑃
5

and J
𝑃
𝜃

given in Appendix A, it
can be verified that J

𝑃
5

B−1(q)J𝑇
𝑃
𝜃

= 0
2×1

and (J
𝑃
𝜃

B−1(q)J𝑇
𝑃
5

)

𝑇
=

0
1×2

, which simplify the expressions in (11) to

0 = J
𝑃
5

B−1 (q) J𝑇
𝑃
5

F
𝑒
+ J
𝑃
5

q̇− = M
1
F
𝑒
+ J
𝑃
5

q̇−,

0 = J
𝑃
𝜃

B−1 (q) J𝑇
𝑃
𝜃

𝜏
𝑒
+ J
𝑃
𝜃

q̇− = M
2
𝜏
𝑒
+ J
𝑃
𝜃

q̇−,
(12)

implying that

F
𝑒
= −M−1

1
J
𝑃
5

q̇−,

𝜏
𝑒
= −M−1

2
J
𝑃
𝜃

q̇−.
(13)

Since B(q) is a positive definite matrix and J
𝑃
5

and J
𝑃
𝜃

are
full rank matrices, it can be verified that J

𝑃
5

B−1(q)J𝑇
𝑃
5

= M
1

and J
𝑃
𝜃

B−1(q)J𝑇
𝑃
𝜃

= M
2
are symmetric positive matrices

and consequently they are invertible. Finally, replacing the
solution for F

𝑒
and 𝜏

𝑒
in (10) we obtain

q̇+ = −B−1 (q) J𝑇
𝑃
5

M−1
1
J
𝑃
5

q̇−

− (B−1 (q) J𝑇
𝑃
𝜃

M−1
2
J
𝑃
𝜃

− I
6×6
) q̇− =: Δ

2
q̇−.

(14)

This result, along with the fact that q+ = q− = q, allows us
to determine the restart condition of the continuous dynam-
ics in (3). To do so, we introduce a change of coordinates
that represents the transformation of the swing leg to the
stance leg and vice versa. By symmetry of the legs, this is
done by relabeling the coordinates of q and q̇. We express
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that relabeling as a matrix D ∈ 𝑀
5×5
(R) acting on the first

five coordinates of q and q̇ such that DD = I
5×5

. Notice that
the last coordinates of q and q̇, corresponding to the position
and velocity of the torso, are not affected because they are
independent of the legs disposal. Finally, the collision model,
which gives the robot state after the impact x+ := (q, q̇+) in
terms of x− := (q, q̇−), can be written as

x+ = [
[D 0
5×1] q

[D 0
5×4]Δ2q̇−

] =: Δ (x−) , (15)

where Δ
2
is defined in (9). Since the calculation is direct, an

explicit expression of Δ is not given. However, the implicit
function theorem implies thatΔ is as smooth as the entries of
Π in (7). Hence, we can conclude that Δ is analytic in x−.

3.3. Complete Model as a Hybrid System. Now, we describe
a form to represent the complete model of the biped taking
into account the continuous part given by (3) and the
discrete part given by (15). This kind of hybrid systems can
be described as a system with impulsive effects [21]. The
following proposition establishes the complete model of the
biped robot.

Proposition 3. The solution x(𝑡) of the biped’s model described
by (3) and (15) corresponds to the solution of the system with
impulsive effects:

Σ
1
:

{

{

{

ẋ (𝑡) = f (x) + g (x)u 𝑖𝑓 x− (𝑡) ∉ S,

x+ (𝑡) = Δ (x− (𝑡)) 𝑖𝑓 x− (𝑡) ∈ S,
(16)

where x−(𝑡) := lim
𝜏↗𝑡

x(𝜏) and x+(𝑡) := lim
𝜏↘𝑡

x(𝜏) are,
respectively, the left and right limits of the solution x(𝑡), Δ is
given by (15), and

S = {x ∈X | 𝐻 (x) = 0} , (17)

with

𝐻(x) := P𝑦
5
(x) , (18)

where P𝑦
5
represents the height of the swing foot. See (A.5) in

Appendix A for the explicit expression of P𝑦
5
.

Roughly speaking, the solution trajectories of the hybrid
model are specified by the single-support dynamics until
the impact, which occurs when the state reaches the set S.
Physically, this represents the collision between the swing foot
and the walking surface.

In Section 4 we will focus on the design of a control law
of the form u = 𝛾(x) ∈ R6 in order to yield a closed-loop
system whose solutions produce an adequate walking profile.
The closed-loop system can be written as a new system Σ

2

with impulsive effects:

Σ
2
:

{

{

{

ẋ (𝑡) = F (x) if x− (𝑡) ∉ S,

x+ (𝑡) = Δ (x− (𝑡)) if x− (𝑡) ∈ S.
(19)

Closed-loop system (19) must satisfy the following hypothe-
ses:

(HS1)X ⊂ R𝑛 is open and simply connected.
(HS2) F : X → 𝑇X is continuous and the solution
of ẋ = F(x) for some initial condition is unique and
has continuous dependence on initial conditions.
(HS3)S is a no null set and the differentiable function
𝐻 : X → R is such that S := {x ∈ X | 𝐻(x) = 0}.
Besides, for each 𝑠 ∈ S, (𝜕𝐻/𝜕x)(𝑠) ̸= 0.
(HS4) Δ : S → X is continuous.
(HS5) Δ(S) ∩ S = 0, where Δ(S) denotes the closure
of Δ(S).

Hypothesis (HS2) implies that for some x
0
∈ X there

exists a solution of the system ẋ(𝑡) = F(x) over a sufficiently
short time interval. It is worth noting that the continuity
of the closed-loop vector field F depends on the feedback
control law and it will be remarked in Section 4.3 for different
control laws. Hypothesis (HS3) implies that S is a smooth
embedded submanifold of X. Hypothesis (HS4) guarantees
that the result of the impact varies continuously with respect
to the contact point on S. Hypothesis (HS5) ensures that
the result of the impact does not yield immediately another
impact event, since every point in Δ(S) is at a positive
distance from S.

3.4. Dynamic Constraint. The validity of the complete model
is constrained to verify a condition on the center of pressure
(CoP). The CoP represents the point in the stance foot
polygon at which the resultant of distributed foot ground
reaction acts [22]. In our case of study, the resultant ground
reaction R

𝑆
is given by

R
𝑆
=

𝑑

𝑑𝑡

6

∑

𝑖=1

L
𝑖
−

6

∑

𝑖=1

w
𝑖
, (20)

whereL
𝑖
andw

𝑖
are the linearmomentum andweights of each

linkB
𝑖
, respectively.The sum ofmoments with respect to the

point P
1
satisfies

−𝜏
1
+ CoP𝑥R𝑦

𝑆
= 0, (21)

where 𝜏
1
is the input torque applied in the stance foot’s ankle

and R𝑦
𝑆
is the vertical component of the resultant ground

reaction force.

Proposition 4. The validity of the model is verified if and only
if

CoP𝑥 = 𝜏
1

R𝑦
𝑆

∈ [−𝑙
0
, 𝑙
0
] , (22)

where 𝑙
0
is the mean length of the stance foot’s link.

The observance of condition (22) means that the stance
foot will remain flat on the ground; the stance foot never
rotates to be on heels or toes [22]. Thus, the biped remains
fully actuated along the walking.
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4. Finite-Time Walking Control of the 7-Link
Biped Robot

In this section, we present the design of a control law of
the form u = 𝛾(x) ∈ R6 in order to yield a stable
solution of system (16). At the same time, the solution must
correspond to stable walking and must be consistent with
hypotheses (HW1), . . . , (HW4) presented in Section 2.

4.1. Output Definition and System Linearization. The gener-
ation of a stable robot walk is addressed by imposing a set
of virtual constraints on the joint’s positions in such a way
that the torso is maintained nearly upright, the hips remain
slightly in front of the midpoint between both feet, and the
swing foot’s ankle traces a parabolic trajectory. The virtual
constraints are imposed on the robot by means of feedback
control and, particularly, via an input-output linearization
[23].The virtual constraints are codified in an output function
y := h(q) from which a local diffeomorphism can be built
in order to linearize the single-support dynamics (3). This is
enunciated in the following lemma.

Lemma 5. Let h : R6 → R6 be an output function of system
(3) defined as

y :=

[

[

[

[

[

[

[

[

[

[

[

[

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑦
5

𝑦
6

]

]

]

]

]

]

]

]

]

]

]

]

:=

[

[

[

[

[

[

[

[

[

[

[

[

P𝑥
5
− (𝑝

𝑥
+ 𝑠)

P𝑦
5
− 𝜌 (P𝑥

5
)

P𝑥
3
− (𝑝

𝑥
+ 𝜇𝑠)

𝑞
2

𝑞
5

𝑞
6

]

]

]

]

]

]

]

]

]

]

]

]

=: h (q) , (23)

where P
3
and P

5
are the Cartesian coordinates of the hips and

the swing foot’s ankle, respectively (see Appendix A).The vector
P
1
= (𝑝

𝑥
, 𝑝

𝑦
, 0) ∈ R3 represents the Cartesian coordinates of

the stance foot’s ankle, 𝑠 and 𝜇 are constants such that 0 < 𝑠 <
2𝑙
1
and 0 < 𝜇 < 1, and the function 𝜌 : R → R is given by

𝜌 (𝑢) := −

𝑑

2

𝑠

2
(𝑢 − 𝑝

𝑥
)

2
+ 𝑑,

(24)

where 𝑑 is a constant such that 0 < 𝑑 < 2𝑙
1
. Then T : R12 →

R12, defined as

(q, q̇) → (h (q) , 𝜕h (q)
𝜕q

q̇) := (y, ẏ) , (25)

expresses a local diffeomorphism for each x in the set
X
𝑐

:= {(q, q̇) ∈R12 : 


𝑞
𝑖






<

𝜋

2

, 𝑞
4
− 𝑞
3
< 0, ‖q̇‖ <𝑀} .

(26)

Proof. The Jacobian matrix of T with respect to x := (q, q̇) is
given by the following block matrix:

J
𝑇
:=

𝜕T (x)
𝜕x

=

[

[

[

[

𝜕h (q)
𝜕q

0
6×6

𝜕

2h (q)
𝜕q2

q̇ 𝜕h (q)
𝜕q

]

]

]

]

. (27)

Then, we have

det (J
𝑇
) = (det(𝜕h (q)

𝜕q
))

2

= (8𝑙
1
𝑙
3
𝑙
4
cos (𝑞

1
) sin (𝑞

3
− 𝑞
4
))

2
,

(28)

which implies that J
𝑇
is a nonsingular matrix for each x ∈

X
𝑐
. Besides,h is at least two times continuously differentiable,

and in consequence T is continuously differentiable. Hence,
T : X

𝑐
→ R12 defines a local diffeomorphism for each x ∈

X
𝑐
.

The output definition corresponds to the following rela-
tionships: 𝑦

1
and 𝑦

2
control the horizontal and vertical

positions of the swing foot, respectively, 𝑦
3
controls the

horizontal position of the hips, and 𝑦
4
, 𝑦
5
, and 𝑦

6
control

the angular position of the stance leg’s femur, the angular
position of the swing foot, and the angular position of the
torso, respectively.

Remark 6. The parameter 𝑠 allows setting the step size of the
robot walking. The function 𝜌 imposes that the position of
the swing foot’s ankle tracks a parabolic trajectory for each
step. The parameter 𝑑 establishes the maximum height of
the swing foot (maximum of the parabolic trajectory) during
each step. The parameter 𝜇 allows the robot to adopt an
adequate configuration at the impact of the swing foot with
the ground. For instance, 𝜇 = 0.5 imposes symmetry in the
robot configuration at each step, such that the hips remain
centered between both feet. A value 𝜇 > 0.5 moves the hips
in front of themidpoint between the feet, which is convenient
to avoid the singularity (28), although the CoP also moves in
front of the ankle.Thus,𝜇must be defined taking into account
the compromise of avoiding the singularity and keeping the
CoP close to the ankle.

Remark 7. As long as h(q) → 0 ∈ R6, the biped adopts
an adequate configuration to give a step forward. Hence, the
control objective is to achieve that the output vector y = h(q)
converges to the origin.

Notice that the constrained state-space X
𝑐
is open and

simply connected.Thus, hypothesis (HS1) is satisfied. In order
to verify whether the robot dynamics in the single-support
phase is linearizable through the change of variable z := T(x)
expressed in (25), it must be also accomplished that T(X

𝑐
)

contains the origin [23].This is proved next, first by giving the
analytical expression of the inverse of the diffeomorphism.

Proposition 8. There exists an analytical expression for the
inverse of the diffeomorphism x = T−1(z).

Proof. By direct inspection of (23), we have that

𝑞
2
= 𝑦
4
,

𝑞
5
= 𝑦
5
,

𝑞
6
= 𝑦
6
.

(29)
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𝛼 𝛽

√
d 2
x +

d 2
y

2l3

2l4

q3

q4

dx

dy

P3

P5

Figure 3: Geometry of the swing leg to compute 𝑞
3
and 𝑞

4
from P

3

and P
5
.

Additionally, we have

𝑦
3
= P𝑥
3
− (𝑝

𝑥
+ 𝜇𝑠) = −2𝑙

1
sin 𝑞
1
− 2𝑙
2
sin 𝑞
2
− 𝜇𝑠. (30)

From that, we can obtain

𝑞
1
= sin−1 (−

𝑦
3
+ 2𝑙
2
sin𝑦
4
+ 𝜇𝑠

2𝑙
1

) . (31)

Let us define P𝑥
5
− P𝑥
3
:= 𝑑
𝑥
and P𝑦

5
− P𝑦
3
:= 𝑑
𝑦
, as shown in

Figure 3, such that

𝑑
𝑥
= 𝑦
1
− 𝑦
3
+ 𝑠 (1 − 𝜇) = 2 (𝑙

3
sin 𝑞
3
+ 𝑙
4
sin 𝑞
4
) ,

𝑑
𝑦
= 𝑦
2
+ 𝜌 (𝑦

1
+ 𝑝

𝑥
+ 𝑠) − 𝑝

𝑦
− 2𝑙
1
cos 𝑞
1

− 2𝑙
2
cos𝑦
4

= −2 (𝑙
3
cos 𝑞
3
+ 𝑙
4
cos 𝑞
4
) .

(32)

Once that 𝑞
1
is known from (31), we can compute 𝑞

3
in terms

of the outputs 𝑦
1
, 𝑦
2
, 𝑦
3
, and 𝑦

4
as follows:

𝑞
3
= 𝛼 + 𝛽, (33)

where, according to Figure 3,

𝛼 = tan−1 (
𝑑
𝑥

𝑑
𝑦

) ,

𝛽 = cos−1(
4𝑙

2

3
+ 𝑑

2

𝑥
+ 𝑑

2

𝑦
− 4𝑙

2

4

4𝑙
3√
𝑑

2

𝑥
+ 𝑑

2

𝑦

).

(34)

Taking 𝑑
𝑥
and 𝑑

𝑦
in terms of 𝑞

3
and 𝑞
4
from (32), we obtain

𝑑

2

𝑥
+ 𝑑

2

𝑦
= 4𝑙

2

3
+ 4𝑙

2

4
+ 8𝑙
3
𝑙
4
cos (𝑞

4
− 𝑞
3
) . (35)

Hence,

𝑞
4
= 𝑞
3
+ cos−1(

𝑑

2

𝑥
+ 𝑑

2

𝑦
− 4𝑙

2

3
− 4𝑙

2

4

8𝑙
3
𝑙
4

) . (36)

On the other hand, from (25), the vector of rotational
velocities is given by

q̇ = (𝜕h (q)
𝜕q

)

−1

ẏ. (37)

Proposition 9. There exists x∗ ∈ X
𝑐
such that T(x∗) = 0 ∈

R12.

Proof. We can obtain the point x∗ := (q, q̇) ∈ R12 directly
from Proposition 8 by evaluating (29), (31), (33), (36), and
(37) for y = 0 and ẏ = 0. Thus, we have

𝑞

∗

2
= 0,

𝑞

∗

5
= 0,

𝑞

∗

6
= 0,

𝑞

∗

1
= sin−1 (−

𝜇𝑠

2𝑙
1

) .

(38)

Additionally, from (32), we have

𝑑

∗

𝑥
= 𝑠 (1 − 𝜇) ,

𝑑

∗

𝑦
= −2𝑙
1
cos 𝑞∗
1
− 2𝑙
2
.

(39)

Then,

𝑞

∗

3
= tan−1(

𝑑

∗

𝑥

𝑑

∗

𝑦

)

+ cos−1(
4𝑙

2

3
+ (𝑑

∗

𝑥
)

2
+ (𝑑

∗

𝑦
)

2

− 4𝑙

2

4

4𝑙
3
√
(𝑑

∗

𝑥
)

2
+ (𝑑

∗

𝑦
)

2

),

𝑞

∗

4
= 𝑞

∗

3
+ cos−1(

(𝑑

∗

𝑥
)

2
+ (𝑑

∗

𝑦
)

2

− 4𝑙

2

3
− 4𝑙

2

4

8𝑙
3
𝑙
4

) .

(40)

From (37), we have that q̇∗ = 0 for ẏ = 0. Hence, we conclude
that T(q∗, q̇∗) = (h(q∗), (𝜕h(q∗)/𝜕q)q̇∗) = 0 ∈ R12.

Once it has been proved thatT : X
𝑐
→ R12 as defined in

(25) is a diffeomorphism and that T(X
𝑐
) contains the origin,

we can enunciate the following theorem, which supports
the input-output linearization of the biped dynamics in the
single-support phase.

Theorem 10. System (3) is linearizable in X
𝑐
under the

diffeomorphism T : X
𝑐
→ R12 defined in (25). Moreover,

the linearized system for the variable z := T(x) := (y, ẏ) adopts
the form

ż = A
𝑧
z + B
𝑧
k, (41)
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where A
𝑧
and B

𝑧
are block matrices given by

A
𝑧
= [

0
6×6

I
6×6

0
6×6

0
6×6

] ,

B
𝑧
= [

0
6×6

I
6×6

]

(42)

and k is an auxiliary control variable obtained via an assign-
ment for u given by

u := 𝛽−1 (x) k + 𝛼 (x) , (43)

where 𝛽(x) = (𝜕h(q)/𝜕q)B−1(q) and 𝛼(x) = C(x) + G(q) −
B(q)(𝜕h(q)/𝜕q−1)(𝜕2h(q)/𝜕q2)(q̇, q̇).ThematricesB,C,G are
defined in (3) and h is as given in (23).

Proof. By Lemma 5 and Proposition 9 we have that T is a
diffeomorphism and T(X

𝑐
) contains the origin. The time

derivative of the change of variable z := T(x) using the chain
rule yields

ż = 𝜕T (x)
𝜕x

ẋ,

=

𝜕T (x)
𝜕x

([

q̇

−B−1 (q) (C (q, q̇) q̇ + G (q))
]

+ [

0
6×6

−B−1 (q)
] u) .

(44)

Therefore, if u = 𝛽−1(x)k + 𝛼(x), with 𝛽(x) and 𝛼(x) as in the
statement, then the above system can be expressed by

ż = A
𝑧
z + B
𝑧
k. (45)

The term 𝛽(x) is nonsingular since 𝜕h(q)/𝜕q is invertible for
each x ∈ X

𝑐
(see (28)) and B(q) is positive definite; therefore

the product (𝜕h(q)/𝜕q)B−1(q) is invertible and its inverse is
given by

𝛽
−1
(x) = B (q) 𝜕h (q)

𝜕q

−1

. (46)

Additionally, we have to verify the controllability of linearized
system (41). Its controllability matrix is given by

K
𝑧
= [B
𝑧

A
𝑧
B
𝑧

A2
𝑧
B
𝑧
⋅ ⋅ ⋅ A13

𝑧
B
𝑧
] . (47)

Since A𝑘
𝑧
≡ 0
12×12

for 𝑘 ≥ 2, then

K
𝑧
= [B𝑧 A

𝑧
B
𝑧

0
12×6

⋅ ⋅ ⋅ 0
12×6] . (48)

Besides, A
𝑧
B
𝑧
= [

I
6×6

0
6×6

] and B
𝑧
= [

0
6×6

I
6×6

], which implies that
rank(K

𝑧
) = 12, and the linearized system is controllable.

Hence, nonlinear system (3) is linearizable.

Notice that system (41) can be also expressed as a set of
six decoupled double integrators

𝑑

𝑑𝑡

[

𝑧
𝑖

�̇�
𝑖+6

] = [

�̇�
𝑖+6

k(𝑖)
] 𝑖 = 1, . . . , 6. (49)

4.2. Second-Order Sliding Mode Control. Second-order slid-
ing mode control, whose foundations can be found in [12],
has been studied for the robust stabilization of double inte-
grator systems; see, for instance, [13, 14]. A double integrator
system can be written as

�̇�
1
= 𝑥
2
,

�̇�
2
= V + 𝑤,

(50)

where 𝑤 represents a matched disturbance. As it was men-
tioned above, linearized system (41) is a set of six decoupled
double integrators. A sufficient condition for the swing foot
to collide with the ground is that each double integrator
converges to the origin (𝑧

𝑖
= 0, �̇�

𝑖+6
= 0). In other words,

for the biped to give one step forward, it is necessary that
the flow of the system crosses the hypersurface S. In order
to guarantee a finite-time crossing, for z of (41), we seek
for a finite-time convergence to the origin, which can be
accomplished by a second-order sliding mode controller.

4.2.1. Discontinuous Twisting Control. In [13], it is proved that
the so-called twisting control given by

V = −𝑘
1
sign (𝑥

2
) − 𝑘
2
sign (𝑥

1
) (51)

yields the origin (𝑥
1
= 0, 𝑥

2
= 0) of the double integrator

(50), an equilibrium point globally asymptotically stable in
finite-time for 𝑘

2
> 𝑘
1
. It is evident that control law (51) is

discontinuous; hence, a small undesired effect of chattering
appears [9, 12], in addition to the large energetic effort
required by the discontinuous control. However, thanks to
the theoretical capability of switching at infinite frequency,
discontinuous control (51) is robust against a large class of
disturbances [12, 13].

4.2.2. Continuous Twisting Control. In order to alleviate the
issues of the discontinuous twisting control, the following
continuous second-order sliding mode control has been
proposed in the literature [14] as a simplification of the
controller proposed in [15]:

V = −𝑘
1






𝑥
2






𝜎 sign (𝑥
2
) − 𝑘
2






𝑥
1






𝜎/(2−𝜎) sign (𝑥
1
) , (52)

where 0 < 𝜎 < 1 and 𝑘
2
> 𝑘
1
. In [14] it has been proved that,

by using control law (52), the origin of the double integrator
(50) is an equilibrium point globally asymptotically stable in
finite-time. In contrast to (51), control law (52) is continuous
and for the biped control, it generates a continuous closed-
loop vector field F(x) of (19), satisfying hypothesis (HS2).
This continuous control is robust against some disturbances;
in particular vanishing perturbations satisfying a specific
growth condition can be rejected [14].

4.2.3. Continuous Integral Twisting Control. The continuous
twisting control described above has limited robustness prop-
erties [14]. To overcome such limitation, a continuous integral
slidingmode control has been proposed in [24] and applied in
[25] for control of an industrial emulator setup.This approach
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proposes to augment twisting controller (52) with a dedicated
term that deals with disturbances. Basically, controller (52)
acts as a nominal finite-time controller and it is coupled
with an integral sliding mode based on the supertwisting
algorithm [12]. Thus, a robust continuous controller for the
double integrator is given by

V = Vnom + Vstc,

Vnom = −𝑘1





𝑥
2






𝜎 sign (𝑥
2
) − 𝑘
2






𝑥
1






𝜎/(2−𝜎) sign (𝑥
1
) ,

Vstc = −𝑘3





𝜁






sign (𝜁) + 𝜂,

̇𝜂 = −𝑘
4
sign (𝜁) ,

(53)

where 𝜁 results from the solution of ̇
𝜁 = �̇�

2
− Vnom and 0 <

𝜎 < 1, 𝑘
2
> 𝑘
1
, 𝑘
3
, 𝑘
4
> 0. Controller (53) is continuous due to

the combination of two continuous controls. Moreover, due
to the disturbance observation property of the supertwisting
algorithm, this controller is able to reject even persistent
disturbances [24].

4.3. Finite-Time Convergence of the Linearized System for
the Biped. We propose to exploit the robustness properties
and finite-time convergence of the twisting control, in its
discontinuous and continuous forms, in order to achieve an
adequate convergence of the set of selected outputs (23) to
y = (𝑧

1
, . . . , 𝑧

6
) = 0, which generates a step of the robot, as

highlighted in Remark 7. Recall that ẏ = (𝑧
7
, . . . , 𝑧

12
).

Theorem 11. Linearizing control (43) for system (3) yields the
origin of linearized system (41), an equilibrium point globally
asymptotically stable in finite-time under the assignment of
auxiliary control v given by (for x = (𝑥

1
, . . . , 𝑥

𝑛
) ∈ R𝑛, one

considers sign(x) = (sign(𝑥
1
), . . . , sign(𝑥

𝑛
)))

k = −K
1






ẏ


𝜎 sign (ẏ) − K
2






y


𝜎/(2−𝜎) sign (y) , (54)

where 0 ≤ 𝜎 < 1 and the matrices K
𝑗
for 𝑗 = 1, 2 are diagonal

matrices given by

K
𝑗
= diag (𝑘

𝑗,𝑖
) , 𝑘

2𝑖
> 𝑘
1𝑖
> 0, 𝑖 = 1, . . . , 6. (55)

The settling time of system (41) is given by
𝑡
𝑎
= max {𝑡

1
, . . . , 𝑡

6
} , (56)

where 𝑡
1
, . . . , 𝑡

6
are the settling times to the origin of each

decoupled double integrator (49).

Proof. As stated in Theorem 10, the single-support dynamics
of the biped (3) can be linearized through control (43) to
obtain (41).This linearized system can be expressed as the set
of six double integrators (49). When 𝜎 = 0, the proof follows
fromTheorem 4.2 of [13], while for 𝜎 ∈]0, 1[ the proof follows
fromTheorem 1 of [14].

Remark 12. Although the auxiliary control v (54) within
the linearizing control u (43) yields the point x∗ of system
(3), specified in Proposition 9, an equilibrium point globally
asymptotically stable in finite-time, the initial conditions of
system (3) must be constrained toX

𝑐
, since this subset is the

validity domain of the linearization of the system through the
diffeomorphism T.

4.4. Considerations for Control Gains Tuning. The following
proposition states that, from an initial condition x

0
∈ X
𝑐
,

there exists a finite-time 𝑡∗ at which the flow of system
(3) crosses the hypersurface S (17). The value 𝑡∗ imposes a
constraint for the settling time of the system’s outputs.

Proposition 13. For the continuous part of hybrid system (16),
assume that the control input u and the auxiliary control v are
defined in (43) and (54), respectively. Then, for each x

0
∈ X
𝑐

there exists 0 < 𝑡∗ < ∞ such that the solution 𝜙𝑓
𝑡
(x
0
) of (3)

satisfies 𝜙𝑓
𝑡
∗(x0) ∈ S.

Proof. Let us denote the flow of systems (3) and (41) by 𝜙𝑓
and 𝜑, respectively, and consider x

0
∈ S. Let 𝑡

1
, 𝑡
2
< ∞

be the settling times of the first two double integrators (49).
If we define 𝑡∗ := max{𝑡

1
, 𝑡
2
}, then 𝜑

𝑡
∗(T(x0))

𝑖
= 0 for

𝑖 = 1, 2. Given that z := T(x) = (h(q), (𝜕h(q)/𝜕q)q̇) and
according to the definition of h (23), if 𝑧

1
= 𝑧
2
= 0 then

P𝑥
5
(T−1(𝜑

𝑡
∗(T(x0)))) = 𝑝

𝑥
+ 𝑠 and P𝑦

5
(T−1(𝜑

𝑡
∗(T(x0)))) =

𝜌(P𝑥
5
(T−1(𝜑

𝑡
∗(T(x0))))) = 𝜌(𝑝𝑥 + 𝑠) = 0. Furthermore, given

that𝐻(x) = P𝑦
5
(q) (18), we have𝐻(T−1(𝜑

𝑡
∗(T(x0)))) = 0, and

therefore 𝜙𝑓
𝑡
∗(x0) ∈ S.

Assume that 𝑡
5
> 𝑡

∗ with 𝑡∗ as in the previous proof;
then 𝜙𝑓

𝑡
∗(x0) ∈ S for some x

0
∈ X
𝑐
. However, there is no

certainty that 𝑧
5
(𝑡

∗
) = 𝑞

5
(𝑡

∗
) = 0, which means that the

biped might not have an adequate configuration to give a
step according to hypothesis (HC3) of Section 3.2. Thus, it is
not sufficient to have the origin of system (41) asymptotically
stable in finite-time to achieve stable walking of the biped
and consistent with the hypotheses of Section 3.2. According
to this observation, an adequate tuning of the control gain
matrices K

1
, K
2
must be carried out, in such a way that

the subsystems of (49) have settling times that allow the
robot to adopt an adequate configuration at the moment
of collision with the ground. In particular, the swing foot
must be completely parallel to the ground at the moment of
collision (HC3).

Thus, an adequate tuning of control gains must be carried
out to ensure that the settling time of the variable 𝑧

5
is

lower than the settling times of 𝑧
2
, 𝑧
3
, 𝑧
4
, and 𝑧

6
, and in

turn, the settling times of these variables are lower than
the settling time of the horizontal position of the swing
foot 𝑧

1
. To achieve these conditions, we use the method

proposed in [16, 17] as an initial approximation. However,
other important aspectsmust be also considered in the tuning
process, for instance, reducing overshooting and oscillation
of the angular positions and verifying the condition for the
CoP (Proposition 4).

4.5. Robustness Analysis. Robustness of twisting slidingmode
control has been proved for the discontinuous version (51)
in [13], for the continuous version (52) in [14], and for the
continuous integral version (53) in [24]. In all the cases, the
robustness is justified for matched additive disturbances in a
double integrator system as expressed in (50). In this section,
we prove that uncertainty in the masses parameters of the
biped robot appears as a matched additive disturbance in
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linearized system (41), in such a way that previous robustness
results in the literature hold.

Let 𝜆
𝑚

= (𝑚
1
, 𝑚
2
, . . . , 𝑚

6
), 𝜆
𝑙
= (𝑙
1
, 𝑙
2
, . . . , 𝑙
6
), and

𝜆
𝑗
= (𝑗
1
, 𝑗
2
, . . . , 𝑗

6
), with 𝑚

𝑖
, 𝑙
𝑖
, 𝑗
𝑖
> 0 for 𝑖 = 1, 2, . . . , 6, be

vectors containing the masses, the lengths, and the inertias
for each link, respectively. To establish an explicit dependence
of the robot’s parameters for the matrix of inertia B(q)
and the vector fields C(q, q̇) and G(q) of system (3), let us
write thesematrices asB(q,𝜆

𝑚
,𝜆
𝑙
,𝜆
𝑗
),C(q, q̇,𝜆

𝑚
,𝜆
𝑙
,𝜆
𝑗
), and

G(q,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
).

Proposition 14. Let ̂𝜆
𝑚
, ̂𝜆
𝑙
, ̂𝜆
𝑗
be vectors containing estimated

values for the masses, lengths, and inertias, respectively. Now
let one assume that ̂𝜆

𝑙
≡ 𝜆
𝑙
and that there exists an additive

deviation in the values of the masses; that is, �̂�
𝑖
= 𝑚
𝑖
+𝜖
𝑖
, with

|𝜖
𝑖
| < ∞ for 𝑖 = 1, . . . , 6. Then the matrices B, C, and G under

the estimated parameters ̂𝜆
𝑚
, ̂𝜆
𝑙
, ̂𝜆
𝑗
can be written as

̂B (q) := B (q, ̂𝜆
𝑚
,
̂
𝜆
𝑙
,
̂
𝜆
𝑗
)

= B (q,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
)

+ B(q, 𝜖,𝜆
𝑙
,

1

3

𝜖
1
𝑙

2

1
, . . . ,

1

3

𝜖
6
𝑙

2

6
) ,

̂C (q, q̇) := C (q, q̇, ̂𝜆
𝑚
,
̂
𝜆
𝑙
,
̂
𝜆
𝑗
)

= C (q, q̇,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
)

+ C(q, q̇, 𝜖,𝜆
𝑙
,

1

3

𝜖
1
𝑙

2

1
, . . . ,

1

3

𝜖
6
𝑙

2

6
) ,

̂G (q) := G (q, ̂𝜆
𝑚
,
̂
𝜆
𝑙
,
̂
𝜆
𝑗
)

= G (q,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
)

+ G(q, q̇, 𝜖,𝜆
𝑙
,

1

3

𝜖
1
𝑙

2

1
, . . . ,

1

3

𝜖
6
𝑙

2

6
) ,

(57)

where 𝜖 = (𝜖
1
, . . . , 𝜖

6
).

Proof. The matrix of inertia for system (3) is given by
B(q,𝜆

𝑚
,𝜆
𝑙
,𝜆
𝑗
) = (𝜕/𝜕q̇)(𝜕/𝜕q̇)K(q, q̇) (see Appendix B),

whereK(q, q̇) = ∑6
𝑖=1
((1/2)𝑚

𝑖
̇Q𝑇
𝑖
̇Q
𝑖
+(1/2)𝑗

𝑖
̇𝑞

2

𝑖
) is the kinetic

energy of the system. Since 𝑗
𝑖
= (1/12)𝑚

𝑖
(2𝑙
𝑖
)

2 then ̂
𝑗
𝑖
=

(1/12)�̂�
𝑖
(2𝑙
𝑖
)

2
= (1/12)𝑚

𝑖
(2𝑙
𝑖
)

2
+ (1/12)𝜖

𝑖
(2𝑙
𝑖
)

2. It follows
that, under numerical deviations on themass parameters, the
kinetic energy turns into the following expression:

K (q, q̇)|
𝑚
𝑖
=�̂�
𝑖

=

6

∑

𝑖=1

(

1

2

�̂�
𝑖
̇Q𝑇
𝑖
̇Q
𝑖
+

1

2

̂
𝑗
𝑖
̇𝑞

2

𝑖
)

=

6

∑

𝑖=1

(

1

2

𝑚
𝑖
̇Q𝑇
𝑖
̇Q
𝑖
+

1

2

𝑗
𝑖
̇𝑞

2

𝑖
+

1

2

𝜖
𝑖
̇Q𝑇
𝑖
̇Q
𝑖

+

1

2

(

1

3

𝜖
𝑖
𝑙

2

𝑖
) ̇𝑞

2

𝑖
) .

(58)

The first two terms of the sum constitute the matrix of inertia
with real parameters and the last two terms of the sum

constitute an additive deviation. Then, the estimated matrix
of inertia can be written as follows:

̂B (q) := B (q, ̂𝜆
𝑚
,
̂
𝜆
𝑙
,
̂
𝜆
𝑗
)

= B (q,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
)

+ B(q, 𝜖,𝜆
𝑙
,

1

3

𝜖
1
𝑙

2

1
, . . . ,

1

3

𝜖
6
𝑙

2

6
) .

(59)

Similarly, using the definition of the Coriolis matrix C given
in Appendix B, we have

C (q, q̇,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
)

=
̇B (q,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
) q̇

−

1

2

(

𝜕

𝜕q
(q̇𝑇B (q,𝜆

𝑚
,𝜆
𝑙
,𝜆
𝑗
) q̇))
𝑇

.

(60)

Since B(q, ̂𝜆
𝑚
,
̂
𝜆
𝑙
,
̂
𝜆
𝑗
) = B(q,𝜆

𝑚
,𝜆
𝑙
,𝜆
𝑗
) + B(q, 𝜖,𝜆

𝑙
, (1/3)𝜖

1
𝑙

2

1
,

. . . , (1/3)𝜖
6
𝑙

2

6
), it follows that

̂C (q, q̇) := C (q, q̇, ̂𝜆
𝑚
,
̂
𝜆
𝑙
,
̂
𝜆
𝑗
)

= C (q, q̇,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
)

+ C(q, q̇, 𝜖,𝜆
𝑙
,

1

3

𝜖
1
𝑙

2

1
, . . . ,

1

3

𝜖
6
𝑙

2

6
) .

(61)

Finally, the vector field G is given by G(q,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
) =

(𝜕P(q)/𝜕q)𝑇, where P(q) = −∑6
𝑖=1
𝑚
𝑖
g𝑇Q
𝑖
is the potential

energy of the system. For estimated masses, this energy is
given by

P (q)|
𝑚
𝑖
=�̂�
𝑖

= −

6

∑

𝑖=1

�̂�
𝑖
g𝑇Q
𝑖

= −

6

∑

𝑖=1

𝑚
𝑖
g𝑇Q
𝑖
−

6

∑

𝑖=1

𝜖
𝑖
g𝑇Q
𝑖
,

(62)

letting us conclude that

̂G (q) := G (q, ̂𝜆
𝑚
,
̂
𝜆
𝑙
,
̂
𝜆
𝑗
)

= G (q,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
)

+ G(q, q̇, 𝜖,𝜆
𝑙
,

1

3

𝜖
1
𝑙

2

1
, . . . ,

1

3

𝜖
6
𝑙

2

6
) .

(63)

The proposition above allows us to decompose the esti-
mated matrices ̂B, ̂C, and ̂G as the sum of the real matrices
B, C, and G plus some deviation matrices in terms of 𝜖.
Thus, we can show the effect of the parametric uncertainty
on linearized system (41). For the next result, it is important
to notice that the vector field h does not depend explicitly on
parameters ofmasses𝜆

𝑚
and inertias𝜆

𝑗
.Thus, the vector field

h is the same under deviation on these parameters.
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Proposition 15. Let ̂𝜆
𝑚
= 𝜆
𝑚
+ 𝜖 be a vector of estimated

masses. Under ̂𝜆
𝑚
, the controller u defined in (43) transforms

linearized system (41) into the following system:
ż = A

𝑧
z + B
𝑧
k + Γ (𝑡, x) , (64)

with Γ(𝑡, x) given by

Γ (𝑡, x) = B
𝑧

𝜕h (q)
𝜕q

B−1 (q,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
)D
𝜖
, (65)

where

D
𝜖
= B
𝜖

𝜕h (q)
𝜕q

−1

(k −
𝜕

2h (q)
𝜕q2

(q̇, q̇)) + C
𝜖
q̇ + G

𝜖
,

B
𝜖
= B(q, 𝜖,𝜆

𝑙
,

1

3

𝜖
1
𝑙

2

1
, . . . ,

1

3

𝜖
6
𝑙

2

6
) ,

C
𝜖
= C(q, q̇, 𝜖,𝜆

𝑙
,

1

3

𝜖
1
𝑙

2

1
, . . . ,

1

3

𝜖
6
𝑙

2

6
) ,

G
𝜖
= G(q, q̇, 𝜖,𝜆

𝑙
,

1

3

𝜖
1
𝑙

2

1
, . . . ,

1

3

𝜖
6
𝑙

2

6
) .

(66)

Proof. From (43), the controller u under ̂𝜆
𝑚
is given by

u|
𝜆
𝑚
=�̂�
𝑚

= (𝛽
−1
(x) k + 𝛼 (x))


𝜆
𝑚
=�̂�
𝑚

=
̂B (q) 𝜕h (q)

𝜕q

−1

k + ̂C (q, q̇) q̇ + ̂G (q)

−
̂B (q) 𝜕h (q)

𝜕q

−1
𝜕

2h (q)
𝜕q2

(q̇, q̇) .

(67)

By Proposition 14, ̂B(q) = B(q,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
) + B

𝜖
, ̂C(q, q̇) =

C(q, q̇,𝜆
𝑚
,𝜆
𝑙
,𝜆
𝑗
) + C

𝜖
, and ̂G(q) = G(q,𝜆

𝑚
,𝜆
𝑙
,𝜆
𝑗
) + G

𝜖
,

which gives

u|
𝜆
𝑚
=�̂�
𝑚

= 𝛽
−1
(x) k + 𝛼 (x) +D

𝜖
, (68)

whereD
𝜖
= B
𝜖
((𝜕h(q)/𝜕q)−1)(k−(𝜕2h(q)/𝜕q2)(q̇, q̇))+C

𝜖
q̇+

G
𝜖
. Under this control law, system (3) is given by

ẋ = f (x) + g (x) u|
𝜆
𝑚
=�̂�
𝑚

=

[

[

[

q̇

𝜕h (q)
𝜕q

−1

^ + B−1 (q)D𝜖
]

]

]

,

(69)

being ^ = k − (𝜕2h(q)/𝜕q2)(q̇, q̇). Linearized system (41) is
obtained from the change of variables z = T(x). If z is derived
with respect to 𝑡 and using the above expression for ẋ, we can
write

ż = 𝜕T (x)
𝜕x

ẋ

=

[

[

[

[

𝜕h (q)
𝜕q

0
6×6

𝜕

2h (q)
𝜕q2

q̇ 𝜕h (q)
𝜕q

]

]

]

]

[

[

[

q̇

𝜕h (q)
𝜕q

−1

^ + B−1 (q)D
𝜖

]

]

]

= A
𝑧
z + B
𝑧
k + Γ (𝑡, x) .

(70)

Table 1: Numerical values of the physical parameters.

Link Mean length 𝑙 Mass𝑚
B
0
,B
5
(feet) 0.15m 1 kg

B
1
,B
4
(tibias) 0.25m 10 kg

B
2
,B
3
(femurs) 0.25m 10 kg

B
6
(torso) 0.4m 20 kg

Table 2: Numerical values for the walking parameters.

Symbol Value
𝑠 (step size) 0.15m
𝑑 (max. step height) 0.03m
𝜇 (symmetry param.) 0.5 (dimensionless)

The proposition above proves that the effect of parametric
uncertainty in the masses and inertias over linearized system
(41) is to generate a matched additive uniformly bounded
disturbance. Therefore, previous robustness results in the
literature for the three cases of twisting control hold. It is
worth noting that a similar analysis can be done to show that
a bounded impulsive external disturbance also produces an
additive bounded disturbance on linearized system (41).

5. Simulation Results
In this section, we present numerical results from the solution
of the bipedal walking model. In particular, we show the
solutions for hybrid system (16) under the linearizing control
law u defined in Theorem 10. We evaluate three different
approaches to achieve finite-time convergence as stated in
Theorem 11 from the auxiliary control k. The evaluated
approaches are the discontinuous and continuous twisting
controls of Sections 4.2.1 and 4.2.2, respectively, and the
continuous integral twisting control of Section 4.2.3. Results
are obtained from an implementation of the bipedmodel and
the walking control in Python, exploiting the symbolic capa-
bilities of the library SymPy. We use the physical parameters
(mass, inertia, and length) presented in Table 1, which are
close to the average proportions of a human adult.

The walking parameters 𝑠, 𝑑, and 𝜇 (see Remark 6) are
chosen according to Table 2. For simplicity and to restrain the
initial condition x(0) toX

𝑐
(see Remark 12), in all the results,

x(0) is taken near the value Δ(h−1(0), 0) which physically
corresponds to a step configuration. In all the next sections,
we present results that physically correspond to 10 steps
forward of bipedal walking.

5.1. Discontinuous Twisting Control (DTC). The results of this
section show the evolution in time of hybrid system (16) under
the auxiliary control k defined in Theorem 11 with control
parameters 𝜎 = 0, K

1
= diag(0.32, 0.08, 0.32, 0.24, 0.4, 0.4),

and K
2
= diag(0.336, 0.088, 0.336, 0.28, 0.416, 0.416). Since

this controller yields a discontinuous closed-loop system,
numerical problems appear during the integration process to
obtain the system’s trajectories. To overcome this issue, we use
an approximation of the sign function as proposed in [26]:
sign(𝑥) = 𝑥/(𝑥 + 𝛿), with 𝛿 = 10−4.
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Figure 4: Output and CoP evolution for the DTC.

Figure 4 shows the evolution in time of the output y(𝑡)
(a) and the CoP (b). In this case, an overestimation of 2%
of the masses with respect to the real values is introduced in
the controller, which similarly affects the inertias. Thus, the
linearized systemdefined inTheorem 10 takes the form stated
in Proposition 15. For the output function, we can observe a
finite-time cross through the origin, which implies a collision
between the swing foot and the ground. The control gains
K
1
and K

2
were tuned in such way that the biped adopts an

adequate configuration for the step before the collision (see
Section 4.4). For the CoP, we can observe that the dynamic
constraintCoP𝑥 ∈ [−𝑙

0
, 𝑙
0
] is fulfilled through the whole walk

(see Proposition 4) which means that the stance foot stays
in planar contact with the ground. Note that all components
of the output do not directly converge to zero, but they have
an overshoot that generates no null velocities at the moment
of impact with the ground. This behavior is intrinsic to the
DTC and it is an undesirable effect because some peaks are
generated in the CoP.

Figure 5 presents the evolution of the configuration vari-
ables 𝑞

1
, . . . , 𝑞

6
of the robot. Note the periodic behavior of all

the variables. Moreover, we can see the periodic alternation
between the variables 𝑞

1
and 𝑞
4
and between variables 𝑞

2
and

𝑞
3
, which shows the shifting between stance and swing phases

for each leg.

5.2. Continuous Twisting Control (CTC). In this section, we
present results of the solution of hybrid system (16) under
the auxiliary control k defined in Theorem 11 with control
parameters 𝜎 = 0.85, K

1
= diag(2, 2, 2.5, 3.5, 2, 2), and K

2
=

diag(2.01, 2.1, 2.51, 3.6, 2.5, 2.5). In this case, to evaluate the
controller robustness to parametric uncertainty, we consider
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Figure 5: State variables for the DTC.
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Figure 6: Output and CoP evolution for the CTC.

a +10% deviation on each mass parameter, which also affects
the inertia parameters.

Figure 6 shows the evolution of the output y(𝑡) (a) and
the CoP (b). For y(𝑡), we can say that it converges in finite-
time to a point in a neighborhood of the origin, which
means that the controller cannot overcome the persistent
disturbance introduced by the parameters deviation. Another
feature of the output is that none of its components have
an overshoot, in contrast to Figure 4. This means that the
swing foot contacts the ground in a smooth manner. Thus,
the CoP in Figure 6(b) does not present the peaks appearing
in Figure 4 and it remains inside the desired range.

Figure 7 shows the configuration variables 𝑞
1
(tibia angle)

and 𝑞
2
(femur angle) against its derivatives. How, from
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Figure 8: Tracking of parabolic reference for the CTC.

the initial condition, both trajectories converge to an appar-
ent periodic orbit can be seen. In both cases, we can see the
discontinuity introduced by the collision between the swing
foot and the ground, which is modeled by Δ defined in (15).

Figure 8 shows the evolution of the feet positions. Both
feet follow the parabolic trajectory (24) that prevents the
contact between the swing foot and the ground before the
desired step size is reached. However the obtained step length
does not accurately match the walking parameter 𝑠 = 0.15m.
This is due to the fact that the output does not accurately
converge to the origin in the presence of the parametric
uncertainty.

5.3. Continuous Integral Twisting Control (CITC). In this
section, we present some results using the auxiliary control
k defined in Theorem 11 with control parameters 𝜎 = 0.9,
K
1
= diag(3, 2, 3, 3.5, 2, 2), and K

2
= diag(3.01, 2.1, 3.01,

3.51, 2.5, 2.5) and including the integral term as defined in
(53), taking the same gains for the term Vstc and ̇𝜂 as 2.5 for
each component of k. Once again, we consider a parametric
deviation of +10% on the mass parameters.

Figure 9 shows the behavior of the output y(𝑡) and the
CoP for the integral controller.The output achieves a smooth
convergence to the origin, in contrast to the result of Figure 6.
This means that this controller is more robust than the one
of the previous section. Thus, the biped attains a desired
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Figure 9: Output and CoP evolution for the CITC.

configuration at themoment of the collision with the ground.
The constraint of the CoP is also satisfied using this case.

Figure 10 presents the evolution of the tibia and femur
angles against their time derivatives. Similarly to the contin-
uous twisting control, the trajectories seem to converge (in
finite-time) to a presumed periodic orbit.

In Figure 11, we can see the evolution of the feet positions.
In contrast to Figure 8, the trajectories followed by the feet
accurately reach the desired step size 𝑠 = 0.15m even with
the same level of parametric deviation.
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We found through several simulations that it was neces-
sary to augment the control gains to maintain stability for
large disturbances. However, an increase in the gains would
imply a raise on the maximum values of |CoP𝑥|. In order
to include a larger parametric deviation and to consider an
impulsive external disturbance (a push in the torso), we use
higher gains for the matrices K

1
and K

2
, with the cost of

not satisfying the constraint of the CoP. In spite of that, the
following results allow us to show the effectiveness of the
integral twisting control in rejecting effectively impulsive and
persistent disturbances.

The results presented below are based on the solutions
of the hybrid system considering a parametric deviation of
+15% on mass parameters. Besides, a horizontal impulsive
force is introduced on the center of mass of the torso with a
constant magnitude of 30N with a duration of 0.05 s applied
at 𝑡 = 7 s.

Figure 12 shows the evolution of the output y(𝑡) (a)
and the feet position (b). It can be seen that the output
converges repeatedly to the origin in finite-time, providing
an appropriate walking pattern at each step. At 𝑡 = 7 s, the
effect of the impulsive disturbance on the system and how
the controller is able to correct the deviation produced can
be visualized. For the feet, it can be seen that they follow the
specified parabolic trajectories. The impulsive disturbance
affects temporally these trajectories; however, the controller
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Figure 12: Output and tracking of parabolic reference for the CITC
with impulsive disturbance.

rejects the disturbance effect before the robot’s swing foot
collides with the ground.

In Figure 13, we present the evolution of the tibia and
the femur angles 𝑞

1
and 𝑞

2
, respectively, against their time

derivatives. How, from an initial condition, the trajecto-
ries approach an apparent periodic orbit can be seen. The
impulsive disturbance is manifested with a large deviation
from the aforementioned periodic orbits. However, as shown
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Figure 14: Walking pattern as a sequence of stick figures.

in Figure 12, the controller is capable of rejecting the dis-
turbance, which implies that the trajectories return to the
periodic orbit.

Figure 14 (above) presents the walking motion of the
biped robot as a sequence of stick figures over the ten steps.
Figure 14 (below) displays some details of the walkingmotion
during the time interval where the impulsive disturbance is
applied.

6. Conclusions and Future Work

In this paper we have derived a complete model of a planar
biped robot with six degrees of freedom and proposed a
finite-time walking control by using second-order sliding
mode control. The robot model is developed as a hybrid
dynamical system with a continuous fully actuated single-
support phase and an instantaneous double-support phase.
The last one represents the discontinuous transition of

the robot angular velocities when the swing foot collides with
the ground. For the walking control, we have presented the
synthesis of a controller based on an adequate selection of
outputs, which are controlled to track adequate references
that impose virtual constraints and encode a walking pattern.
Finite-time convergence of the tracking errors is enforced,
particularly, by using the twisting algorithm. We have
evaluated and compared the performances of the walking
control for discontinuous and continuous twisting control
in the presence of parametric uncertainty and external
disturbances.The robotmodel and the synthesized controller
are evaluated through numerical simulations. Regarding our
results, the continuous integral twisting control has shown
the best performance in terms of robustness, smoothness
of the system’s solution, and walking speed. Although the
discontinuous twisting control is well known to be robust, it
requires values of control gains that might produce violation
of the center of pressure (CoP) constraint. Besides, this
control has intrinsic effects of overshoot and oscillation that
are not desirable for bipedal walking control.

According to our results, we have realized that the
dynamic constraint imposed by the CoP is really restraining,
in the sense that the tuning of control gains must take it
into account. As future work, we propose to explore the use
of evolutionary algorithms to facilitate the tuning of control
gains whereas robustness is ensured and the CoP constraint
is satisfied. An alternative to alleviate that issue is to extend
the model to allow the robot feet to rotate on heels or toes
when the CoP constraint is not satisfied. In this work, we
have presented a particular diffeomorphism to transform
the system into a linear form; however different options
can be generated. We chose the presented diffeomorphism
because its validity domain can be given explicitly and in
a simple form. This allows us to avoid singularities from
an adequate selection of walking parameters. However, a
complete comparison of different diffeomorphisms can be
done as future work. Additionally, the proposed walking
pattern, defined in terms of some tracked references, might
be subject to optimization in terms of energy consumption.
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Appendices

A. The Kinematic Model

In this section,we discuss in depth the kinematics of the biped
robot, which is the first step to formulate the complete model
of Section 3. According to the convention of measuring the
configuration angles 𝑞

𝑖
, established in Figure 2, the Cartesian

positions of each joint with respect to the reference frameF
0

can be obtained recursively using homogeneous transforma-
tions as follows:

P
𝑖
=

{
{
{
{
{

{
{
{
{
{

{

[𝑝

𝑥
𝑝

𝑦
]

𝑇

, for 𝑖 = 1,

P
𝑖−1
+ R
𝑖−1
[0 2𝑙
𝑖−1
]

𝑇

, for 𝑖 = 2, 3,

P
𝑖−1
+ R
𝑖−1
[0 −2𝑙

𝑖−1
]

𝑇

, for 𝑖 = 4, 5,

(A.1)

where 𝑝𝑥, 𝑝𝑦 ∈ R are the Cartesian 𝑥- and 𝑦-coordinates
of the stance foot’s ankle, 𝑙

𝑖
is the mean length of link B

𝑖
,

and R
𝑖
is a rotation matrix given by R

𝑖
= [

𝑐
𝑖
−𝑠
𝑖

𝑠
𝑖
𝑐
𝑖
], with

𝑠
𝑖
:= sin 𝑞

𝑖
, 𝑐
𝑖
:= cos 𝑞

𝑖
. The centers of mass Q

𝑖
of the links

are the midpoints between joints and they can be computed
recursively as follows:

Q
𝑖
=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

P
𝑖+1
, for 𝑖 = 0,

1

2

(P
𝑖
+ P
𝑖+1
) , for 𝑖 = 1, . . . , 4,

P
𝑖
, for 𝑖 = 5,

P
3
+ R
𝑖
[0 𝑙
𝑖
]

𝑇

, for 𝑖 = 6.

(A.2)

The Jacobianmatrix of the Cartesian coordinates of the swing
foot’s ankle is given by

J
𝑃
5

= [

−2𝑙
1
𝑐
1
−2𝑙
2
𝑐
2
2𝑙
3
𝑐
3
2𝑙
4
𝑐
4
0 0

−2𝑙
1
𝑠
1
−2𝑙
2
𝑠
2
2𝑙
3
𝑠
3
2𝑙
4
𝑠
4
0 0

] . (A.3)

It can be shown that this matrix is of full rank. Additionally,
we have

J
𝑃
𝜃

= (0, 0, 0, 0, 1, 0) . (A.4)

The height of the swing foot, namely, P𝑦
5
, is an important

variable, given that it defines the level surface (17) to detect
collision with the ground. It is given by

P𝑦
5
= 𝑝

𝑦
+ 2𝑙
1
𝑐
1
+ 2𝑙
2
𝑐
2
− 2𝑙
3
𝑐
3
− 2𝑙
4
𝑐
4
. (A.5)

B. The Euler-Lagrange Model

Thematrix of inertia required in (2) can be computed directly
from the kinetic energy as follows:

B (q, q̇) = 𝜕

𝜕q̇𝑇
𝜕

𝜕q̇
K (q, q̇) . (B.1)

The Coriolis matrix and the gravitational term are given by

C (q, q̇) = ̇B (q) q̇ − 1
2

(

𝜕

𝜕q
(q̇𝑇B (q) q̇))

𝑇

,

G (q) = 𝜕P (q)
𝜕q

𝑇

.

(B.2)

The matrix A that relates the vector of generalized forces 𝜇
with the vector of torques 𝜏 is

A =

[

[

[

[

[

[

[

[

[

[

[

[

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

0 0 0 0 0 −1

0 0 1 1 0 0

]

]

]

]

]

]

]

]

]

]

]

]

. (B.3)

C. Proof of Proposition 1

Linear system (7) has a single solution if and only if thematrix
Π (8) is nonsingular. To verify that, let us define (q̇, F

𝑒
, 𝜏
𝑒
) ∈

Ker(Π). Then q̇ = B−1(q)J𝑇
𝑃
5

F
𝑒
+B−1(q)J𝑇

𝑃
𝜃

𝜏
𝑒
and from (6) we

have that J
𝑃
5

q̇ = 0 and J
𝑃
𝜃

q̇ = 0. This implies that

J
𝑃
5

B−1 (q) J𝑇
𝑃
5

F
𝑒
+ J
𝑃
5

B−1 (q) J𝑇
𝑃
𝜃

𝜏
𝑒
= 0,

J
𝑃
𝜃

B−1 (q) J𝑇
𝑃
5

F
𝑒
+ J
𝑃
𝜃

B−1 (q) J𝑇
𝑃
𝜃

𝜏
𝑒
= 0.

(C.1)

However, it can be shown that J
𝑃
5

B−1(q)J𝑇
𝑃
𝜃

= 0
2×1

and
(J
𝑃
𝜃

B−1(q)J𝑇
𝑃
5

)

𝑇
= 0
1×2

, which simplify the previous expres-
sions as follows:

J
𝑃
5

B−1 (q) J𝑇
𝑃
5

F
𝑒
= 0,

J
𝑃
𝜃

B−1 (q) J𝑇
𝑃
𝜃

𝜏
𝑒
= 0.

(C.2)

Then, given that B(q) is positive definite and J
𝑃
5

and J
𝑃
𝜃

are full rank, we have that J
𝑃
5

B−1(q)J𝑇
𝑃
5

and J
𝑃
𝜃

B−1(q)J𝑇
𝑃
𝜃

are
positive definite. Hence, F

𝑒
= 0
2×1

and 𝜏
𝑒
= 0. That implies

that q̇ = 0
6×1

, and consequently {0
9×1
} = Ker(Π).
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